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Sound propagation in a cylindrical Bose-condensed gas

E. Zaremba
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 2 September 1997!

We study the normal modes of a cylindrical Bose condensate atT50 using the linearized time-dependent
Gross-Pitaevskii equation in the Thomas-Fermi limit. These modes are relevant to the recent observation of
pulse propagation in long, cigar-shaped traps. We find that pulses generated in a cylindrical condensate

propagate with little spread at a speedc5Ag n̄/m, where n̄ is the average density of the condensate over its
cross-sectional area.@S1050-2947~98!06301-X#

PACS number~s!: 03.75.Fi, 67.40.Hf, 67.57.Jj
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In a recent paper, Andrewset al. @1# presented results fo
the propagation of sound through the Bose condensate i
axially symmetric, cigar-shaped trap. These observati
were made possible by the large aspect ratio of the an
tropic trap and the localized generation of pulses by a la
beam focused at the midpoint along the length of the trap.
imaging the propagation of the pulse, they were able to
termine the sound speed as a function of the condensate
sity. The measured sound speed is approximately equa
the Bogoliubov phonon velocity as determined by the ma
mum density in the cloud. The authors@1# sketch a qualita-
tive theoretical argument in support of this observation.

The purpose of the present paper is to provide a m
detailed analysis of the dependence of the sound spee
the inhomogeneous distribution of atoms in the trap. In
propagation of a pulse for short times, the ends of
trapped condensate do not come into play and we can th
fore simulate the experimental situation by considering
idealized cylindrical trap that is uniform in thez direction
and has a harmonic confining potential of the form

V~r!5
1

2
mv0

2r2 ~1!

in the radial direction. Herev0 is the trap frequency. Treat
ing the condensate in the Thomas-Fermi~TF! approximation
@2#, the equilibrium density is given by

n0~r!5
mv0

2

2g
~R22r2!, ~2!

whereg54pa\2/m is the interaction parameter andR is the
radius of the cylindrical condensate related to the chem

potentialm5V(r)1gn0(r) by m5 1
2 mv0

2R2.
The dynamics of the condensate will be based on the

earized time-dependent Gross-Pitaevskii equation@3# in the
TF limit @4#. This equation can be recast as a pair of quant
hydrodynamic equations

]dn

]t
52“•~n0v!, ~3!

m
]v

]t
52g“dn2“dU, ~4!
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where dU(r ,t) represents an externally imposed potenti
Eliminating the velocity from these equations, we obtain
equation for the density fluctuationdn(r ,t), derived ~for
dU50! by Stringari@4#,

]2dn

]t2 5
g

m
“•~n0“dn!1

1

m
“•~n0“dU !. ~5!

To study the normal modes of the condensate, we setdU
to zero and look for solutions that correspond to a propag
ing wave of the form

dn~r ,t !5dn~r!ei ~kz2vt !. ~6!

We assume that the density fluctuation in the transverse
rections depends only on the radial variabler and not on the
azimuthal anglef. It is clear that more general solution
having the angular dependenceeimf are possible, but thes
will not be considered in this paper.

We now substitute this form of the solution into Eq.~5!
and, making use of the equilibrium density in Eq.~2!, obtain
the equation (dU50)

v2dn5
1

2
v0

2H k2~R22r2!dn2
1

r
~R223r2!

]dn

]r

2~R22r2!
]2dn

]r2 J , ~7!

wheredn now represents the spatially dependent amplitu
defined in Eq.~6!. The allowed solutions of this equatio
define the dispersion relationsv(k) of the various modes o
the condensate in the cylindrical trap.

It is now convenient to introduce the dimensionless p
rameters

v̄[
v

v0
, k̄[kR

and to define the new independent variable

x[2
r2

R2 21, 21<x<1. ~8!

When expressed in terms of this variable, the density fl
tuation, now denoted byy(x), is found to satisfy
518 © 1998 The American Physical Society
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d

dx F ~12x2!
dy

dxG1
1

2
v̄2y2

1

8
k̄ 2~12x!y50, ~9!

which is in the standard Sturm-Liouville form. Fork̄ 50,
this equation in fact reduces to the Legendre differen
equation

d

dx F ~12x2!
dy

dxG1ly50, ~10!

whose solutions are the Legendre polynomialsPl(x) with
eigenvaluesl5 l ( l 11), l 50,1,... . Thus the modes of th
condensate can be labeled by the indexl and have a limiting
frequency atk50 given by

v l
2~k50!52l ~ l 11!v0

2 . ~11!

The first two frequencies in the sequence, 0 and 2v0 , are the
two m50 mode frequencies found by Stringari@4# for a
cigar-shaped trap in the limit that the axial frequencyvz
tends to zero. More generally, the whole sequence in
~11! was recently obtained analytically in this same limit
Fliesseret al. @5#.

These various solutions have distinct radial eigenfu
tions. For example, forl 50, y(x) is a constant and the as
sociated density fluctuation has a radially independent am
tude. This mode corresponds to a local adiabatic expan
of the condensate brought about by a local change in
chemical potentialdm. Such a change gives rise to a vari
tion in the equilibrium densityn0(r;R) that is spatially in-
dependent. In the limit of long wavelengths, it costs no
ergy to move atoms from one region of the trap to anot
and the mode therefore has zero frequency. The otherlÞ0
modes have a finite frequency since they involve radial m
tion of the condensate.@Note that according to Eq.~4!, the
direction of the local velocity is normal to constant dens
surfaces.# For example, forl 51, the density fluctuation is o
the form dn(r)}122r2/R2, which has a node atr
5R/&. Unlike the l 50 mode, all of these modes have
number-conserving density fluctuation in the sense
*0

Rdrrdn(r)50. The l 51 mode atk50 is a radial breath-
ing mode.

For kÞ0, we expand the density fluctuation as

y~x!5(
l

al Pl~x!, ~12!

where the normalization of the Legendre functions is cho
such that

E
21

1

dx Pl~x!Pl 8~x!5d l l 8 . ~13!

Substituting expansion~12! into Eq. ~9!, we obtain the sys-
tem of linear equations

S 1

2
v̄22 l ~ l 11!2

1

8
k̄ 2Dal1

1

8
k̄ 2(

l 8
Mll 8al 850,

~14!

where the symmetric matrixMll 8 is given by
l

q.

-

li-
on
e

-
r

-

at

n

Mll 85E
21

1

dx Pl~x!xPl 8~x!. ~15!

Since the matrixMll 8 does not have diagonal matrix ele
ments, it is clear that its effect on the mode eigenvalues
occurs in second order, so that to lowest order ink2,

v l
2~k!52l ~ l 11!v0

21
1

4
~kRv0!21O~k4!. ~16!

In particular, thel 50 mode is phononlike with a velocity

c5
1

2
Rv05Agn0~0!

2m
, ~17!

where n0(0) is the ~maximum! condensate density on th
axis of the trap. If we compare this velocity with the Bog
liubov velocity Agn/m in a homogeneous gas of densityn,
we see that the effective density in the cylindrical trap is h
the maximum value, which is just the densityn̄ obtained by
averaging Eq.~2! over the condensate cross section.

It is interesting to note that the matrix problem in Eq.~14!
is equivalent to the problem of a quantum rigid rotor in
gravitational field, having the Hamiltonian

H5
L2

2I
1MgR~12cosu!. ~18!

Here L is the angular momentum operator,I 5MR2 is the
moment of inertia of the rotor, and the gravitational potent
energy of the rotor massM is referenced with respect to it
lowest position~the polar angleu is defined with respect to
this position!. The angular eigenfunctions of this Hami
tonian can be expanded in spherical harmonicsYlm(u,f)
and in them50 subspace, the problem is then identical
Eq. ~14!. Thus the parameterk̄ plays the role of a ‘‘gravita-
tional field’’ that perturbs the mode energies from their ‘‘fre
rotor’’ values.

The solution of Eq.~14! is easily obtained for arbitraryk̄
by numerical diagonalization. In Fig. 1 we show some of t
lowest mode frequencies as a function of wave vector. T
lowest mode is a soundlike mode and exhibits a nega
dispersion. It can be seen that the group velocity devia

FIG. 1. Dispersion of the lowest modes in a cylindrical conde
sate as a function of the wave vectork. v0 is the radial trap fre-
quency andR is the TF condensate radius.
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appreciably from its long-wavelength limit once the wav
length is comparable to the diameter of the condensate.
mode coupling induced by thek̄ 2 perturbation in Eq.~14! of
course becomes more significant with increasingk̄ and has
the effect of lowering the sound speed. This coupling is
sociated with the interplay of the wavelike modulation of t
density along the axis and the strong inhomogeneity of
equilibrium density in the radial direction.

We now return to the experimental situation@1# that in-
volves the propagation of sound pulses rather than cont
ous waves. These pulses are generated by switching
laser beam that repels atoms from its point of application
the center of the cylindrical trap. We shall assume this p
turbation to be weak and consider the linear response of
condensate. The perturbation is taken to be

dU~r ,t !5U0e2z2/s2
u~ t !, ~19!

that is, a Gaussian potential with no radial dependen
which is switched on att50. The equation defining the den
sity fluctuation is given by Eq.~5! and can be solved by
introducing a Fourier representation of the density and ex
nal potential:

dn~r,z,t !5E
2`

` dk

2p
eikzdn~r,k,t !,

dU~z,t !5E
2`

` dk

2p
eikzdU~k,t !, ~20!

with

dU~k,t !5ApsU0e2s2k2/4u~ t ![dU~k!u~ t !. ~21!

Taking the Fourier transform of Eq.~5! and using the vari-
ablex introduced earlier, we obtain the equation

]2y

]t2 52L̂y2
~v0kR!2

4g
~12x!dU, ~22!

where we have defined the differential operator

L̂[22v0
2F d

dx
~12x2!

d

dx
2

1

8
k̄ 2~12x!G . ~23!

This is just the differential operator defining the mode eig
functions in Eq.~9!. These eigenfunctions satisfy

L̂fm~x!5vm
2 ~k!fm~x! ~24!

and form an orthonormal set

E
21

1

dx fm~x!fn~x!5dmn . ~25!

They can therefore be used to expandy(x,k,t) as

y~x,k,t !5(
m

bm~k,t !fm~x!. ~26!
-
he

-

e
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he
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Substituting this expansion into Eq.~22! and taking the inner
product of the resulting equation withfn(x), we obtain the
equation for a driven harmonic oscillator

b̈n1vn
2bn5 f n~ t !, ~27!

where the forcing term on the right-hand side is defined

f n~ t !52
~v0kR!2

4g
dU~k,t !E

21

1

dx fn~x!~12x!

[ f n~k!u~ t !. ~28!

The solution of Eq.~27! for t>0 with the boundary condi-
tions bn(0)50 andḃn(0)50 is

bn~k,t !5
f n~k!

vn
2~k!

@12cosvn~k!t#. ~29!

We have explicitly displayed here the dependence of
various quantities on the wave vectork in the Fourier expan-
sion. This essentially completes the solution for the den
fluctuationdn(r,z,t).

To analyze the time evolution of the density pulse, it
convenient to consider the average ofdn(r,z,t) over the
cross-sectional areaA of the condensate. We therefore defi

dn~z,t !5
1

A E
A
dAdn~r,z,t !

5E
2`

` dk

2p
eikz(

n
bn~k,t !

1

2 E
21

1

dx fn~x!.

~30!

According to Eq.~12!, the eigenfunctionsfn(x) are them-
selves given by the expansion

fn~x!5(
l

al
~n!~k!Pl~x!, ~31!

where the coefficientsal
(n)(k) defining thenth eigenvector of

Eq. ~14! have the limiting valueal
(n)(k50)5d ln . @In other

words, the eigenfunctionfn(x) reduces toPn(x) in the
k→0 limit.# The orthonormality of the Legendre function
thus yields

dn~z,t !5E
2`

` dk

2p
eikz

1

&
(

n
a0

~n!~k!bn~k,t !. ~32!

Similarly, we find

f n~k!52
~v0kR!2

2&g
S a0

~n!~k!2
1

)
a1

~n!~k!D dU~k!.

~33!

Thus, for smallk, only then50 andn51 modes are excited
appreciably.

Substituting Eq.~29! together with Eq.~33! into Eq.~32!,
the averaged density fluctuation can be evaluated num
cally. As an example of the calculation, we present in Fig
results for the propagation of a pulse. The width of t
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57 521SOUND PROPAGATION IN A CYLINDRICAL BOSE- . . .
Gaussian perturbation in these calculations was chosen
s51.5R, which corresponds approximately to the expe
mental situation. Once the pulse is launched it is seen
propagate at the speedc given by Eq.~17!. The shape of the
pulse will change in time as a result of thek dispersion of the
normal modes, but the effect is weak since the pulse
mainly made up of the long-wavelengthn50 sound modes
The particles carried off by the pulse leave behind a st
depression at the origin that corresponds to the new equ
rium shape of the condensate in the presence of the ap
localized perturbation.

These theoretical results for the propagation of a pulse
in reasonable agreement with the experimental observat
@1#. One difference is the stronger wave-packet dispers
observed experimentally, which may be due to the ac
variation of the condensate density along the trap axis. H
ever, a more serious discrepancy concerns the spee
propagation. In the experiment it was concluded that
sound speed was determined by the maximum conden
density according toc8.Agn0(0)/m, as opposed to the
value we find in Eq.~17!. However, it is clear from the
published figure that the measured sound speed actually
below c8 at the higher trap densities. At these densities,
theoretical valuec would lie below the measured values b

FIG. 2. Propagation of a pulse generated by a Gaussian pe
bation applied at the origin att50. The lowest curve is at a time
t54/v0 and the interval between each successive curve isDt
54/v0 .
.
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about the same amount thatc8 lies above. The difference
between our theoretical result and experiment could be
plained by errors in the determination of the trap density
which the theoretical value is based, but the claimed exp
mental precision@6# would seem to eliminate this possibility

On the theoretical side, one can question the validity
the TF approximation. For the given trap parameters@1# and
a typical density ofn0(0);331020 m23, the radius of the
condensateR, in units of the oscillator lengthl 5A\/mv0, is
approximately 5. This implies that the TF approximatio
provides a good estimate of the ground-state density o
most of the occupied volume. The validity of the TF appro
mation is further supported by the fact that the frequencie
the low-lying collective excitations in these traps@7# are
close to the TF values@4#. This observation is consistent wit
calculations based on the Bogoliubov approximation@8–10#,
which show a reasonably rapid convergence to the TF li
with increasingN, the number of trapped atoms. Howeve
the situation with regard to pulse propagation is somew
different in that shorter-wavelength excitations are be
probed. Within the hydrodynamic formulation@4# of the Bo-
goliubov approximation, an additional term appears on
right-hand side of Eq.~4! that represents the fluctuation i
the ‘‘quantum pressure’’ associated with the kinetic ener
This term becomes increasingly important as the wavelen
of the density fluctuation is reduced. Unfortunately, it cann
be estimated using the TF density since the failure of the
approximation at the edge of the condensate@2,11# leads to a
divergent result. Thus explicit numerical solutions of the B
goliubov equations are required in order to ascertain the
curacy of the TF approximation for the conditions und
which the pulse propagation experiments were perform
On the other hand, at long wavelengths, we expect the
prediction for the sound speed, as given by Eq.~17!, to be
valid.
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