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Sound propagation in a cylindrical Bose-condensed gas
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We study the normal modes of a cylindrical Bose condensale=dl using the linearized time-dependent
Gross-Pitaevskii equation in the Thomas-Fermi limit. These modes are relevant to the recent observation of
pulse propagation in long, cigar-shaped traps. We find that pulses generated in a cylindrical condensate
propagate with little spread at a speed \/g?/m, wheren is the average density of the condensate over its
cross-sectional arefS1050-2947@8)06301-X]

PACS numbe(s): 03.75.Fi, 67.40.Hf, 67.57.Jj

In a recent paper, Andrevet al. [1] presented results for where sU(r,t) represents an externally imposed potential.
the propagation of sound through the Bose condensate in d@fliminating the velocity from these equations, we obtain an
axially symmetric, cigar-shaped trap. These observationequation for the density fluctuatioan(r,t), derived (for
were made possible by the large aspect ratio of the anisasU =0) by Stringari[4],
tropic trap and the localized generation of pulses by a laser 5
beam focused at the midpoint along the length of the trap. By g“on _ g
imaging the propagation of the pulse, they were able to de- A% m
termine the sound speed as a function of the condensate den-
sity. The measured sound speed is approximately equal to To study the normal modes of the condensate, weSset
the Bogoliubov phonon velocity as determined by the maxi10 zero and look for solutions that correspond to a propagat-
mum density in the cloud. The authdis] sketch a qualita- ing wave of the form
tive theoretical argument in support of this observation. (Kz— o

The purpose of the present paper is to provide a more an(r,t)=an(p)e' . ©®)
detailed analysis of the dependence of the sound speed

the inhomogeneous distribution of atoms in the trap. In therections depends only on the radial variapland not on the

propagation of a pulse for shor’F times, the ends of theazimuthal angleg. It is clear that more general solutions
trappe_d condensate do hot Come_lnto_play and we can therﬂéving the angular dependen€e&'¢ are possible, but these
fore simulate the experimental situation by considering an '

idealized cvlindrical hat i i in the directi will not be considered in this paper.
dealized cylindrical trap that is uniform in the direction We now substitute this form of the solution into E&)
and has a harmonic confining potential of the form

and, making use of the equilibrium density in Eg), obtain
the equation §U=0)

V-(n0V5n)+%V-(nOV5U). (5)

We assume that the density fluctuation in the transverse di-

V( )=£mw2 2 ()

pI= g ewoP 1, 1 gén
w?dn= 5 g k?(R?>—p?)n— ;(R2—3p2) s
in the radial direction. Herey is the trap frequency. Treat-

ing the condensate in the Thomas-Fefi¥) approximation . %6n
[2], the equilibrium density is given by —(R°=p?) el )
2
Mwg where 6n now represents the spatially dependent amplitude
no(p) = g (R?=p?), @ i P otons o

defined in Eq.(6). The allowed solutions of this equation
define the dispersion relations(k) of the various modes of
whereg=4ma#?/m is the interaction parameter aRds the  the condensate in the cylindrical trap.

radius of the cylindrical condensate related to the chemical It is now convenient to introduce the dimensionless pa-

29

potential u=V(p) +gny(p) by u= 3 mwiR?. rameters

The dynamics of the condensate will be based on the lin-
earized time-dependent Gross-Pitaevskii equairin the = ﬂ, k=kR
TF limit [4]. This equation can be recast as a pair of quantum o

hydrod i ti
ydrodynamic equations and to define the new independent variable

aon v 3 2

- V(oY) © X= %—1, —1<x<1. (8)

N _ When expressed in terms of this variable, the density fluc-
m ot gvon—vau, @ tuation, now denoted by(x), is found to satisfy
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dy| 1 1
(1-x) xlT32 wzy—g k?(1-x)y=0, (9

d
dx

which is in the standard Sturm-Liouville form. Fd= 0,

this equation in fact reduces to the Legendre differential

equation

d
(1-x?) d—i +Ay=0, (10

d
dx
whose solutions are the Legendre polynomiB|§x) with
eigenvalues\=1(1+1), 1=0,1,... . Thus the modes of the
condensate can be labeled by the intdexd have a limiting
frequency ak=0 given by
wik=0)=2I(1+1)w3. (12)

The first two frequencies in the sequence, 0 ang 2are the
two m=0 mode frequencies found by Stringdd] for a
cigar-shaped trap in the limit that the axial frequenay
tends to zero. More generally, the whole sequence in E
(11) was recently obtained analytically in this same limit by
Fliesseret al. [5].

These various solutions have distinct radial eigenfunc
tions. For example, for=0, y(x) is a constant and the as-

sociated density fluctuation has a radially independent ampli-
tude. This mode corresponds to a local adiabatic expansion
of the condensate brought about by a local change in th

chemical potentiabu. Such a change gives rise to a varia-
tion in the equilibrium densityng(p;R) that is spatially in-

dependent. In the limit of long wavelengths, it costs no en-

ergy to move atoms from one region of the trap to anothe
and the mode therefore has zero frequency. The dthér
modes have a finite frequency since they involve radial mo
tion of the condensatéNote that according to Ed4), the
direction of the local velocity is normal to constant density
surfaced. For example, fot =1, the density fluctuation is of
the form én(p)x1—2p%/R? which has a node ap
=R/vV2. Unlike thel=0 mode, all of these modes have a
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FIG. 1. Dispersion of the lowest modes in a cylindrical conden-
sate as a function of the wave vectar o is the radial trap fre-
guency andR is the TF condensate radius.

1
M||/:f71dx P|(X)XP|/(X). (15)

Uince the matrixM |, does not have diagonal matrix ele-

ments, it is clear that its effect on the mode eigenvalues first
occurs in second order, so that to lowest ordekin

w2(k)=21(1+1) w3+ %(kaO)% o(kY. (16

fi particular, thel =0 mode is phononlike with a velocity

gno(0)
2m '’

1

2

CcC= R(x)oz (17)

r

where ng(0) is the (maximum) condensate density on the

axis of the trap. If we compare this velocity with the Bogo-
liubov velocity ygn/m in a homogeneous gas of density
we see that the effective density in the cylindrical trap is half
the maximum value, which is just the densityobtained by
averaging Eq(2) over the condensate cross section.

number-conserving density fluctuation in the sense that Itis interesting to note that the matrix problem in Efy)

fgdppﬁn(p)zo. Thel =1 mode atk=0 is a radial breath-
ing mode.
For k+#+0, we expand the density fluctuation as

y(x>=2I aP(x), (12)

where the normalization of the Legendre functions is chosef]!

such that

1
| axmoopico=a. 13

Substituting expansiofil2) into Eq. (9), we obtain the sys-
tem of linear equations

<£F—|(|+1)

1
_ T2
5 k

8

1
a|+§ kZE M||ra|r:0,
|’
(14

where the symmetric matrikl . is given by

is equivalent to the problem of a quantum rigid rotor in a
gravitational field, having the Hamiltonian

L2

HIE

+MgR(1—cos6). (18

HereL is the angular momentum operatdr: MR? is the
oment of inertia of the rotor, and the gravitational potential
energy of the rotor masdl is referenced with respect to its
lowest position(the polar angle) is defined with respect to
this position. The angular eigenfunctions of this Hamil-
tonian can be expanded in spherical harmonigs(6, ¢)
and in them=0 subspace, the problem is then identical to

Eq. (14). Thus the paramethplays the role of a “gravita-
tional field” that perturbs the mode energies from their “free
rotor” values.

The solution of Eq(14) is easily obtained for arbitrark
by numerical diagonalization. In Fig. 1 we show some of the
lowest mode frequencies as a function of wave vector. The
lowest mode is a soundlike mode and exhibits a negative
dispersion. It can be seen that the group velocity deviates
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appreciably from its long-wavelength limit once the wave- Substituting this expansion into E(22) and taking the inner
length is comparable to the diameter of the condensate. Theroduct of the resulting equation with,(x), we obtain the

mode coupling induced by thie? perturbation in Eq(14) of ~ equation for a driven harmonic oscillator
course becomes more significant with increasingnd has b+ w2b, = f (1) 27)
the effect of lowering the sound speed. This coupling is as- n™ @nbn= nll)s

sociated with the interplay of the wavelike modulation of thewhere the forcing term on the right-hand side is defined as
density along the axis and the strong inhomogeneity of the

equilibrium density in the radial direction. (wokR)? 1

We now return to the experimental situatify that in- f(t)=— 49 5U(k,t)J dx ¢n(x)(1—X)
volves the propagation of sound pulses rather than continu- -t
ous waves. These pulses are generated by switching on a =f,(k)o(t). (29)

laser beam that repels atoms from its point of application at
the center of the cylindrical trap. We shall assume this perThe solution of Eq(27) for t=0 with the boundary condi-
turbation to be weak and consider the linear response of thgonsb,,(0)=0 andb,(0)=0 is
condensate. The perturbation is taken to be
fa(k)
b,(k,t)=

SU(r,H=Uqe 2" 0(t), (19 wp(k)

[1—-cosw,(k)t]. (29

that is, a Gaussian potential with no radial dependencé/Ne have explicitly displayed here the dependence of the
which is switched on at=0. The equation defining the den- various quantities on the wave vectoin the Fourier expan-
sity fluctuation is given by Eq(5) and can be solved by sion. This essentially completes the solution for the density
introducing a Fourier representation of the density and exterfluctuation én(p,z,t).

nal potential: To analyze the time evolution of the density pulse, it is
convenient to consider the average &i(p,z,t) over the
S L cross-sectional ared of the condensate. We therefore define
on(p,z,t)= > e'"“’én(p,k,t),
o o 1
on(z,t)=— J dAdn(p,z,t)
= dk AJa
5U(z,t)=f 5= e'*z5U (k,t), (20)

= dk 1t
:jim Eelkz; bn(k’t)z fﬁldx dn(X).

(30

with

_ — o2K2/4 —
U(kt)= \/;Uuoe oy=su(k) o). (21 According to Eq.(12), the eigenfunctionsp,(x) are them-

Taking the Fourier transform of E@5) and using the vari- selves given by the expansion

ablex introduced earlier, we obtain the equation

<¢>n<x>=2I a™(k)Py(x), (31)

(1-x)8U, (22

4 where the coefficienta(" (k) defining thenth eigenvector of
Eq. (14) have the limiting value{"”(k=0)=4,,. [In other
words, the eigenfunctionp,(x) reduces toP,(x) in the
k—0 limit.] The orthonormality of the Legendre functions

. d d 1 ;
LE—ng&(l—Xz)&—gkz(l—X). (23)  thusyields

a’y R (wokR)?
Fa

where we have defined the differential operator

— © dk 1

This is just the differential operator defining the mode eigen- on(zt)= — k2= > alW(k)b,(k,t). (32
2 0 n

functions in Eq.(9). These eigenfunctions satisfy —e £ V2 n

I:¢m(x)=w2m(k) br(X) 24) Similarly, we find
2
and form an orthonormal set fo(k)=— (@okR) agm(k)_ ia(ln)(k) SU(K).
2v2g V3
1 (33
f dX Pm(X) dn(X) = Smpn. (25
-1 Thus, for smalk, only then=0 andn=1 modes are excited
appreciably.
They can therefore be used to expai{at,k,t) as Substituting Eq(29) together with Eq(33) into Eq.(32),
the averaged density fluctuation can be evaluated numeri-
- cally. As an example of the calculation, we present in Fig. 2
yxkt) ; Pk, t) ). (26) results for the propagation of a pulse. The width of the
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about the same amount that lies above. The difference
between our theoretical result and experiment could be ex-
plained by errors in the determination of the trap density on
which the theoretical value is based, but the claimed experi-
mental precisiofi6] would seem to eliminate this possibility.
On the theoretical side, one can question the validity of
the TF approximation. For the given trap parameféfsand
a typical density ofny(0)~3x10?° m3, the radius of the
condensat®, in units of the oscillator length= Vi/mwy, is
o approximately 5. This implies that the TF approximation
0 &5 10 15 20 25 provides a good estimate of the ground-state density over
z/R most of the occupied volume. The validity of the TF approxi-
mation is further supported by the fact that the frequencies of
bation applied at the origin @&=0. The lowest curve is at a time the low-lying collective ex_C|tat|ons n th_ese ”a_i’%] are
t=4/wy and the interval between each successive curvétis close to_the TF valuesl]. This observatlon IS C(_)nS|stent with
— By cal_culatlons based on the Bogohubov approximafi®n10], .
which show a reasonably rapid convergence to the TF limit

: L : with increasingN, the number of trapped atoms. However,
Gaussian perturbation in these calculations was chosen to t[)ﬁ g PP

—15R which corr nd roximatelv to the experi e situation with regard to pulse propagation is somewhat
o=1.9%, WhiCh corresponds approximately o the experl- yitorant in that shorter-wavelength excitations are being
mental situation. Once the pulse is launched it is seen t

. Brobed. Within the hydrodynamic formulati¢d] of the Bo-
ool o . gobo approumaton.an addional tarm appars on

” ; .right-hand side of Eq(4) that represents the fluctuation in

nor_mal modes, but the effect is weak since the pulse Fhe “quantum pressure” associated with the kinetic energy.
mainly made up O.f the long-wavelength=0 sound. modes. . This term becomes increasingly important as the wavelength
The particles carried off by the pulse leave behind a statigy e gensity fluctuation is reduced. Unfortunately, it cannot

d_epression at the origin that co_rresponds to the new equili_b[-) estimated using the TF density since the failure of the TF
rium shape of the condensate in the presence of the appli proximation at the edge of the condengate 1] leads to a

localized perturbgnon. . divergent result. Thus explicit numerical solutions of the Bo-
. These theoretical results for the propagation ofa pulse_ar oliubov equations are required in order to ascertain the ac-
n reasonaple agreement with the experimental ob§ervat|p racy of the TF approximation for the conditions under
[1]. One difference is the stronger wave-packet dispersio hich the pulse propagation experiments were performed.

obs:er_ved experimentally, Whlch_may be due to th? acludny the other hand, at long wavelengths, we expect the TF
variation of the condensate density along the trap axis. How:.

ever, a more serious discrepancy concerns the speed gtlaiglctlon for the sound speed, as given by Erf), to be
propagation. In the experiment it was concluded that the =

sound speed was determined by the maximum condensate This work was supported by a grant from the Natural
density according tac’=./gny(0)/m, as opposed to the Sciences and Engineering Research Council of Canada. |
value we find in Eq.(17). However, it is clear from the would like to thank Dr. A. Griffin for a critical reading of the
published figure that the measured sound speed actually liesanuscript and Dr. W. Ketterle for useful discussions. |
belowc’ at the higher trap densities. At these densities, thavould also like to acknowledge the hospitality of Il Ciocco
theoretical valuee would lie below the measured values by where this work was begun.
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