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Macroscopic superpositions of Bose-Einstein condensates
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We consider two dilute gas Bose-Einstein condensates with opposite velocities from which a monochro-
matic light field detuned far from the resonance of the optical transition is coherently scattered. In the ther-
modynamic limit, when the relative fluctuations of the atom number difference between the two condensates
vanish, the relative phase between the Bose-Einstein condensates may be established in a superposition state by
detections of spontaneously scattered photons, even though the condensates have initially well-defined atom
numbers. For a finite system, stochastic simulations show that the measurements of the scattered photons lead
to a randomly drifting relative phase and drive the condensates into entangled superpositions of number states.
This is because according to Bose-Einstein statistics the scattering to an already occupied state is enhanced.
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[. INTRODUCTION the large fluctuations of the number difference between the
BEC's the relative phase drifts randomly in the case of a
Bose-Einstein condensat¢BEC’s) of ultracold trapped finite system and no stable phase is built up by measure-
atomic gasefl—4] have stimulated interest in the coherencements. The fluctuations of the number difference vanish in
properties of matter. BEC’s are expected to exhibit a macrothe thermodynamic limit and the measurements establish a
scopic quantum coherence which in thermal atomic ensStable phase.
sembles is absent. Even BEC’s with a well-defined number Recently, Ciracet al. [19] have studied the ground state
of atoms, and with no phase information, could show phas®f two coupled BEC's by variational techniques. They have
correlations in particular measurement processes on atonf@und that under certain conditions the state with a minimum
[5—11] or on photong12]. The relative phase between two €nergy corresponds to a macroscopic superposition of num-
BEC's could be determined, for instance, by various opticaP€r states.
methodg 12—16. In recent experiments Andreves al. [17] We begin in Sec. Il A by introducing basic relations. In
have found evidence of macroscopic quantum coherence intge limit of large detuning of the driving light field from the
BEC by measurements of the interference of two Condenatomic resonance the excited state Operators may be elimi-
sates by absorption imaging. The two independent and sp&ated adiabatically. We obtain an effective two-state Hamil-
tially separated BEC's were created by a repulsive opticafonian coupling the two BEC’s. We study the dynamics of
force in the center of the trap. the system in terms of stochastic trajectories of state vectors.

In this paper we consider an Optica| ana|ogue of the atonlln Sec. Il B we consider the thermOdynamiC ||m|t, where the
detection schemes of two BEC’s in different momentumﬂuctuations of the number difference between the BEC's
states[5—7,9. Instead of looking at the spatial interference vanish. The results of simulations for a finite system are
pattern we combine the scattered photons from the atomieresented in Sec. Il C. In Sec. 11 D we show that the number
transitions between different BEC's with a photon beamstate superpositions could be detected by considering the in-
splitter. The measurements on scattered light have evidef@nsity correlations of the scattered light. Finally, a few con-
advantages over atom counting from a theoretical point ofluding remarks are made in Sec. lll.
view. In the case of light scattering we can use the well-
known theories of photon detectiph8]. Also, the measure- Il. OPEN SYSTEM DYNAMICS
ment of spontaneously scattered photons is nondestructive
for the condensates, because only light is scattered and no
atoms are removed from the two BEC's. In our measurement The internal quantum state for both condensates is de-
scheme it is shown via the simulations of stochastic Schronoted by|g). This state is optically coupled to the electroni-
dinger equations that the detections of spontaneously scatally excited statée) by the driving electric fieldEy with a
tered photons drive the condensates into macroscopidominant frequencyl. The light field is assumed to be in a
guantum superpositions of phase and number stateherent state and detuned far from the resonance of the
(“Schrodinger cats’). The phase superpositions are a conseatomic transition. The two BEC’s are assumed to be opti-
guence of the particular measurement process, which is irgally thin[20] and in the momentum stat&g and —k,. We
sensitive to certain phase values. The entangled number statensider the situation in which the condensates are overlap-
superpositions follow from the properties of Bose-Einsteinping when the light is switched on. We only consider the
statistics and from the macroscopic quantum coherence afoherent spontaneous scattering between the condensates,
BEC's. The number state superpositions are multiparticlavhich is stimulated by a large number of atoms in the con-
guantum states with spatially nonlocal correlations. Due talensates. By spontaneous scattering we mean that the emis-

A. Basic relations
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sion is not stimulated by light, although it is stimulated by
atoms. The decay into noncondensate center-of-r{tass)
states is also stimulated by the Bose-Einstein statistics. How-

ever, at very low temperatures this stimulation is much
weaker because most of the particles are in the condensates.
In addition to the Bose stimulation of spontaneous emission

there is unstimulated free-space decay, at sgtevhich is ‘
always present. With a sufficiently large number of atoms in
the two BEC's the free-space decay may be ignored.
The annihilation operators for the two BEC'’s e, and
g-k, Heregy, denotes the annihilation operator for the elec-
tronic ground statég) and the c.m. statk, with the corre-

sponding wave function;Sg,ko(r). To simplify the notation

we define b=gy,, éu(1)= g, (1), C=0-k, and ec(r)
=g, -, (1). We obtain for the Hamiltoniafi20,21]

H=tief b'b+7ed, c'e+ ; i wegt €0)eley
T
+§ hwqagay

—; Ud3rdge. E(r)¢§(r)¢ek(r)bTek+H.c.)

-2 (fdsrdge‘ E(r)¢>§(r)¢ek(r)CTek+H-C-),
K FIG. 1. The experimental setup. The incoming light field is scat-

(1) tered from two overlapping BEC's moving with opposite velocities.
The atoms scattering from one condensate to another change the
momenta of the scattered photons. The scattered photons are col-

where the excited state wave function for the c.m. stai®  lected by reflective mirrors and a 50-50 beam splitter. The photons

e The dispersion relations for the ground state and exare detected from the two output channels of the beam splitter. The

cited state c.m. frequencies ag ande;, respectively. The photons §cattered forward introduce only a constant phase shift and

photon annihilation operator for the modeis a,. The in- they are ignored.

ternal atomic energy is described by the frequesagy of the

optical transition between the electronic ground state anéiere we have used the fact that for the plane waves

excited state. The last two terms in Ed) are for the atom- ¢} (r) ¢p(r) = &% (r) pc(r). The total atom number operator

light dipole interaction. The dipole matrix element for the g given byN=b'b+c'c. Because the total number is con-

atomic transitione—g is given by dge. We consider the lserved, the operatdy contributes to the measurements only

translationally invariant system, where the eigenfunctions fothrou h a constant phase shift. Thus. we mav ianore the term
the condensates are plane waves;(r)=e*o'"/\V and g_ . P ' ' yig
proportional toN in Eq. (2).

—a—ikor o P ;
¢C(-r)—e °"/\V. The (invmg %Ieci(tﬂ?fgild 's also de- We consider the dynamics of the two BEC’s and the driv-
scribed by a plane wavgg (r)=¢ ee 2. _ ing light field as an open quantum system and eliminate the

In the limit of large detuningA={)—weg, the excited  y5c,um electromagnetic fields. The setup of our gedanken
state operators, in Eq. (1) may be eliminated adiabatically, experiment is given in Fig. 1. The incoming light field is
and the c.m. energies of the excngd state may be. ignoregattered from two overlapping BEC’s moving with opposite
[20]. The system may then be described by an effective twoge|qcities. The scattering processes in which an atom scatters
state Hamiltonian: back to the same condensate introduce the term proportional

to the total number of atoms in E@R), and they may be
ignored. In the scattering processes in which atoms scatter
H=%el b'h+hed, cfe+ D) ﬁwqa:;aq between different condensates the light beams are deflected
0 0 q due to the recoil momentum. In Fid a photon deflected to
1 the left corresponds to the change of the momentum of an
- IR 3 . . * atom from —kg to ko, i.e., the amplitude of the scattered
ﬁA[NJ @rdge E(N)deg BN 5 (1) d1(1) electric field is proportional td'c. Similarly, a photon de-
flected to the right corresponds to the change of the momen-
+ ( chf d3rdge E(r)deg  E() (1) (1) + H.c.) ] tum of an atom upon scattering frokg to —Kko. In this case
the amplitude of the scattered electric field is proportional to
(20 c'b. The scattered light beams are combined by perfectly
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reflecting mirrors and a 50-50 photon beam splitter. The detion is thus conditioned on the outcome of a measurement.
tection rate of photons on the detectors is the intensity of th&he non-Hermitian Hamiltonian is obtained from Ea@),
scattered lightl (r)=2ce,(E~(r)-E*(r)) integrated over
the scattering directions divided by the energy of a photon
Ack. Writing the electric fields in the far radiation zone
(kr>1) [20] we obtain the detection rate at the chanpel

2
Heg=—i#T >, C/C;=—inl(32-J2). (©)
=1

The non-Hermitian Hamiltoniaid o determines the evolu-
y, :if dQ; r2l i(n= ZF(CTCJ->, 3) tion of t'he state vectapsy.'_;(_t). If the wave functionyg (1) is
fick ! normalized, the probability that a photon from the output
channelj (j=1,2) of the beam splitter is detected during the
time interval[t,t+ 6t] is

Pi(1)=2T (s, 1)|C/C;| sy 1)) 8. (10)

I'= !’ 4)

Y
167rﬁ2A2|d
where the linewidth of the electric dipole transition is given 3 _ _
by y=d3 k% (6mfies). The two relaxation channels corre- The probability of no detections is-1P,—P,.

sponding to the two output channels of the beam splitter are The implementation of the simulation algorithm is similar
to Ref.[12]. At the timety we generate a quasirandom num-

C,=3,, szjy' (5)  ber e which is uniformly distributed between 0 and 1. We
assume that the state vectfy {t;) at the timet, is normal-
where the familiar angular momentum operators obeyindzed. Then we evolve the state vector by the non-Hermitian
SU(2) algebra are defined by HamiltonianH ¢ iteratively for finite time stepat=5t. At
each time stem we comparee to the reduced norm of the
wave function, until (g, {to+nNAt)|ig{to+nNAL))<e,
when the detection of a photon occurs. After the detection
we generate a new quasirandom numpelWe evaluateP;
s 1o . and P, from Eg. (10) at the time of the detection. I
Jy=>57(b'c—c'b), (6b)  <p,/(P,+P,) we say the photon has been detected from
channel 1. If the photon has been observed during the time
stept—t+ At we take the new wave function &t At to be

.1
Jx=§(b*c+ c'b), (6a)

3Z=%(bTb—c*c), (60) i
|¢sy5(t+At)>: \/E‘Jxlwsys(t»v (11)

andJ?=J3+ 37+ J3=(N/2+ 1)N/2 is the Casimir invariant. \hich is then normalized. Otherwisg>P, /(P,+P,) and
The system Hamiltonian for the BEC'’s and for the driving e photon has been detected from channel 2. In that case the

electromagnetic field is eliminated completely in the interaco\ wave function before the normalization reads
tion representation and according to Rdf2] we may then

write down the equation of motion for the reduced density t+A)) = 2T 3 t 12

matrix of the system in the limit of large detuning of the s ) v ¥eyd1)- (12

driving light from the atomic resonance After each detection the process starts again from the begin-
2 ning.

ps= —FE (ClCips+psC/Ci—2CipsC)). (7) o
i=1 B. Thermodynamic limit

If we assume the condensates to be in coherent states with Before presenting numerical results of the simulations of
equal mean atom numbergb)=N/2e'*6 and (c) the stochastic Schdinger equations, we investigate qualita-

= /N/2e'¢c, the intensities of the scattered light in the two tively the buildup OT the m‘?‘cfoscopic cohgrence by the mea-
channels are surement process in the limit—oo. The eigenstates of the
effective HamiltoniarH . in Eq. (9) are number states which
®) have flat phase amplitudes. Thus, the time evolutioi gf
does not support any particular phase value over other val-
ues, and the relative phase between the two BEC's is deter-
=¢.— ¢y, Wheree, and ¢, are the macroscopic phases of mined by the distribution of the photon. detections between
the condensates andc, respectively. There is an ambiguity the two output channels of the beam splitter. Because the two

in Eq. (8) between the phase valuese and m+¢. For  elaxation channels do not commutd,,J,]=iJ,, the state
phase-sensitive homodyne detection this ambiguity vanishe8f the system depends also on the particular order in which
The dynamics of the density Operator from m may be the scattered phOtonS are detected. This Compllcates the
unraveled into stochastic trajectories of state vecfags-  analysis substantially. An evident simplification is to con-
24]. The procedure consists of the evolution of the systengider the thermodynamic limiN—c, where the relative
with a non-Hermitian Hamiltoniar ¢, and randomly de- fluctuations of the number difference between the BEC's
cided quantum “jumps” corresponding to the direct detec—vanish(jz>/<N>—>O. In the next section we consider the nu-
tions of spontaneously emitted photons. The system evolunerical simulations of systems which are far away from this

l10c(32) e (cosp)?,  1,%(I2)o(sing)2.

Here we have defined the value of the relative phase by
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limit. However, it turns out that the qualitative behavior of channels of the beam splitter are detected. We have simu-
the macroscopic phases is still very similar. lated the measurements of the spontaneously scattered pho-
In the thermodynamic limit we can replace the angulartons numerically forN=200 atoms. Even though we start

momentum operatorsJ, and jy by (N/2)cosp and from thg initial numbe_r statéN, = N;=100 with no pha_se
(N/Z)sirfp, respectively, wher is the relative phase opera- mformatyon, the detections establish coherence properties for
tor between the two BEC’s. Then the two relaxation chan.-BEC’S similarly to Eq.(16). However, the value of the phase
. A Al e ©o Iin EQ. (16) does not stabilize due to the moderate value of

nels in Eq.(5) commute,[co's;p,sm@]—ﬂ..lAN/N —0, and the N chosen, even for a large number of detections. The two
relevant commutation relations are given by BEC'’s are also in entangled number state superpositions.
The coherence properties of the BEC’s vary strongly even
during single realizations of the measurement process. In the

, oA . extreme case the condensates approach an entangled number
where we have writtdN=J, . Geometrically, the thermo- state with almost all the atoms in one of the two BEC's.

dynamic limit may be understood as a restriction of the dy- The emeraen fthe number stat rnositions mav b
namics of the angular momentum variables to the equator gence ot the humber staté SUperpositions may be
N } understood from the quantum statistical properties of Bose-
(Jz)=0 of the Bloch sphere, as the radius of the sphere goeginstein particles. Because the scattering to the nonconden-
to infinity. _ sate modes is ignored, the total number of atoms in the two
~ Now we can use the procedure developed in Refl. To  gEc's s conserved and the atom numbers are entangled.
simplify the notation, we ignore the spatial dependence ofccording to Bose-Einstein statistics the scattering to an al-
the wave functions. We expand the number st N/2) ready occupied state is enhanced. For the initial state

[AN,cosp]=ising, [AN,sing]=—icosp, (13

in terms of the overcomplete set of phase st@2S: IN/2,N/2) the probability for light to scatter atoms between
1 the two BEC's is, in the case of spatially overlapping con-
- bte-ie24 cteie2)N| gy 14 densates and in the limit of large numbers of atoms, approxi-

Ll V2NNI ( ™10} (149 mately proportional to//2)2. Because the detected photons

corresponding to the two atomic transitions between the
An analysis similar to Ref.10] then leads to the state of the BEC's are indistinguishable, the number state distribution
system aften, andn, detections from output channels 1 and remains symmetric with respect to the initial state during the
2 of the beam splitter, respectively: scattering process. For an entangled number stHie (
. —k,k)+|k,N—k))/\/2 the scattering probability is approxi-
|¢(n1,nz)>°<J de(cosp)"(sing)™2|@)y.  (15) m_ately proportional to Nl—k)k=(N/2)?. Hence the states
0 with unequal atom numbers have smaller scattering rates and
they are more stable. It should be pointed out that it is not
The value of the phase that maximizes the integrand sat- necessary to have initially equal atom numbers to obtain
isfies the relation taio=n,/n;. If 0<po<m/2 is a solution number state superpositions, although the distributions are
for the maximum amplitude, thest ¢ and 7+ ¢, are also  perfectly symmetric only if the initial atom numbers are the
solutions. Fon,,n,>1, we can express the integrand in Eq. same.
(15) in terms of exponential functions and expand the expo- The state of the BEC's may be described in terms of
nents in a Taylor series arounde, and 7= ¢,. We obtain  quasiprobability functions. For the number state distribution
of atoms|,,) ==,,c,|n) in the condensate we have evalu-

27 .
|1//(n1,n2)>0< dgo{e—n(tp—goo)z_l_(_1)nle—n(77—go—<po)2 ated theQ function [26]
0
*

A2
Kalyn)l eI a’cy

Qay="—=—| =

N 2

17

4 ( _ 1)n1+n2e—n(<p+ m— <p0)2

+(_1)n2efn(¢+¢o)2}|¢>N, (16)

where n=n; 1, The phase distibutions are Gaussians £9% % 3 S1C.5 i FRvE POTKR, U6 hE0TE 1ele
centered at four superposition valuese, and 7= ¢,

where O<g,<m/2 is a solution for tahw=n,/n;. The basis, and the correspondii@@ function at different times

phase is well defined with a narrow width for the Gaussian.durlng a single realization of measurements. Figures 2 and 3

The transition from the binomial distribution of E¢L5) to represent typically_ observed distribu_tions, when severa_l
the normal distribution of Eq(16) is just the realization of thousands of detections are made. In Fig. 4 we have a special

the central limit theorem for a large number of detections 2S¢ 1N which almost all the atoms are in one of the two

while the superpositions are a consequence of the particul Etfc:)r? ;?ngégr?) tgvtfsedf‘/te'gdﬁ?:ﬁs'? tzz; lgn?:zrntdel fg& at
detection method, which is insensitive to the phase value y ) P

+ + ; p=30 atoms, i.e.N.=170 atoms, and the second Id},

*¢ andm= ¢ according to Eq(8). =170 atoms, i.eN.=30 atoms. Only odd number states are

occupied. This is because in each photon detection the states

with only even numbers in the atom number distribution are
For a finite system the two relaxation channels from Eqchanged to the states with only odd atom numbers and vice

(5) do not commute and the state of the BEC’s depends owmersa. In particular, for a coherent system we may define

the particular order in which photons from the two outputeven|a,+) and odd|a,—) coherent states by, =+ Y| a)

C. Numerical results
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FIG. 2. Stochastic simulations of the detections of spontane- FIG. 3. Another representative graph from the same run of mea-
ously scattered photons for 200 atoms. A typical distributiofapf ~ Surements witfa) the number state distribution afio) the Q func-
the absolute value of the wave functipf,| in the condensatb in tion. The value of the relative phase has changed from the previous
the number state basis, afft) the corresponding function after figure. The two entangled number state superpositions and all the
approximately 5000 detections. i@ two distinct peaks in the four phase values are clearly observed in @heepresentation.
number distribution correspond to entangled number state superpo- . ) .
sitions. The peaks are centered\gt=30 and alN,~170 atoms. In Pl squeezing of the peak with the larger atom number is
the phase-space plotting of tkg function (b) the radius in thecy much stronger. The_ frlqges indicating a quantum interference
plane in the polar coordinates is equaNg? and the polar angle is in the Wigner distribution§26] are absent in th€ repre-
the relative phase between the two BEC's. The four peaks correS€ntation, so that graphs @f functions do not obviously
spond to the two dominant occupation numbers and two differen€listinguish between pure states and statistical mixtures.
phase values. However, because we are dealing with basis vectors instead

of with density matrices, it is evident that we have a pure

*|—a) [27]. These are states which have only even or oddtate.
numbers in the atom number distribution and they corre- |n Fig. 3 the distribution in the number state basis and the
spond to superposition states with two different phase valuegorresponding function are plotted in the same run of mea-
shifted by . surements as in Fig. 2, but at different times. In Fig) 3vo

In Fig. 2(b) we have plotted the correspondi@ufunction  distinct peaks in the number distribution are not as far apart
from Eq.(17). The Q function gives the phase-space distri- as in Fig. Za). In theQ representation, in Fig.(B), it is easy
bution. The amplitude and phase quadratures are denoted ly see that the value of the relative phase between the BEC’s
X andY. In polar coordinates the radius in thg plane is s different from Fig. 2. In Fig. ) all the four phase values
equal toNé’2 and the polar angle is the relative phase befrom Eq.(16) are clearly observed. The value of the relative
tween the two BEC's. In Fig. (®) it is easy to see the two phase between the condensates wanders during the simula-
different sets of peaks corresponding to the two dominatingions and does not stabilize to any definite value. In Fig. 4 we
values in the number distribution. All the peaks are alignechave one more graph from the same run of measurements. In
parallel to thex axis. This is the reason that two of the four this case the BEC’s are almost in an entangled number state
different phase values from E@l6) are indistinguishable. with all the atoms in one of the two condensates. Because the
Although the distribution in Fig. @) is symmetric, the num- state of the BEC's is closer to a number state than to a
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0.7 . . . sates. However, the different phase superpositions corre-
spond to either even or odd coherent states. As explained
0.6} g previously, these are states which have only even or odd
numbers in the atom number distribution. Thus, in practice
0.5+ i the losses of atoms from the BEC’s could shift the fringes
= and wipe out the qualitative features from the interference
T o4l 1 pattern.
The existence of the number state superpositions could be
o0al verified, for instance, by considering the intensity correla-
tions of the scattered light from the two BEC's. If we assume
that the condensates are flying apart and that they are already
0.2¢ . ;
spatially separated, the amplitude of the spontaneously scat-
01 tered light field from the condensabehas roughly the de-
' pendencdEy |<Edey/(7A)b'b, and from the condensate
0 . ‘ . J\ |EJ | Edeg/(hA)cTe [20]. Here we have again considered
0 50 100 150 200 only the coherent spontaneous scattering of atoms to the

Number of atoms BEC's stimulated by large atom numbers; i.e., scattering to
_ _ ) the noncondensate c.m. states has been ignored. Because the
FIG. 4_. The same run of measurements as in previous f!guregEcis are now spatially separated, only the scattering pro-
The plotting of an extreme case in which the BEC's are in ancesses in which an atom scatters back to the same condensate
entangled number state with almost all the atoms in one of the tW@re included. We consider a direct counting of photons

condensates. which is different from, e.g., the phase-contrast imagitig
used at MIT in a nondestructive optical detection of a BEC.
coherent state, the relative phase is not well defined. The transmitted probe beam could be blocked by a thin wire

In the calculations we only considered the atom-as in the dark-ground imaging technigi#i]. The scattered
stimulated scattering to the BEC's. It is not necessarily dight from the two spatially separated BEC's is collected on
well-justified assumption to ignore the unstimulated free-different photon detectors and the intensity correlations are
space decay if the condensates contain only 200 atom8btained from the time correlations of the photon counts as
However, the purpose of the numerical simulations was tdn the Hanbury Brown and Twiss experimehgs).

demonstrate the general properties of the finite systems with, FOr @ number statéN/2,N/2) with largeN, the intensities
a convenient computational efficiency. In the simulations th f the scattered light from the spatially separated condensates

. ~ 2 . .
physical behavior remained qualitatively the same eve andc are approximatelyly,)~(l)>(N/2)°. The intensity

though the number of atoms was significantly increased. m:orrelations satisfyllc)><(N/2)*. For an entangled number

the real experiments BEC's have typically contained man tatez (Nz_k'k>+|k'2N_k>)/‘E we hav%<|2b>~<|°>f{(N
more than 200 atomid—4] — k)" +k(3/2=(N/2)” and (1l ) (N—K)"k"<(N/2)". An
The interaction of the BEC’s with their enviroment cre- especially interesting case is the situation in which the super-

ates dissipation and the decoherence of the macroscopic S%ositionsz are far apé‘“z“ N/2. Then, {(N—K)*+k%}/2
u- _ < 4
perpositiong 28]. Decoherence by amplitude damping or bygz(N/Z) and N—k)"k*<(N/2)". Thus, for the present

phase damping has been estimated by Walls and Milbur om each BEC is lar ; .
) . ger than the scattering rate giveiIy
[29]. The amplitude damping corresponds to the losses o toms; on the other hand, the intensity correlations are at the

atoms from the BEC's. In this case the off-diagonal elementséame time strongly reduced. These conclusions are also valid

of the density matrix between two coherent states may b'feor the case where the superpositions are of coherent states

1—exp(—At) .

;hown to be dephased by the factet 5) Lo whereh instead of number states, as long as the overlap between the
is the loss rate for atoms. The phase damping may, e.g., bes?]perpositions is negligible

consequence of elastlp two-pody collisions in which a NON” Because the detection of the number state superpositions
condensate atom collides with a condensate atom. In this,ias on atom-stimulated scattering to the BEC's, the en-
case the off-diagonal qlements of the density matrix betweefbnglement between the condensates is not destroyed in the
two goheregt statﬁs \:cwth unequal atom Q“mmfﬁif‘d N2 measurement process. However, the light scattering still cre-
are almpef hy ;‘j € ﬁctor e{xp);(l\rl]l—Nz) t/2}5| These are a5 decoherence by phase damping explained in the preced-
examples of the decoherence of the ensemble averages Q\fﬁé section. This decoherence may be reduced by balancing

the measurement processes. If decoherence can be aSSOC'atF?éjdetection rates of scattered light from the BEC's.
with measurements, evolution of single realizations may be

analyzed by stochastic evolutions of state vec{8&. Al-
though the decoherence of number state superpositions of the
BEC’s may exhibit some interesting features, we do not con- \We have shown that two BEC’s can be driven into mac-
sider this in the present paper. roscopic superpositions of number and phase states by mea-
surements of spontaneously scattered light. The number state
superpositions are entangled and spatially nonlocal
“Schrodinger-cat” states with high occupation numbers. No
In this section we consider the detection of the numbesstable relative phase between the BEC's is established for a
state superpositions. The phase superpositions could in prifinite system and in the extreme case the condensates ap-
ciple be measured by simply interfering with the conden-proach a number state with almost all the atoms in one of the

ase of spatially separated condensates the scattering rate

Ill. CONCLUSIONS

D. Detection of number state superpositions
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BEC's. This is an example of the strong effect of measurenondestructive optical detection of a BEB1,17. In the
ments on the state of the condensates. For a finite systephase-contrasf17] or dark-ground[31] imaging of the
detections necessarily perturb the phase and the particul&EC's the role of the mirrors is played by a lens. Although
phase measurement process is used is not irrelevant; becawssefar all measurements of the interference pattern of BEC's
different measurement procedures may affect the system imave been destructive, nondestructive measurements could
very different ways, the kind of coherence properties, if anypossibly be performed in the near future. Only with nonde-
that are established in a detection process are not evaentstructive imaging could one measure how the system evolves
priori. in time as a result of the detection process.

In the system considered in R¢fL2] two BEC's are in
two different Zeeman levels and two phase-coherent laser
beams drive Raman transitions between the condensates. In
that case the relative phase between the two BEC's is estab- We would like to thank M. Jack and S. Tan for useful
lished by measurements of spontaneously scattered photordiscussions. This work was supported by the Marsden Fund
even though the condensates have initially well-defined numef the Royal Society of New Zealand, The University of
bers of atoms. In the present paper the large fluctuations dfuckland Research Fund, and The New Zealand Lottery
the number difference between the BEC's in the case of &rants Board. One of udR.G,) wishes to acknowledge the
finite system lead to a randomly drifting relative phase. Thehospitality of the Quantum Optics group at the University of
measurement scheme considered here, with only one las@uckland and support from the Deutsche Forschungsge-
beam and the two BEC's differing in their external quantummeinschaft through SFB 237 “Unordnung und grosse Fluk-
numbers, is closer to the experimental setup used at MIT in tuationen.”
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