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Macroscopic superpositions of Bose-Einstein condensates
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We consider two dilute gas Bose-Einstein condensates with opposite velocities from which a monochro-
matic light field detuned far from the resonance of the optical transition is coherently scattered. In the ther-
modynamic limit, when the relative fluctuations of the atom number difference between the two condensates
vanish, the relative phase between the Bose-Einstein condensates may be established in a superposition state by
detections of spontaneously scattered photons, even though the condensates have initially well-defined atom
numbers. For a finite system, stochastic simulations show that the measurements of the scattered photons lead
to a randomly drifting relative phase and drive the condensates into entangled superpositions of number states.
This is because according to Bose-Einstein statistics the scattering to an already occupied state is enhanced.
@S1050-2947~97!08012-8#
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I. INTRODUCTION

Bose-Einstein condensates~BEC’s! of ultracold trapped
atomic gases@1–4# have stimulated interest in the coheren
properties of matter. BEC’s are expected to exhibit a mac
scopic quantum coherence which in thermal atomic
sembles is absent. Even BEC’s with a well-defined num
of atoms, and with no phase information, could show ph
correlations in particular measurement processes on a
@5–11# or on photons@12#. The relative phase between tw
BEC’s could be determined, for instance, by various opti
methods@12–16#. In recent experiments Andrewset al. @17#
have found evidence of macroscopic quantum coherence
BEC by measurements of the interference of two cond
sates by absorption imaging. The two independent and
tially separated BEC’s were created by a repulsive opt
force in the center of the trap.

In this paper we consider an optical analogue of the a
detection schemes of two BEC’s in different momentu
states@5–7,9#. Instead of looking at the spatial interferen
pattern we combine the scattered photons from the ato
transitions between different BEC’s with a photon bea
splitter. The measurements on scattered light have evi
advantages over atom counting from a theoretical poin
view. In the case of light scattering we can use the w
known theories of photon detection@18#. Also, the measure
ment of spontaneously scattered photons is nondestru
for the condensates, because only light is scattered an
atoms are removed from the two BEC’s. In our measurem
scheme it is shown via the simulations of stochastic Sch¨-
dinger equations that the detections of spontaneously s
tered photons drive the condensates into macrosc
quantum superpositions of phase and number st
~‘‘Schrödinger cats‘‘!. The phase superpositions are a con
quence of the particular measurement process, which is
sensitive to certain phase values. The entangled number
superpositions follow from the properties of Bose-Einst
statistics and from the macroscopic quantum coherenc
BEC’s. The number state superpositions are multipart
quantum states with spatially nonlocal correlations. Due
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the large fluctuations of the number difference between
BEC’s the relative phase drifts randomly in the case o
finite system and no stable phase is built up by meas
ments. The fluctuations of the number difference vanish
the thermodynamic limit and the measurements establis
stable phase.

Recently, Ciracet al. @19# have studied the ground sta
of two coupled BEC’s by variational techniques. They ha
found that under certain conditions the state with a minim
energy corresponds to a macroscopic superposition of n
ber states.

We begin in Sec. II A by introducing basic relations.
the limit of large detuning of the driving light field from th
atomic resonance the excited state operators may be e
nated adiabatically. We obtain an effective two-state Ham
tonian coupling the two BEC’s. We study the dynamics
the system in terms of stochastic trajectories of state vect
In Sec. II B we consider the thermodynamic limit, where t
fluctuations of the number difference between the BEC
vanish. The results of simulations for a finite system a
presented in Sec. II C. In Sec. II D we show that the num
state superpositions could be detected by considering the
tensity correlations of the scattered light. Finally, a few co
cluding remarks are made in Sec. III.

II. OPEN SYSTEM DYNAMICS

A. Basic relations

The internal quantum state for both condensates is
noted byug&. This state is optically coupled to the electron
cally excited stateue& by the driving electric fieldEd with a
dominant frequencyV. The light field is assumed to be in
coherent state and detuned far from the resonance of
atomic transition. The two BEC’s are assumed to be o
cally thin @20# and in the momentum statesk0 and2k0. We
consider the situation in which the condensates are over
ping when the light is switched on. We only consider t
coherent spontaneous scattering between the condens
which is stimulated by a large number of atoms in the co
densates. By spontaneous scattering we mean that the e
511 © 1998 The American Physical Society
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512 57RUOSTEKOSKI, COLLETT, GRAHAM, AND WALLS
sion is not stimulated by light, although it is stimulated
atoms. The decay into noncondensate center-of-mass~c.m.!
states is also stimulated by the Bose-Einstein statistics. H
ever, at very low temperatures this stimulation is mu
weaker because most of the particles are in the condens
In addition to the Bose stimulation of spontaneous emiss
there is unstimulated free-space decay, at rateg, which is
always present. With a sufficiently large number of atoms
the two BEC’s the free-space decay may be ignored.

The annihilation operators for the two BEC’s aregk0
and

g2k0
. Heregk0

denotes the annihilation operator for the ele

tronic ground stateug& and the c.m. statek0 with the corre-
sponding wave functionfg,k0

(r ). To simplify the notation

we define b[gk0
, fb(r )[fg,k0

(r ), c[g2k0
, and fc(r )

[fg,2k0
(r ). We obtain for the Hamiltonian@20,21#

H5\ek0

g b†b1\e2k0

g c†c1(
k

\~veg1ek
e!ek

†ek

1(
q

\vqaq
†aq

2(
k

S E d3rdge•E~r !fb* ~r !fek~r !b†ek1H.c.D
2(

k
S E d3rdge•E~r !fc* ~r !fek~r !c†ek1H.c.D ,

~1!

where the excited state wave function for the c.m. statek is
fek . The dispersion relations for the ground state and
cited state c.m. frequencies areek

g andek
e , respectively. The

photon annihilation operator for the modeq is aq . The in-
ternal atomic energy is described by the frequencyveg of the
optical transition between the electronic ground state
excited state. The last two terms in Eq.~1! are for the atom-
light dipole interaction. The dipole matrix element for th
atomic transitione→g is given by dge . We consider the
translationally invariant system, where the eigenfunctions
the condensates are plane waves:fb(r )5eik0•r/AV and
fc(r )5e2 ik0•r/AV. The driving electric field is also de
scribed by a plane waveEd

1(r )5E ê ei (k•r2Vt)/2.
In the limit of large detuning,D5V2veg , the excited

state operatorsek in Eq. ~1! may be eliminated adiabatically
and the c.m. energies of the excited state may be igno
@20#. The system may then be described by an effective t
state Hamiltonian:

H5\ek0

g b†b1\e2k0

g c†c1(
q

\vqaq
†aq

2
1

\D H N̂E d3rdge•E~r !deg•E~r !fb* ~r !fb~r !

1S b†cE d3rdge•E~r !deg•E~r !fb* ~r !fc~r !1H.c.D J .

~2!
w-
h
tes.
n

n

-

-

d

r

ed
-

Here we have used the fact that for the plane wa
fb* (r )fb(r )5fc* (r )fc(r ). The total atom number operato

is given byN̂5b†b1c†c. Because the total number is con
served, the operatorN̂ contributes to the measurements on
through a constant phase shift. Thus, we may ignore the t
proportional toN̂ in Eq. ~2!.

We consider the dynamics of the two BEC’s and the dr
ing light field as an open quantum system and eliminate
vacuum electromagnetic fields. The setup of our gedan
experiment is given in Fig. 1. The incoming light field
scattered from two overlapping BEC’s moving with oppos
velocities. The scattering processes in which an atom sca
back to the same condensate introduce the term proporti
to the total number of atoms in Eq.~2!, and they may be
ignored. In the scattering processes in which atoms sca
between different condensates the light beams are defle
due to the recoil momentum. In Fig. 1 a photon deflected to
the left corresponds to the change of the momentum of
atom from 2k0 to k0, i.e., the amplitude of the scattere
electric field is proportional tob†c. Similarly, a photon de-
flected to the right corresponds to the change of the mom
tum of an atom upon scattering fromk0 to 2k0. In this case
the amplitude of the scattered electric field is proportiona
c†b. The scattered light beams are combined by perfe

FIG. 1. The experimental setup. The incoming light field is sc
tered from two overlapping BEC’s moving with opposite velocitie
The atoms scattering from one condensate to another chang
momenta of the scattered photons. The scattered photons are
lected by reflective mirrors and a 50-50 beam splitter. The phot
are detected from the two output channels of the beam splitter.
photons scattered forward introduce only a constant phase shift
they are ignored.
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57 513MACROSCOPIC SUPERPOSITIONS OF BOSE-EINSTEIN . . .
reflecting mirrors and a 50-50 photon beam splitter. The
tection rate of photons on the detectors is the intensity of
scattered lightI (r )52ce0^E

2(r )•E1(r )& integrated over
the scattering directions divided by the energy of a pho
\ck. Writing the electric fields in the far radiation zon
(kr@1) @20# we obtain the detection rate at the channelj :

g j5
1

\ckE dV n̂ r 2I j~r !52G^Cj
†Cj&, ~3!

G[
3g

16p\2D2 udegEu2, ~4!

where the linewidth of the electric dipole transition is giv
by g5deg

2 k3/(6p\e0). The two relaxation channels corre
sponding to the two output channels of the beam splitter

C15 Ĵx , C25 Ĵy , ~5!

where the familiar angular momentum operators obey
SU~2! algebra are defined by

Ĵx5
1

2
~b†c1c†b!, ~6a!

Ĵy5
1

2i
~b†c2c†b!, ~6b!

Ĵz5
1

2
~b†b2c†c!, ~6c!

and Ĵ25 Ĵx
21 Ĵy

21 Ĵz
25(N̂/211)N̂/2 is the Casimir invariant.

The system Hamiltonian for the BEC’s and for the drivin
electromagnetic field is eliminated completely in the inter
tion representation and according to Ref.@12# we may then
write down the equation of motion for the reduced dens
matrix of the system in the limit of large detuning of th
driving light from the atomic resonance

ṙS52G(
i 51

2

~Ci
†CirS1rSCi

†Ci22CirSCi
†!. ~7!

If we assume the condensates to be in coherent states
equal mean atom numberŝb&5AN/2eiwb and ^c&
5AN/2eiwc, the intensities of the scattered light in the tw
channels are

I 1}^Ĵx
2&}~cosw!2, I 2}^Ĵy

2&}~sinw!2. ~8!

Here we have defined the value of the relative phase bw
[wc2wb , wherewb andwc are the macroscopic phases
the condensatesb andc, respectively. There is an ambiguit
in Eq. ~8! between the phase values6w and p6w. For
phase-sensitive homodyne detection this ambiguity vanis

The dynamics of the density operator from Eq.~7! may be
unraveled into stochastic trajectories of state vectors@22–
24#. The procedure consists of the evolution of the syst
with a non-Hermitian HamiltonianHeff , and randomly de-
cided quantum ‘‘jumps’’ corresponding to the direct dete
tions of spontaneously emitted photons. The system ev
-
e

n

re

g

-

y

ith

s.

-
u-

tion is thus conditioned on the outcome of a measurem
The non-Hermitian Hamiltonian is obtained from Eq.~7!,

Heff52 i\G(
j 51

2

Cj
†Cj52 i\G~ Ĵ22 Ĵz

2!. ~9!

The non-Hermitian HamiltonianHeff determines the evolu
tion of the state vectorcsys(t). If the wave functioncsys(t) is
normalized, the probability that a photon from the outp
channelj ( j 51,2) of the beam splitter is detected during t
time interval@ t,t1dt# is

Pj~ t !52G^csys~ t !uCj
†Cj ucsys~ t !&dt. ~10!

The probability of no detections is 12P12P2.
The implementation of the simulation algorithm is simil

to Ref.@12#. At the timet0 we generate a quasirandom num
ber e which is uniformly distributed between 0 and 1. W
assume that the state vectorcsys(t0) at the timet0 is normal-
ized. Then we evolve the state vector by the non-Hermit
HamiltonianHeff iteratively for finite time stepsDt.dt. At
each time stepn we comparee to the reduced norm of the
wave function, until ^csys(t01nDt)ucsys(t01nDt)&,e,
when the detection of a photon occurs. After the detect
we generate a new quasirandom numberh. We evaluateP1
and P2 from Eq. ~10! at the time of the detection. Ifh
,P1 /(P11P2) we say the photon has been detected fr
channel 1. If the photon has been observed during the t
stept→t1Dt we take the new wave function att1Dt to be

ucsys~ t1Dt !&5A2G Ĵxucsys~ t !&, ~11!

which is then normalized. Otherwise,h.P1 /(P11P2) and
the photon has been detected from channel 2. In that cas
new wave function before the normalization reads

ucsys~ t1Dt !&5A2G Ĵyucsys~ t !&. ~12!

After each detection the process starts again from the be
ning.

B. Thermodynamic limit

Before presenting numerical results of the simulations
the stochastic Schro¨dinger equations, we investigate qualit
tively the buildup of the macroscopic coherence by the m
surement process in the limitN→`. The eigenstates of the
effective HamiltonianHeff in Eq. ~9! are number states whic
have flat phase amplitudes. Thus, the time evolution ofHeff
does not support any particular phase value over other
ues, and the relative phase between the two BEC’s is de
mined by the distribution of the photon detections betwe
the two output channels of the beam splitter. Because the
relaxation channels do not commute,@ Ĵx ,Ĵy#5 i Ĵz , the state
of the system depends also on the particular order in wh
the scattered photons are detected. This complicates
analysis substantially. An evident simplification is to co
sider the thermodynamic limitN→`, where the relative
fluctuations of the number difference between the BEC
vanish^Ĵz&/^N̂&→0. In the next section we consider the n
merical simulations of systems which are far away from t



of

la

-
n

-
dy
at
o

o

e
d

t-

q
po

n

an

ns
u
ue

q
o

u

mu-
pho-
rt

for
e
of

two
ns.
en
the
mber

y be
se-
den-
two
led.
al-

tate
n
n-

oxi-
ns
the
ion
the
(

i-

and
not
ain
are

he

of
ion

d 3
ral

ecial
wo
i-

at

re
tates
re

vice
fine

514 57RUOSTEKOSKI, COLLETT, GRAHAM, AND WALLS
limit. However, it turns out that the qualitative behavior
the macroscopic phases is still very similar.

In the thermodynamic limit we can replace the angu
momentum operatorsĴx and Ĵy by (N̂/2)cosŵ and
(N̂/2)sinŵ, respectively, whereŵ is the relative phase opera
tor between the two BEC’s. Then the two relaxation cha
nels in Eq.~5! commute,@cosŵ,sinŵ#54iDN̂/N̂2→0, and the
relevant commutation relations are given by

@DN̂,cosŵ#5 isinŵ, @DN̂,sinŵ#52 icosŵ, ~13!

where we have writtenDN̂[ Ĵz . Geometrically, the thermo
dynamic limit may be understood as a restriction of the
namics of the angular momentum variables to the equ

^Ĵz&.0 of the Bloch sphere, as the radius of the sphere g
to infinity.

Now we can use the procedure developed in Ref.@10#. To
simplify the notation, we ignore the spatial dependence
the wave functions. We expand the number stateuN/2,N/2&
in terms of the overcomplete set of phase states@25#:

uw&N5
1

A2NN!
~b†e2 iw/21c†eiw/2!Nu0&. ~14!

An analysis similar to Ref.@10# then leads to the state of th
system aftern1 andn2 detections from output channels 1 an
2 of the beam splitter, respectively:

uc~n1 ,n2!&}E
0

2p

dw~cosw!n1~sinw!n2uw&N . ~15!

The value of the phasew that maximizes the integrand sa
isfies the relation tan2w5n2 /n1. If 0<w0<p/2 is a solution
for the maximum amplitude, then2w0 andp6w0 are also
solutions. Forn1 ,n2@1, we can express the integrand in E
~15! in terms of exponential functions and expand the ex
nents in a Taylor series around6w0 andp6w0. We obtain

uc~n1 ,n2!&}E
0

2p

dw$e2n~w2w0!2
1~21!n1e2n~p2w2w0!2

1~21!n11n2e2n~w1p2w0!2

1~21!n2e2n~w1w0!2
%uw&N , ~16!

where n5n11n2. The phase distributions are Gaussia
centered at four superposition values6w0 and p6w0,
where 0<w0<p/2 is a solution for tan2w5n2 /n1. The
phase is well defined with a narrow width for the Gaussi
The transition from the binomial distribution of Eq.~15! to
the normal distribution of Eq.~16! is just the realization of
the central limit theorem for a large number of detectio
while the superpositions are a consequence of the partic
detection method, which is insensitive to the phase val
6w andp6w according to Eq.~8!.

C. Numerical results

For a finite system the two relaxation channels from E
~5! do not commute and the state of the BEC’s depends
the particular order in which photons from the two outp
r

-

-
or
es

f

.
-

s

.

,
lar
s

.
n

t

channels of the beam splitter are detected. We have si
lated the measurements of the spontaneously scattered
tons numerically forN5200 atoms. Even though we sta
from the initial number stateNb5Nc5100 with no phase
information, the detections establish coherence properties
BEC’s similarly to Eq.~16!. However, the value of the phas
w0 in Eq. ~16! does not stabilize due to the moderate value
N chosen, even for a large number of detections. The
BEC’s are also in entangled number state superpositio
The coherence properties of the BEC’s vary strongly ev
during single realizations of the measurement process. In
extreme case the condensates approach an entangled nu
state with almost all the atoms in one of the two BEC’s.

The emergence of the number state superpositions ma
understood from the quantum statistical properties of Bo
Einstein particles. Because the scattering to the noncon
sate modes is ignored, the total number of atoms in the
BEC’s is conserved and the atom numbers are entang
According to Bose-Einstein statistics the scattering to an
ready occupied state is enhanced. For the initial s
uN/2,N/2& the probability for light to scatter atoms betwee
the two BEC’s is, in the case of spatially overlapping co
densates and in the limit of large numbers of atoms, appr
mately proportional to (N/2)2. Because the detected photo
corresponding to the two atomic transitions between
BEC’s are indistinguishable, the number state distribut
remains symmetric with respect to the initial state during
scattering process. For an entangled number stateuN
2k,k&1uk,N2k&)/A2 the scattering probability is approx
mately proportional to (N2k)k<(N/2)2. Hence the states
with unequal atom numbers have smaller scattering rates
they are more stable. It should be pointed out that it is
necessary to have initially equal atom numbers to obt
number state superpositions, although the distributions
perfectly symmetric only if the initial atom numbers are t
same.

The state of the BEC’s may be described in terms
quasiprobability functions. For the number state distribut
of atomsucb&5(ncnun& in the condensateb we have evalu-
ated theQ function @26#:

Q~a!5
z^aucb& z2

p
5

e2uau2

p U(
n50

N ancn*

An!
U2

. ~17!

In Figs. 2, 3, and 4, we have plotteducbu, the absolute value
of the wave function in the condensateb in the number state
basis, and the correspondingQ function at different times
during a single realization of measurements. Figures 2 an
represent typically observed distributions, when seve
thousands of detections are made. In Fig. 4 we have a sp
case in which almost all the atoms are in one of the t
BEC’s. In Fig. 2~a! two distinct peaks in the number distr
bution are clearly observed. The first peak is centered
Nb.30 atoms, i.e.,Nc.170 atoms, and the second atNb
.170 atoms, i.e.,Nc.30 atoms. Only odd number states a
occupied. This is because in each photon detection the s
with only even numbers in the atom number distribution a
changed to the states with only odd atom numbers and
versa. In particular, for a coherent system we may de
even ua,1& and oddua,2& coherent states byua,6&}ua&
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57 515MACROSCOPIC SUPERPOSITIONS OF BOSE-EINSTEIN . . .
6u2a& @27#. These are states which have only even or o
numbers in the atom number distribution and they cor
spond to superposition states with two different phase va
shifted byp.

In Fig. 2~b! we have plotted the correspondingQ function
from Eq. ~17!. The Q function gives the phase-space dist
bution. The amplitude and phase quadratures are denote
X and Y. In polar coordinates the radius in thexy plane is
equal toNb

1/2 and the polar angle is the relative phase b
tween the two BEC’s. In Fig. 2~b! it is easy to see the two
different sets of peaks corresponding to the two domina
values in the number distribution. All the peaks are align
parallel to thex axis. This is the reason that two of the fo
different phase values from Eq.~16! are indistinguishable
Although the distribution in Fig. 2~a! is symmetric, the num-

FIG. 2. Stochastic simulations of the detections of sponta
ously scattered photons for 200 atoms. A typical distribution of~a!
the absolute value of the wave functionucbu in the condensateb in
the number state basis, and~b! the correspondingQ function after
approximately 5000 detections. In~a! two distinct peaks in the
number distribution correspond to entangled number state supe
sitions. The peaks are centered atNb.30 and atNb.170 atoms. In
the phase-space plotting of theQ function ~b! the radius in thexy
plane in the polar coordinates is equal toNb

1/2 and the polar angle is
the relative phase between the two BEC’s. The four peaks co
spond to the two dominant occupation numbers and two diffe
phase values.
d
-

es

by

-

g
d

ber squeezing of the peak with the larger atom numbe
much stronger. The fringes indicating a quantum interfere
in the Wigner distributions@26# are absent in theQ repre-
sentation, so that graphs ofQ functions do not obviously
distinguish between pure states and statistical mixtu
However, because we are dealing with basis vectors ins
of with density matrices, it is evident that we have a pu
state.

In Fig. 3 the distribution in the number state basis and
correspondingQ function are plotted in the same run of me
surements as in Fig. 2, but at different times. In Fig. 3~a! two
distinct peaks in the number distribution are not as far ap
as in Fig. 2~a!. In theQ representation, in Fig. 3~b!, it is easy
to see that the value of the relative phase between the BE
is different from Fig. 2. In Fig. 3~b! all the four phase values
from Eq. ~16! are clearly observed. The value of the relati
phase between the condensates wanders during the sim
tions and does not stabilize to any definite value. In Fig. 4
have one more graph from the same run of measurement
this case the BEC’s are almost in an entangled number s
with all the atoms in one of the two condensates. Because
state of the BEC’s is closer to a number state than t

-

o-

e-
nt

FIG. 3. Another representative graph from the same run of m
surements with~a! the number state distribution and~b! theQ func-
tion. The value of the relative phase has changed from the prev
figure. The two entangled number state superpositions and al
four phase values are clearly observed in theQ representation.
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coherent state, the relative phase is not well defined.
In the calculations we only considered the ato

stimulated scattering to the BEC’s. It is not necessarily
well-justified assumption to ignore the unstimulated fre
space decay if the condensates contain only 200 ato
However, the purpose of the numerical simulations was
demonstrate the general properties of the finite systems
a convenient computational efficiency. In the simulations
physical behavior remained qualitatively the same e
though the number of atoms was significantly increased
the real experiments BEC’s have typically contained ma
more than 200 atoms@1–4#.

The interaction of the BEC’s with their enviroment cr
ates dissipation and the decoherence of the macroscopi
perpositions@28#. Decoherence by amplitude damping or
phase damping has been estimated by Walls and Milb
@29#. The amplitude damping corresponds to the losses
atoms from the BEC’s. In this case the off-diagonal eleme
of the density matrix between two coherent states may
shown to be dephased by the factor^aub&12exp(2lt), wherel
is the loss rate for atoms. The phase damping may, e.g.,
consequence of elastic two-body collisions in which a n
condensate atom collides with a condensate atom. In
case the off-diagonal elements of the density matrix betw
two coherent states with unequal atom numbersN1 and N2
are damped by the factor exp$2l(N12N2)

2t/2%. These are
examples of the decoherence of the ensemble averages
the measurement processes. If decoherence can be asso
with measurements, evolution of single realizations may
analyzed by stochastic evolutions of state vectors@30#. Al-
though the decoherence of number state superpositions o
BEC’s may exhibit some interesting features, we do not c
sider this in the present paper.

D. Detection of number state superpositions

In this section we consider the detection of the num
state superpositions. The phase superpositions could in
ciple be measured by simply interfering with the conde

FIG. 4. The same run of measurements as in previous figu
The plotting of an extreme case in which the BEC’s are in
entangled number state with almost all the atoms in one of the
condensates.
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sates. However, the different phase superpositions co
spond to either even or odd coherent states. As expla
previously, these are states which have only even or
numbers in the atom number distribution. Thus, in pract
the losses of atoms from the BEC’s could shift the fring
and wipe out the qualitative features from the interferen
pattern.

The existence of the number state superpositions coul
verified, for instance, by considering the intensity corre
tions of the scattered light from the two BEC’s. If we assum
that the condensates are flying apart and that they are alr
spatially separated, the amplitude of the spontaneously s
tered light field from the condensateb has roughly the de-
pendenceuEb

1u}Edeg /(\D)b†b, and from the condensatec
uEc

1u}Edeg /(\D)c†c @20#. Here we have again considere
only the coherent spontaneous scattering of atoms to
BEC’s stimulated by large atom numbers; i.e., scattering
the noncondensate c.m. states has been ignored. Becau
BEC’s are now spatially separated, only the scattering p
cesses in which an atom scatters back to the same conde
are included. We consider a direct counting of photo
which is different from, e.g., the phase-contrast imaging@17#
used at MIT in a nondestructive optical detection of a BE
The transmitted probe beam could be blocked by a thin w
as in the dark-ground imaging technique@31#. The scattered
light from the two spatially separated BEC’s is collected
different photon detectors and the intensity correlations
obtained from the time correlations of the photon counts
in the Hanbury Brown and Twiss experiments@26#.

For a number stateuN/2,N/2& with largeN, the intensities
of the scattered light from the spatially separated condens
b andc are approximatelŷI b&;^I c&}(N/2)2. The intensity
correlations satisfŷI bI c&}(N/2)4. For an entangled numbe
state (uN2k,k&1uk,N2k&)/A2 we have ^I b&;^I c&}$(N
2k)21k2%/2>(N/2)2 and ^I bI c&}(N2k)2k2<(N/2)4. An
especially interesting case is the situation in which the sup
positions are far apart:k!N/2. Then, $(N2k)21k2%/2
.2(N/2)2 and (N2k)2k2!(N/2)4. Thus, for the presen
case of spatially separated condensates the scattering
from each BEC is larger than the scattering rate given byN/2
atoms; on the other hand, the intensity correlations are at
same time strongly reduced. These conclusions are also v
for the case where the superpositions are of coherent s
instead of number states, as long as the overlap betwee
superpositions is negligible.

Because the detection of the number state superposit
relies on atom-stimulated scattering to the BEC’s, the
tanglement between the condensates is not destroyed in
measurement process. However, the light scattering still
ates decoherence by phase damping explained in the pre
ing section. This decoherence may be reduced by balan
the detection rates of scattered light from the BEC’s.

III. CONCLUSIONS

We have shown that two BEC’s can be driven into ma
roscopic superpositions of number and phase states by m
surements of spontaneously scattered light. The number
superpositions are entangled and spatially nonlo
‘‘Schrödinger-cat’’ states with high occupation numbers. N
stable relative phase between the BEC’s is established f
finite system and in the extreme case the condensates
proach a number state with almost all the atoms in one of
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BEC’s. This is an example of the strong effect of measu
ments on the state of the condensates. For a finite sys
detections necessarily perturb the phase and the partic
phase measurement process is used is not irrelevant; be
different measurement procedures may affect the system
very different ways, the kind of coherence properties, if a
that are established in a detection process are not evidea
priori .

In the system considered in Ref.@12# two BEC’s are in
two different Zeeman levels and two phase-coherent la
beams drive Raman transitions between the condensate
that case the relative phase between the two BEC’s is es
lished by measurements of spontaneously scattered pho
even though the condensates have initially well-defined n
bers of atoms. In the present paper the large fluctuation
the number difference between the BEC’s in the case o
finite system lead to a randomly drifting relative phase. T
measurement scheme considered here, with only one
beam and the two BEC’s differing in their external quantu
numbers, is closer to the experimental setup used at MIT
an
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nondestructive optical detection of a BEC@31,17#. In the
phase-contrast@17# or dark-ground @31# imaging of the
BEC’s the role of the mirrors is played by a lens. Althoug
so far all measurements of the interference pattern of BE
have been destructive, nondestructive measurements c
possibly be performed in the near future. Only with nond
structive imaging could one measure how the system evo
in time as a result of the detection process.

ACKNOWLEDGMENTS

We would like to thank M. Jack and S. Tan for usef
discussions. This work was supported by the Marsden F
of the Royal Society of New Zealand, The University
Auckland Research Fund, and The New Zealand Lott
Grants Board. One of us~R.G.! wishes to acknowledge th
hospitality of the Quantum Optics group at the University
Auckland and support from the Deutsche Forschungs
meinschaft through SFB 237 ‘’Unordnung und grosse Flu
tuationen.’’
e,

.

m

e,
@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!.

@2# K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Le
75, 3969~1995!.

@3# M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kur
D. S. Durfee, and W. Ketterle, Phys. Rev. Lett.77, 416~1996!.

@4# C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. L
78, 985 ~1997!.

@5# J. Javanainen and S. M. Yoo, Phys. Rev. Lett.76, 161 ~1996!;
S. M. Yoo, J. Ruostekoski, and J. Javanainen, J. Mod. Opt~to
be published!.

@6# M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac, and
Zoller, Phys. Rev. A54, 2185~1996!.

@7# J. I. Cirac, C. W. Gardiner, M. Naraschewski, and P. Zoll
Phys. Rev. A54, R3714~1996!.

@8# M. W. Jack, M. J. Collett, and D. F. Walls, Phys. Rev. A54,
R4625~1996!.

@9# T. Wong, M. J. Collett, and D. F. Walls, Phys. Rev. A54,
R3718~1996!.

@10# Y. Castin and J. Dalibard, Phys. Rev. A55, 4330~1997!.
@11# M. J. Steel and D. F. Walls, Phys. Rev. A56, 3832~1997!.
@12# J. Ruostekoski and D. F. Walls, Phys. Rev. A56, 2996~1997!.
@13# J. Javanainen, Phys. Rev. A54, R4629~1996!.
@14# A. Imamoḡlu and T. A. B. Kennedy, Phys. Rev. A55, R849

~1997!.
@15# J. Ruostekoski and D. F. Walls, Phys. Rev. A55, 3625~1997!.
@16# C. M. Savage, J. Ruostekoski, and D. F. Walls, Phys. Rev

56, 2046~1997!.
,

t.

.

,

A

@17# M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfe
D. M. Kurn, and W. Ketterle, Science275, 637 ~1997!.

@18# R. J. Glauber, Phys. Rev.130, 2529~1963!; 131, 2766~1963!;
P. L. Kelley and W. H. Kleiner, Phys. Rev.136, A316 ~1964!.

@19# J. I. Cirac, M. Lewenstein, K. Mo” lmer, and P. Zoller, Phys
Rev. A ~to be published!.

@20# J. Javanainen and J. Ruostekoski, Phys. Rev. A52, 3033
~1995!.

@21# J. Ruostekoski and J. Javanainen, Phys. Rev. A55, 513~1997!;
56, 2056~1997!.

@22# J. Dalibard, Y. Castin, and K. Mo” lmer, Phys. Rev. Lett.68,
580 ~1992!.

@23# C. W. Gardiner, A. S. Parkins, and P. Zoller, Phys. Rev. A46,
4363 ~1992!.

@24# H. J. Carmichael, inAn Open Systems Approach to Quantu
Optics, Lecture Notes in Physics Vol. 18~Springer, Berlin,
1993!.

@25# A. J. Leggett and F. Sols, Found. Phys.21, 353 ~1991!.
@26# D. F. Walls and G. J. Milburn,Quantum Optics~Springer,

Berlin, 1994!.
@27# U. M. Titulaer and R. J. Glauber, Phys. Rev.145, 1041~1966!.
@28# W. H. Zurek, Phys. Today44~10!, 36 ~1991!, and references

therein.
@29# D. F. Walls and G. J. Milburn, Phys. Rev. A31, 2403~1985!.
@30# B. M. Garraway and P. L. Knight, Phys. Rev. A50, 2548

~1994!.
@31# M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfe

D. M. Kurn, and W. Ketterle, Science273, 84 ~1996!.


