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Collapses and revivals of collective excitations in trapped Bose condensates
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We present a quantum theory of low-lying excitations in a trapped Bose condensate with finite particle
numbers. We find that even at zero temperature condensate number fluctuations and/or fluctuations of the
excitation frequency due to quantum uncertainties of the mode occupation lead to a collapse of the collective
modes due to dephasing. Coherent revivals of the collective excitations are predicted on a much longer time
scale. Depletion of collective modes due to second-harmonic generation is discussed.
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I. INTRODUCTION

In order to investigate the properties of the recently c
ated Bose condensates of alkali-metal atoms in magn
traps@1–4# the excitation of low-lying collective modes b
periodic variations of the trap potential has turned out to b
very effective tool. The successful implementation of th
idea has produced results for the collective mode spectrum
the trapped condensate@5,6# which are in very good agree
ment with theoretical predictions based on solutions of
Gross-Pitaevski equation@7–10#, i.e., on classical mean fiel
theory at zero temperature. In the experiments, in additio
the mode frequencies, the decay of the collective excitat
in real time could be observed. At present there exists
theory which describes the damping of excitations at fin
temperature. In this paper we focus solely on the decay of
collective exciations at very low~effectively zero! tempera-
ture. In the very low temperature regime it is difficult
imagine any truly dissipative mechanism for the observ
decay, as long as the trapped system can be consid
closed. The usual dissipative mechanisms in a homogen
Bose condensate@11# depend on thecontinuousmode spec-
trum found there.

It has recently been shown@12# that nondissipative inter
actions give rise to collapses and revivals of the macrosc
wave function for small atomic condensates, analogous
those predicted@13# and observed@14# for a single mode
field and a two-level atom. Here we extend this idea to sh
that very similar mechanisms may lead to the collapse~ap-
parent damping! of collective excitations in a finite Bos
condensate with a discrete mode spectrum. For times m
longer than the observation time in present experiments,
collapse is predicted to be reversed in ‘‘revivals’’ of the co
lective excitations.

*Permanent address: Fachbereich Physik, Universita¨t - GH Essen,
D-45117 Essen, Germany.
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We shall investigate two possible mechanisms for the c
lapse. The first mechanism, discussed in Sec. II, is base
atom-number uncertainty in the condensate. It therefore
the same physical origin as the collapse of the macrosc
wave function @12#. However, it will turn out that this
mechanism is much less effective for collective modes. T
second mechanism, described in Sec. III, is based on a
tential dependence of the mode frequency on the mode
cupation. Given such a dependence, quantum uncertainti
the occupation of a mode must lead to its collapse. A tw
mode model with this property has been discussed rece
by Kuklov et al. @15#, while Pitaevskii @17# also recently
discussed this mechanism in general for nonlinear oscilla
and applied it to a special collective mode in trapped c
densates. Here we wish to present a theory of the nonlin
self-coupling of the collective hydrodynamic modes
trapped Bose condensates and examine the conditions u
which the nonlinear coupling can become effective.

We emphasize that while we propose these collap
mechanisms as possible explanations for the damping of
citations at zero or very low temperatures, in current exp
ments there appears to be a substantial finite tempera
contribution which is likely to produce the dominant cont
bution to the currently observed damping times@18#.

II. COLLAPSE DUE TO ATOM-NUMBER UNCERTAINTY
IN THE CONDENSATE

The mechanisms we present are intrinsically quantum
chanical and, in principle, occur in anyfinite Bose-
condensed system, in which the spontaneous symm
breaking associated with theinfinite system cannot occu
@19#. For this reason the usual Bogoliubov analysis of t
low-lying excitations of an infinitely extended Bose ga
which is based on the assumption of a spontaneously bro
gauge symmetry, is not directly applicable. It must be mo
fied by eliminating the underlying assumption of brok
gauge symmetry before the collapse mechanism propo
503 © 1998 The American Physical Society
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here can be described consistently. Here we first present
modification of the Bogoliubov theory, then examine the c
lapse and revival of the collective excitations.

The grand canonical Hamiltonian of the system is@20#

H5E d3r F \2

2m
¹ĉ†

–¹ĉ1~V~r !1dV~r ,t !2m!ĉ†ĉ

1
U0

2
ĉ†2ĉ2G , ~1!

wherem is the atomic mass,m the chemical potential,V(r )
is the static trap potential,dV(r ,t) its modulation, andU0
54p\2a/m is proportional to thes-wave scattering length
a. The Bogoliubov aproach to the low-lying excitations
based on decomposing the boson field annihilation oper
ĉ(r ) ~and its adjoint! as @21,22#

ĉ~r !5^ĉ~r !&1dĉ~r !, ~2!

and then approximating~1! by a quadratic form in the opera
tors dĉ(r ) and dĉ†(r ). This approach is successful if th
expectation valuêĉ(r )& on the right-hand side of Eq.~2! is
nonzero, which is the case in an infinitely extended system
the U~1! gauge symmetry is spontaneously broken, or in
finite system if the phase of the condensate is establis
with respect to a reference, e.g., by a measurement o
phase relative to an infinitely extended Bose-condensed
tem @16#, which itself has a well-defined phase. However,
the experiments on collective excitations in trapped B
condensates referred to above a phase preparation of the
densate is not made, so that^ĉ(r )&50 on the right-hand side
of Eq. ~2! and this decomposition becomes useless. In f
the same kind of problem appears for a laser far ab
threshold, where Bose condensation of photons in the l
mode occurs, but the phase is not fixed and undergo
diffusion process@23#. As is done in that case, it is necessa
here to replace Eq.~2! by1

ĉ~r !5ei f̂~r !Ar0~r !1dr̂~r !1ĉ1~r !. ~3!

The decomposition~3! was used by Popov@24# for spatially
homogeneous Bose-condensed systems. Herer0(r ) is a c

number anddr̂(r ) andf̂(r ) are operators with commutatio
relations @dr̂(r ),ei f̂(r8)#52ei f̂(r )d (3)(r2r 8) and together
they provide a quantum mechanical description of the c
densate and its collective excitations at long waveleng
@24#. It is convenient to decomposedr̂(r ) further into

dr̂~r !5dŝ~r !1dn̂/V, ~4!

wheredn̂5*d3rdr̂(r ,t) is canonically conjugate to the spa

tially averaged phase variablef̂̄5V21*d3r f̂(r ) according

1The decomposition ofc andc† into amplitude and phase is bes
by well-known problems, which arise due to the existence of
vacuum state satisfyingcu0&50. However, sinceN05*d3rr0(r )
@1 the probability amplitude for the vacuum stateu0& is negligibly
small.
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to the commutaion relation@dn̂,f̂̄ #5 i and therefore com-
mutes with“f̂ and has discrete, not necessarily integer
genvalues with unit spacing. It describes number fluctuati
in the condensate. In the following it is useful to introdu
the abbreviationr̂(r )5r0(r )1dn̂/V so that r01dr̂5 r̂

1dŝ. Note thatr̂(r ) also commutes with¹f̂. The operator
ĉ1(r ) appearing in Eq.~3! describes short-wavelength com
ponents ofĉ(r ) whose elimination renormalizes the coef
cients of the effective long-wavelength theory forf̂(r …,
dr̂(r … @24#, and which provide a particle reservoir for th
condensate even in the caseT50, to which we confine our-
selves here. In the following we shall assume that the eli
nation of ĉ1 has already been performed. The ansatz~3! is
used in the Hamiltonian~1! to determine the Heisenber
equation of motion fordr̂ and f̂. We obtain formally~i.e.,
without paying attention to the fact that operator products
equal points in space are only well defined after choosing
appropriate regularization procedure; for our present p
poses this is sufficient, since we are only interested in
quantized fieldsdr̂,df̂ either in their free-field regime, as in
the present section, or in the case where all modes excep
are in their vacuum states, as in the following section!,

dṙ̂~r ,t !52~\/m!¹–$@r0~r !1dr̂~r ,t !#1/2¹f̂~r ,t !@r0~r !

1dr̂~r ,t !#1/2%, ~5!

ḟ̂~r ,t !52
1

\
$U0@r0~r !1dr̂~r ,t !#1V1dV~r ,t !2m%

2
\

4m
$@r0~r !1dr̂~r ,t !#21/2~¹f̂!2@r0~r !

1dr̂~r ,t !#1/21@r0~r !1dr̂~r ,t !#21/2~¹f̂!2@r0~r !

1dr̂~r ,t !#21/2%1
\

4m
@r0~r !

1dr̂~r ,t !#21/2~¹!2@r0~r !1dr̂~r ,t !#1/2. ~6!

It follows from Eq. ~5! that

d ṅ̂5E d3rdṙ̂50, ~7!

i.e., there is no restoring force ondn̂, which therefore need
not necessarily be small. Therefore we combine this quan
with r0 to extract from Eq.~6! the equation which holds to
zeroth-order in the small quantities“f̂ anddŝ,

m̂r̂~r !52
\2

4mS ¹2r̂~r !2
1

2
r̂~r !21

„¹r̂~r !…2D1Vr̂~r !

1U0r̂~r !2. ~8!

This is one component of the Gross-Pitaevski equation
identifiesr̂(r ) as the operator of the density of the conde
sate, as well as defining the operator of the chemical po
tial m̂5m(N01dn̂) as a function of the number operato

e
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N01dn̂5*d3r r̂(r ) in the condensate. Next we linearize with respect to the small quantitiesdŝ(r ,t) and¹f̂(r ) to obtain

dṡ̂~r ,t !52
\

m
¹–@ r̂~r !¹f̂~r ,t !#, ~9!

ḟ̂~r ,t !52
1

\
U0dŝ~r ,t !1

\

4m
r̂~r !21/2@¹22 r̂~r !21/2

„¹2r̂~r !1/2
…#r̂~r !21/2dŝ~r ,t !2

1

\
dV~r ,t !. ~10!

Eliminating ¹f̂(r ) from Eqs.~9! and ~10! we then get the wave equation for the low-lying excitations,

ds̈̂~r ,t !5
1

m
¹–$r̂~r !¹@U0dŝ~r ,t !1dV~r ,t !#%2

\2

4m2
¹–@ r̂~r !¹$r̂~r !21/2@¹22 r̂~r !21/2

„¹2r̂~r !1/2
…#r̂~r !21/2dŝ~r ,t !%#.

~11!
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Neglecting the gradient term of fourth order compared
those of second order, and also neglectingdn̂ compared to
r0 and replacingdŝ by the classical density fluctuation, w
recover Stringari’s wave equation@9# for the collective exci-
tations of a trapped Bose condensate. We shall in the foll
ing also neglect the higher-order gradient terms, but s
keep the number fluctuation operatordn̂, which is implicit in
r̂, and examine its consequences in Eq.~11!. Since the short-
wavelength noncondensate components of the system a
a reservoir even atT50, these number fluctuations may re
sonably be taken as Poissonian. We can therefore ass
that the initial state of the system is given by a pure state
a mixture with a Gaussian distribution over eigenstates
dn̂, with zero mean particle fluctuation and mean square
viation given by^(DN0)2&5N0, the average number of pa
ticles in the condensate. This corresponds to a Poisso
distribution of the total particle number in the condens
dn̂1N0 around its mean valueN0@1. We emphasize tha
due to the entanglement of the condensate with the o
states of the system, which have been eliminated, the us
a mixture ofdn̂ eigenstates applies even to a single reali
tion of the experiment, and not only to an ensemble of re
izations corresponding to identically prepared experime
For each eigenvaluedn of dn̂ we have in principle to deter
mine the solution of Eq.~8! and of Eq.~11! corresponding to
a given mode. This gives the normal modes of the den
oscillations, afterdV(r ,t) has been switched off, and dete
mines their frequenciesvn as a functionv0n(N01dn̂),
wherev0n(N0) is the collective mode frequency determin
by the mean-field theory@7–10#. In the quantum ensembl
defined by the initial state only eigenvaluesdn of dn̂ which
are very small compared toN0 are contained with appre
ciable weight. Therefore it is sufficient to expandvn to first
order indn,

vn5v0n~11gndn!, ~12!

with

gn5
1

v0n

]v0n

]N0
, ~13!
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a quantity determined by the solutions of the mean-fi
theory @7–10#.

We can now discuss the collapse and revivals of the c
lective excitations by evaluating the quantum ensemble
erage of the density oscillation̂dŝn(t)& for a given mode,
assuming that it is coherently excited, e.g., by modulating
trap at the required frequency at times prior tot50, while
for t.0 the mode is left to evolve freely. We obtain at tim
0,t,(gnv0n)21

^dŝn~ t !&5expS 2
1

2
N0gn

2v0n
2 t2D S ^dŝn~0!&cos~v0nt !

1
^dṡ̂n~0!&

v0n
sin~v0nt !D . ~14!

It can be checked that the corrections of order (dn)2 to Eq.
~12! make a negligible contribution in Eq.~14!. Equation
~14! shows that the excitation decays by dephasing on a t
scale

tc5~AN0/2ugnuv0n!21, ~15!

in the form of a Gaussian collapse. This collapse occurs e
at a temperatureT50, and even if the condensate never h
a well-defined overall phase. This collapse is therefore
ferent from~and turns out to be less effective than! the col-
lapse of the macroscopic wave function due to number fl
tuations @12#, which occurs if a well-defined phase of th
condensate~with respect to some phase standard, such
another condensate! is prepared, e.g., att50. On time scales
t>(gnv0n)21 the discreteness of the spectrum ofdn̂ mani-
fests itself and we obtain revivals of^dr̂n(t)& at the times
t5np/gnv0n .

To estimate the order of magnitude of the effect and
examine its accessibility to observation we have to obtain
estimate ofgn , e.g., for the observedm50 modes in the
experimentally realized condensates. We can achieve
goal by using some analytical results due to Stringari@9#. It
was shown in Ref.@9# that for N0→` the mode frequencies
become independent ofN0. It was also shown there by usin
sum-rule arguments that for finiteN0 the v0n for the low-
lying states can be represented in the formv0n(N0)
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5v0n(`)(11cnEkin /Eho), where thecn are parameters of or
der 1 which depend on the trap geometry and the partic
mode, andEkin /Eho is the ratio of the kinetic energy and th
harmonic trap energy in the ground state. TheN0 depen-
dence of this ratio in the limit of largeN0 of interest here can
be estimated by using the Thomas-Fermi approximation@25#
as Ekin /Eho5bn(N0a/A\/mv0)24/5 with v0 the harmonic
trap frequency and a proportionality factorbn of order 1
which is asymptotically independent ofN0 but dependent on
the trap geometry. For the coefficientgn we obtain finally

gn52
4

5
bncnN0

29/5~a/d0!24/5, ~16!

with d05A\/mv0, giving a collapse time

tc5~5A2/4bncn!~a/d0!4/5
N0

13/10

v0n
, ~17!

which is larger than the collapse time for the macrosco
wave function obtained in Ref.@12# roughly by a factor of
m/v0n .

For the two experiments in which decay times of colle
tive excitations have been measured, the following para
eters can be estimated: In the experiment of Ref.@5#, the
lifetime of the m50 mode ~with a frequency of n0n

5v0n/2p51.84n r , where the radial trap frequency has t
value n r5132 Hz! for a condensate containingN054500
rubidium-87 atoms was measured to be 110625 ms. For this
case the following numbers apply:v0n/2p5187 Hz, N0

54500, a552 A , v05v r(vz /v r)
1/3, and a/A\/mv0

51022. This gives a collapse time oftc5850 ms, which is
longer than the observed decay time, but this is to be
pected, as the latter was measured in a regime where fi
temperature effects are not negligible@18#.

In the experiment of Ref.@6#, the lifetime of the 30 Hz
collective excitation of a condensate ofN0553106 sodium
atoms was measured to be 250 ms. Due to the much la
number of atoms used in this experiment the mode frequ
ciesv0n become insensitive to the dispersion in the num
of particles in the condensate@9#, and the collapse due to th
mechanism under discussion here occurs only on time sc
very long compared to the observed damping time.

III. COLLAPSE DUE TO NONLINEARITY
OF THE COLLECTIVE MODES

In this section we neglect any uncertainty in the num
of particles in the condensate. However, we no longer line
ize the Heisenberg equations of motion fordr̂ and df̂. In-
stead we consider the case where only a single mode o
collective excitations is appreciably excited and ask for
nonlinear corrections to the dynamics of this mode. T
nonlinearity will also give rise to a dephasing and collapse
the collective mode amplitude. This is in the same spirit
the recent work of Kuklovet al. @15# and Pitaevskii@17#, but
differs from the former in that we do not treat a model b
rather start from the full microscopic approach, and is m
general than the latter because the analysis is not confine
ar
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a special symmetric collective mode.
The analysis starts with the nonlinear Heisenberg eq

tions of motion Eqs.~5! and~6! but with the density gradien
terms neglected. These can be derived from the Hamilton
@26#

H5E d3xH \2r̂

2m
~¹f̂!21

U0

2
~dŝ !2

1
\2

2m
dŝ1/2~“f̂ !2dŝ1/2J

N
. ~18!

Questions of operator ordering are not important at t
stage. In the end we will choose normal ordering in the mo
operators; this is the meaning of the notation$ . . . %N . We
introduce a mode expansion using the modes of the lin
ized hydrodynamics,

dŝ5 i( 8
n

SA\vn

2U0
Fn~r !an~ t !2H.c.D , ~19!

¹f̂5( 8
n

SA U0

2\vn
¹Fn~r !an~ t !1H.c.D , ~20!

where (8 is the mode sumnot including the spatially and
temporally constant part; the constant part is already
cluded inr̂5r01dn̂/V. Herevn is the frequency associate
with the linear mode functionFn(r ), so that the linear hy-
drodynamics@9# implies an(t)5ane2 ivnt.

The Hamiltonian now becomes

H5( 8
n

\vnan
†an1\( 8

nkl
H 1

3
C~nkl!

~1! anakal

1
1

2
Cn~kl!

~2! an
†akal1H.c.J , ~21!

with C(1) and C(2) symmetric in the parenthesized indice
and given by

C~nkl!
~1! 5

i\

4m
AU0

2\
~Dn~kl!

~1! 1Dk~nl!
~1! 1Dl~nk!

~1! !, ~22!

with

Dn~kl!
~1! 5A vn

vkvl
E d3xFn~¹Fk•¹Fl!, ~23!

and

Cn~kl!
~2! 5

i\

4m
AU0

2\
~2Dn~kl!

~2! 1Dknl
~3! 1Dkln

~3! 1Dlnk
~3! 1Dlkn

~3! !,

~24!

where
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Dn~kl!
~2! 5A vn

vkvl
E d3xFn* ~¹Fk•¹Fl!, Dnkl

~3! 5A vn

vkvl
E d3xFn* ~¹Fk* •¹Fl!. ~25!

The resulting equations of motion in the interaction representation are

ȧn52 i( 8
kl

H C~nkl!
~1!* ei ~vn1vk1vl!tak

†al
†1

1

2
Cn~kl!

~2! ei ~vn2vk2vl!takal1Ck~nl!
~2!* ei ~vn2vk1vl!tal

†akJ . ~26!

We now assume that only a single modem is externally excited; all other modes are only excited via their coupling to
mode m. This implies thatam can be considered ‘‘large’’ compared to all other mode operators. Using Eq.~26! in this
approximation, we have forn5m,

ȧm.2 i( 8
k

$2C~mmk!
~1!* ei ~2vm1vk!tam

† ak
†1Cm~mk!

~2! e2 ivktamak1Cm~mk!
~2!* eivktak

†am1Ck~mm!
~2!* ei ~2vm2vk!tam

† ak%, ~27!

and forn5kÞm,

ȧk.2 i H C~kmm!
~1!* ei ~vk12vm!t~am

† !21
1

2
Ck~mm!

~2! ei ~vk22vm!t~am!21Cm~km!
~2!* eivktam

† amJ . ~28!

In general, the oscillatory terms in this will be changing much more rapidly thanam in the interaction picture. The only
exception to this is when we have a second harmonic resonance,vk52vm ; this case needs separate treatment, an
discussed below. There is no contribution from the apparent resonance whenvk50, since this mode is explicitly exclude
from the sum; in fact, the coefficientCm(0m)

(2)* would be zero anyway. Thus we may solve Eq.~28! for ak treatingam as
approximately constant, to find

ak.2H C~kmm!
~1!*

vk12vm
ei ~vk12vm!t~am

† !21
1

2

Ck~mm!
~2!

vk22vm
ei ~vk22vm!t~am!21

Cm~km!
~2!*

vk
eivktam

† amJ . ~29!

We now subsitute this back into Eq.~27! for am , and keep only the nonoscillatory terms, to obtain

ȧm5 ikam
† amam , ~30!

where

k52( 8
k

H uC~kmm!
~1! u2

vk12vm
1

uCm~km!
~2! u2

vk
1

1

4

uCk~mm!
~2! u2

vk22vm
J . ~31!

The form of the matrix elements~22!–~24! implies selection rules for the modesk contributing to the sum in Eq.~31!. For
axially symmetric trap potentials with inversion symmetry only modes contribute with positive parity and azimuthal qu
numbersmk satisfyingmk52mm or mk50 ~via C.(..)

(2) Þ0) or mk522mm ~ via C(kmm)
(1) Þ0).

The effective self-coupling coefficientk experimentally manifests itself by an energy dependence of the observed
frequency according tovm(Em)5vm2(k/\vm)Em . Having derived Eq.~31!, the collapse and revival of the modem follow
immediately: If att50 the mode is excited, e.g., in a coherent state with amplitudeA, then for t.0 its amplitude changes
according to

^AuamuA&5Aexp@2uAu2
„12cos~kt !…#$cos@ uAu2sin~kt !#2 isin@ uAu2sin~kt !#%, ~32!
e

iv

, te,

ary

he
which for timesukut!1 collapses with the new collapse tim
tc5(uAku)21 according to^AuamuA&'Aexp(2 1

2(t/tc)
2 but

is revived at revival timest r52npk21 for integersn>1.
We can estimate the order of magnitude of the effect

coupling constantk, in particular its scaling with the system
parameters and the number of atoms in the condensate
using the Thomas-Fermi approximation

k;
uCu2

v0
;

\U0

m2v0

1

v0
S 1

r TF
D 7

;v0N0
27/5S d0

a D 2/5

, ~33!
e

by

which gives for the collapse time the estimate

tc;~Av0!21N0
7/5S a

d0D 2/5

. ~34!

In this result, derived for an initially excited coherent sta
we may replace the coherent amplitudeA by the variance of
the excited quantum number to generalize it for an arbitr
initially excited state. The scaling ofk with the system pa-
rameters is consistent with Pitaevskii@17#, who derived the
coupling coefficient for a special mode. The scaling of t
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coefficient with an inverse power ofN0 tends to make it
small in most cases. Putting in the numbers for the two
periments, assuming the excited quantum numberNe to be
1% of the total particle number we obtain

Rb: Ne545, A5A45, tc52.2 s,

Na: Ne553104, A5102A5, tc51.473103 s,
~35!

which is longer than the observed decay.
Relatively larger values are obtained fork ~and shorter

ones fortc) if there is a collective mode near the seco
harmonic of the externally excited mode. Second-harmo
generation has recently been seen in numerical simulat
of the Gross-Pitaevskii equation@27#.

We shall briefly discuss this point for the case of an a
isotropic axially symmetric trap whose collective mode fr
quencies and eigenfunctions are known as a function of
anisotropy parameterb5vz /v0 in the Thomas-Fermi and
hydrodynamic limit@9,28#, wherevz and v0 are the axial
and radial trap frequencies, respectively. The modes ar
this case labeled by three quantum numbers (n, j ,m) ~see
Ref. @28#!. We are interested in the case where for two d
ferent sets of their values we have second-harmonic r
nance such thatvn52vm , and where the relevant matrix
element Cn(mm)

(2) with n5( n̄ , j̄ ,m̄),m5(n, j ,m) does not
vanish. The latter condition implies certain selection rul
which for the case at hand read:~i! The mode functionFn(r )
of the second-harmonic mode in cylindrical coordina
r,z,w must be even inz, and ~ii ! at least one of the two
conditionsm̄52m @for Dn(mm)

(2) Þ0,Dmmn
(3) Þ0# or m̄50 @for

D (3)
mnmÞ0# must be satisfied.
As an example we consider the modem5(n50,j 50,m

52) which hasvm5A2v0 ,Fm(r )5Nmr2exp(2iw), where
Nm is a normalization factor, and we shall fix the phases
the mode functions by choosing these normalization fac
always positive. Then the two modesn15( n̄52, j̄ 51,m̄
50) with vn1

2 5@3b2/2121A(223b2/2)212b2#v0
2 ,

Fn1(r )5Nn1(24r2/3216z2/311), and n25( n̄52, j̄ 50,
m̄54) with vn2

2 5@3b2/21102A(623b2/2)2110b2#v0
2 ,

Fn2(r )5Nn2(216z212r221)r4exp(4iw) both satisfy the
selection rules. For the special valueb25(vz /v0)2516/7 it
turns out that both modesn1,n2 are degenerate and i
second-harmonic resonance with the mode at frequencyvm

5A2v0, i.e., vn15vn252A2v0. ~A resonance for this
value of b2 has recently also been noted in Ref.@29#!.
The relevant matrix elements in this case turn out
be Cn1(mm)

(2) 50.562N0
27/10(d0 /a)1/5v0 and Cn2(mm)

(2)

50.332N0
27/10(d0 /a)1/5v0. For such a case of exact secon

harmonic resonance, the previous treatment breaks do
The differential equations for the two, or, in the present c
even three, resonantly coupled modes must instead be
sidered together. Neglecting couplings to all other modes,
have forvn i52vm

ȧm52 i(
i

Cn i ~mm!
~2!* am

† an i , ~36!
-

ic
ns

-
-
e

in

-
o-

,

s

f
rs

o

-
n.
e
n-
e

ȧn i52
i

2
Cn i ~mm!

~2! am
2 , ~37!

which are the coupled mode equations for second-harm
or subharmonic generation. It can be seen that only the lin
combination an5const( iCn i (mm)

(2)* an i of second-harmonic
modes couples to the fundamental modem, while the linear
combination ā n5const@Cn2(mm)

(2) an12Cn1(mm)
(2) an2# is not

generated. Choosing the constants (const5uCn(mm)
(2) u21) to

normalize these linear combinations, Eqs.~36! and ~37! re-
duce to

ȧm52 i uCn~mm!
~2! uam

† an , ~38!

ȧn52
i

2
uCn~mm!

~2! uam
2 , ~39!

where we defined uCn(mm)
(2) u5@ uCn1(mm)

(2) u21uCn2(mm)
(2) u2#1/2,

which takes the valueuCn(mm)
(2) u50.653N0

27/10(d0 /a)1/5v0 in
our example. These equations have well-known exact s
tions @30# in terms of Jacobi elliptic functions, that oscillat
with a frequency

V05uCn~mm!
~2! uA^am

† am&. ~40!

An order-of-magnitude estimate of this is

V0;A nm\U0

m2v0r TF
7

;Anmv0N0
27/10S d0

a D 1/5

, ~41!

which is much larger than the nonresonant ratekAnm. The
initial transfer of energy from the fundamental mode to t
second harmonic may be viewed as a collapse with a
lapse timetc;V0.

The resonance phenomenon found here might help to
plain why in the experiments some modes show amplitu
dependence of the frequency, while others do not.

IV. CONCLUSIONS

We have investigated two different quantum mechanis
which may lead to a dephasing of collective modes
trapped Bose-Einstein condensates even at zero tempera
Both rely on the possibility that the system may be in a line
superposition of states, each of which has a slightly differ
frequency for the collective mode. In the first case inves
gated here the linear superposition combines states with
ferent numbers of atoms in the condensate. This may oc
since the noncondensate atoms, which are always pre
due to many-body interactions@21#, act as a particle reservoi
for the condensate. This case was earlier shown to give
to collapses and revivals of the macroscopic wave funct
@12#, once the latter is prepared at a given time with a we
defined ~relative! phase, e.g., by a measurement. Here
found that a dephasing effect occurs also for the collec
mode but on a different time scale which is typically mu
longer for large condensates. In principle, the collapse of
macroscopic wave function, if it was initially prepared with
well-defined phase, and of the collective mode amplitu
may occur independently and simultaneously, but their
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multaneous observation would of course be much more
ficult than the observation of each collapse individual
While the dimensionless collapse time of the macrosco
wave function for largeN0 scales like

v0tc;~d0 /a!2/5N0
3/5/^DN0& ~macroscopic wave function),

~42!

the collapse time of the collective mode based on t
mechanism scales as

v0tc;~d0 /a!24/5N0
9/5/^DN0&

3 ~collective mode due to atom-number uncertaint

~43!

which corresponds to Eq.~17!, which was written for
^DN0&5N0

1/2.
In the second case investigated by us the linear supe

sition is one of different quantum number states of the
cited collective mode, which will typically be in a cohere
state immediately after its excitation from its vacuum sta
We have calculated the effective nonlinearity of the exci
mode due to its coupling to the other modes. This nonline
ity gives rise to a dispersion of the collective mode fr
quency within the linear superposition of number states. T
collapse time obtained from this mechanism we find@in Eq.
~34!# to scale as

v0tc;~d0 /a!22/5N0
7/5/^Dn&

3 ~collective mode due to nonlinearity).~44!

For an initially excited coherent state the variance of
quantum number is related to the average mode energyEm

by ^Dn&5AEm /\vm. This scaling is consistent with a resu
obtained by Pitaevskii@17#. We have also found that th
an

et

n,
tt.

n,

n

n,
ev
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v

f-
.
ic

s
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o-
-

.
d
r-
-
e

e

nonlinearity may be strongly enhanced if there is a mode
or close to a resonance with the second harmonic of
excited mode. In the case of such a resonance the transf
energy from the fundamental mode to the second harmo
for short times looks similar to a collapse of the fundamen
mode, which, according to Eq.~41!, occurs on a time-scale
scaling like

v0tc;~d0 /a!21/5N0
7/10/AEm /\vm

3~collective mode due to second harmonic!.

~45!

Due to the scaling of the collapse times with positive pow
of the atom number the collapse by one of the mechani
we have examined could best be observed in comparati
small condensates. At presently achieved temperatures
observed damping of the collective mode occurs at a hig
rate than the collapse rates obtained here. However, the
served damping rates were found to be strongly tempera
dependent, decreasing rapidly with decreasing temperat
@18#. Therefore the collapse we have investigated here is
masked in present experiments by finite temperature effe
but is predicted to reveal itself when experiments are pus
to smaller temperatures.
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