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Collapses and revivals of collective excitations in trapped Bose condensates
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We present a quantum theory of low-lying excitations in a trapped Bose condensate with finite particle
numbers. We find that even at zero temperature condensate number fluctuations and/or fluctuations of the
excitation frequency due to quantum uncertainties of the mode occupation lead to a collapse of the collective
modes due to dephasing. Coherent revivals of the collective excitations are predicted on a much longer time
scale. Depletion of collective modes due to second-harmonic generation is discussed.
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[. INTRODUCTION We shall investigate two possible mechanisms for the col-
lapse. The first mechanism, discussed in Sec. Il, is based on
In order to investigate the properties of the recently cre-atom-number uncertainty in the condensate. It therefore has
ated Bose condensates of alkali-metal atoms in magnetiéie same physical origin as the collapse of the macroscopic
traps[1-4] the excitation of low-lying collective modes by wave function[12]. However, it will turn out that this
periodic variations of the trap potential has turned out to be &nechanism is much less effective for collective modes. The
very effective tool. The successful implementation of thisSeécond mechanism, described in Sec. Il is based on a po-
idea has produced results for the collective mode spectrum ¢gntial dependence of the mode frequency on the mode oc-
the trapped condensalg,6] which are in very good agree- cupation. Given such a dependence, quantum uncertainties in
ment with theoretical predictions based on solutions of théh€ occupation of a mode must lead to its collapse. A two-
Gross-Pitaevski equatidii—10, i.e., on classical mean field Mode model with this property has been discussed recently
theory at zero temperature. In the experiments, in addition t§Y Kuklov et al. [15], while Pitaevskii[17] also recently
the mode frequencies, the decay of the collective excitationg'scusseq th|_s mechanlsm in gene_ral for non_lmear oscillators
in real time could be observed. At present there exists n@nd applied it to a special collective mode in trapped con-
theory which describes the damping of excitations at finitedensates. Here we wish to present a theory of the nonlinear
temperature. In this paper we focus solely on the decay of thgelf-coupling of the collective hydrodynamic modes in
collective exciations at very loweffectively zero tempera- trapped Bose (_:ondensate_s and examine the cor_ldltlons under
ture. In the very low temperature regime it is difficult to Which the nonlinear coupling can become effective.
imagine any truly dissipative mechanism for the observed We emphasize that while we propose these collapse-
decay, as long as the trapped system can be Considerg'a)ec.hanlsms as possible explanations for the damping of ex-
closed. The usual dissipative mechanisms in a homogeneog#ations at zero or very low temperatures, in current experi-
Bose condensafd 1] depend on theontinuousmode spec- ment_s there appeqrs_to be a substantial f|n|t_e tempera_ture
trum found there. contribution which is likely to produce the dominant contri-
It has recently been showi2] that nondissipative inter- Pution to the currently observed damping tinjés.
actions give rise to collapses and revivals of the macroscopic
wave function for small atomic condensates, analogous 19, ~~ | ApSE DUE TO ATOM-NUMBER UNCERTAINTY
those predicted13] and observed14] for a single mode IN THE CONDENSATE
field and a two-level atom. Here we extend this idea to show
that very similar mechanisms may lead to the collaze The mechanisms we present are intrinsically quantum me-
parent damping of collective excitations in a finite Bose chanical and, in principle, occur in anfinite Bose-
condensate with a discrete mode spectrum. For times muafondensed system, in which the spontaneous symmetry
longer than the observation time in present experiments, thisreaking associated with thiafinite system cannot occur
collapse is predicted to be reversed in “revivals” of the col-[19]. For this reason the usual Bogoliubov analysis of the
lective excitations. low-lying excitations of an infinitely extended Bose gas,
which is based on the assumption of a spontaneously broken
gauge symmetry, is not directly applicable. It must be modi-
*Permanent address: Fachbereich Physik, Univées@Ed Essen, fied by eliminating the underlying assumption of broken
D-45117 Essen, Germany. gauge symmetry before the collapse mechanism proposed
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=i and therefore com-

mutes withV ¢ and has discrete, not necessarily integer ei-
genvalues with unit spacing. It describes number fluctuations
in the condensate. In the following it is useful to introduce

the abbreviationp(r)=po(r)+on/Q so that py+ dp=p

here can be described consistently. Here we first present thi§ ne commutaion relatioﬁﬁﬁ,a
modification of the Bogoliubov theory, then examine the col-
lapse and revival of the collective excitations.

The grand canonical Hamiltonian of the systenjd6]

2

he .. . nn
- 3. Y ot _ + R . "
H_f d*r Zsz,/x Vit (VD +V(nH—m ¢y + do. Note thatp(r) also commutes witlV¢. The operator
U #,(r) appearing in Eq(3) describes short-wavelength com-
+ 701}*21}2}, (1)  ponents ofi(r) whose elimination renormalizes the coeffi-

cients of the effective long-wavelength theory fax(r),

wherem is the atomic masgy the chemical potential/(r) 5;3(r) [24], and which provide a particle reservoir for the
is the static trap potentiaV(r,t) its modulation, andJ, condensate even in the cabe 0, to which we confine our-
=4mh%a/m is proportional to thes-wave scattering length selves here. In the following we shall assume that the elimi-
a. The Bogoliubov aproach to the low-lying excitations is nation of §#; has already been performed. The ang8izs
based on decomposing the boson field annihilation operatajsed in the Hamiltoniar(1) to determine the Heisenberg

y(r) (and its adjoint as[21,22 equation of motion forsp and ¢. We obtain formally(i.e.,
. . . without paying attention to the fact that operator products at
P(r)=(p(r))+ Suu(r), (2)  equal points in space are only well defined after choosing an

o ) , appropriate regularization procedure; for our present pur-
and then approximatingl) by a quadratic form in the opera- oses this is sufficient, since we are only interested in the

A . _ : . I
tors 8y(r) and oy (r). This approach is successful if the g ,antized fieldssp, 5¢ either in their free-field regime, as in

expectation valugy(r)) on the right-hand side of E42) is  the present section, or in the case where all modes except one
nonzero, which is the case in an infinitely extended system ifre in their vacuum states, as in the following segtion

the U1) gauge symmetry is spontaneously broken, or in a

finite system if the phase of the condensate is eStab|iShed5;)(r,t)=—(h/m)V-{[po(r)+6ﬁ(r,t)]1’2V<?>(r,t)[po(r)

with respect to a reference, e.g., by a measurement of its

phase relative to an infinitely extended Bose-condensed sys- +8p(r,H)1¥3, (5)
tem[16], which itself has a well-defined phase. However, in

the experiments on collective excitations in trapped Bose ;. 1 -

condensates referred to above a phase preparation of the cor(r,t) = = 2-{Uolpo(r) + 8p(r,t) ]+ V+ 6V (r,t) — u}

densate is not made, so that(r))=0 on the right-hand side

of EqQ. (2) and this decomposition becomes useless. In fact,
the same kind of problem appears for a laser far above
threshold, where Bose condensation of photons in the laser

) . .
= 2 {Lpo(1) + 8p(r )] AV )L po(r)

mode occurs, but the phase is not fixed and undergoes a +8p(r, )12+ [ po(r) + 8p(r,t) ] YAV ) po(r)
diffusion proces$23]. As is done in that case, it is necessary 5
here to replace Eq2) by* +op(r,0)] Y2+ 2= Lpo(n)

(1) =€\ po(r) + 8p(r) + (). 3)

The decompositiori3) was used by Popo\24] for spatially
homogeneous Bose-condensed systems. ldgfe) is ac
number ande)(r) and fﬁ(r) are operators with commutation . 5
relations [ 8p(r),e' (") ]= - ¥ s@)(r—r’) and together 5n:f d°r6p=0, ™
they provide a quantum mechanical description of the con-

densate and its collective excitations at long wavelengthge | there is no restoring force ai, which therefore need

+8p(r,t)] YAV) 2 po(r) + Sp(r,1)]H2 (6)
It follows from Eg. (5) that

[24]. It is convenient to decompos#p(r) further into not necessarily be small. Therefore we combine this quantity
A A A with pg to extract from Eq(6) the equation which holds to
dp(r)=3da(r)+aon/Q, (4)  zeroth-order in the small quantiti&s¢ and o,

2

wheresn= [d® 8p(r,t) is canonically conjugate to the spa- - h - . . . -
pp(r) == 7 V2p(r) =5p(r) " *(Vp(1)? | +Vp(r)

tially averaged phase variabig=Q ~1[d ¢(r) according
+Uop(r)?. ®)

The decomposition of and ' into amplitude and phase is beset __ . . . . .
by well-known problems, which arise due to the existence of theThIS is one component of the Gross-Pitaevski equation and

vacuum state satisfying]0)=0. However, sinceNo=[d3r po(r) identifiesp(r) as thg operator of the density of the_ conden-
>1 the probability amplitude for the vacuum st is negligibly ~ Sate, as well as Ejef'”'ng the operator of the chemical poten-
small. tial u=u(Ng+6n) as a function of the number operator



57 COLLAPSES AND REVIVALS OF COLLECTIVE ... 505

No+ én=Jd% p(r) in the condensate. Next we linearize with respect to the small quantitiést) and Vé(r) to obtain

A h_ . -
do(r,t)=—V-[p(n)Ve(r, 0], €)

$rH=- %Uo5<}(r,t)+%ﬁ(r)_l’2[V2—ﬁ(r)_1’2(V25(r)1’2)]f>(f)_1’253(r,t)— %W(r.t). (10

Eliminating Vé(r) from Egs.(9) and (10) we then get the wave equation for the low-lying excitations,

1_ . - . - R - R -
6o(r,t)=5V~{p(r)V[U050(r,t)+5V(r,t)]}—RV-[p(r)V{p(r)’l’z[Vz—p(r)*1’2(V2p(r)l’z)]p(r)*l’zﬁo(r,t)}]-

(11)

Neglecting the gradient term of fourth order compared toa quantity determined by the solutions of the mean-field
those of second order, and also neglectiilgcompared to theory[7-10.

po and replacing&} by the classical density fluctuation, we We can now discuss the c_ollapse and revivals of the col-
recover Stringari's wave equatid@] for the collective exci- €Ctive excitations by evaluating the quantum ensemble av-
tations of a trapped Bose condensate. We shall in the followerage of the density oscillatiofdo,(t)) for a given mode,

ing also neglect the higher-order gradient terms, but shafssuming that it is coherently excited, e.g., by modulating the

keep the number fluctuation operat, which is implicitin ~ /aP at the required frequency at times priortte0, while

~ o . . for t>0 the mode is left to evolve freely. We obtain at times
p, and examine its consequences in 8d). Since the short- 0<t<(y,wo,) *

wavelength noncondensate components of the system act as
a reservoir even ak=0, these number fluctuations may rea- 1

sonably be taken as Poissonian. We can therefore assume, ¢~ _ - 2 2.2 ~

that the initial state of the system is given by a pure state or <5U”(t)>_eXF< 7 Nov,wo,t )((5av(0)>cos(ont)
a mixture with a Gaussian distribution over eigenstates of .

5n, with zero mean particle fluctuation and mean square de- (80,(0))
viation given by((ANg)2)=N,, the average number of par- +
ticles in the condensate. This corresponds to a Poissonian
distribution of the total particle number in the condensatelt can be checked that the corrections of ordén)€ to Eq.
sn+N, around its mean valudl,>1. We emphasize that (12) make a negligible contribution in Ed14). Equation
due to the entanglement of the condensate with the othdd4) shows that the excitation decays by dephasing on a time
states of the system, which have been eliminated, the use §¢ale

a mixture of én eigenstates applies even to a single realiza- — (N> -1

tion of the experiment, and not only to an ensemble of real- 7e=(WNo/2l 7] 00,) %, (19
izations corresponding to identically prepared experimentsin the form of a Gaussian collapse. This collapse occurs even
For each eigenvaluén of 5n we have in principle to deter- at a temperatur& =0, and even if the condensate never has
mine the solution of Eq8) and of Eq.(11) corresponding to a well-defined overall phase. This collapse is therefore dif-
a given mode. This gives the normal modes of the densitferent from(and turns out to be less effective thahe col-
oscillations, aftersV(r,t) has been switched off, and deter- lapse of the macroscopic wave function due to number fluc-
mines their frequenciess, as a functionwg,(No+on),  tuations[12], which occurs if a well-defined phase of the
wherew,,(Ny) is the collective mode frequency determined condensatewith respect to some phase standard, such as
by the mean-field theorj7—10. In the quantum ensemble another condensates prepared, e.g., at=0. On time scales

defined by the initial state only eigenvaluds of sn which ~ t=(7,@0,) " the discreteness of the spectrumasf mani-
are very small compared thl, are contained with appre- fests itself and we obtain revivals ¢bp,(t)) at the times
ciable weight. Therefore it is sufficient to expand to first  t=nwu/y,wq,.

sin(woyt)) . (14)

oy

order inén, To estimate the order of magnitude of the effect and to
examine its accessibility to observation we have to obtain an
w,= wg,(1+7y,6n), (12)  estimate ofy,, e.g., for the observech=0 modes in the
experimentally realized condensates. We can achieve this
with goal by using some analytical results due to String@yi It

was shown in Ref(9] that for Ny—c° the mode frequencies

become independent &f,. It was also shown there by using

- 1 (13 sum-rule arguments that for finitd, the wq, for the low-
wo, INg lying states can be represented in the forn,(Ng)

1 (7(1)0,,

Yv
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= wg,(*°)(1+¢,Ein/Eng), Where thec, are parameters of or- a special symmetric collective mode.
der 1 which depend on the trap geometry and the particular The analysis starts with the nonlinear Heisenberg equa-
mode, andE,;,,/Ep, is the ratio of the kinetic energy and the tions of motion Eqs(5) and(6) but with the density gradient

harmonic trap energy in the ground state. Tig depen-
dence of this ratio in the limit of largl, of interest here can [26]
be estimated by using the Thomas-Fermi approximdt@ai

as Eyin/Eno=b,(Noa/VA/mwy) ~#° with wy the harmonic

trap frequency and a proportionality factbr, of order 1

which is asymptotically independent Bif, but dependent on

the trap geometry. For the coefficiept we obtain finally

terms neglected. These can be derived from the Hamiltonian

Up -
+70(50')2

hp .
:j d3x{ﬁ(v¢)2

B2 oy s
+ﬁ501’2(v¢)250-1’2] : (18)
N

Questions of operator ordering are not important at this

stage. In the end we will choose normal ordering in the mode

operators; this is the meaning of the notation. . },. We

introduce a mode expansion using the modes of the linear-

4
7=~ £b,6,No *(@ldg) ", (16)
with dg= V#/mw,, giving a collapse time
13/10
7= (52/4b,c,)(aldo) ¥~ (17)

wWoy

which is larger than the collapse time for the macroscopic
wave function obtained in Ref12] roughly by a factor of
lu‘/wOV .

For the two experiments in which decay times of collec-
tive excitations have been measured, the following param-
eters can be estimated: In the experiment of REf, the
lifetime of the m=0 mode (with a frequency of vy,

Vo= E (\/ VF JADa,(t)+H.c.,

whereX’ is the mode sumnot including the spatially and

ized hydrodynamics,

(19

5a—|2 (\/ F(Na ,,(t)—H.c.),

(20

= wq,/2m=1.84v, , where the radial trap frequency has thetemporally constant part; the constant part is already in-

value »,=132 Hz for a condensate containing,=4500
rubidium-87 atoms was measured to be 2% ms. For this
case the following numbers applyyq,/27=187 Hz, Ng

=4500, a=52 A , wo=w(0,/w,)*3 and a/\i/mw,

=10 2. This gives a collapse time af.=850 ms, which is
longer than the observed decay time, but this is to be ex-

pected, as the latter was measured in a regime where finite
temperature effects are not negligiflEs].

In the experiment of Ref6], the lifetime of the 30 Hz
collective excitation of a condensate f=5xX 10° sodium
atoms was measured to be 250 ms. Due to the much larger
number of atoms used in this experiment the mode frequen-

cluded inp=py+ Sn/Q). Herew, is the frequency associated
with the linear mode functiof ,(r), so that the linear hy-
drodynamicq 9] implies «,(t) = a, e~ ',

The Hamiltonian now becomes

H= 2 fho aya,,-l-ﬁz\ [ C(VK)\)aa ay

1
2 T
+ —C(V(L)\)ava,(a)\-l— H.c.t,

5 (21)

1 2 . ; "
cies w,, become insensitive to the dispersion in the numbetith C and C?) symmetric in the parenthesized indices
of particles in the condensaig], and the collapse due to the @nd given by

mechanism under discussion here occurs only on time scales
very long compared to the observed damping time.

Ill. COLLAPSE DUE TO NONLINEARITY

OF THE COLLECTIVE MODES with

In this section we neglect any uncertainty in the number
of particles in the condensate. However, we no longer linear-

ize the Heisenberg equations of motion & and 8¢. In-

stead we consider the case where only a single mode of the
collective excitations is appreciably excited and ask for theyng
nonlinear corrections to the dynamics of this mode. This
nonlinearity will also give rise to a dephasing and collapse of
the collective mode amplitude. This is in the same spirit as
the recent work of Kuklowt al.[15] and Pitaevskif17], but
differs from the former in that we do not treat a model but
rather start from the full microscopic approach, and is more
general than the latter because the analysis is not confined where

V(K)\)

(22

1y _ U 1 1 1)
21;2&) (D(u(aa\) E<()y>\>+ Dg\(w))'

(23

D' = \/w ” fd?’xF VF.VF),
A

[ 2
(ZDSJ(L)\)_i_ D£<3;/)A+ D£<3;\)V+ D)\VK+ D(x?;)u)
(24)
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2 _ Dy 3y ok _ 3) _ @y I
DV(K)\) d°xF3(VF,.-VF,), D} A=\——|[ d°xF;(VFL-VF,). (25
W, W) W, Wy

The resulting equations of motion in the interaction representation are

__IZ [ (VK)\ (w,+o +w)\)t T T+ ZCS}Z(L}\)eI(w,,*wK w\)t a a)\_’_CKZ();;\ i(w,—, +a))\)ta)\a, (26)

We now assume that only a single madés externally excited; all other modes are only excited via their coupling to the
mode . This implies thata, can be considered “large” compared to all other mode operators. UsindZBy.in this
approximation, we have for= u,

~ (2 2 j T 2 2w, — T
a, —|2 {ZC(WK)e outedtgl ot 4+ 2 e '“KtaMaK+C;();:K)e'“)Kt Ta +c<K(1fM e@oumediala} (27)

and forv=«k+ u,

('XKZ—i CEiEM)ei(wKJrZw#)t(aL)Z C((HM)el(wkf w, (a )2 C(Z():M)elwt Ta b (28)
In general, the oscillatory terms in this will be changing much more rapidly tharn the interaction picture. The only
exception to this is when we have a second harmonic resonance2w,; this case needs separate treatment, and is
discussed below. There is no contribution from the apparent resonanceayked, since this mode is explicitly excluded
from the sum; in fact, the coefficierﬁ(z)*) would be zero anyway. Thus we may solve E8) for «, treatinga,, as

. . #(0u
approximately constant, to find
C(l)* 1 C(Z) C(Z)*
) i 20,0t 0 T2 Z TR (e, 20, 24 TR diod )T,
@ [wK-f—ZwMe ay) 2 wK_Zw,ue v K &y 29
We now subsitute this back into E7) for «,,, and keep only the nonoscillatory terms, to obtain
d’u:ikala#a#, (30
where
ch 2 (2 2 (2) |2
(=23 |C ] |C et L1 |Clitum] @)
 |ot20, W, 40,20,

The form of the matrix element{®22)—(24) implies selection rules for the mod&scontributing to the sum in Eq31). For
axially symmetric trap potentials with inversion symmetry only modes contribute with positive parity and azimuthal quantum
numbersm, satisfyingm,=2m, or m,=0 (via C?,#0) orm,=—2m, (via C{2, , #0).

The effective self-coupling coefficient experimentally manifests itself by an energy dependence of the observed mode
frequency according te ,(E,)=w,— (x/hw,)E, . Having derived Eq(31), the collapse and revival of the mogefollow
immediately: If att=0 the mode is excited, e.g., in a coherent state with amplifidinen fort>0 its amplitude changes
according to

(A, |Ay=Aexd —|A|*(1—cog «t))]{cod |A|?sin( kt) ] —isin[|A|?sin( xt) ]}, (32

which for times| k|t<1 collapses with the new collapse time which gives for the collapse time the estimate

7.=(|Ak|) " according to(A|a,,|A)~Aexp(-3(t/t.)? but

is revived at revival times, = 2nm< ! for integersn=1. 1705
We can estimate the order of magnitude of the effective 7~ (Awg) " "Ng

coupling constank, in particular its scaling with the system

parameters and the number of atoms in the condensate,

using the Thomas-Fermi approximation

215
(34)

aO

tﬁ)f this result, derived for an initially excited coherent state,
we may replace the coherent amplitulidy the variance of
the excited quantum number to generalize it for an arbitrary
1 dg) 25 initially excited state. The scaling of with the system pa-
PR b B _(_) “woNEWS(_) , (33  rameters is consistent with PitaevsKii7], who derived the
a coupling coefficient for a special mode. The scaling of the
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coefficient with an inverse power dfl; tends to make it

. i
small in most cases. Putting in the numbers for the two ex- Q== ECE,?EMQOZ,ZM (37
periments, assuming the excited quantum nunibeto be
1% of the total particle number we obtain which are the coupled mode equations for second-harmonic
or subharmonic generation. It can be seen that only the linear
Rb: Ng=45, A=\45, 7.=2.2 s, combination a,=const;C{)* @, of second-harmonic
modes couples to the fundamental mqadewhile the linear
Na: Ng=5x10%, A=10P\5, r,=1.47x1C° s, combination «,=constC'?), ,a,1~C%), a2l is not

(35 generated. Choosing the constants (cen€ts), | %) to
normalize these linear combinations, E¢36) and (37) re-
which is longer than the observed decay. duce to
Relatively larger values are obtained fer(and shorter _
ones forr.) if there is a collective mode near the second aﬂz—i|C(VfLm|aLaV, (38
harmonic of the externally excited mode. Second-harmonic
generation has recently been seen in numerical simulations

) i
2 2
of the Gross-Pitaevskii equatid@7]. a,=— §|C(V<LM>|%, (39
We shall briefly discuss this point for the case of an an-
isotropic axially symmetric trap whose collective mode fre-yyhere we defined|C(?) N :[|C§)21)(W)|2+ |Ic@ 12112

quencies and eigenfunctions are known as a function of thgi-h takes the valugC ) )| =0.653\157’10(d07?i(§{%

. _ . . v(up wqo in
anisotropy parameteg=w,/wq in the Thomas-Fermi and . example. These equations have well-known exact solu-
hydrodynamic 1limit[9,28], where w, and w, are the axial

. ! 3 tions[30] in terms of Jacobi elliptic functions, that oscillate
and radial trap frequencies, respectively. The modes are if};, 4 frequency

this case labeled by three quantum numberg,Mm) (see
Ref.[28]). We are interested in the case where for two dif- Qo= |C(v%3m)| /<a#‘F ). (40)
ferent sets of their values we have second-harmonic reso-

nance such thab,=2w,, and where the relevant matrix An order-of-magnitude estimate of this is

element C{7), ) with v=(n,j,m),u=(n,j,m) does not

vanish. The latter condition implies certain selection rules, n, iUy TN do| ¥®

which for the case at hand redd): The mode functior ,(r) 0 77~ VNL@oNg al (41
of the second-harmonic mode in cylindrical coordinates

p:Z,¢ must be even ire, 2a”d (if) ataleast one of the twWo  yhjch is much larger than the nonresonant ratén,,. The
conditionsm=2m [for D7), ,#0D®) 0] or m=0 [for initial transfer of energy from the fundamental mode to the

D{s)# 0] must be satisfied. second harmonic may be viewed as a collapse with a col-
As an example we consider the mogde=(n=0,j=0m lapse timer,~,.
=2) which hasw,= \/Ewo,F#(r)= N,p?exp(d¢), where The resonance phenomenon found here might help to ex-

N, is a normalization factor, and we shall fix the phases oflain why in the experiments some modes show amplitude
the mode functions by choosing these normalization factordependence of the frequency, while others do not.

always positive. Then the two moded=(n=2,j =1m

=0) with % =[38%2+2+(2—38%12)%+ 28] ws, IV. CONCLUSIONS

F,a(r)=N,1(—4p?3-162°/3+1), and v,=(n=2,j =0, We have investigated two different quantum mechanisms
m=4) with w?,=[38%/2+10— (6—38%2)>+108?]w2,  which may lead to a dephasing of collective modes in
F,o(r)=N,,(—1622+2p%—1)p*exp(4¢) both satisfy the trapped Bose-Einstein condensates even at zero temperature.
selection rules. For the special valgé= (w,/wo)?=16/7 it  Both rely on the possibility that the system may be in a linear
turns out that both modesl,v2 are degenerate and in superposition of states, each of which has a slightly different
second-harmonic resonance with the mode at frequency frequency for the collective mode. In the first case investi-
=\2wq, i.e., w,1=0,,=22w,. (A resonance for this gated here the linear supgrposition combines states with dif-
value of 82 has recently also been noted in Rgp9]).  ferent numbers of atoms in the condensate. This may occur
The relevant matrix elements in this case turn out toSinceé the noncondensate atoms, which are always present
be C? =056N;"9d,/a) w and Cc® due to many-body interactiof21], act as a particle reservoir
rlepy 0 0 0 v2(um)  for the condensate. This case was earlier shown to give rise
=0.33N, "% dy/a)Pw,. For such a case of exact second- ) ; give |
0 0 0 Eo collapses and revivals of the macroscopic wave function

harmonic resonance, the previous treatment breaks dow 12]. once the latter is prepared at a given time with a well-
The differential equations for the two, or, in the present case; "’ ) prep 9
efined(relative phase, e.g., by a measurement. Here we

even three, resonantly coupled modes must instead be coE—

sidered together. Neglecting couplings to all other modes, w ound that a dephasing effect occurs also for the collective
have fore -=2w. " “'mode but on a different time scale which is typically much
4 o

longer for large condensates. In principle, the collapse of the
macroscopic wave function, if it was initially prepared with a

wo=—iS c@* Lty 36 weII—deﬁned. phase, and of the .collectlve mode ampll_tudga
Yu Z i) (36) may occur independently and simultaneously, but their si-
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multaneous observation would of course be much more difnonlinearity may be strongly enhanced if there is a mode at
ficult than the observation of each collapse individually.or close to a resonance with the second harmonic of the
While the dimensionless collapse time of the macroscopi@excited mode. In the case of such a resonance the transfer of
wave function for largeN, scales like energy from the fundamental mode to the second harmonic
for short times looks similar to a collapse of the fundamental
wo7~(do/2)**NF/(ANg) (macroscopic wave function), mode, which, according to Ed41), occurs on a time-scale
(42)  scaling like

the collapse time of the collective mode based on this de/a)~ Y5N7/10
; ~ a Ny~ 7VE, /1
mechanism scales as o7~ (do/@) 0 wilt®Op

X (collective mode due to second harmagnic

wore~ (do/a) ~¥SNE(AN,) 5

X (collective mode due to atom-number uncertainty). ) ) ) N
Due to the scaling of the collapse times with positive powers

(43) of the atom number the collapse by one of the mechanisms
which corresponds to Eq(17), which was written for W€ have examined could best be obs_erved in comparatively
(ANO)zNé’Z. small condensa_tes. At presently achieved temperatures the

8_bserved damping of the collective mode occurs at a higher

In the second case investigated by us the linear superp ;
sition is one of different quantum number states of the ex/ate than the collapse rates obtained here. However, the ob-

cited collective mode, which will typically be in a coherent Zerver(]d ddﬁ[n%'ngr rateiﬁ Wrereiéclaur\:\;jmt_]o dbe ;stro?r?lyttenrrperre:turre
state immediately after its excitation from its vacuum state 1e8p]eTher f rectheas ”g ap wy hav ir?\(/: ezi\is tg deh feia utiﬁs
We have calculated the effective nonlinearity of the exciteo[ - | nerefore the coflapse we have investigated here 1S S

mode due to its coupling to the other modes. This nonlinearmas.ked in_present experi_ments by finite temperature effects,
ity gives rise to a dispersion of the collective mode fre_but is predicted to reveal itself when experiments are pushed

guency within the linear superposition of number states. Th&° smaller temperatures.

collapse time obtained from this mechanism we fimdEq.
(34)] to scale as ACKNOWLEDGMENTS
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