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Stability of four-body systems in three and two dimensions: A theoretical
and quantum Monte Carlo study of biexciton molecules
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The stability of four-body systems (ma
1mb

1m1
2m2

2) in three ~3D! and two dimensions~2D! is discussed
using accurate numerical results obtained by means of diffusion Monte Carlo calculations. In 3D, we extend
our proof of the stability for the class of systems (ma

1mb
1m1

2m1
2), showing that they are stable against the

dissociation in (ma
1m1

2) and (mb
1m1

2) for any value of the mass ratioma
1/mb

1 . In 2D, using the ground-state
energy of the dipositronium, it is possible to prove that the stability of four-body systems follows the same
scenario. We also give upper and lower bounds to the binding energies for the class (M 1M 1m2m2) in 2D,
useful to discuss the relative stability of biexciton molecules in semiconductors.@S1050-2947~98!03206-5#

PACS number~s!: 36.10.2k, 02.70.Lq
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I. INTRODUCTION

The problem of the stability of few unit-charge system
with respect to dissociation into smaller fragments is of c
tral importance in modern atomic, cluster, particle, and so
state physics. Although many papers have been publishe
three- and four-body unit-charge systems in the ‘‘rea
three-dimensional~3D! world @1–12#, few calculations and
studies@13–15# have been carried out for the ‘‘unphysic
2D Flatland’’ world, where ‘‘Flatland’’ is the ideal two-
dimensional world described by Abbott@16#. However, there
are many physical situations where particles are almost
fectively moving in a space of lower dimensionality. Th
most striking examples are the negatively charged exc
@17#, the biexciton molecule in semiconductors@13#, and sys-
tems in high magnetic fields@18#. Due to computational dif-
ficulties, more work has been done on three particle syst
in three dimensions than on four-particle systems: if an
curate description is needed, i.e., if one is forced to use no
diabatic explicitly correlated wave functions, passing fro
three to four particles is not an easy task since matrix
ments are quite difficult to compute@13#. This problem be-
comes even worse when moving from three to two dim
sions, due to its mathematical complexity and to the hig
correlation energy, explaining the smaller number of pap
published on this subject.

In this paper we present numerical results concerning
stability of four-body Coulomb clusters in two and three d
mensions. These results enable us to extend our demon
tion of the stability of (ma

1mb
1m1

2m1
2) in three dimensions

@12#, and to show that the same stability scenario holds a
for the 2D case.

II. 3D CASE

In the following a numerical subscript denotes a ne
tively charged particle, while an alphabetical subscript
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notes a positively charged one. The nonrelativistic Ham
tonian operator, in a.u., for the general syste
(ma

1mb
1m1

2m2
2), has the form

H52
1

2S ¹1
2

m1
1

¹2
2

m2
1

¹a
2

ma
1

¹b
2

mb
D 1V~R!, ~1!

whereV(R) is the Coulomb interaction potential:

V~R!5
1

r ab
1

1

r 12
2

1

r 1a
2

1

r 1b
2

1

r 2a
2

1

r 2b
~2!

between the four-unit-charge particles, andR is a point in
configuration space.

In a previous paper@12#, we showed that the system
(M 1m1M 2m2) remain stable against the dissociation in t
two fragments (M 1M 2) and (m1m2), as long as

0.476<
M

m
<2.1. ~3!

Exploiting this result, we were able to show th
(M 1m1m2m2) is stable for any value of the mass rat
M /m, and that the more general class of syste
(ma

1mb
1m1

2m1
2) is stable for any value of the massesma and

mb as long asma@m1 andmb>m1. Here we show that this
result can be extended to include any physical value of
massesma ,mb>1.

For the general family (ma
1mb

1m1
2m2

2), it is possible to
define two new quantities@4#

2

D
5

1

ma
1

1

m1
,

~4!

2

d
5

1

mb
1

1

m2
,

where, without any loss of generality, we imposema>mb
andm1>m2. In his work, Richard@4# proved that if the ratio
D/d is within the range of stability of the system
(M 1m1M 2m2), the variational principle implies the stabi
4956 © 1998 The American Physical Society
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ity for the general four-body Coulomb cluster. Simple sc
ing arguments based on the variational principle allow one
prove that the stability of the systems withm151 implies the
stability of the more general systems having the same m
ratio between positive and negative particles: thus we res
our demonstration and calculation to the casem151.

If we posem15m251, and define the quantities

sa5
1

ma
,

~5!

sb5
1

mb
,

the ratioD/d can be written as

D

d
5

sb11

sa11
. ~6!

Let us defineL.1 and l 51/L, respectively, as the uppe
and lower limits of the range of stability for the system
(M 1m1M 2m2). From 1/L<D/d<L, one obtains the sys
tem of inequalities

sa<L~sb11!21,
~7!

sa>
sb2~L21!

L

that has to be solved to find the range of stability for t
system (ma

1mb
1m1

2m1
2). The inequalitysa<(L11)sb21

is satisfied for anyL>1, sincesa<sb . The remaining in-
equality is satisfied in the range 0<sb<L21, so that ifL
>2 these systems are stable for all the values ofma ,mb
>1. This completes the proof since we have already sho
@12# that L>2.1. The same result was obtained by Varg
Fleck, and Richard@19#, and numerical evidence was give
In other words, it can be stated that every time there are
particles of equal mass and charge in a four-body Coulom
system, the stability of the system itself is guaranteed. W
known examples of this class of clusters are the hydro
molecule and all its isotopic derivatives, and the four-bo
muon moleculesppmm, pdmm, ptmm, ddmm, dtmm, and
ttmm @20#.

III. 2D CASE

Similar results can also be obtained for the 2D ‘‘Fla
land’’ case of four-body Coulomb systems (ma

1mb
1m1

2m2
2),

where the same analytical form for the interaction poten
between charges is assumed instead of the solution in
dimensions of the Poisson equation. We begin defining
new quantitiessn51/mn for all particles of the cluster, re
calling that the ground-state energy for the systemma

1m1
2 in

two dimensions is22/(sa1s1).
In his work Rebane@21# showed that, in three dimension

E~sa ,sb ,s1 ,s2!<Eupper~sa ,sb ,s1 ,s2!

5
4E0

sa1sb1s11s2
, ~8!

whereE(sa ,sb ,s1 ,s2) is the exact ground-state energy
the general system, whileE0 is the ground-state energy o
-
o
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,
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the reference system withsa5sb5s15s251. This result
holds also in two dimensions, since it is obtained using o
the scaling properties of the Coulomb potential and of
Laplacian operator. The same is also true for the results
tained by Richard@4#, especially for the stability of the gen
eral system (ma

1mb
1m1

2m2
2) as a function of the two quanti

ties D andd defined in Eq.~4!.
Using Eq.~8!, it is possible to define a minimal range o

stability for the symmetric systems (M 1m1M 2m2), simply
imposing that the upper boundEupper(sa ,sb ,s1 ,s2) lies be-
low the energy of the two fragments (M 1M 2) and
(m1m2), i.e., Ethr

2D52M2m521/(sM)21/(sm). One ob-
tains the inequality

S sM

sm
D 2

12~11E0!
sM

sm
11<0, ~9!

dependent on the value of the ground-state energyE0 of the
reference system. To compute this value, variational and
fusion Monte Carlo~DMC! simulations @23# on the di-
positronium molecule in two dimensions were performe
The DMC total energy, extrapolated to a zero time step
E0522.1928(1) hartree. This energy is in optimal agre
ment with the value of22.192 858 hartree computed b
Varga using explicitly correlated Gaussians@22#. Using this
result and Eq.~9!, one obtains

0.543<
M

m
<1.843 ~10!

as the minimal range of stability for the (M 1m1M 2m2)
systems. To prove that the stability scenario present in th
dimensions holds also in two dimensions, one has to sh
that in two dimensions the upper limit is at least equal to
and this is easily done using the DMC approach. In fact,
the system (M 1m1M 2m2) with M52 andm51, we ob-
tained a ground-state energy of23.1379~14! hartree, i.e., a
binding energy of 0.1379~14! hartree. This is about 100
times the binding energy of the same system in three dim
sions, i.e., 0.00140~4! hartree @12#. The stability of
(M 1m1m2m2) in two dimensions follows as a conse
quence of the stability of (M 1m1M 2m2) for M52 and
m51 @12#.

The DMC energy of dipositronium in two dimensions ca
also be exploited to define lower and upper bounds to
binding energy for the class (M 1M 1m2m2) in two dimen-
sions, a model of biexciton molecules in semiconducto
Using Eq.~8! with sa5sb5sM ands15s25sm , together
with the dissociation energy in the two fragments (M 1m2)
Ethr524Mm/(M1m)524/(sM1sm), for the biexciton
binding energyEXX one obtains

EXX~M 1M 1m2m2!>22
21E0

sM1sm
, ~11!

or, equivalently, for the ratio of the biexciton binding ener
EXX with the exciton binding energyEX52/(sM1sm),

EXX

EX
>2~21E0!50.1928~1!. ~12!
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This lower bound toEXX /EX , derived only by means of the
scaling laws of the Coulomb potential and of the Laplaci
is rather crude. However, it improves the results for
lower bounds for 2D biexciton molecules plotted by Klei
man @13#, at least for the range 0.2<m/M<1.

The upper bound to the binding energy
(M 1M 1m2m2) systems can be defined exploiting the co
cavity of 21/E(m/M ) @4#. DefiningE(l)5E(m/M ) as the
ground-state energy for a specific system, one can write

21

E~m/M !
5

21

E~l!
>2

lmax2l

E~lmin!~lmax2lmin!

2
l2lmin

E~lmax!~lmax2lmin!
, ~13!

wherelmin<l<lmax. Using Eq.~13! together with the ex-
act EX , the upper bound to the ratioEXX /EX assumes the
analytical form

EXX /EX<222
11l

2 F2
lmax2l

E~lmin!~lmax2lmin!

2
l2lmin

E~lmax!~lmax2lmin!
G21

. ~14!

Furthermore, due to the concavity of21/E over the whole
range of mass ratios, Eq.~14! gives, for values ofl external
to the interval of definition, i.e.,l.lmax and l,lmin , a
lower bound to the same quantity. To use Eq.~14!, we need
two energy values, the energy of the dipositronium and
energy of another (M 1M 1m2m2) system: for example
H2

1Sg
1 in two dimensions, Bianchiet al. @15# computed an

energy of25.2703~8! hartree by DMC calculations in th
Born-Oppenheimer approximation. This value for the mi
mum of the potential well is equivalent to a binding ener
of 1.2703~8! hartree with respect to the two hydrogen ato
in two dimensions. The upper bound given by Eq.~14! using
dipositronium and H2

1Sg
1 as reference systems is shown

Fig. 1, together with the lower bound@Eq. ~12!#. If other
exact results are available for different mass ratios, it is p
sible to improve the upper bound to the binding energy s
ply splitting the 0<l<1 range in subintervals: inside eac
one of these subintervals a better upper bound toEXX can be
given using Eq.~14!. In Fig. 1 we also show an improve
upper bound computed splitting the interval in three pa
the DMC energies for the two model biexcitons a
22.9427~3! hartree forM52 andm51, and23.3428~10!
hartree forM53 andm51.

Recently, two independent papers have been publishe
the binding energy of quasi-2D biexcitons@24,25#. In those
works the experimental values of the ratioEXX /EX , that
v.
,
e

-

e

-

s

s-
-

:

on

should be independent of the material where the biexcit
are created, were compared with the theoretical results
Kleinman@13#. In both cases the theoretical results were t
low, and a model based on a fractional dimension appro
was proposed to explain the experimental results. Using
model Birkedalet al. @24# found EXX /EX50.228, indepen-
dent of the mass ratio between holes and particles. Since
model assumes a fixed relative geometry for the biexciton
also introduces some degree of subjectivity and might
scure its dynamical flexibility: this problem can be avoid
using models based only on knowledge about the interac
potential between the particles of the system, or compu
directly the energies by means of a numerical simulation

Comparing, for example, the lower bound given by E
~12! with the experimental results shown in Refs.@24# and
@25#, it appears that our result is in optimal agreement w
those data, although in our model part of the physics of
system is missing, due to its inability to reproduce the
creasing of the binding-energy ratio on going to smaller m
ratios. A better description can be easily obtained by me
of the upper bound@Eq. ~14!# using the computed values fo
the energy of biexciton molecules reported previously.

Before discussing which is the best way to deal with the
problems, one should note that the experimental result
Refs. @24# and @25# have quite large error bars due to th
scarce accuracy of the exciton binding energyEX . It is our
opinion that more accurate measurements of the excito
binding energy are needed before it becomes possible to
cern a meaningful trend in the binding-energy ratioEXX /EX ,
and that further theoretical results on these models
prompt the experimentalists to work in this direction.

FIG. 1. Upper and lower bounds of the ratioEXX /EX of
(M 1M 1m2m2) in two dimensions, plotted vs the mass ratiom/M .
This is based on Eqs.~13! and~14!, the DMC computed energy o
H2 in two dimensions, and the two model biexciton syste
(M 1m2)2 with m51 andM52 and 3.
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