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Stability of four-body systems in three and two dimensions: A theoretical
and quantum Monte Carlo study of biexciton molecules
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The stability of four-body systemst(l mim; m;) in three (3D) and two dimensiong2D) is discussed
using accurate numerical results obtained by means of diffusion Monte Carlo calculations. In 3D, we extend
our proof of the stability for the class of systems{m; m; m;), showing that they are stable against the
dissociation in iy m;) and (m; m;) for any value of the mass ratim_ /m; . In 2D, using the ground-state
energy of the dipositronium, it is possible to prove that the stability of four-body systems follows the same
scenario. We also give upper and lower bounds to the binding energies for theMlas*(m~m™) in 2D,
useful to discuss the relative stability of biexciton molecules in semicondu¢&it850-294{08)03206-5

PACS numbeps): 36.10—-k, 02.70.Lq

I. INTRODUCTION notes a positively charged one. The nonrelativistic Hamil-

- ] tonian operator, in a.u., for the general system
The problem of the stability of few unit-charge SyStemS(m;m;mIm;), has the form

with respect to dissociation into smaller fragments is of cen-

tral importance in modern atomic, cluster, particle, and solid- 1/VZ Vi Vv2 V3
state physics. Although many papers have been published on H=— 2l me + o +m— + o +V(R), (0]
three- and four-body unit-charge systems in the “real” 1 2 a b

three-dimensional3D) world [1-12], few calculations and whereV(R) is the Coulomb interaction potential:
studies[13—15 have been carried out for the “unphysical

2D Flatland” world, where “Flatland” is the ideal two- 1 1 1 1 1 1
dimensional world described by Abb¢tt6]. However, there VR)=—+————————— (2
are many physical situations where particles are almost ef-
fectively moving in a space of lower dimensionality. The between the four-unit-charge particles, aRds a point in
most striking examples are the negatively charged excitogonfiguration space.

[17], the biexciton molecule in semiconduct¢is3], and sys- In a previous papefl12], we showed that the systems
tems in high magnetic fields.8]. Due to computational dif- (M *m*M~m~) remain stable against the dissociation in the
ficulties, more work has been done on three particle systemg,q fragments 1 *M ™) and (m*m~), as long as

in three dimensions than on four-particle systems: if an ac-

curate description is needed, i.e., if one is forced to use nona-

diabatic explicitly correlated wave functions, passing from 0.476<--<2.1. ©)
three to four particles is not an easy task since matrix ele-
ments are quite difficult to compufd.3]. This problem be- Exploiting this result, we were able to show that

comes even worse when moving from three to two dimen{M*m*m m~) is stable for any value of the mass ratio
sions, due to its mathematical complexity and to the highem/m, and that the more general class of systems
correlation energy, explaining the smaller number of Papergm.; m; m; m;) is stable for any value of the masses and

published on this subject. m;, as long asn,>m; andm,=m;,. Here we show that this

In this paper we present numerical results conceming thg,, i+ can be extended to include any physical value of the
stability of four-body Coulomb clusters in two and three di- massesn. m.= 1
ar!'p= +-

mensions. These results enable us to extend our demonstra- S .

tion of the stability of m;mgm;m;) in three dimensions I_:or the general fa’_“."y’f‘a My My mMy), it is possible to
[12], and to show that the same stability scenario holds alsgeflne two new quantitiet]
for the 2D case. 2 1

1

AT m my

Il. 3D CASE a 1 (4)
In the following a numerical subscript denotes a nega- 2 1 1

tively charged particle, while an alphabetical subscript de- 5 mef m_2

where, without any loss of generality, we imposg=m,

*Electronic address: dario@rs0.csrsrc.mi.cnr.it andm;=m,. In his work, Richard4] proved that if the ratio
TElectronic address: max@rs6.csrsrc.mi.cnr.it A/S6 is within the range of stability of the systems
*Electronic address: moro@rs0.csrsrc.mi.cnr.it (M*m*M~m™), the variational principle implies the stabil-
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ity for the general four-body Coulomb cluster. Simple scal-the reference system witlt,= o,= oy=0o,=1. This result

ing arguments based on the variational principle allow one tdolds also in two dimensions, since it is obtained using only
prove that the stability of the systems with =1 implies the  the scaling properties of the Coulomb potential and of the
stability of the more general systems having the same madsaplacian operator. The same is also true for the results ob-
ratio between positive and negative particles: thus we restridtined by Richard4], especially for the stability of the gen-

our demonstration and calculation to the case=1. eral systemifi, m; m; m,) as a function of the two quanti-
If we posem;=m,=1, and define the quantities ties A and ¢ defined in Eq.(4).
1 Using Eq.(8), it is possible to define a minimal range of
Ta= stability for the symmetric system&A*m*M ~m™), simply
a (5) imposing that the upper bourtt],ppe( 0,01 ,01,07) lies be-
:i low the energy of the two fragmentsM(*M~) and
7o m,’ (m*m7), i.e., E2=—M—m= — /(o) — /(o). One ob-

. ) tains the inequality
the ratioA/é can be written as
2

g
A oyt +2(1+E°)G—M+1s0, (9)
- m

S5 oatl’

5
(6) O

dependent on the value of the ground-state en&yf the
reference system. To compute this value, variational and dif-
fusion Monte Carlo(DMC) simulations[23] on the di-
positronium molecule in two dimensions were performed.
The DMC total energy, extrapolated to a zero time step, is

Let us defineL>1 andl=1/L, respectively, as the upper
and lower limits of the range of stability for the systems
(M*m*M™m™). From 1L<A/§<L, one obtains the sys-

tem of inequalities

oasL(opt+1)—-1, 7) E®=—2.1928(1) hartree. This energy is in optimal agree-
op—(L—1) ment with the value of—2.192 858 hartree computed by
0= - L Varga using explicitly correlated Gaussidi22]. Using this

result and Eq(9), one obtains
that has to be solved to find the range of stability for the
system _(ng my m; my). The inequalityo,<(L+1)op—1 0.543< M<1.843 (10)
is satisfied for anyL =1, sinceo,<oy,. The remaining in- m
equality is satisfied in the rangesQr,<L —1, so that ifL
=2 these systems are stable for all the valuesngfm,  @s the minimal range of stability for theM("m*M™"m~)
=1. This completes the proof since we have already showgystems. To prove that the stability scenario present in three
[12] that L=2.1. The same result was obtained by Vargadimensions holds also in two dimensions, one has to show
Fleck, and Richard19], and numerical evidence was given. that in two dimensions the upper limit is at least equal to 2,
In other words, it can be stated that every time there are tw@nd this is easily done using the DMC approach. In fact, for
particles of equal mass and charge in a four-body Coulombithe system 1"m*M~m~) with M=2 andm=1, we ob-
system, the stability of the system itself is guaranteed. Welliained a ground-state energy f3.137914) hartree, i.e., a
known examples of this class of clusters are the hydrogeRinding energy of 0.13794) hartree. This is about 100
molecule and all its isotopic derivatives, and the four-bodytimes the binding energy of the same system in three dimen-
muon moleculepu s, pduw, ptuw, dduw, dtuw, and — Sions, ie., 0.0014@) hartree [12]. The stability of

ttuu [20]. (M*m™m~™m™) in two dimensions follows as a conse-
guence of the stability of M*m*M"m~) for M=2 and
lll. 2D CASE m=1[12].

The DMC energy of dipositronium in two dimensions can

Similar results can also be obtained for the 2D “Flat- also be exploited to define lower and upper bounds to the
land” case of four-body Coulomb systemsi{m, m; m,),  binding energy for the class "M *m~m™) in two dimen-
where the same analytical form for the interaction potentiakions, a model of biexciton molecules in semiconductors.
between charges is assumed instead of the solution in twdsing Eq.(8) with o,= o,= oy ando 1= 0,= o, together
dimensions of the Poisson equation. We begin defining thevith the dissociation energy in the two fragmenkg {m™)
new quantitiess,=1/m, for all particles of the cluster, re- Ey,=—4Mm/(M+m)=—4/(o\y+ o), for the biexciton
calling that the ground-state energy for the systagm; in binding energyEyyx one obtains
two dimensions is-2/(o 3+ 04).

In his work Reban§21] showed that, in three dimensions, o 2+E°
ExxM™M™m m™)=— Zm, (17
E(O‘a,O'b,0’1,0'2)$Euppe,(0'a,O'b,0'1,0'2) M "

4E° or, equivalently, for the ratio of the biexciton binding energy
=m, (8) Exx with the exciton binding energgx=2/(oy+ o),
a
whereE(o,,0y,,01,05,) is the exact ground-state energy of Exx >—(2+E%=0.19281). (12)
the general system, whilE® is the ground-state energy of Ex
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This lower bound tEyy/Ey, derived only by means of the e v oo —
scaling laws of the Coulomb potential and of the Laplacian, 08 Impioved boper bound - 1
is rather crude. However, it improves the results for the )
lower bounds for 2D biexciton molecules plotted by Klein-
man[13], at least for the range 02n/M=<1. T
The upper bound to the binding energy of
(M*M*m~m™) systems can be defined exploiting the con-
cavity of —1/E(m/M) [4]. DefiningE(\)=E(m/M) as the
ground-state energy for a specific system, one can write
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0.4
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Binding energy ratio
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i . FIG. 1. Upper and lower bounds of the ratlyy/Eyx of
where min<A<max. Using Eq.(13) together with the ex-  (\1+M+m~m=) in two dimensions, plotted vs the mass ratitM.
act Ex, the upper bound to the ratiyx/Ex assumes the Thjs is based on Eq¢13) and (14), the DMC computed energy of
analytical form H, in two dimensions, and the two model biexciton systems
(M*m™), with m=1 andM=2 and 3.

1+)\[ Nmax— A
Eyx/Ex<—2— - . . o
2 [ E(N min) (A max— N min) should be independent of the material where the biexcitons
1 are created, were compared with the theoretical results of
A~ Nmin (14) Kleinman[13]. In both cases the theoretical results were too

EM\ma) MNmax— Amin) | low, and a model based on a fractional dimension approach
_ was proposed to explain the experimental results. Using this
Furthermore, due.to the congawty efl/E over the whole  odel Birkedalet al. [24] found Eyy/Ey=0.228, indepen-
range of mass ratios, E¢L4) gives, for values ok external  gent of the mass ratio between holes and particles. Since this
to the interval of definition, i.e.A>Nmax @ndA<Amin, @  model assumes a fixed relative geometry for the biexciton, it
lower bound to the same quantity. To use Eifl), we need 3150 introduces some degree of subjectivity and might ob-
two energy values, the energy of the dipositronium and th&cyre its dynamical flexibility: this problem can be avoided
energy of another \"M*™m m~) system: for example ysing models based only on knowledge about the interaction
H, 'S4 intwo dimensions, Biancheét al.[15] computed an  potential between the particles of the system, or computing
energy of —5.27038) hartree by DMC calculations in the directly the energies by means of a numerical simulation.
Born-Oppenheimer approximation. This value for the mini-  Comparing, for example, the lower bound given by Eq.
mum of the potential well is equivalent to a binding energy(12) with the experimental results shown in Refg4] and
of 1.27038) hartree with respect to the two hydrogen atoms[25], it appears that our result is in optimal agreement with
in two dimensions. The upper bound given by Etf) using  those data, although in our model part of the physics of the
dipositronium and H 12; as reference systems is shown in system is missing, due to its inability to reproduce the in-
Fig. 1, together with the lower bouniEq. (12)]. If other  creasing of the binding-energy ratio on going to smaller mass
exact results are available for different mass ratios, it is posratios. A better description can be easily obtained by means
sible to improve the upper bound to the binding energy simof the upper boundlEq. (14)] using the computed values for
ply splitting the <=\ =<1 range in subintervals: inside each the energy of biexciton molecules reported previously.
one of these subintervals a better upper boun,tp can be Before discussing which is the best way to deal with these
given using Eq.(14). In Fig. 1 we also show an improved problems, one should note that the experimental results in
upper bound computed splitting the interval in three partsRefs.[24] and[25] have quite large error bars due to the
the DMC energies for the two model biexcitons arescarce accuracy of the exciton binding enekgy. It is our
—2.94273) hartree forM=2 andm=1, and —3.342810) opinion that more accurate measurements of the excitonic
hartree forM =3 andm=1. binding energy are needed before it becomes possible to dis-
Recently, two independent papers have been published arern a meaningful trend in the binding-energy ratig /Ey,
the binding energy of quasi-2D biexcitof®4,25. In those and that further theoretical results on these models will
works the experimental values of the rai/Eyx, that prompt the experimentalists to work in this direction.
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