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Local-field effects and configurational disorder in nonlinear optical systems with coherence

B. E. Vugmeister, A. Bulatov, and H. Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
~Received 24 February 1997; revised manuscript received 10 February 1998!

We argue that in nonlinear optical systems with randomly distributed atoms one should go beyond the
Clausius-Mossoti limit in order to take into account the effect of local-field fluctuations induced byconfigu-
rational disorder in atom positions. This effect is analyzed by means of a random local-mean-field approach
with the neglect of the correlations between dipole moments of different atoms. The formalism is applied to
three-levelL-type systems with quantum coherence possessing an absorptionless index of refraction and lasing
without inversion. We show that the effect of configurational fluctuations results in the significant suppression
of the atom susceptibility compared to the predictions based on the Clausious-Mossoti equation.
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PACS number~s!: 42.65.An, 42.50.Md
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I. INTRODUCTION

It is well known that in a system of interacting atoms t
local field acting on each atom is different from the mac
scopic electric field described by Maxwell’s equation@1–3#.
In its simplest form the local field caused by the near dipo
dipole interactions between atoms is given by the Lore
formula @1#

EL~ t !5E~ t !1
4p

3
P~ t !, ~1!

with E(t) being the time-dependent macroscopic elec
field and P(t) the macroscopic polarization of the syste
which is determined self-consistently from

P̃~v!5nx~v!ẼL~v!, ~2!

where the variablesP̃(v), Ẽ(v), andẼL(v) are the Fourier
components of their time dependent analogs,n is the atom
volume density, andx~v! is a frequency dependent singl
atom nonlinear polarizability. Equations~1! and~2! result in
the Clausius-Mossoti~CM! equation for the macroscopi
susceptibilityxDD related to the dielectric permittivity ase
5114pxDD

xDD5
nx

12
4p

3
nx

. ~3!

The local-field corrections in the form of Eq.~1!, and hence
Eq. ~2!, are valid for a static@1–3# as well as a time-
dependent@4–6# field E(t). In particular, in gases Eq.~1!
corresponds to the account of hard-core interactions@4,5#,
which is equivalent to excluding the polarization-induc
electric field inside the Lorentz sphere@2,6#.

We will be interested here in nonlinear optical syste
with quantum coherence, where the CM relation has b
employed recently to treat a number of phenomena suc
intrinsic optical bistability@7#, linear and nonlinear spectra
shifts @8,9#, lasing without inversion and an absorptionle
index of refraction@10,11#, and electromagnetically induce
571050-2947/98/57~6!/4913~6!/$15.00
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transparency@12#. In particular, we will concentrate below
on widely discussed@11–17# nonequilibrium three-levelL
systems~with their size less than the resonant waveleng!
possessing quantum coherence between the lower two le
It has been suggested@10,11# to use the atom concentratio
as a control parameter and shown through the employmen
the CM relation that an enhancement of the two orders
magnitude would be achieved in the refractive index co
pared to the noninteracting atom limit. A possibility of suc
a remarkable increase of the system susceptibility arises f
the unusual behavior of the real and imaginary parts of
susceptibility, so that inL systems with coherence a situ
tion is possible withx9→0 just in the vicinity of the fre-
quencyvm wherex8 reaches its maximum. It follows the
from Eq. ~3! that a dramatic increase ofxDD is expected by
properly adjusting the atom density such thatx8'3.

In this paper we go beyond the CM limit. Note first th
Eqs.~1! and~2! and hence the CM relation~3! correspond to
the account of dipole-dipole interactions between atoms
the mean-field approximation, an issue that has received
tensive study~e.g., @18–21#!. It is established that the CM
relation properly reproduces the effect of the dipole inter
tion in the linear regime where the polarizability of ea
atom does not depend on the value of the local field. T
situation is more complicated if the atom polarizability d
pends on the value of the local field and therefore is sensi
to the local-field fluctuations. As shown earlier@22,23# from
the calculations of the distribution function of the local fie
~based on the Margenau statistical theory@24#!, local-field
fluctuations can be very large in random systems w
dipole-dipole interactions due to effect of configuration
disorder. For example, they eliminate the equilibrium pha
transition, predicted by the mean-field theory, for an e
semble of randomly distributed atoms interacting with ele
tromagnetic field~see the Appendix!. It is apparent that the
account of the local-field fluctuations should result in t
modification of Eq.~3! for the frequency-dependent susce
tibility of interacting atoms.

We will show in the following sections that the propose
formalism exploiting self-consistent calculations of the d
tribution function of the local field experienced by each ato
from its neighbors allows one to give a quantitative pred
4913 © 1998 The American Physical Society
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tion for the behavior of the frequency-dependent suscept
ity in systems of randomly distributed interacting atoms. T
values of the susceptibility obtained are well below its valu
given by the CM equation. The proposed formalism is
most appropriate to treat an ensemble of atoms rando
frozen in crystals or amorphous hosts that~under the condi-
tion of vanishingxe9 at a particular frequency! undergoes a
phase transition to nonequilibrium optical spin-glass st
@25#. However, the estimates obtained for the susceptib
should be valid for gases as well~where a spin-glass stat
cannot be realized due to the effect of atom collisions!.

II. MODEL

As a model possessing a quantum coherence we con
a three-levelL system@17# shown in Fig. 1. In this system
the coherence is maintained by a strong microwave field
couples the upper level of the probe field transiti
ua&→ub& to an auxiliary leveluc&. In Fig. 1g andgc are the
decay rates andr c is the pump rate. An indirect pump i
necessary to maintain a nonvanishing population of the
cited levels.Vm is the Rabi frequency of the microwav
field.

Kinetic equations for the density matrix elements@17# in
the rotating reference frame with the decay and pump r
indicated in Fig. 1 reduce to

ṙaa52graa2 iV~rba2rab!2 iVm~rca2rac!, ~4!

ṙbb5graa2r crbb1gcrcc1 iV~rba2rab!, ~5!

ṙcc52gcrcc1r crbb2gcrcc1 iVm~rca2rac!, ~6!

ṙac52gacrac1 iVm~raa2rcc!2 iVrbc , ~7!

ṙab52~ iD1gab!rab1 iV~raa2rbb!2 iVmrcb , ~8!

ṙcb52~ iD1gcb!rcb1 iVrca2 iVmrab . ~9!

FIG. 1. Level scheme for the atomic system discussed.
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Here V5mEL /\ is the Rabi frequency associated with th
field EL , m is the dipole moment matrix element betwe
levels ua& and ub&, D5vab2v, and we assume thatEL(t)
52ELcos(vt)

Using the conventional definition of the susceptibili
x52mrab /EL @17#, and Eqs.~8!, and~9!, it is convenient to
presentx in the form

x~D!5
m2

\

i ~raa2rbb!~ iD1gbc!1Vmrca

Vm
2 1~ iD1gab!~ iD1gbc!

. ~10!

The componentsrca of the density matrix in Eq.~10! repre-
sents the effect of the quantum coherence~induced by a mi-
crowave field! on the susceptibility of the system with re
spect to the local fieldEL . For a weakEL field ~linear
regime! one can neglect the dependence ofraa , rbb , and
rca on V. The frequency dependence of the susceptibility
this linear regime, obtained by the numerical solution of E
~4!–~7! and~10!, is shown in Fig. 2, where the values of th
parametersgc50.1g and vm5r c5g are chosen according
to Ref.@17#. As already pointed out by Scully@15#, a remark-
able feature of the susceptibility in the system with coh
ence is the possibility ofx950 at a frequency near the max
mum of x8. One can see from Fig. 2 that with the sets
parameters chosenx950 at D'20.92g.

Note also that Eq.~10! can be easily generalized to th
case of the linear response of the system to the additio
weak fieldE1 ~with frequencyv1 not necessarily equal tov!
in the presence of the strong fieldEL controlling the density
matrix componentsraa , rbb , andrca . It is apparent that in
this case the susceptibilityx(D,D1 ,V1) describing the atom
response to the weak fieldE1 assumes the form

FIG. 2. Real and imaginary parts of the susceptibility for
three-levelL system given by Eq.~10! for gab5gac50.8g. gbc

50.08g.
x~D1 ;D,V!5
m2

\

i @raa~D,V!2rbb~D,V!#~ iD11gbc!1Vmrca~D,V!

Vm
2 1~ iD11gab!~ iD11gbc!

. ~11!
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57 4915LOCAL-FIELD EFFECTS AND CONFIGURATIONAL . . .
In the following sections Eqs.~10! and~11! will be used for
the analysis of the effect of configurational fluctuations
the system macroscopic susceptibility.

III. LOCAL-MEAN-FIELD FORMALISM

The CM relation~3!, based on Eq.~1! for the local field,
does not take into account the effect of fluctuations of at
dipole moments. These fluctuations originate from the si
changeable dipole-dipole interaction and random spa
atom positions. A physically transparent formalism to tre
dipole moment configurational fluctuations, caused by
random atom positions, is a local-mean-field description
starting point of the local-mean-field formalism is the a
sumption that each atom is characterized by the local dip
moment

mi5^m̂ i&ELi
, ~12!

where^m̂ i&ELi
denotes the quantum-statistical average of

i th atom dipole moment operatorm̂ i in the local self-
consistent fieldELi , given by

ELi~ t !5(
j 51

N

Ji j mj~ t !1Eex~ t !, ~13!

whereEex(t) is the applied external field. The functionJi j
determines the dipole-dipole interaction between atomsi and
j . In a retardationless approximation, which is valid if t
size of the system is less than the resonance wavelength
have

Ji j [J~r i j !5
3~ni j !x

221

r i j
3

. ~14!

The effect of retardation on the form of the dipolar field h
been discussed, e.g., in Refs.@26,4,5,27,7#. In Eqs.~13! and
~14! we assumed, for simplicity, that all dipole moments a
oriented along the axisx; ni j 5r i j /r i j , wherer i j 5r i2r j is
the radius-vector separating atomsi and j . ELi in Eq. ~13! is
the x component of the local electric field.

The mean-field approximation~1! corresponds to the re
placement ofELi in Eq. ~13! by

EL5Eex1(
j

Ji j mj5Eex1PE dr J~r !, ~15!

where the overbar denotes the configurational average

@¯#5
1

V0
NE dr1¯E drN@¯# ~16!

(V0 is the sample volume!. The volume integral in Eq.~15!
can be replaced by two surface integrals over the outer
face of the sample giving rise to the depolarizing fieldEdep,
and the inner spherical Lorentz surface giving rise to
Lorentz local field (4p/3)P. ThusE5Eex1Edep and there-
fore Eqs.~15! and ~1! are identical.

It is convenient to rewrite Eq.~13! in the form
-
al
t
e

-
le

e

we

s

r-

e

EiL~ t !5E~ t !1
4p

3
P~ t !1ei~ t !, ~17!

ei~ t !5(
j

J̃i j mj~ t !, J̃i j 5Ji j 2
1

V0
E dr J~r !. ~18!

Equations ~17! and ~18! imply that ( imi /V0 is a self-
averaging variable equal to the macroscopic polarizationP.

The first momentJ̃i j ōf J̃i j given by Eq.~18! satisfiesJ̃i j 50

and the higher momentsJ̃i j
N̄5Ji j

N, i.e., in practice, one can us

J̃i j in the form of Eq.~14! and perform the integration in
spherical reference frame providingJ̄i j 50. Note that the
local-mean-field approximation describing the system of
teracting atoms in terms of local dipole moments, with t
neglect of the quantum correlation effects, in some sens
similar to the well-known Hartree approximation.

Let us consider first the case of the absence of the exte
field and hence the absence of the macroscopic polariza
P. The local polarization may still be nonzero due to t
local-field fluctuations that have to be evaluated se
consistently. The key point in the consideration below is
special form of the atom susceptibility providedx950 at a
particular frequency. In conventional systems withx9Þ0
~e.g., two-level systems! the local polarization cannot exist i
a steady state in the absence of the external field due to
effect of dissipation. In contrast, in systems withx950 at
v5vm we have

m̃i~vm!5x8~vm!ẽi~vm!. ~19!

Here m̃i and ẽi are the Fourier components of the variabl
mi andei , respectively. We will show that Eqs.~19! and~18!
may have a nontrivial solution for the average local polari
tion characterized by a dimensionless parameter

M5
1

m
um̃i~vm!u. ~20!

Since in the absence of the external field macroscopic po
ization P50, the existenceMÞ0 implies the noncoheren
steady state oscillations of the atom dipole moments at
frequencyvm with random amplitudes. Thus the parame
M can be considered as the order parameter of the none
librium optical spin-glass state@25#.

In order to find the values ofM note that the vanishing o
x9 results in the zero values of the imaginary part of t
dipole moment amplitudesm̃i9(vm) and hence, according to

Eq. ~13!, the random local fieldẽi in Eq. ~19! is a real vari-
able. We evaluated the distribution function of the local fie

f ~ ẽ!5d~ ẽ2ẽi ! ~21!

with the use of the self-consistent method@22,23#, which is
based on the Margenau@24# statistical theory. The function
f (e) possesses the Lorentzian form, which is characteri
of the dipole local-field distribution in random systems

f ~ ẽ!5
1

p

d

d21ẽ2
, d55.1nmM . ~22!
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One can see that the functionf (ẽ) depends parametricall
on the parameterM , which can be obtained self-consistent
from

M5E dẽux8~vm ,ẽ!ẽu f ~ ẽ,M !. ~23!

The value ofM depends on the dimensionless parameter

C5
m2n

\g
~24!

characterizing the strength of the dipole-dipole interacti
The values ofM (C) calculated from Eq.~23! are presented
in Fig. 3.

Note that, as follows from Fig. 3, random local-mea
field theory predicts that the parameterM has finite ~al-
though very small! values even at very low dipole conce
trations. This apparent defect of the theory originates fr
the neglect of correlation effects between closely separ
atoms. As shown in our earlier work@28,25#, closely sepa-
rated atoms in random systems with a dipole-dipole inter
tion contribute only to localized states of the dipole-dipo
interaction matrix and therefore do not affect the true co
erative phenomena. An estimate of the critical value of
parameterCcr below which an optical spin-glass state do
not exist ~i.e., M50) can be found from the criterion
5ncrx8'1 @25# obtained with the use of computer simul
tions applied to the linearized local mean field equations~18!
and ~19!. Taking into account the numerical valu
x8'0.17 atD520.92g ~see Fig. 2!, it gives

Ccr'1.1. ~25!

It is interesting to note that the value ofCcr obtained is close
to the inflection point of the curvem(C).

Although the consideration above implies that optica
active atoms are frozen in random positions in crystals
amorphous hosts, the obtained widthd of the local-field dis-
tribution function is a characteristic of the local-field fluctu
tions in gases too and should be taken into account in
calculations of the macroscopic susceptibility.

FIG. 3. Dependence ofM on the parameterC ~D520.92g!.
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IV. MACROSCOPIC SUSCEPTIBILITY

The next step is to calculate the linear response of
system of interacting atoms in the external~macroscopic!
field in the presence of local-field fluctuations. Since we
sume that the external field is small@as well as the field-
induced macroscopic polarizationP(t)], one may neglect the
change of the distribution functionf (ẽ) by the external field.
In this case Eq.~17! contains two independent contribution
~a! a weak macroscopic field and a Lorentz field both os
lating at frequencyv of the external field and~b! a strong
field ei(t) possessing a random amplitude and oscillating
frequencyvm . A susceptibility describing the atom’s re
sponse to the weak field in the presence of the strong o
lating field e(t) is given by Eq. ~11! with D5Dm[(v
2vab) andV5V ẽ[mẽ/\g. In order to obtain the effective
single-atom susceptibilityk describing the atom’s respons
to the weak field one should average Eq.~11! over the ran-
dom amplitudesẽ,

k~D1!5E dẽ x~D1 ;Dm ,V ẽ! f ~ ẽ!. ~26!

It follows then from Eq.~13! that in terms of the suscepti
bility k the macroscopic polarizationP̃ can be written as

P̃~D1!5nk~D1!S Ẽ1
4p

3
P̃~D1! D , ~27!

which results in the replacement of the susceptibilityx by k
in Eq. ~3!, i.e.,

xDD~D1!5
nk~D1!

12
4p

3
nk~D1!

. ~28!

In Fig. 4 we present the values of the real part of t
macroscopic susceptibilityxDD8 obtained for C51.4 and
D520.92g. The other parameters were chosen asgab'gac
'0.8 andgbc'0.08. For these values of the parameters
CM equation predicts more than two orders of magnitu
enhancement of thexDD8 compared to the susceptibility o

FIG. 4. SusceptibilityxDD8 calculated using Eq.~27! with
C51.4.
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57 4917LOCAL-FIELD EFFECTS AND CONFIGURATIONAL . . .
noninteracting atoms. At the same time, taking into acco
the local-field fluctuations, an increase in susceptibility
only five times is expected as follows from Fig. 4. Thus t
effect of local-field fluctuations leads to a significant su
pression of the susceptibility of interacting atoms in nonl
ear optical systems with coherence.

V. CONCLUSION

We discussed the limitations of the applicability of th
Clausius-Mossoti equation for the evaluation of the mac
scopic susceptibility in nonlinear optical systems with co
figurational disorder in atom positions. It was shown that
corrections to the CM equation are especially important
nonlinear systems with quantum coherence with the van
ing imaginary part of the atom susceptibility for a particu
frequency of the applied field. Under these conditions
CM equation predicts a dramatic increase of the real par
the macroscopic susceptibility of the ensemble of interac
atoms. We have shown that the latter effect is suppres
significantly due to the role of the configurational fluctu
tions of local fields, which should be taken into consid
ation.

APPENDIX: ABSENCE OF FERROELECTRIC PHASE
TRANSITION FOR AN EQUILIBRIUM ENSEMBLE

OF TWO-LEVEL ATOMS INTERACTING WITH
AN ELECTROMAGNETIC FIELD

In this appendix we will apply the local-mean-field fo
malism for the analysis of the cooperative behavior of
ensemble of randomly positioned two-level atoms interact
with an electromagnetic field. It has been proposed@29–32#
that such systems can undergo a second-order ferroele
phase transition with the appearance of spontaneous a
polarization. Earlier papers@29–31# related to this problem
have used a quantum formalism. In analogy to the Dic
model for superradiance, it was assumed that the main e
of atom-atom interactions comes from the coupling of ea
atom to the single mode of the electromagnetic field, co
e

ev

Re

s

t
f

-
-

-
-
e
n
h-

e
of
g
ed

-

n
g

tric
om

e
ct
h
-

sponding to the wave vectork50. However, the same con
clusion can be reached@32# within the semiclassical formal
ism based on the CM equation~mean-field theory! and the
concept of the Lorentz local field since the transition te
peratureTc corresponds to the temperature of the diverge
of xDD . A static susceptibility of a two-level atom is give
by

x~T,EL!5
m2

A~\v0!21~mEL!2
tanh

A~\v0!21~mEL!2

kBT
,

~A1!

where 2\v0 is the energy separation between the upper
lower levels. Combining Eqs.~3! and ~A1!, we obtain the
equation for the phase transition temperature in mean-fi
approximation

4p

3
nx~Tc ,EL50!51. ~A2!

In order to take into account the effect of configuration
fluctuations of the local-field one should replace in Eq.~A2!
~accordingly to the formalism discussed in the text! the sus-
ceptibility x by the effective susceptibility

k~T!5E dẽ x~T,ẽ! f ~ ẽ!, ~A3!

where f (ẽ) is given by Eq.~22!. A solution of the self-
consistent equation~23! with x given by Eq.~A1! determines
the values of the widthd of the functionf (ẽ). These values
have then been used for the calculation of the effective s
ceptibility k(T) in order to establish the possibility of th
appearance of ferroelectric ordering. We found that Eq.~A2!,
with x replaced byk, does not have solutions at any tem
perature and concentration, implying the absence of fe
electric ordering in the system of randomly distributed tw
level atoms being in thermal equilibrium with a
electromagnetic field.
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