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Local-field effects and configurational disorder in nonlinear optical systems with coherence
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We argue that in nonlinear optical systems with randomly distributed atoms one should go beyond the
Clausius-Mossoti limit in order to take into account the effect of local-field fluctuations inducedrifigu-
rational disorder in atom positions. This effect is analyzed by means of a random local-mean-field approach
with the neglect of the correlations between dipole moments of different atoms. The formalism is applied to
three-levelA-type systems with quantum coherence possessing an absorptionless index of refraction and lasing
without inversion. We show that the effect of configurational fluctuations results in the significant suppression
of the atom susceptibility compared to the predictions based on the Clausious-Mossoti equation.
[S1050-294{@8)08106-2

PACS numbd(s): 42.65.An, 42.50.Md

[. INTRODUCTION transparency12]. In particular, we will concentrate below
on widely discussed11-17 nonequilibrium three-level\

It is well known that in a system of interacting atoms the systems(with their size less than the resonant wavelehgth
local field acting on each atom is different from the macro-possessing quantum coherence between the lower two levels.
scopic electric field described by Maxwell’s equatids-3]. It has been suggestéd0,11] to use the atom concentration
In its simplest form the local field caused by the near dipole-as a control parameter and shown through the employment of
dipole interactions between atoms is given by the Lorentzhe CM relation that an enhancement of the two orders of
formula[1] magnitude would be achieved in the refractive index com-

pared to the noninteracting atom limit. A possibility of such
a @ remarkable increase of the system susceptibility arises from

the unusual behavior of the real and imaginary parts of the

susceptibility, so that im\ systems with coherence a situa-
with E(t) being the time-dependent macroscopic electricion is possible withy”—0 just in the vicinity of the fre-
field and P(t) the macroscopic polarization of the system, quencyw,, wherey’ reaches its maximum. It follows then

4
EL(D=E()+ 5 P(D),

which is determined self-consistently from from Eq. (3) that a dramatic increase qf,p is expected by
- ~ properly adjusting the atom density such tyat=3.
P(w)=nx(w)E (o), 2 In this paper we go beyond the CM limit. Note first that

_ - - - _ Egs.(1) and(2) and hence the CM relatiaf3) correspond to
where the variableB(w), E(w), andE, (w) are the Fourier  the account of dipole-dipole interactions between atoms in
components of their time dependent analayss the atom  the mean-field approximation, an issue that has received in-
volume density, and((w) is a frequency dependent single- tensive study(e.g.,[18—21)). It is established that the CM
atom nonlinear polarizability. Equatiori$) and(2) resultin  relation properly reproduces the effect of the dipole interac-
the Clausius-Mossot{CM) equation for the macroscopic tion in the linear regime where the polarizability of each
susceptibility xpp related to the dielectric permittivity & atom does not depend on the value of the local field. The

=1+4mxpp situation is more complicated if the atom polarizability de-
pends on the value of the local field and therefore is sensitive
XbD= nx _ 3) to the local-field fluctuations. As shown earl{@2,23 from
4 the calculations of the distribution function of the local field
1- 3 X (based on the Margenau statistical thef?g]), local-field

fluctuations can be very large in random systems with
The local-field corrections in the form of E(l), and hence dipole-dipole interactions due to effect of configurational
Eqg. (2), are valid for a statid1-3] as well as a time- disorder. For example, they eliminate the equilibrium phase
dependenf4—6] field E(t). In particular, in gases Eql) transition, predicted by the mean-field theory, for an en-
corresponds to the account of hard-core interactiehs], semble of randomly distributed atoms interacting with elec-
which is equivalent to excluding the polarization-inducedtromagnetic field(see the Appendjx It is apparent that the
electric field inside the Lorentz spher2,6]. account of the local-field fluctuations should result in the
We will be interested here in nonlinear optical systemsmodification of Eq.(3) for the frequency-dependent suscep-
with quantum coherence, where the CM relation has beetibility of interacting atoms.
employed recently to treat a number of phenomena such as We will show in the following sections that the proposed
intrinsic optical bistability[7], linear and nonlinear spectral formalism exploiting self-consistent calculations of the dis-
shifts [8,9], lasing without inversion and an absorptionlesstribution function of the local field experienced by each atom
index of refraction/10,11], and electromagnetically induced from its neighbors allows one to give a quantitative predic-
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FIG. 1. Level scheme for the atomic system discussed.
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tion for the behavior of the frequency-dependent susceptibil-
ity in systems of randomly distributed interacting atoms. The -3 -1 A 1 3
values of the susceptibility obtained are well below its values ~
given by the CM equation. The proposed formalism is the

most appropriate to treat an ensemble of atoms randomly FIG. 2. Real and imaginary parts of the susceptibility for a
frozen in crystals or amorphous hosts thatder the condi- three-levelA system given by Eq(10) for yap=7ac=0.87. ¥uc
tion of vanishingy,” at a particular frequengyundergoes a =0-08-

phase transition to nonequilibrium optical spin-glass state ) ) , )

[25]. However, the estimates obtained for the susceptibilit/iere=xE /% is the Rabi frequency associated with the
should be valid for gases as welhere a spin-glass state field E,_, u is the dipole moment matrix element between

cannot be realized due to the effect of atom collisjons levels|a) and|b), A=w,,— , and we assume th&, (t)
=2E, cos(t)
Il. MODEL Using the conventional definition of the susceptibility

x=—upap/EL [17], and Eqgs(8), and(9), it is convenient to
As a model possessing a quantum coherence we considpresenty in the form
a three-levelA system[17] shown in Fig. 1. In this system
the coherence is maintained by a strong microwave field that w2 1(paa—pob) 1A+ Ype) +Q ,pca
couples the upper level of the probe field transition X(A)=—7——— : . (10
ili - QLA (1A+ yap) (1A + yp)
|a)—|b) to an auxiliary levelc). In Fig. 1y and y. are the 2

decay rates and9 |s.the pump r.atef. An |nd|rept pump IS pe componentp., of the density matrix in Eq(10) repre-
necessary to maintain a nonvanishing population of the ex-

) . . . sents the effect of the quantum coherefioduced by a mi-
;’;g?dd levels.€2,, is the Rabi frequency of the microwave crowave field on the susceptibility of the system with re-

Lo . . . . spect to the local fieldE, . For a weakE, field (linear
Kinetic equations for the density matrix elemefis] in : | he d q d
the rotating reference frame with the decay and pump raterseglme one can neglect the dependencepgl, pyp. and
indicated in Fig. 1 reduce to Pca ON Q. The_ frequenc_y dependence of fche susc_eptlblllty in
this linear regime, obtained by the numerical solution of Egs.
) ] ) (4)—(7) and(10), is shown in Fig. 2, where the values of the
Paa=~ YPaa~ 1Q(ppa=pan) ~1Qu(pca=Pac), (4 parametersy,=0.1y and w,=1.= 7y are chosen according
to Ref.[17]. As already pointed out by Scull\t5], a remark-
Pbb= YPaa— T cPbbT YePect i (Pba— Pab), (5)  able feature of the susceptibility in the system with coher-
ence is the possibility of” =0 at a frequency near the maxi-
. ) mum of ¥'. One can see from Fig. 2 that with the sets of
Pcc= " YePect NePbb™ YePect | Q,u(pca_pac)v (6) parameters Chose/(i’zo atA~—0.92y.
Note also that Eq(10) can be easily generalized to the
Pac=— YacPact 1 Q. (Paa— Pcc) — 1 Lo, (7)  case of the linear response of the system to the additional
weak fieldE; (with frequencyw; not necessarily equal ©)
‘ . . . in the presence of the strong fielj controlling the density
Pab=— 1A+ Yap)Papt1Q(paa—Pop) —1Quoch,  (8) matrix component®.,, ppp, aNdpc,. It is apparent that in
_ this case the susceptibility(A,A,Q4) describing the atom
peb=—(1A+ Yep)pebTiQpca—iQ ypap- (9)  response to the weak field; assumes the form

. Mz i[paalA, Q) = ppp(A, Q) J(1A1+ yp) +Q pcalA,€2)
X(AlaAaQ):f 2 . . .
Q)+ (1A + yap) (1A 1+ ype)

(11)
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In the following sections Eqg10) and(11) will be used for A
the analysis of the effect of configurational fluctuations on EiL () =E(t)+ 5-P() +e(t), 17
the system macroscopic susceptibility.

-~ - 1
lll. LOCAL-MEAN-FIELD FORMALISM ei(t)IEj Jijmi(t),  Jij=J;— V_of dr J(r). (18

The CM relation(3), based on Eq(l) for the local field,
does not take into account the effect of fluctuations of ato
dipole moments. These fluctuations originate from the sign - - p
changeable dipole-dipole interaction and random spatialhe first moment;; of J;; given by Eq.(18) satisfies];;=0

atom positions. A physica_lly transparent formalism to treatyq the higher momen"ﬂé\j‘zﬂ, i.e., in practice, one can use
dipole moment configurational fluctuations, caused by th in the f f Eq.(14) and ¢ the int tion i

random atom positions, is a local-mean-field description. A’ii ' the form ot £g.{14) and perform the integration in
starting point of the local-mean-field formalism is the as-SPherical reference frame providing;=0. Note that the

sumption that each atom is characterized by the local dipoléocal-mean-field approximation describing the system of in-
moment teracting atoms in terms of local dipole moments, with the

neglect of the quantum correlation effects, in some sense is
mF([Li)E ) (12) similar to the yvell—kpown Hartree approximation.
Li Let us consider first the case of the absence of the external
- o field and hence the absence of the macroscopic polarization
where(ui)g , denotes the quantum-statistical average of thg The |ocal polarization may still be nonzero due to the

ith atom dipole moment operatow; in the local self- local-field fluctuations that have to be evaluated self-

n4Equations (17 and (18) imply that =;m;/V, is a self-
averaging variable equal to the macroscopic polarizafon

consistent fielcE,;, given by consistently. The key point in the consideration below is a
special form of the atom susceptibility providgd=0 at a
N particular frequency. In conventional systems wijth# 0
ELi(t):jEl Jijm; (1) +Eex(t), (13)  (e.g., two-level systemshe local polarization cannot exist in

a steady state in the absence of the external field due to the
effect of dissipation. In contrast, in systems wjfi=0 at

where Eg,(t) is the applied external field. The functiaky =0 we have
—%m

determines the dipole-dipole interaction between atoarsd
j- In a retardationless approximation, which is valid if the - — r4 19
size of the system is less than the resonance wavelength, we i(0m) =X (@n)&i(0m). (19

have Herem, and'e; are the Fourier components of the variables

) m; ande;, respectively. We will show that Eq6l9) and(18)
3(nij)x—1 (14) may have a nontrivial solution for the average local polariza-

Jij=3rij) = 3 tion characterized by a dimensionless parameter
The effect of retardation on the form of the dipolar field has M= £|51i(wm)|- (20)
been discussed, e.g., in Reff26,4,5,27,7. In Egs.(13) and M

(14) we assumed, for simplicity, that all dipole moments are
oriented along the axig; njj=r;; /r;j, whererj;=r;—r; is
the radius-vector separating atomandj. E,; in Eq. (13) is
the x component of the local electric field.

The mean-field approximatiofl) corresponds to the re-
placement ofE; in Eq. (13) by

Since in the absence of the external field macroscopic polar-
ization P=0, the existenceM #0 implies the noncoherent
steady state oscillations of the atom dipole moments at the
frequencyow,, with random amplitudes. Thus the parameter
M can be considered as the order parameter of the nonequi-
librium optical spin-glass stafe5].

_ In order to find the values d¥l note that the vanishing of
EL:EeX+Z Jijmj=Eext Pf dr J(r), (15 x” results in the zero values of the imaginary part of the

J

dipole moment amplitudesy (w,,) and hence, according to

where the overbar denotes the configurational average  Eq. (13), the random local fiel@; in Eq. (19) is a real vari-
able. We evaluated the distribution function of the local field

— 1 -

with the use of the self-consistent methi@®,23), which is
P_ased on the Margend@4] statistical theory. The function
f(e) possesses the Lorentzian form, which is characteristic
eof the dipole local-field distribution in random systems

(Vy is the sample volume The volume integral in Eq.15)
can be replaced by two surface integrals over the outer su
face of the sample giving rise to the depolarizing fiElg,,
and the inner spherical Lorentz surface giving rise to th
Lorentz local field (47/3)P. ThusE=E,+ E4ep and there- 1
fore Egs.(15) and(1) are identical. f(e)=—= —
It is convenient to rewrite Eq13) in the form T 5%+ €?

5=5.1nuM. (22)
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C FIG. 4. Susceptibility y,p calculated using Eq(27) with
C=14.

FIG. 3. Dependence dil on the paramete€ (A=—0.92y).
IV. MACROSCOPIC SUSCEPTIBILITY

One can see that the functibte) depends parametrically  The next step is to calculate the linear response of the
on the parameteW, which can be obtained self-consistently system of interacting atoms in the exterrialacroscopig
from field in the presence of local-field fluctuations. Since we as-

sume that the external field is smals well as the field-
M :j da)('(wm 'E)§|f(§,|\/|), (23 induced macroscopic polarizatiét(t)], one may neglect the
change of the distribution functiof{e) by the external field.
The value ofM depends on the dimensionless parameter N this case Eq(17) contains two independent contributions:
(a) a weak macroscopic field and a Lorentz field both oscil-
wn lating at frequencyw of the external field andb) a strong
=7y 24 field g;(t) possessing a random amplitude and oscillating at
Y Lo e
frequency w,,. A susceptibility describing the atom’s re-
characterizing the strength of the dipole-dipole interactionsponse to the weak field in the presence of the strong oscil-
The values oM (C) calculated from Eq(23) are presented lating field e(t) is given by Eq.(11) with A=A, =(w
in Fig. 3. — wgp) andQ =Qz=uelfiy. In order to obtain the effective

Note that, as follows from Fig. 3, random local-mean- single-atom susceptibilityx describing the atom’s response
field theory predicts that the paramet®t has finite (al-  to the weak field one should average Etjl) over the ran-
though very smallvalues even at very low dipole concen- gom amplitudes,
trations. This apparent defect of the theory originates from
the neglect of correlation effects between closely separated _ ~
atoms. As shown in our earlier wof28,25, closely sepa- K(Al):f de x(A1;An,Q3)f(e). (26)
rated atoms in random systems with a dipole-dipole interac-
tion contribute only to localized states of the dipole-dipole|t follows then from Eq.(13) that in terms of the suscepti-
interaction matrix and therefore do not affect the true COOPyjlity « the macroscopic polarizatid can be written as
erative phenomena. An estimate of the critical value of the
parameteiC., below which an optical spin-glass state does -
not exist (i.e., M=0) can be found from the criterion P(Ap)=n«x(Ay)
5n¢,;x’'~1 [25] obtained with the use of computer simula-
tions applied to the linearized local mean field equatid®  which results in the replacement of the susceptibititgy «
and (19). Taking into account the numerical value jh Eq.(3), i.e.,
x'~0.17 atA=—-0.92y (see Fig. 2, it gives

C

~ 47
E+?P<Al>), @7

nk(Aq)
Cor=1.1. (25 Xoo(Ay)= ————. (29
. : L 1-—-nk(Ay)
It is interesting to note that the value Gf, obtained is close 3

to the inflection point of the curven(C).

Although the consideration above implies that optically In Fig. 4 we present the values of the real part of the
active atoms are frozen in random positions in crystals ofnacroscopic susceptibilitypp, obtained forC=1.4 and
amorphous hosts, the obtained widtlof the local-field dis- A=—0.92y. The other parameters were chosenyas~ va.
tribution function is a characteristic of the local-field fluctua- ~0.8 andy,.~0.08. For these values of the parameters the
tions in gases too and should be taken into account in thEM equation predicts more than two orders of magnitude
calculations of the macroscopic susceptibility. enhancement of thg,, compared to the susceptibility of
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noninteracting atoms. At the same time, taking into accounsponding to the wave vectédr=0. However, the same con-
the local-field fluctuations, an increase in susceptibility ofclusion can be reachd@2] within the semiclassical formal-
only five times is expected as follows from Fig. 4. Thus theism based on the CM equatidgmean-field theoryand the
effect of local-field fluctuations leads to a significant sup-concept of the Lorentz local field since the transition tem-
pression of the susceptibility of interacting atoms in nonlin-peratureT . corresponds to the temperature of the divergence

ear optical systems with coherence. of xpp . A static susceptibility of a two-level atom is given
by
V. CONCLUSION
. o o u? V(fwo)?+ (nE)?
We discussed the limitations of the applicability of the x(T,E )= > 2ranh T ,
Clausius-Mossoti equation for the evaluation of the macro- V(hwo)®+(LEL) B
scopic susceptibility in nonlinear optical systems with con- (A1)

figurational disorder in atom positions. It was shown that theWhere % w, is the energy separation between the upper and

corrections to the CM equation are espemally important Nower levels. Combining Eqs(3) and (A1), we obtain the
nonlinear systems with quantum coherence with the vanish-

L . . . equation for the phase transition temperature in mean-field
ing imaginary part of the atom susceptibility for a particular imation

frequency of the applied field. Under these conditions thPProxima
CM equation predicts a dramatic increase of the real part of
the macroscopic susceptibility of the ensemble of interacting
atoms. We have shown that the latter effect is suppressed
significantly due to the role of the configurational fluctua-
tions of local fields, which should be taken into consider-

ation.

4
?nX(TC,EL=0)=1. (A2)
In order to take into account the effect of configurational
fluctuations of the local-field one should replace in E&R)
(accordingly to the formalism discussed in the ek sus-

ceptibility y by the effective susceptibility
APPENDIX: ABSENCE OF FERROELECTRIC PHASE

TRANSITION FOR AN EQUILIBRIUM ENSEMBLE 5 o
OF TWO-LEVEL ATOMS INTERACTING WITH k(T)= f de x(T,e)f(e), (A3)
AN ELECTROMAGNETIC FIELD

In this appendix we will apply the local-mean-field for- Where f(e) is given by Eq.(22). A solution of the self-
malism for the analysis of the cooperative behavior of arfonsistent equatiof23) with x given by Eq.(A1) determines
ensemble of randomly positioned two-level atoms interactinghe values of the widtl$ of the functionf(e). These values
with an electromagnetic field. It has been propofza-32 have then been used for the calculation of the effective sus-
that such systems can undergo a second-order ferroelectrgeptibility «(T) in order to establish the possibility of the
phase transition with the appearance of spontaneous atoappearance of ferroelectric ordering. We found that(B@),
polarization. Earlier paperi29—31] related to this problem with y replaced byk, does not have solutions at any tem-
have used a quantum formalism. In analogy to the Dickeperature and concentration, implying the absence of ferro-
model for superradiance, it was assumed that the main effeedectric ordering in the system of randomly distributed two-
of atom-atom interactions comes from the coupling of eacHevel atoms being in thermal equilibrium with an
atom to the single mode of the electromagnetic field, correelectromagnetic field.
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