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Strong-field driving of a dilute atomic Bose-Einstein condensate
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A hydrodynamical version of the time-dependent Gross-Pitaevskii equation has been formulated and applied
to the description of a Bose-Einstein condensate~BEC! of 87Rb atoms in the JILA time-averaged orbiting
potential~TOP! trap. The response of the BEC to time-dependent modulations of the trap potential is computed
and the characteristic frequencies of a BEC oscillation agree well with those observed in recent experiments.
For the axially symmetricm50 mode of the TOP trap, we find a weak dependence of the oscillatory frequency
on the strength of the driving amplitude under conditions comparable to those of current experiments. The free
ringing of the BEC that is induced by a transient change in the potential is found to be periodic, in agreement
with the predictions of Thomas-Fermi theory. We analyze the harmonic content of the spectral response and
consider possibilities for high-harmonic generation in the context of nonlinear atom optics.
@S1050-2947~97!03309-X#
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I. INTRODUCTION

First observed in 1995, Bose-Einstein condensation
trapped neutral alkali-metal atom gases@1–3# has become a
vehicle for the detailed experimental and theoretical inve
gation of macroscopic quantum systems. During the p
year, the mechanical response of a Bose-Einstein conden
~BEC! to disturbances of its confining potential has be
measured@4,5#. In the weak-driving regime, the resonant r
sponse of the BEC agrees well with the predictions of line
response theory applied to the time-dependent mean-
Gross-Pitaevskii~GP! equation@5–7#. However, there is no
apparent experimental difficulty in entering the stron
driving regime, where nonlinear response of the BEC will
encountered; this is already displayed in the observation
the amplitude dependence of resonant collective excita
frequencies@8# and we expect that many more examples w
be seen. Therefore, we have developed a method for a
eral numerical solution of the time-dependent GP equa
for trapped BECs and apply it here to cases of transient
turbance of the trapping potential comparable to those
current experiments. We find good agreement with exp
mental results for the amplitude dependence of the freque
of the m50 mode observed in the JILA experiments by J
et al. @4# and identify some simple mechanisms for contr
ling the nonlinear driven response.

II. SMALL-AMPLITUDE RESPONSE OF A DRIVEN BEC

An approach to describing the response of a confi
BEC to small time-dependent disturbances has been
scribed by Ruprechtet al. @9# within the framework of the
Bogoliubov approximation@10#. In this approach, one iden
tifies the normal modes of free oscillation of the confin
571050-2947/98/57~1!/488~5!/$15.00
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BEC by solving an eigenvalue problem. The response of
BEC to a general weak disturbance is then treated like tha
any mechanical system without damping: normal modes
excited independently, with amplitudes that depend upon
matching of their spatial and spectral characteristics w
those of the disturbance. In particular, a normal mode
frequencyn i will respond to monochromatic driving at fre
quencyn with an amplitude proportional to 1/(n i

22n2), just
as in the case of a simple harmonic oscillator. This sugg
an obvious method of experimental spectroscopy of B
normal modes, which is to observe BEC density fluctuatio
induced by modulations of the trapping potential near re
nance.

This analysis has been applied to the case of the J
time-averaged orbiting potential~TOP! trap @6# and gives
predictions of the frequencies and spatial profiles of norm
mode excitations that agree well with experiments us
BECs of several thousand87Rb atoms. That particular ex
periment focused on two low-lying normal modes, charact
ized by azimuthal angular momentum quantum numbers
reflect the cylindrical symmetry of the trap: a shape osci
tion with m50, which will be discussed in the present pap
and a quadrupole oscillation withm52.

The theoretical description of normal modes simplifi
considerably when the numberN0 of condensate atoms be
comes large. One may then treat the GP equation within
Thomas-Fermi approximation and the normal mode frequ
cies become independent ofN0 @11#. This approximation
gives results that agree well with experiments@5,7# on 23Na
with N0.105.

III. STRONG-FIELD DRIVING OF BEC

For strong external disturbances of a BEC, we can
longer expect the response to be small and must go beyo
488
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57 489STRONG-FIELD DRIVING OF A DILUTE ATOMIC . . .
linearized theory. The most straightforward approach is
solve the full time-dependent GP equation, which is reas
able if the driving does not disturb the underlying quantu
coherence of the BEC. This has been done by Ruprechtet al.
@9# for the case of a spherical trap, by direct numerical in
gration of the time-dependent GP equation, treated as
initial-value problem with the BEC in its ground state
t50. Ruprechtet al. observed nonlinear behavior analogo
to that encountered in nonlinear optics: harmonic generat
i.e., the oscillation of the condensate at integer multiples o
normal mode frequency, and sum- and difference-freque
generation. These analogs are expected to become of co
erable interest as the field of ‘‘atom optics’’ develops@12#
and our present approach is motivated by the desire to
plore the full potential of the BEC as a nonlinear ato
optical device.

In the Thomas-Fermi limit, the GP equation for a conde
sate in a harmonic potential with time-varying spring co
stants can be solved quite easily by an approach describe
Kagan et al. @13# and generalized by Castin and Dum@7#.
The approach of Kaganet al. treats the isotropic harmoni
potentialV(r )5 f (t)r 2, wheref (t) is an arbitrary function of
time. This approach reduces the solution of the tim
dependent GP partial differential equation to the solution
one nonlinear ordinary differential equation for a scaling p

rameterb(t): the condensate densityrc(rW,t) is then given by

rc(rW,t)5b(t)23rc„rW/b(t),t50…, whererc(rW,t50) is a so-
lution of the appropriate time-independent GP equation
the Thomas-Fermi approximation. Thus the variation of
trap potential is equivalent to a time-dependent dilatation
the length scale, so the BEC always maintains the sa
shape. Furthermore, this approach shows that for a tran
disturbance, i.e., one for whichf (t)5 const for t.t0, the
motion of the condensate is strictly periodic fort.t0, with
the period being determined by the value ofb(t0). This is
much different from the behavior of a general linear syste
where a transient disturbance gives rise to ringing at a c
bination of normal mode frequencies, which need not
commensurate. Thus the generic response of a transie
driven BEC in this approximation isharmonic generation,
where the fundamental frequency is established by the t
history of excitation: it is not an intrinsic property of th
time-independent system.

However, the integration of the time-dependent GP eq
tion under general conditions applicable to current exp
ments still requires the solution of a time-dependent non
ear partial differential equation in two or three spat
dimensions. We now describe the method we have de
oped for this task.

IV. QUANTUM HYDRODYNAMIC FORMULATION
OF THE TIME-DEPENDENT GP EQUATION

The simplest description of a zero-temperature, dil
BEC of trapped atoms is based on mean-field theory with
atom-atom interaction approximated by a delta-funct
pseudopotential@10#. This gives the time-dependent G
equation for the condensate wave functionC(rW,t):
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]C~rW,t !

]t
5S 2

\2

2m
¹ 21Vtrap~rW,t !

1
4p\2a

m
uC~rW,t !u 2DC~rW,t !, ~1!

where Vtrap(rW,t) is the confining potential,m the atomic
mass, anda the s-wave scattering length. In this paper w
present results for potentialsVtrap that describe isotropic and
cylindrically symmetric harmonic oscillators, which reduc
the problem to treatment of one and two spatial dimensio
respectively. The basic time variation ofVtrap that we have
considered is a brief sinusoidal modification of the spri
constants, similar to those studied experimentally.

Our approach involves solving the hydrodynamical v
sion of the GP equation

]rc

]t
1¹W •~rcvW c!50,

]vW c

]t
1¹W S 4p\2a

m2
rc1

Vtrap

m
1

vW c
2

2
2

\2

2m2

¹2Arc

Arc
D 50,

~2!

where the condensate densityrc(rW,t) and velocityvW c(rW,t)
fields are those of the standard hydrodynamic representa
of the Schro¨dinger equation developed by Madelung@14#.
Equations~2! are of hyperbolic type and we treat them by
modified version of the time-dependent density-functio
approach that we have applied previously to the treatme
of a Fermi liquid @15#. The principal modification, which
also has constituted the biggest numerical challenge, is
treatment of the so-called quantum pressure, which is
term proportional to (¹2Arc)/Arc. This term is not presen
in the treatments of the system that utilize the Thomas-Fe
approximation and it will be important in regions of stron
density variation.

We solve Eqs.~2! as an initial-value problem, with the
initial value of the velocity fieldvW c(rW,t50)50 everywhere
and the intial condensate densityrc(rW,t50) given by the
solution of the time-independent GP equation. To fi
rc(rW,t50) for the isotropic trap, we used a standard sho
ing method@16# for direct numerical solution of the ordinar
differential equation; for the cylindrically symmetric trap w
use a basis-set solution that was obtained elswhere@17#. To
propagate the initial density we employed the Lax@16# algo-
rithm and the boundary conditions that have been discus
previously in Ref.@15#. Our algorithms were tested succe
fully on comparable solvable systems: the free expansion
the Gaussian wave packet, the motion of a Gaussian w
packet in the harmonic potential, and the maintenance of
stationarity the ground state of both the spherically and a
ally symmetric condensates.

V. RESULTS FOR CYLINDRICALLY SYMMETRIC
AND ISOTROPIC TRAPS

We first discuss a simulation of the JILA TOP trap e
periment reported in Ref.@4#. We treat a condensate o
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490 57BREWCZYK, RZA̧ŻEWSKI, AND CLARK
N053500 87Rb atoms confined in a cylindrically symmetr
trap with an axial frequencynz5373 Hz and radial fre-
quencynr5132 Hz.@The rationz /nr5A8 is a characteristic
of the TOP trap, wherer andz designate the radial and axia
coordinates of the conventional cylindrical coordinate s
tem. It is convenient to refer the length scale to the char
teristic distanced5(2p)21Ah/mnz, which describes the
width ~in thez direction! of the condensate wave function
the noninteracting limit, and to measure time in units of t
corresponding axial periodT51/nz .# The condensate is ex
ternally disturbed by modulation of the radial frequency
the form

nr~ t !→nr@11A~ t !sin~2pndt !#, ~3!

where A(t)5A0 for 0,t,t0 and A(t)50 otherwise. We
report results here fornd5170 Hz and for values ofA0 rang-
ing from 0.02 to 0.6, witht0 of the order of 10 ms. Although
the identification of constants of motion of the nonline
Schrödinger equation is not straightforward in general, it
easy to demonstrate that a cylindrically symmetric dist
bance preserves the axial symmetry present in the in
state. Thus the trap modulation described by Eq.~3!, applied
to an initial state of definitem, will produce a time-
dependent wave function with the same value ofm always
~this is because the time derivative of the wave function
t50 must then also have the samem, so by approximate
evolution ofC with finite time steps,m is preserved!. Thus,
for symmetric modulations it is appropriate to treatm as a
good quantum number even in the strong-driving limit,
m50 characterizes the excitation described here~on the
other hand, them52 mode, which is observed@4# in tor-
sional excitation in the linear-response limit, will evolve in
a time-dependent state of more complex angular charact
the strength of the drive increases!. Thus it is appropriate to
express Eqs.~2! in the usual cylindrical coordinates (r,z)
and to solve them as an initial-value problem in timet for
flow of fluid in the two-dimensional space (r,z).

Our numerical procedure is summarized as follows. W
apply a finite-difference discretization scheme to appro
mate the spatial derivatives in Eqs.~2!, using the standard
central difference formula accurate toO(d) on a uniform
grid of spacingd'0.05d. A typical grid size was 4003400
points, with edge boundary conditions defined as in R
@15#: the normal derivatives ofrc and vW c are required to
vanish on the boundary, though in practice very little atom
density reaches it. The Laplacian operator that defines
quantum pressure was evaluated using a five-point ce
difference formula. Propagation of the flow in time w
treated by the Lax method@16#, which provides a condition-
ally stable propagator accurate toO(t) in the time stept;
values oft'0.001T were adequate to get results converg
to the accuracy reported here.

Figure 1 shows the radial and axial shape oscillations
the BEC for the caseA050.02,t050.01 s, after the pulse ha
been turned off. The radial and axial widths displayed are
mean values^r& and ^z2&, respectively, in units of the
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characteristic length d5(2p)21Ah/mnz, where ^r&

5*rrc(rW)d3r and ^z2&5*z2rc(rW)d3r . The observed fre-
quency of radial breathing is 0.68nz , which is within 3% of
the value predicted by linear-response theory in this ca
The periodic behavior of the response is the same as in
Thomas-Fermi limit, but Fig. 1 of Ref.@6# shows that that
limit has not quite been attained in this case. Note that sy
pathetic axial breathing occurs approximately 180° out
phase with the radial breathing, as seen in the JILA exp
ment by Jinet al. @4#. This is the behavior expected of
low-compressibility fluid confined in a potential: whe
squeezed radially, it will expand along the axial direction

Figure 2 quantifies the frequency response function
A050.02 and shows its behavior asA0 increases. Note tha
the dependence of the fundamental frequency upon driv
amplitude is weak: we estimate the uncertainty of our cal
lations to be 1.5% and the shift of the fundamental pe
betweenA050.02 andA050.6 is within this range, consis
tent with the very weak observed variation of this frequen

FIG. 1. Response of an87Rb BEC withN053500 in the JILA
TOP trap (nz5373 Hz! to weak(2%),m50, driving with a 10-ms
modulation ofnr , as described in the text. Axial and radial osc
lations are given in units of the characteristic radial leng
d5(2p)21Ah/mnz vs time in units of the axial period. Radial os
cillations of the condensate’s shape~at the frequency in agreemen
with @8#! are accompanied by a sympathetic response of the a
width, approximately 180° out of phase.

FIG. 2. Fourier transform~in arbitrary units! of the oscillations
of ^r& vs frequency in units of axial frequencynz for the excitation
scheme of Fig. 1, forA050.02, 0.2, 0.4, and 0.6~respectively 2–
60 %!. No shift of the fundamental frequency occurs within th
1.5% accuracy of our calculations.
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57 491STRONG-FIELD DRIVING OF A DILUTE ATOMIC . . .
@8#. The most important deviations from a monochromati
response are the presence of harmonics, though for larg
modulations some additional weak spectral features are v
ible.

A major goal of current BEC research is the developmen
of a bright source of coherent matter waves, or ‘‘atom laser
@18#, whose operation is described by atom optics in th
‘‘strong-field’’ regime, i.e., in which many bosons occupy
the same mode of the matter field. For an electromagne
field in vacuo, the speed of wave propagation is independe
of the field amplitude~ignoring the negligible relativistic ef-
fect of light-light scattering by particle pair production!, so
the spatial structure of a normal mode of the field is inde
pendent of the number of photons that occupy it. In contras
the corresponding spatial modes of a matter-wave fie
C(rW,t) are described by the GP equation~1!, and their struc-
ture depends upon the boson occupation numberN0 due to
the presence of the nonlinear term (4p\2a/m)uC(rW,t)u2 in
the effective potential. Thus the atom laser is governed b
intrinsically nonlinear atom optics, similar to that of an op
tical laser with a photorefractive cavity medium. It is thus
desirable to develop some insight into the qualitative featur
of nonlinear atom optical response.

We hypothesize that the weak nonlinearity observed
radial squeezing of the TOP trap is related to the anisotrop
of the driving force. This force is applied radially and so the
condensate will be able to flow in the axial direction whos
potential is undisturbed. If the trap potential is squeezed
all directions at once, on the other hand, there should be
more uniform compression of the condensate, which wi
lead to a higher peak density and thus more pronounc
influence of the nonlinear term in the GP equation. Indee
we find a discernibly greater nonlinear response in the ca
of an isotropic harmonic trap, with an isotropic modulation
of the radial frequency. Figure 3 shows the results for a
87Rb BEC with N0580034, contained in a spherical trap

FIG. 3. Spectral response function~not normalized! of oscilla-
tions of ^r (t)& for an 87Rb BEC with N0580 034, contained in a
spherical trap with a radial frequencyn r5300 Hz, modulated with
nd5170 Hz,t0510 ms, andA050.02,0.2,0.6. The ordinate is mea-
sured in units ofn r . The inset shows the shift of the fundamenta
frequency as a function of driving amplitude, as determined from
the displacement of the highest peak.
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with a radial frequencyn r5300 Hz. The radial frequency is
modulated as in Eq.~3!, with nd5170 Hz andt0510 ms. In
this case, we observe a decrease of the induced oscilla
frequency with increasingA0. For small A0, the observed
frequency is very close toA5n r , which is the value obtained
in the Thomas-Fermi limit@11,13#. Equation ~14! of Ref.
@13# implies that this frequency should approach 2n r for
largeA0 in the Thomas-Fermi limit, which is consistent wit
the direction observed here. Again, the dominant nonlin
response in these spectra appears to be harmonic gener
We have compared our results for^r (t)& with those obtained
by solving the ordinary differential equation of Ref.@13# and
find no difference that is significant within the accuracy
our method. Thus this case seems to be well described by
Thomas-Fermi approximation.

The appearance of these harmonics in spatial distribut
leads us to inquire how they are manifested in moment
space and so might be used to modify the de Broglie sp
trum of a BEC in situations where the trap is suddenly turn
off. In Fig. 4 we plot a series of snapshots of the probabi
density in momentum space both for weak and strong sph
cally symmetric modulation of the condensate as depicte
Fig. 3. The snapshots are taken after a 10-ms disturbance
several milliseconds of free oscillations in the trapping p
tential. The probability density is calculated from the fo
mula

FIG. 4. ~a! Typical probability density in momentum space for
weak(2%) driving ~dashed line! compared with the initial momen
tum distribution~solid line!. Units are defined by the characterist
oscillator length scaled5(2p)21Ah/mn r . ~b! Probability density
~multiplied by p2) for a strong (60%) disturbance at times corr
sponding to 20.0, 20.1, 20.2, and 20.3 units of the trap period. U
are defined as in~a!.
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uC̃~k,t !u2;F E
0

`

r 2 j 0~kr !R~r ,t !cosS~r ,t !drG2

1F E
0

`

r 2 j 0~kr !R~r ,t !sinS~r ,t !drG2

,

where j 0(r ) is a spherical Bessel function of zeroth ord
and the amplitudeR(r ,t) and the phaseS(r ,t) of the wave
function in a position space can be recovered from the d
sity and velocity fieldsrc(rW,t) andvW c(rW,t).

For the weak(2%) modulation, the density in momentum
space is practically time independent. It exibits only a sm
wiggle @Fig. 4~a!# connected with the localization of th
wave packet in position space. For 60% modulation, ho
ever, the momentum distribution changes rapidly@Fig. 4~b!#.
Both the central frequency and width of the peak of the m
mentum distribution vary by about a factor of 3 over t
course of one oscillation. If the trap were to be turned
suddenly att5t1, we should expect to see the BEC evolve
a free dilute Bose gas with an initial momentum distributi
given by that att5t1. Thus, in this system we can hope
use the trap modulation as a tool for significant modificat
of the evolution of a released BEC if the trap can be turn
off over a small fraction of its period.
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VI. CONCLUSION

We have developed a hydrodynamic formulation of t
time-dependent Gross-Pitaevski equation and applied i
forced oscillations of a dilute Bose-Einstein condensate
harmonic traps. Its results are consistent in the sm
amplitude limit with linear-response theory and replicate
very-weak-amplitude dependence of the frequency of
m50 mode as observed in the JILA TOP trap. We argue t
the nonlinear response can be enhanced by using unifo
compressive versus anisotropic driving and show that thi
consistent with differences in the nonlinear response of
lindrical and spherical traps.
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Clark, Phys. Rev. Lett.78, 191 ~1997!.

@16# W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vett
ling, Numerical Recipes: The Art of Scientific Computi
~Cambridge University Press, Cambridge, 1986!.

@17# R. J. Dodd, J. Res. Natl. Inst. Stand. Technol.99, 545 ~1996!;
and private communication.

@18# M.-O. Meweset al., Phys. Rev. Lett.78, 582 ~1997!; M. R.
Andrews et al., Science 275, 637 ~1997!, and references
therein.


