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Strong-field driving of a dilute atomic Bose-Einstein condensate
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A hydrodynamical version of the time-dependent Gross-Pitaevskii equation has been formulated and applied
to the description of a Bose-Einstein condeng®EC) of 8’Rb atoms in the JILA time-averaged orbiting
potential(TOP) trap. The response of the BEC to time-dependent modulations of the trap potential is computed
and the characteristic frequencies of a BEC oscillation agree well with those observed in recent experiments.
For the axially symmetriocn=0 mode of the TOP trap, we find a weak dependence of the oscillatory frequency
on the strength of the driving amplitude under conditions comparable to those of current experiments. The free
ringing of the BEC that is induced by a transient change in the potential is found to be periodic, in agreement
with the predictions of Thomas-Fermi theory. We analyze the harmonic content of the spectral response and
consider possibilities for high-harmonic generation in the context of nonlinear atom optics.
[S1050-294®7)03309-X]

PACS numbds): 03.75.Fi, 05.30.Jp

I. INTRODUCTION BEC by solving an eigenvalue problem. The response of the
. . . . . EC to a general weak disturbance is then treated like that of
First observed n 1995, Bose-Einstein condensation o ny mechanical system without damping: normal modes are
trapped neutral alkali-metal atom gagés-3| has become a oy cited independently, with amplitudes that depend upon the
vehicle for the detailed experimental and theoretical '”VeSt"matching of their spatial and spectral characteristics with
gation of macroscopic quantum systems. During the pashose of the disturbance. In particular, a normal mode of
year, the mechanical response of a Bose-Einstein condensgtgquencyw; will respond to monochromatic driving at fre-
(BEQ) to disturbances of its confining potential has beengyencyy with an amplitude proportional to We— v?), just
measured4,5]. In the weak-driving regime, the resonant re- a5 in the case of a simple harmonic oscillator. This suggests
sponse of the BEC agrees well with the predictions of linearan obvious method of experimental spectroscopy of BEC
response theory applied to the time-dependent mean-fieldormal modes, which is to observe BEC density fluctuations
Gross-Pitaevski{GP) equation[5-7]. However, there is no induced by modulations of the trapping potential near reso-
apparent experimental difficulty in entering the strong-nance.
driving regime, where nonlinear response of the BEC will be  This analysis has been applied to the case of the JILA
encountered; this is already displayed in the observation dime-averaged orbiting potentidlTOP) trap [6] and gives
the amplitude dependence of resonant collective excitatiopredictions of the frequencies and spatial profiles of normal-
frequencie$8] and we expect that many more examples willmode excitations that agree well with experiments using
be seen. Therefore, we have developed a method for a geRECs of several thousané/Rb atoms. That particular ex-
eral numerical solution of the time-dependent GP equatioferiment focused on two low-lying normal modes, character-
for trapped BECs and apply it here to cases of transient didzed by azimuthal angular momentum quantum numbers that
turbance of the trapping potential comparable to those oféflect the cylindrical symmetry of the trap: a shape oscilla-
current experiments. We find good agreement with experition with m=0, which will be discussed in the present paper,
mental results for the amplitude dependence of the frequencdd & quadrupole oscillation witi=2.

of them=0 mode observed in the JILA experiments by Jin The theoretical description of normal modes simplifies
et al. [4] and identify some simple mechanisms for control-CONSiderably when the numbak, of condensate atoms be-
ling the nonlinear driven response. comes large. One may then treat the GP equation within the

Thomas-Fermi approximation and the normal mode frequen-
cies become independent &f, [11]. This approximation
gives results that agree well with experimeffis7] on 2Na

An approach to describing the response of a confinedVith No>10°.
BEC to small time-dependent disturbances has been de-
scribed by Ruprechet al. [9] within the framework of the Ill. STRONG-FIELD DRIVING OF BEC
Bogoliubov approximatio10]. In this approach, one iden- For strong external disturbances of a BEC, we can no
tifies the normal modes of free oscillation of the confinedlonger expect the response to be small and must go beyond a

II. SMALL-AMPLITUDE RESPONSE OF A DRIVEN BEC
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linearized theory. The most straightforward approach is to IV (r 1) 52 R

solve the full time-dependent GP equation, which is reason- if Frammil ﬁv 2JrV"ap(r,t)

able if the driving does not disturb the underlying quantum

coherence of the BEC. This has been done by Rupetcit Amhla . .

[9] for the case of a spherical trap, by direct numerical inte- Rl [P (r,t)] 2| ®(r,t), 1)

gration of the time-dependent GP equation, treated as an
initial-value problem with the BEC in its ground state at

t=0. Ruprechet al. observed nonlinear behavior analogousmass’ and the s-wave scattering length. In this paper we
to that encountered in nonlinear optics: harmonic ge_neratiorbresent results for potentialg,,, that describe isotropic and
I.e., the oscillation of the condensate at integer multiples of @ylindrically symmetric harmonic oscillators, which reduce
normal mode frequency, and sum- and difference-frequencie problem to treatment of one and two spatial dimensions,
generation. These analogs are expected to become of considspectively. The basic time variation ¥f,,, that we have
erable interest as the field of “atom optics” develdd?]  considered is a brief sinusoidal modification of the spring
and our present approach is motivated by the desire to eXonstants, similar to those studied experimentally.

plore the full potential of the BEC as a nonlinear atom-  Our approach involves solving the hydrodynamical ver-

where Vt,ap(F,t) is the confining potentialm the atomic

optical device. sion of the GP equation

In the Thomas-Fermi limit, the GP equation for a conden-
sate in a harmonic potential with time-varying spring con- ape = -
stants can be solved quite easily by an approach described by St TV (pev)=0,
Kaganet al. [13] and generalized by Castin and DUf.
The approacrl of Kazlgaat al. tregts the |sptrop|c har'monlc a*C [ axh?a Viap 502 72 Vz\/P—c
potentialV(r)=f(t)r<, wheref(t) is an arbitrary function of —+V pct —_——— =0,
time. This approach reduces the solution of the time- at m? m 2 2m \/E
dependent GP partial differential equation to the solution of @

one nonlinear ordinary differential equation for a scaling pa-

. N . where the condensate densjiy(r,t) and velocityov(r,t)
rameterb(t): the condensate densiy(r,t) is then given by fields are those of the standard hydrodynamic representation

pe(r,t)=b(t) “*pc(r/b(t),t=0), wherep (r,t=0) is @ S0-  of the Schidinger equation developed by Madelufitd].
lution of the appropriate time-independent GP equation irequations(2) are of hyperbolic type and we treat them by a
the Thomas-Fermi approximation. Thus the variation of themodified version of the time-dependent density-functional
trap potential is equivalent to a time-dependent dilatation obpproach that we have applied previously to the treatments
the length scale, so the BEC always maintains the samef a Fermi liquid[15]. The principal modification, which
shape. Furthermore, this approach shows that for a transieatso has constituted the biggest numerical challenge, is the
disturbance, i.e., one for whicf(t)= const fort>t,, the treatment of the so-called quantum pressure, which is the
motion of the condensate is strictly periodic forty, with  term proportional to Y2\Vpc)/\pe. This term is not present
the period being determined by the valueldty). This is  in the treatments of the system that utilize the Thomas-Fermi
much different from the behavior of a general linear systemapproximation and it will be important in regions of strong
where a transient disturbance gives rise to ringing at a corrdensity variation.

bination of normal mode frequencies, which need not be We solve Egs(2) as an initial-value problem, with the
commensurate. Thus the generic response of a transientigitial value of the velocity fieldv(r,t=0)=0 everywhere
driven BEC in this approximation ikarmonic generation and the intial condensate densﬁy(?,t:O) given by the
where the fundamental frequency is established by the timsolution of the time-independent GP equation. To find

history of excitation: it is not an intrinsic property of the pc(r,t=0) for the isotropic trap, we used a standard shoot-
time-independent system. ing method16] for direct numerical solution of the ordinary
However, the integration of the time-dependent GP equadifferential equation; for the cylindrically symmetric trap we
tion under general conditions applicable to current experiuse a basis-set solution that was obtained elswiisfe To
ments still requires the solution of a time-dependent nonlinpropagate the initial density we employed the I[48] algo-
ear partial differential equation in two or three spatial rithm and the boundary conditions that have been discussed
dimensions. We now describe the method we have devepreviously in Ref[15]. Our algorithms were tested succes-
oped for this task. fully on comparable solvable systems: the free expansion of
the Gaussian wave packet, the motion of a Gaussian wave
packet in the harmonic potential, and the maintenance of the
IV. QUANTUM HYDRODYNAMIC FORMULATION stationarity the ground state of both the spherically and axi-
OF THE TIME-DEPENDENT GP EQUATION ally symmetric condensates.

The simplest description of a zero-temperature, dilute
BEC of trapped atoms is based on mean-field theory with the
atom-atom interaction approximated by a delta-function
pseudopotentia[10]. This gives the time-dependent GP e first discuss a simulation of the JILA TOP trap ex-
equation for the condensate wave functibl(nf,t): periment reported in Refl4]. We treat a condensate of

V. RESULTS FOR CYLINDRICALLY SYMMETRIC
AND ISOTROPIC TRAPS
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No=3500 8’Rb atoms confined in a cylindrically symmetric 2.05 4.7
trap with an axial frequency,=373 Hz and radial fre- <(z/d)%>
quencyv,=132 Hz.[The ratiov,/v,= 8 is a characteristic

of the TOP trap, wherg andz designate the radial and axial
coordinates of the conventional cylindrical coordinate sys- &
tem. It is convenient to refer the length scale to the charac- 2
teristic distanced=(27) "1yh/mv,, which describes the v
width (in the z direction of the condensate wave function in

the noninteracting limit, and to measure time in units of the
corresponding axial periofi=1/v,.] The condensate is ex- 1.9 — ' ' 4.4

ternally disturbed by modulation of the radial frequency of 20 22ﬁme (i2n4axia| pzeﬁiod) 28 30
the form

4.6

<p/d>

1.95

4.5

FIG. 1. Response of affRb BEC withNy=3500 in the JILA
TOP trap ¢,=373 H2 to weak(2%), m=0, driving with a 10-ms
modulation ofv,,, as described in the text. Axial and radial oscil-
v, ()= v, [1+A(t)sin2my4t)], (3 lations are given in units of the characteristic radial length
d=(2m) " 1Jh/mv, vs time in units of the axial period. Radial os-
cillations of the condensate’s shafa the frequency in agreement
with [8]) are accompanied by a sympathetic response of the axial

where A(t)=A, for 0<t<ty and A(t)=0 otherwise. We width, approximately 180° out of phase.

report results here fary=170 Hz and for values ok, rang-
ing from 0.02 to 0.6, with, of the order of 10 ms. Although
the identification of constants of motion of the nonlinear - _
Schralinger equation is not straightforward in general, it is characteristic  length d=(2m) “himy,, - where (p)
easy to demonstrate that a cylindrically symmetric distur-=Jppc(r)d*r and (z%)=[7z%p (r)d%. The observed fre-
bance preserves the axial symmetry present in the initigfluency of radial breathing is 0.68, which is within 3% of
state. Thus the trap modulation described by @y.applied  the value predicted by linear-response theory in this case.
to an initial state of definitem, will produce a time- The periodic behavior of the response is the same as in the
dependent wave function with the same valuaroflways ~ Thomas-Fermi limit, but Fig. 1 of Ref6] shows that that
(this is because the time derivative of the wave function atimit has not quite been attained in this case. Note that sym-
t=0 must then also have the same so by approximate Pathetic axial breathing occurs approximately 180° out of
evolution of ¥ with finite time stepsm is preservel Thus, ~ Phase with the radial breathing, as seen in the JILA experi-
for symmetric modulations it is appropriate to treatas a Ment by Jinet al. [4]. This is the behavior expected of a
good quantum number even in the strong-driving limit, soloW-compressibility fluid confined in a potential: when
m=0 characterizes the excitation described hése the squeezed radially, it will expand along the axial direction.
other hand, then=2 mode, which is observef#] in tor- Figure 2 quantifies_ the freq_uency_response function for
sional excitation in the linear-response limit, will evolve into Ao=0.02 and shows its behavior &g increases. Note that
a time-dependent state of more complex angular character #¢ dependence of the fundamental frequency upon driving
the strength of the drive increagehus it is appropriate to arr_1plltude is weak: we estimate _the uncertainty of our calcu-
express Eqs(2) in the usual cylindrical coordinates (z) lations to be 1.5% and the shift of the fundamental peak
and to solve them as an initial-value problem in timéor ~ DetweenA,=0.02 andA,=0.6 is within this range, consis-
flow of fluid in the two-dimensional space (z). tent with the very weak observed variation of this frequency
Our numerical procedure is summarized as follows. We
apply a finite-difference discretization scheme to approxi-
mate the spatial derivatives in Eq®), using the standard 107 F
central difference formula accurate @(45) on a uniform
grid of spacingé~0.05d. A typical grid size was 408400
points, with edge boundary conditions defined as in Ref.

[15]: the normal derivatives op, and v, are required to

10° |

spectral density (arb. units)

105 &= |
vanish on the boundary, though in practice very little atomic

density reaches it. The Laplacian operator that defines the 107

guantum pressure was evaluated using a five-point central

difference formula. Propagation of the flow in time was

treated by the Lax methdd.6], which provides a condition- 10'90 05 1 15 2 25 3

ally stable propagator accurate @(7) in the time stepr; frequency (in axial frequency uniis)

values ofr~0.001IT were adequate to get results converged

to the accuracy reported here. FIG. 2. Fourier transfornfin arbitrary unit$ of the oscillations

Figure 1 shows the radial and axial shape oscillations obf () vs frequency in units of axial frequenay, for the excitation
the BEC for the casfy=0.02t,=0.01 s, after the pulse has scheme of Fig. 1, foA,=0.02, 0.2, 0.4, and 0.@espectively 2—
been turned off. The radial and axial widths displayed are th&0 %). No shift of the fundamental frequency occurs within the
mean values(p) and (z?), respectively, in units of the 1.5% accuracy of our calculations.
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FIG. 3. Spectral response functignot normalized of oscilla-
tions of (r(t)) for an 8Rb BEC with Ng=80 034, contained in a
spherical trap with a radial frequeney= 300 Hz, modulated with
vy=170 Hz,t;=10 ms, andA,=0.02,0.2,0.6. The ordinate is mea-
sured in units ofy, . The inset shows the shift of the fundamental
frequency as a function of driving amplitude, as determined from
the displacement of the highest peak.
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[8]. The most important deviations from a monochromatic |G, 4. (a) Typical probability density in momentum space for a

response are the presence of harmonics, though for larg@feak(2%) driving (dashed linecompared with the initial momen-

modulations some additional weak spectral features are visum distribution(solid line). Units are defined by the characteristic

ible. oscillator length scalel=(2) ~*vh/mv,. (b) Probability density
A major goal of current BEC research is the developmenimultiplied by p?) for a strong (60%) disturbance at times corre-

of a bright source of coherent matter waves, or “atom laser”sponding to 20.0, 20.1, 20.2, and 20.3 units of the trap period. Units

[18], whose operation is described by atom optics in theare defined as ica).

“strong-field” regime, i.e., in which many bosons occupy

the same mode of the matter field. For an electromagnetic

field in vacuq the speed of wave propagation is independent

of the field amplitude(ignpring the n_egligib!e relativistic ef- \yith a radial frequency, =300 Hz. The radial frequency is

fect of light-light scattering by particle pair productlorso  qqulated as in Eq3), with vg=170 Hz andt,=10 ms. In

the spatial structure of a normal mode of the field is inde+his case, we observe a decrease of the induced oscillation
pendent of the qumber of photons that occupy it. In Contrfﬁssrequency with increasind\,. For smallA,, the observed
theacorrespondmg spatial modes of a matter-wave fiel requency is very close tg5v, , which is the value obtained
W (r,t) are described by the GP equatid, and their struc- iy the Thomas-Fermi limi{11,13. Equation(14) of Ref.
ture depends upon the boson occupation nuntedue 1o [13] implies that this frequency should approach, Zor
the presence of the nonlinear terma#2a/m)|W(r,t)|? in  largeA, in the Thomas-Fermi limit, which is consistent with
the effective potential. Thus the atom laser is governed byhe direction observed here. Again, the dominant nonlinear
intrinsically nonlinear atom optics, similar to that of an op- response in these spectra appears to be harmonic generation.
tical laser with a photorefractive cavity medium. It is thus We have compared our results foi(t)) with those obtained
desirable to develop some insight into the qualitative featureby solving the ordinary differential equation of Rg£3] and
of nonlinear atom optical response. find no difference that is significant within the accuracy of
We hypothesize that the weak nonlinearity observed irour method. Thus this case seems to be well described by the
radial squeezing of the TOP trap is related to the anisotropffhomas-Fermi approximation.
of the driving force. This force is applied radially and so the The appearance of these harmonics in spatial distributions
condensate will be able to flow in the axial direction whoseleads us to inquire how they are manifested in momentum
potential is undisturbed. If the trap potential is squeezed irspace and so might be used to modify the de Broglie spec-
all directions at once, on the other hand, there should be &um of a BEC in situations where the trap is suddenly turned
more uniform compression of the condensate, which willoff. In Fig. 4 we plot a series of snapshots of the probability
lead to a higher peak density and thus more pronouncedensity in momentum space both for weak and strong spheri-
influence of the nonlinear term in the GP equation. Indeedcally symmetric modulation of the condensate as depicted in
we find a discernibly greater nonlinear response in the caskig. 3. The snapshots are taken after a 10-ms disturbance and
of an isotropic harmonic trap, with an isotropic modulation several milliseconds of free oscillations in the trapping po-
of the radial frequency. Figure 3 shows the results for artential. The probability density is calculated from the for-
8Rb BEC with Ny=80034, contained in a spherical trap mula
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2 VI. CONCLUSION

[P (k,t)|?~ f:rzjo(kr)R(r,t)cosS(r,t)dr

We have developed a hydrodynamic formulation of the
2 time-dependent Gross-Pitaevski equation and applied it to
' forced oscillations of a dilute Bose-Einstein condensate in
harmonic traps. Its results are consistent in the small-
wherejo(r) is a spherical Bessel function of zeroth orderamplitude limit with linear-response theory and replicate the
and the amplitudér(r,t) and the phas&(r,t) of the wave very-weak-amplitude dependence of the frequency of the
function in a position space can be recovered from the derm=0 mode as observed in the JILA TOP trap. We argue that
sity and velocity fields.(r,t) andv(r,t). the nonlinear response can be enhanced by using uniformly
For the weak 2%) modulation, the density in momentum compressive versus anisotropic driving and show that this is
space is practically time independent. It exibits only a smalconsistent with differences in the nonlinear response of cy-
wiggle [Fig. 4@a)] connected with the localization of the lindrical and spherical traps.
wave packet in position space. For 60% modulation, how-
ever, the momentum distribution changes rap[dig. 4(b)].
Both the central frequency and width of the peak of the mo-
mentum distribution vary by about a factor of 3 over the ACKNOWLEDGMENTS
course of one oscillation. If the trap were to be turned off
suddenly at=t,, we should expect to see the BEC evolve as We thank Robert Dodd and Mark Edwards for numerous
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+ Jmrzjo(kr)R(r,t)sinS(r,t)dr
0
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