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Controlled excitation of selected regions inside dielectric media

J. R. Csesznegi, B. K. Clark, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 5 December 1997!

We propose an optical scheme to control the degree of excitation of spatially localized regions inside an
absorbing three-level medium using two suitably delayed laser pulses. Only selected localized regions inside
the medium are changed by the pulses, the remaining medium remains unchanged in its ground state. We
present an approximate but analytical theory of the coupled Liouville and Maxwell equations and propose an
experimental verification of this control excitation scheme for potassium vapor.@S1050-2947~98!02606-7#

PACS number~s!: 42.65.Hw, 42.65.Re
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I. INTRODUCTION

There has been some growing interest in manipulating
quantum-mechanical state of dielectric materials using la
light. The challenge of coherent control is to exploit eith
~a! tailor-made waves to drive matter to a desired state or~b!
certain properties of matter to design wave forms. In the
decade exciting experimental and theoretical progress
made in both categories.

A commonly used laser technique of driving an atom in
a desired excited state involves the coherent interaction
a laser field of specified pulse area. Other methods to
ciently excite selected states require a time-dependent de
ing ~chirped pulses!. Recently, the application of two or sev
eral laser pulses has been proposed to excite selected a
or molecular states with high efficiency. A good example
the experimental work of Bergmann and co-workers@1#, in
which a sequence of two appropriately delayed resonant l
pulses is used to transfer population into a higher lying st

The possibility of controlling the quantum-mechanical d
gree of coherence of an atom or a molecule has also le
some progress in understanding the optical properties o
electric media. Harris’s pioneering work@2# experimentally
demonstrated that the transmission properties of an ato
medium can be changed significantly if a second strong la
field is applied. The theoretical analysis of the fully coupl
interaction of two laser fields with a three-level system
very challenging. For a medium that is initially in the groun
state, soliton wave forms have been predicted@3# and re-
cently the cloning of wave forms using two-photon coh
ences@4# has been proposed. Analytical solutions and a b
ter understanding is possible in the regime in which
medium’s response to the fields is temporally adiabatic@5#.
Here it is possible to combine the principles of the dark-st
dynamics, counterintuitive pulse sequencing, and two-pho
adiabaticity to derive coupled wave equations which all
for fully analytical solutions. Novel solitonic wave form
called ‘‘adiabatons’’ have been predicted using this appro
@6,7#. In 1995 an experimental observation of adiabatons@8#
was reported.

In almost all investigations, each of the atoms or m
ecules of the medium was either the ground state or a co
ent superposition@9–13# of states. Recently, the remarkab
optical properties of a novel medium have been investiga
@14#, in which the degree of excitation does depend on
571050-2947/98/57~6!/4860~9!/$15.00
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position. In this work we will discuss how a sequence
appropriately delayed laser pulses can be used to prod
these spatially dependent excitations in a laboratory. We
demonstrate that it is possible to use the laser pulses to
trol the state of specified spatial regions inside an absorb
medium without affecting the remaining domains. This si
ation can be achieved if the laser fields are nearly reson
with the same upper atomic state and are injected into
medium in the counterintuitive order. The two pulses inter
fully dynamically with the medium and at a predetermin
propagation depth one pulse will decay to excite the ma
rial. This coherent interaction can even be used to control
only the final population in selected states, but also to g
erate specific phase relations between the corresponding
amplitudes.

Our paper is organized as follows. We first review t
essential equations which govern the interaction of a med
of three-level atoms or molecules with two nearly reson
laser fields. This section will also introduce the relevant p
rameters. In the third section we will provide a simplifie
analytical theory based on temporal adiabaticity and comp
our analytical results with those obtained from the numeri
integration of the full set of equations. In the fourth secti
we discuss the relevant parameters to control the degre
excitations in a potassium vapor. Finally, we conclude wit
brief discussion and a very speculative outlook on poss
applications.

II. BASIC EQUATIONS AND PARAMETERS

In Fig. 1 we have sketched the relevant parameters for
medium as well as the relevant time scales for the simp
case of two incoming laser pulses. We denote withL the
total length of the material,D1 is the penetration depth a
which we would like to excite the medium into a specifie
metastable state, and the thickness of this metastable lay
denoted byD2–D1 . The time when the first laser field i
injected into the medium~at z50! is denoted byt50. The
two input laser pulses can be characterized by their temp
duration denoted bytoff– ton andTb and by their mutual de-
lay at turn onton. The choice of the penetration depthsD1
andD2 determines the values forton, toff , andTb . The final
degree of the excitation as well as its spatial profile is c
trolled by the laser intensities and the pulse shapes at in

We assume that the optical medium is characterized
4860 © 1998 The American Physical Society
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57 4861CONTROLLED EXCITATION OF SELECTED REGIONS . . .
three atomic or molecular energy levels. We describe
state of each atom or molecule by nine matrix elements
the density operatorr i j . Each matrix element is a functio
of time and space. The ground state is denoted byu1& and the
metastable state which we want to excite is denoted byu3&.
We assume that both states are dipole coupled to a com
upper stateu2&. For the numerical simulations discussed
Sec. III, we have assumed various kinds of irreversi
mechanisms that are relevant to a vapor of potassium m
ecules, for which we propose an experiment.

In Fig. 2 we show a typical energy scheme of a three-le
l system with the most relevant couplings. The parame
A21 andA23 correspond to the spontaneous emission from
upper level into statesu1& and u3&, and we have also include
the dipole dephasing between levelsu1& and u2&, u2& and u3&,
and u1& and u3& with the decay ratesg12, g23, and g13,
respectively. An irreversible decay rate of the upper state
to ionization or coupling to other levels that are not includ
in the model is denoted byG. We have also allowed fo
detunings Da5(E22E1)/\2va , and Db5(E22E3)/
\2vb , whereEi are the energies of the relevant levels a
va,b denote the respective laser frequencies.

For simplicity we have transformed the space and ti
variables to a coordinate system moving with the speed
light c: t5t2z/c, where t denotes a delayed time. Th
equations for the density matrix elements take the follow

FIG. 1. The relevant parameters.~a! The medium’s length
scalesD1 , D2 , andL. ~b! The time scales for the two input pulse
at the entry surface of the mediumTb , ton, andtoff .

FIG. 2. Energy level scheme of a three-levell atom or mol-
ecule.
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form in the rotating-wave approximation:

i
]

]t
r11~z,t!52

1

2
~Va* r122Var21!1 iA21r22,

~2.1a!

i
]

]t
r22~z,t!52

1

2
~Var211Vbr232Va* r121Vb* r32!

2 i ~A211A2312G!r22, ~2.1b!

i
]

]t
r33~z,t!52

1

2
~Vb* r322Vbr23!1 iA23r22,

~2.1c!

i
]

]t
r21~z,t!5

1

2
@Va* ~r112r22!1Vb* r31#

2 i ~b211G2 iDa!r21, ~2.1d!

i
]

]t
r23~z,t!5

1

2
@Vb* ~r332r22!1~Va* r13!#

2 i ~b231G2 iDb!r23, ~2.1e!

i
]

]t
r31~z,t!5

1

2
@Vbr212Va* r32!] 2~ ig311Db2Da!r31.

~2.1f!

The phenomenological constants@15# which account for
damping have been defined asb21[0.5(A211A23)1g21 and
b23[0.5(A211A32)1g23.

The laser field is a sum of two laser pulses

E~z,t !5Ea~z,t !exp$ iva~ t2z/c!%

1Eb~z,t !exp$ ivb~ t2z/c!%1c.c., ~2.2!

with the two near resonant optical frequenciesva and vb .
The two components can have sufficiently different frequ
cies such that each of them is coupled only to one transit
1-2 ~for Ea! and 2-3~for Eb!. We use the slowly varying
envelope approximation so that the temporal and spatial e
lution of each field amplitude is governed by a reduced wa
equation. We neglect transverse propagation effects. The
tation is simplified if we replace the electric field amplitud
by Rabi frequencies viaVa[2daEa /\ andVb[2dbEb /\,
whered is the dipole moment between the relevant level

]

]z
Va~z,t!5 ima*dDar12~z,t!ga~Da!, ~2.3a!

]

]z
Vb~z,t!5 imb*dDbr32~z,t!gb~Db!. ~2.3b!

The coupling coefficientsma,b are related to the number den
sity of atomsN via ma,b[Nda,b

2 va,b /«0\c. The function
g(D) is the inhomogeneous linewidth of the medium due
the velocity distribution of the atoms in the vapor.

In order to test the regime of validity of our analytic
theory presented below, we have solved the fully coup
Liouville-Maxwell equations~2.1! and~2.3! on a spatial-time
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4862 57J. R. CSESZNEGI, B. K. CLARK, AND R. GROBE
grid. For the total interaction time, we have used ab
20 000 grid points and, for the spatial grid, 40 000. T
coupled equations have been solved using a standard Ru
Kutta fourth-order algorithm for the integration in time and
simple Euler algorithm for the integration in space. To t
the numerical accuracy we reduced the grid points in e
direction by a factor of 2 and found that the results we
unchanged.

III. THEORETICAL ANALYSIS OF THE SPATIAL
EXCITATION PROCESS

A. Analytical theory based on adiabaticity

The physics of the excitation process can be qualitativ
described as follows. One long and one short pulse are
jected into a medium that is in its ground state. The lo
pulse,Vb , is injected into the medium first as shown in Fi
1~b!. The short pulse,Va , exchanges its energy with th
medium when the front edge of the pulse is absorbed by
medium and the same amount of energy is then transfe
back into the trailing edge of the same pulse. The med
left behind is in the ground state. This exchange mechan
requires the presence of both fields and effectively slo
down pulseVa . The larger is theVa pulse intensity, the
more theVa pulse velocity is reduced. This means that
trailing edge comes closer to the trailing edge ofVb pulse
that moves with the speedc. The trailing edge ofVb is not
slowed down as the medium is left behind in the grou
state, becauseVb does not couple directly to the groun
state.

After a characteristic propagation distance, the~fast! trail-
ing edge ofVb has caught up with the edge ofVa . As Vb is
turned off, the medium cannot return the energy back i
pulseVa andVa begins to decay. Part of its energy remai
in the medium and part of it is converted to the energy
pulseVb . When pulseVa has decayed a layer of excitatio
is left behind.

Below we will derive analytical formulas for the degre
of energy conversion, the spatial profiles of the layers
excitation, and the requirements on the laser pulses to
duce specific spatial excitation patterns. Our theory is ba
on the theory of adiabatons as first introduced in Ref.@6#. In
the adiabatic regime, the time evolution follows one eige
vector, the so-called trapped state@16#. This state relates the
state populations of the atom to the Rabi frequencies:r11
5uVb /Vu2 and r335uVa /Vu2, where the two-photon Rab
frequency is denoted byV2[uVau21uVbu2. In order to ex-
clusively excite the trapped state, the laser fieldVb that is
coupled to the initially ‘‘empty’’ transition~2-3! has to be
turned on before the pulseVa , which couples to the initially
populated ground state@17#. A generalization to ‘‘hot’’ me-
dia with a thermally populated stateu3& is discussed in Sec
IV. In order to guarantee that the other eigenstates rem
practically decoupled from the dynamics, the two Rabi f
quencies have to satisfy the well-known condition@18#

UVa

]

]t
Vb2Vb

]

]t
VaU!A@Va

21Vb
2#3. ~3.1!

Inequality~3.1! is more easily satisfied for stronger fields.
this condition of temporal adiabaticity@5# holds the final
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state of the medium after the two pulses have passed is
termined by the following relation:

G~z![r33~z,t→`!5uVa~z,t→`!/V~z,t→`!u2.
~3.2!

The limit t→` is meant in a physical~not mathematical!
sense. It is clear that if both pulses~or the corresponding
areas! are too small, the actual population in stateu3& cannot
be changed.

The central goal of this work is to find the temporal cha
acteristics of two input pulses that can generate the final s
of the medium in accordance to a chosen excitation func
G(z). The difficulty in evaluating the expression Eq.~3.2!
arises because both pulses interact nonperturbatively with
material and change their shapes as they propagate thr
the medium. In the adiabatic regime, however, the tempo
and spatial evolution of both laser pulses can be found a
lytically. The evolution of the two pulses is characterized
the following set of nonlinearly coupled wave equations@6#:

]

]z
Va52

2ma

V

]

]t

Va

V
, ~3.3a!

]

]z
Vb52

2mb

V

]

]t

Vb

V
. ~3.3b!

As the decay of pulseVa is important with respect to the
final excitation of the medium, we will first discuss how th
number of photons and the energy of the pulseVa change
with increasing propagation distance. The total electrom
netic field energy per unit area of each pulse that pas
through positionz can be obtained directly from the Rab
frequency viawa[«0c\2*dtuVa(z,t)u2/(2da

2). If we mul-
tiply both sides of Eq.~3.3a! with Va and integrate with
respect tot, we find the following relation between the fina
population in the excited state and the spatial variation of
time-integrated squared Rabi frequency.

]

]z

1

2ma
E

0

`

dtuVa~z,t!u252r33~z,t5`!, ~3.4!

where we have used the initial conditionr33(z,t50)50 and
the trapped-state relationr335uVa /Vu2. The integral
(1/2ma)*0

`dtuVa(z,t)u25@wa /(\va)#/N has a direct inter-
pretation: it is the ratio of the total number of the photo
passing throughz and the number of atoms per unit lengt
This ratio does not depend on the dipole moment. The ‘‘c
servation’’ law of Eq.~3.4! shows that the field cannot los
any energy at those locationsz at which the medium is left
behind in the ground state@r33(z,t5`)50#. For the simple
situation sketched in Fig. 1 this is required for short prop
gation distancesz,D1 and also forz.D2 . For short dis-
tancesz,D1 , the~fast! trailing edge ofVb cannot reach the
~slow! trailing edge ofVa . As both pulses interact strongl
even for z,D1 , the conservation law does not guarant
shape-invariant propagation. If we integrate Eq.~3.4! over
the distancez and multiply withN, we obtain
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N
1

2ma
E

0

`

dtuVa~z50,t!u22N
1

2ma
E

0

`

dtuVa~z5L,t!u2

5NE
0

L

dzr33~z,t5`!. ~3.5!

This relation illustrates how the electromagnetic field ‘‘e
ergy’’ of the pulse can be converted into the atomic exc
tion energy. Each term on the left-hand side is the total nu
ber of photons in the pulse that has passed through pos
z. The difference between the two terms is the number
photons that were used to excite the atoms. The right-h
side is the number of metastable atoms in the entire med
per unit area.

Let us now solve the adiabatic wave equations, Eqs.~3.3!,
and present the solution forVa(z5L,t). Although these
equations are coupled through the two-photon fieldV2

[uVau21uVbu2, the spatial and temporal evolution of th
fields can be expressed analytically for any arbitrary ini
fields. It is easy to see that these equations can be writte
a fully integrable form if we assume equal oscillator stren
for both transitions (ma5mb) and introduce the nonlinea
variableX(t):

X~t![
1

2m E t

dt8uV~z50,t8!u2. ~3.6!

The analytical solution of Eq.~3.3! can be expressed directl
as a function of the~arbitrary! input laser pulses atz50:

Va,b~z,t!5
Va,b@z50,X21

„X~t!2z…#

V@z50,X21
„X~t!2z…#

V~z50,t!,

~3.7!

where X21( ) denotes the inverse function to the integ
X(t). If the total Rabi frequencyV(z50,t) happens to be
time independent after a suitable turn on, the fieldVa(z,t) is
only a function ofX(t)2z and can propagate with invarian
shape after a characteristic propagation distance. Th
shape-invariant solutions are called adiabatons. Adiaba
are solitonlike pulse pairs that are formed by an absorb
medium and can propagate in a medium without signific
loss. References@6,7# have shown that Eq.~3.7! describes
the spatial and temporal evolution with a remarkable pre
sion, if dissipative mechanisms that are not directly relate
stateu2& are negligible and inequality~3.1! is satisfied.

For the present work we do not require the formation
any shape-invariant solutions. If the medium’s total lengthL
exceedsX(Tb)[Z, the fields can propagate a sufficient d
tance such that part of the energy of the pulseVa can be
converted into that of the other pulseVb . The temporal
shapes of the output pulses follow immediately from the
lution Eq. ~3.7!, usingX21(0)50 andVa(z50, t50)50.
We obtain interesting pulse shapes forz.Z:

Va~z.Z,t!50, ~3.8a!

Vb~z.Z,t!5A@Va~z50,t!21Vb~z50,t!2#.
~3.8b!
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It is interesting to note that, although the fieldVb experi-
ences some significant reshaping as it propagates throug
medium, its output shape is practically identical to its sha
at input with the only exception of those timest where both
pulses overlapped at input. It is also remarkable that, e
though the entire temporal and spatial evolution depends
m, the final output pulse shape does not.

The final state of the fields can be used to compl
our energy analysis for the excitation process. Recall
the definition of the electromagnetic field energy p
unit area that has passed through a positionz,
wa,b[«0c\2*dtuVa,bu2/(2da

2), and using the relations Eq
~3.8! we find for the electromagnetic field energywb at out-
put (z.Z)

wb~z.Z!5wb~z50!1
vb

va
wa~z50!. ~3.9!

In other words, a fraction of the energy of the input pulseVa
is used to increase the energy of the fieldVb at output by the
amount (vb /va)wa(z50). If we assume that the groun
state of the medium has zero energy (E150), then the total
excitation energy contained in the medium per unit area
Wmed(t)[N\(va2vb)*dzr33(z,t). It follows directly
from relation Eq.~3.5! that the remaining fraction of the
input field energy@12(vb /va)#wa(z50) is converted into
the excitation energy of the medium according to

Wmed~t5`!5N\~va2vb!E dzr33~z,t5`!

5~12vb /va!wa~z50!. ~3.10!

As a next step we investigate how the medium’s exc
tion evolves under the two pulses. Assuming that the m
dium remains in the trapped state throughout the evolu
we find from Eq.~3.7!

r33~z,t!5UVa~z50,X21
„X~t!2z…!

V~z50,X21
„X~t!2z…! U

2

. ~3.11!

This expression shows that, after the medium has b
brought into its metastable state, the excitations can tra
through the medium with a velocity2(]/]t)r33/(]/]z)r33
5V2/2m in the moving coordinate frame or, equivalentl
with a velocity2(]/]t)r33/(]/]z)r3352mc/(2m1cV2) in
the laboratory frame.

The main goal of the present work is to investigate h
two input pulses can be employed to excite the medium
specified depth. After both pulses have passed through
medium, the final spatial distribution of the population in t
metastable stateu3& is given by

r33~z,t→`![G~z!5UVa„z50,X21~Z2z!…

V„z50,X21~Z2z!…
U2

.

~3.12!

If we assume that the input pulseVa is practically nonzero
for ton<t<toff as shown in Fig. 1, then it follows that th
final population in stateu3& r33(z,t→`) is nonzero at re-
gionsz,
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D1[Z2X~ toff!>z>Z2X~ ton![D2 . ~3.13!

This relation defines implicitly the required turn-on and tur
off parameters as a function of the chosen lengthsD1 and
D2 .

Unfortunately, Eq.~3.12! is an implicit relation to deter-
mine the two laser pulse shapes from a chosen func
G(z). To find the characteristics of the input laser pulses
a direct function of arbitrary spatial excitation profilesG(z)
is a quite interesting mathematical problem, perhaps it is
even solvable in full generality unless numerical techniq
are applied.

B. Two analytically solvable cases

It might be illustrative, however, to examine two spec
cases of input pulse shapes, for which relation Eq.~3.12! can
be inverted. In the first one, we restrict the envelopes of b
pulses to take constant amplitudes:Va(z50,t)5A for ton
<t<toff and Vb(z50,t)5B for 0<t<Tb . For this case
we find for the pulse delay parameters

ton5Tb2
2m

A21B2 D22
A2

B2

2m

A21B2 D1 , ~3.14a!

toff5Tb2
2m

B2 D1 . ~3.14b!

The spatial excitation distributionG(z) would be equal to
A2/(A21B2) for D1<z<D2 and zero outside. The require
duration of the input pulseVa is toff2ton5@2m/(A2

1B2)](D22D1). Note that in this example it is impossibl
to transfer all the population into the metastable state, iB
!A.

For the second analytical example, it is possible to
press both pulses directly as a function of an arbitrary e
tation profile G(z). Let us assume that both input puls
have ‘‘antimatched’’ envelopes such thatVa(z50,t)2

1Vb(z50,t)2[B2 is a square pulse for 0,t,Tb and zero
otherwise. This, of course, does not necessarily imply t
Va and Vb are constant. In this case, the characteris
propagation distance isZ5(B2/2m)Tb and the integral
X(t)5(B2/2m)@t2(t2Tb)q(t2Tb)#, where q~ ! is the
Heaviside unit step function. Its inverse functionX21(x)
5(2m/B2)x for 0<x,Z and it has a singularity atx5Z. If
we insert this into Eq.~3.12! and solve forVa,b(z50,t), we
obtain the shapes of the input pulses as a function of
given excitation profileG(z):

Va~z50,t!5BFGS z5
B2

2m
~Tb2t! D G1/2

, ~3.15a!

Vb~z50,zt!5BF12GS z5
B2

2m
~Tb2t! D G1/2

.

~3.15b!

In this case, the required input pulse shape forVa
2 is just a

mirror symmetric replica of the spatial excitation profile. L
us assumeG(z) is practically nonzero for the distanceD1
,z,D2 . It follows immediately that the total pulse duratio
Tb has to be sufficiently long for a given pulse energ
-

n
s

ot
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l

th

-
i-
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e

,

Tb.(2m/B2)D2 . The deeper the layer to be excited insi
the medium is, the longer the pulses must be chosen.
equivalently, if both pulses are less intense, they must ha
larger duration. Equation~3.13! also relates the chose
length parameters to the required turn-on and-off times
pulseVa(z50,t):

ton5Tb2
2m

B2 D2 , ~3.16a!

toff5Tb2
2m

B2 D1 . ~3.16b!

This example shows that the pulse duration of the pu
Va(z50,t), which is toff2ton5(2m/B2)(D22D1), can be
chosen arbitrarily short ifB is large and the pulse is suffi
ciently intense.

The two examples above demonstrate that there are m
pulse pair combinations that lead to the same spatial exc
tion profile. If, however, the shape of one of the pulses
specified, then the other is directly determined byG(z). The
question arises whether the two pulsesVa andVb can have
identical envelopes and different amplitudes. Equation~3.12!
suggests that in order to excite a localized regime inside
medium, the envelopes should be different.

C. Comparison of the theory with numerical results

This section serves the purpose to compare our analy
results based on adiabaticity with the exact numerical so
tion of the Liouville-Maxwell equations and to graphical
illustrate the spatially and temporally resolved interaction
the fields with the medium. We assume that the medium
initially entirely in its ground state. The relevant paramete
are given in the figure captions. The figures on top are
exact data and should be compared directly with those at
bottom that were obtained by graphing the correspond
analytical solutions.

In Figs. 3~a! and 3~b! we display snapshots of the temp
ral profiles of two pulses taken at various propagation d
tances. At input (z50) the field Va was chosen to be a
simple Gaussian whereas the fieldVb was practically a
square pulse between short turn-on and -off times. It is
parent that both pulses change their shapes significantl
they penetrate the medium. The trailing edge of fieldVb
@right side of graph~b!, at 60,t,80# travels with speedc.
The pulseVa , however, travels with a reduced velocity. A
a certain propagation lengthz'2000 the fast trailing edge o
Vb has reached the~slow! trailing edge ofVa and the pulse
Va starts to decay. This decay is accompanied by an incre
of the amplitude of fieldVb . After pulseVa has decayed
completely, the final form ofVb is practically indistinguish-
able with the analytical predictions given by Eq.~3.8b!.

In Fig. 4 we display the population probabilityr33(z,t) as
a function of the positionz at various timest. We see that—
after its formation—the spatial excitation profile propaga
through the medium as well. The spatial distributions
70,t becomes ‘‘frozen’’ and represents the final excitati
function G(z). The data on the bottom correspond to t
analytical prediction of Eq.~3.11!. The agreement is agai
very good. The small superimposed oscillations presen
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the exact data~top! could be a manifestation of nonadiab
ticity.

In Fig. 5 we display the time integral of the squared Ra
frequency as a function ofz for both pulses. Although both

FIG. 3. The temporal evolution of the two laser pulses. The
curve shows the exact data obtained from the numerical solutio
Eqs. ~2.1! and ~2.3!; the bottom curve is the prediction accordin
to the analytical formula Eq.~3.7!. ~a! The temporal profiles
of the field Va . These were taken at propagation distanc
z50, 1000 ~dashed line!, 2000, 3000~dotted line!, and 3500
~smallest amplitude!. The pulse is vanishingly small for propaga
tion distancesz.4000. ~b! The corresponding evolution fo
the field Vb at the same distances as in~a!. „The parameters
were ma5mb51, A215A235g125g235G50.05, Da5Db50,
Va(z50,t)5A exp$20.5@(t235)/7#2%, and Vb~z50,t!
5B exp[20.5(t/tp)2] for t,4tp ; Vb(z50,t)5B for 4,t/tp

,12 and Vb(z50,t)5B exp$20.5@(t212tp)/tp#2% for 12
,t/tp , A510, B512, tp55.…
i

pulses reshape significantly for distancesz,1800, the indi-
vidual ‘‘pulse energies’’ are conserved. The pulseVa decays
to zero and its energy is partially converted to that of pu
Vb only for 1400,z,3600.

In Fig. 6 we show the breakdown of adiabaticity and th
of our analytical theory. The same parameters as in the
vious figure were chosen but with unequal propagation co
ficients which differ by a factor of 3. Compared to the resu
for ma5mb , the temporal front edge ofVa steepens. This
steepening is accompanied with a breakup of the front e
into several sharp spikes, which can have amplitudes that
exceed the amplitude of the input fieldVb . None of these
features can be predicted by a theory that is based on
poral adiabaticity. For completeness we show in Fig. 6~b! the
spatial profile of the final excitation function. We foundp

of

s

FIG. 4. The spatial evolution of the excitation. The top cur
shows the exact data obtained from the numerical solution of E
~2.1! and ~2.3!; the bottom curve is the prediction according to t
analytical formula Eq.~3.11!. The spatial distribution of the popu
lation r33(z,t) in the metastable stateu3& displayed at timest
530, 40, 50, and 70. The dashed line corresponds to the final
tribution for t.70 ~same parameters as in Fig. 3!.

FIG. 5. The time-integrated squared Rabi frequency of the
pulsesea(z)[*dt8uVa(z,t8)u2 and eb(z)[*dt8uVb(z,t8)u2 as a
function of the propagation distancez ~same parameters as in Fig
3!.
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most of our numerical simulations that the breakdown
adiabaticity is initiated by a steepening of the temporal fr
edge.

We conclude this section by demonstrating how a
quence of several laser pulses can be exploited to genera
interesting spatially periodic excitation pattern inside the m
dium. The fieldVa was chosen to be a sequence of fo
Gaussian shaped pulses. The fieldVb was the same as abov
We display the two input pulse shapes in Fig. 7~a! Figure
7~b! shows an interesting spatially periodic pattern of ex
tation. A study of the optical diffractive properties of such
periodic ~index of refraction! pattern and its potential appli
cations will be discussed elsewhere.

IV. PREDICTIONS FOR SPATIAL EXCITATIONS
IN A POTASSIUM VAPOR

A possible experimental verification of the excitation
selected spatial domains inside a dielectric material seem
be quite possible in the optical regime of atomic or mole
lar vapors. In the following we demonstrate how one c
obtain spatial excitations for a potassium vapor. This va
has been used recently to study optically pumped lasers@19#,
electronic transition moments, and collisional relaxati
rates. As this section is designed as a direct guidance
possible experiments, we have used cgs units.

A vapor containing K2 molecules, where the vapor is con
tained in a heat-pipe oven, is a possible system to exp
three-level physics as appropriate molecular transitions
have very similar oscillator strengths. We consider the s
ation with theX 1Sg

1(v51, J547) level as the ground stat

FIG. 6. The breakdown of the analytical theory due to ve
different propagation coefficients.~a! Temporal profiles of the
field Va taken at propagation distancesz50, 500, 1000, and 1500
~dotted line!. ~b! The final spatial distribution of the populatio
r33(z,t) in the metastable stateu3&. ~With the exception ofma

51.5 andmb50.5, all other parameters as in Fig. 3.!
f
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u1&, the B 1Pu(v56, J547) level as stateu2&, and the
metastable levelX 1Sg

1(v513, J547) as stateu3&. The
quantum numberv denotes the vibrational level, and th
quantum numberJ denotes the rotational level. The energi
of the u1& to u2& andu3& to u2& transitions are 15 690.8 cm1 and
14 648.7 cm21, respectively. The dipole moment of th
B 1Pu–X 1Sg

1 electronic state transition is 6 debye@20#.
The Franck-Condon factors@21# for the u1& to u2& and u3& to
u2& transitions are 0.130 and 0.144, respectively@22#. Further,
Hönl-London factors decrease the transition intensity by
additional factor of 2. A gas pressure of 800 Pa correspo
to a molecular particle density of N5331012

molecules/cm3 ~most of the pressure is due to atoms!. These
parameters correspond to the propagation coefficients ofm of
approximately 2.731010 cm21 sec21 for both transitions.
The electronic transitions in K2 are characterized by the fol
lowing dissipative decay rates: The total spontaneous em
sion rate from the upper level is 8.333107 Hz. The dephas-
ing rates due to collisions are not so well known, we estim
them equal and to beg125g2352.43108 Hz. The statesu1&
andu3& are not dipole coupled so one might expect thatg13 is
much smaller thang12 @23#. The magnitude of the irrevers
ible decay rate of the upper state due to ionization or c
pling to other levels denoted byG depends on the intensity
A rough estimate yieldsG to be smaller than the other radia
tive rates.

Both transitions can be resonantly excite

FIG. 7. The generation of a spatially periodic excitation patte
inside the medium produced by a sequence of four input pu
Va . ~a! The temporal profiles of the two input fields atz50. ~b!
The final distribution of population in the metastable state after
pulses have left the medium.„The parameters werema5mb51,
A215A235g125g235G50.05, G50.05, Da5Db50, Va(z50,t)
is a sequence of four pulses of the formVa(z50,t)
510 exp$2@(t2tc)/2#2% that are centered attc525, 35, 45, and 55.
The other input fieldVb(z50,t) is identical to the one used in Fig
3.…
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(la5637.3 nm andlb5682.7 nm! via radiation from tun-
able dye lasers, which are in turn pumped by a freque
doubled Nd: YAG~YAG denotes yttrium aluminum garne!
~Spectra Physics! laser. The two pulse envelopes can be v
ied in temporal length from 3 to 6 nsec.

The temperature of the K2 gas in the heat pipe is typicall
around 410 °C, which corresponds to a Doppler width
about 1.7 GHz. The adjacent rovibrational levels are su
ciently far apart that practically no transition becomes d
namically important and we ignore the Doppler effect. T
high temperature of the vapor, however, leads to initial th
mal populations in stateu3& which can be approximately
10%. In the following we assume that the time scale
thermally exciting the stateu3& is longer than the laser
medium interaction time and we therefore neglect the po
bility of thermal reexcitation. To reflect an initial therma
excitation we have repeated the simulations discusse
Figs. 3–5 for a non zero but spatially constant initial value
r33(z,t50) and assumed that the initial two-photon coh
encer13(z,t50) is zero. Basically, a nonzeror33 has two
implications: First, the front edge of the first injected pul
Vb that is resonant with the ‘‘nonempty’’ 3-2 transitio
steepens and is being absorbed by the medium. The en
of the pulseVb decreases therefore as the pulse propag
even before pulseVa begins to decay. However, if bot
pulses have comparable Rabi frequencies, the relative s
at which the location of the front edge moves towards
center of the pulse is comparable to the relative speed
which the trailing edgeVb approaches the slow pulseVa .
As the final remaining excitation function is determined on
by the interaction of the pulses with the medium at the tr
ing end, the absorption of the front edge of the pulseVb is
not so crucial.

Second, only the fractionr11(z,t50) of the molecules
can initially satisfy the trapped state condition for counter
tuitively injected pulses. In other words, one can assume
the number densityN ~and therefore the propagation co
stant m! is effectively reduced by the factorr11(z,t50),
meff5mr11. This leads to a faster propagation velocity
pulseVa and therefore to a broader final excitation distrib
tion. All of our simulations with various values forr11(z,t
50) were in good agreement with the analytical estima
discussed in Sec. III B with respect to the location and wi
of the final excitation function if we used an effectivemeff .

In Fig. 8 we show an example for a pair of Gaussian in
pulses.Va (Vb) has an intensity width@full width at half
maximum~FWHM!# of 3 nsec~6 nsec!, a Rabi frequency of
0.022 cm21 (0.026 cm21). In Fig. 8~b! we display the final
population in levelX 1(g

1(v513, J547) as a function of
the distance. In order to probe the final excitation distrib
tion, one can inject an additional laser beam at 682.7 nm
recall the spatial excitation as outlined in Ref.@14#. This
recall field, however, should not be delayed by more than
two-photon coherence decay time (g13)

21. More directly,
one can probe the medium using a tunable dye laser
analyzing the associated laser-induced fluorescence. The
ter technique would require a disk-type heat-pipe des
which allows for the injection of probe laser beams perp
dicular to the main propagation direction.
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V. DISCUSSION

In order to obtain fully analytical results, the descriptio
was restricted to the case of equal oscillator strengths
tween the relevant transitions. The larger the ratio betw
the oscillator strengths, the shorter is the propagation
tance after which effects due to nonadiabaticity become
portant. In most of our numerical simulations we found th
the breakdown of adiabaticity occurs due to a steepenin
the temporal front edge of pulseVa . This steepening is then
accompanied with a breakup of the front edge into seve
sharp spikes, which can have an amplitude that can exc
the amplitude of the input fieldVb by an order of magnitude
Another measure for the magnitude of effects due to n
adiabaticity is the quantityVa

2/ma1Vb
2/mb which should not

change as a function of space if the dynamics is adiab
and governed by Eqs.~3.3!. Another source for nonadiaba
ticity is the collisional broadening between the two-phot
resonant ground and metastable states. As the excitation
cess relies on the two-photon coherence, this type of re
ation has the largest impact on the dynamics. There are
several aspects of a real laboratory experiment which w
not taken into account in our model; these include poss
chaotic multimode temporal laser envelopes, transve
propagation effects, quick rethermalization during the int
action, the possible interaction of more than three molecu
states with the field, and possible shifts in the lasers’ po

FIG. 8. The generation of a spatial excitation pattern insid
vapor of K2 molecules. ~a! The temporal profiles of the two inpu
fields atz50. ~b! The final distribution of population in the meta
stable stateX 1Sg

1(v513, J547) after the pulses have left th
medium. After 5 cm the final excitation is established and the pu
Va has decayed.„The parameters@see Eq.~2.1!# were chosen to
match as closely as possible experimentally achievable conditi
ma5mb52.7331010 cm21 sec21, G5100 MHz, Da510 MHz, Db

510 MHz, A21511 MHz, A22512 MHz, g125g23512 MHz, g13

51.2 MHz, Va(z50,t)5A exp@2„(t210.8 nsec)/(1.67tp)…2#;
Vb(z50,t)5B exp$2@(t214.4 nsec)/(3.34tp)#2%, tp53 nsec, A
54.13 GHz,B54.96 GHz….
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ization direction due to spontaneous emission or collisio
Experimental data would shine some light on the relat
importance of these effects.

Let us now complete this discussion with a quite spe
lative outlook at possible applications for the proposed ex
tation process. In general the key parameter to describe
optical properties of any material is the index of refractio
To generate and to control this index is the goal of ma
manufacturing processes for optical devices such as op
fibers, optical instruments such as lenses, or even gases
control of the optical propagation properties of gases is a
of interest in adaptive optics. It is typical for most manufa
turing processes, however, that once an index of refrac
has been imprinted on a medium, a further modification
the index is practically impossible without destroying t
material. This can be costly. In most cases spatially irrev
ible structures and a permanent index of refraction are q
desirable. However, one could imagine situations in whic
is advantageous to have a material in which the index
refraction can be easily adjusted to specific and chang
optical requirements.

The index of refraction of any dielectric optical materi
depends directly on the structure of its quantum-mechan
energies and the dipole moments. A material in a metast
state can have completely different absorptive and disper
er
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properties than the same material in its ground state.
index of refraction can be controlled using our process
‘‘manufacture’’ the degree of excitation of a material as
function of the position in a desired way. As an example
have shown that a sequence of several pulsesVa at input
generates a spatially modulated periodic index of refract
leading to quite interesting refractive properties. The spa
wavelength of this periodic pattern can be controlled direc
by the repetition rate of the input laser pulses. The lifetime
this spatial pattern is given by the lifetime of the metasta
state and not by the~typically shorter! phase relaxation time
In general, metastable states can have lifetimes that
range from nanoseconds to hours, depending on the spe
state.
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