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Linear absorptive dielectrics
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Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, charac-
terized by the constitutive equatiof3(x,t)=e,(X)E(x,t)+ [ .dsx(x,t—s)E(x,s) and H(x,t)=B(x,t), a
unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-
dependent, electric permeabilig(x,w), no further assumptions are made. The procedure leads to a proper
definition of band gaps in the periodic case and a new continuity equation for energy flo®-nAatrix
formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is
derived and applied to the generation adrénkov and transition radiation as well as atomic decay. The last
case suggests a useful generalization of the density of states to the absorptive situation.
[S1050-294{@8)01906-4

PACS numbes): 42.50—-p, 42.50.Ct, 03.50.De

. INTRODUCTION a uniform, nonabsorptive, background. Thep(x) is the
background permeability outside the particles but may be
The present work deals with Maxwell’'s equatiofdE)  different inside, thus leading to andependence. In general
for a lossy, macroscopic, nonconducting, linear medium  ¢,(x)=1 if x is in an absorptive region, thus ensuring the
proper high-frequency behavior. In a nonabsorptive region,

DX, 1) = d X H(X,1) = I(x,1), (1)  Where x(x.t) vanishes.s;(x)is the static permeability and
' may be larger than one. It is the convolution part in 8¢2),
B(X,t) = — X E(X,t),5- B(x,0)=0. leading to a complex, frequency-dependelik,) in the

, Laplace or Fourier transformed ME, that prevents the
In the case where the fields are related by frequencygiaightforward construction of a Lagrange formalism and
mdepeg?ent permeabilities, D(x)=&(X)E(x), H(X)  quantization. It is also not obvious how to define band gaps.
=wm(X) "B(x), energy is conserved for vanishing external the ysyal definition as a vanishing density of states in an
currentJ. This allows the introduction of a suitable norm and ;terval becomes problematic sine€x, ») is complex, lead-

corresponding Hilbert space in which the time evolution_ising to complex eigenvalues and the eigenstate-counting defi-
unitary (below we refer to such systems as conservativg,ition is useless.

ones. A unitary time evolution is of paramount importance At present the situation is under active investigation.
since it is generated by a self-adjoint ope_rat(o_rBar)d 9apsS  Transparent systems, i.e., systems whepe ») is real, so

in periodic systems and Anderson localization in randomypsorption is neglected, were already treated a long time ago
situations can then be formulated in terms of the spectrahy jauch and Watsdi]. In recent times nonlinear transpar-
properties ofK in complete analogy with the Schdinger  ent systems were considered by Drummai Other recent
case. In addition a unitary time evolution can easily be quangork; including absorption, and involving a nonlocal relativ-
tized. This is important since processes such as decay @dtic action, is due to Burged8]. It is also possible to ap-
excited embedded atoms, require a second quantized Versigiyach the problem from a microscopic point of view, where
of the fields. The situation changes if the medium is absorpthe quantized electromagnetic field is coupled to a second
tive and dispersivéshortened to absorptive or lossy below quantized field, representing the material subsystem. This
In the simplest case, that of a linear lossy dielectric, we haveysq was taken by Huttner, Barnett, and othgts6] for

u=1 and spatially homogeneous situations. A different microscopic
. treatment by Matloob, Loudon, and co-work€rs considers
D(x,t)=£1(X)E(X,t)+f dsx(x,t—s)E(x,s) the quantized field in the presence of a quantum noise cur-
—o rent due to the material subsystem. Here some simple spa-

. tially nonhomogeneous situations are studied, as well as sys-
=£1(X)E(X,t)+f dsx(x,t—s)E(x,s), (1.2) tems with gain. Hov_vever, _there are situations that are not
to adequately covered in the literature, in particular for systems
that are both spatially inhomogeneous and absorptive and
where the last line holds fdg(x,t) vanishing fort<t,. This  where the precise frequency dependence of the electric per-
expression differs from the usu@ll(x,t)=E(x,t)+P(x,t),  meability is important. We illustrate this by giving two ex-
where P is the polarization. However, it is the natural de- amples.
composition if we think of a system of absorptive particles in  The first is that of the construction of three-dimensional
photonic crystalg8] built up from lossy dielectric particles
on the lattice sites and here small metallic spheres offer an
*Electronic address: tip@amolf.nl interesting possibilitycolloids can be used to manufacture
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such objectg9]). The former behave as strongly absorptivetheory is the state vector arld the Hamiltonian. There the
dielectric sphere$10] and are an interesting candidate for Laplace transformed version of E(..4) corresponds to the
the construction of a photonic crystal with a band gap. Thigart Gp(z) =P[z—H] P of the Feshbach formulgL8]
raises the question of how to define band gaps in the pres-

ence of absorption. The next step is then to create some [z-H] '=[z—QHQ]'Q

randomness in the crystal, leading to Lifshits tails in the gap

that may show Anderson localization. The second example is +{P+[z—QHQ] !QHP}
that of transition radiatiofil1], the emission of electromag- 1
netic radiation caused by the passage of energetic electrons XGp(2){P+PHQ[z—QHQ]" 7},

through layered dielectrics. At present this mechanism is
studied as a tool to produce x-ray radiation for technological Go(2)=[z— PHP—PHQ[z—QHQ] 'QHP] !
purposes[12]. Suitable materials show strong absorption

(partly used to suppress unwanted frequences the actual =[z—He(2)]71, (1.9
radiation yield depends sensitively on the absorption charac-
teristics. featuring the effective Hamiltonian or mass operator

As stated, quantization of absorptive dielectrics is re-q_.(7). We shall make frequent use of this formula as a
quired if one wants to study the decay properties of excitedgchnical tool.
atoms or molecules embedded in a dielectric. In addition a The transition from Eq91.3) to Eq.(1.4) suggests work-
quantized theory significantly simplifies transition radiationing packwards from the convolutive ME, thus ending up
calculations since it can be described as a scattering proceggh a unitary time evolution with a time-independent gen-
(electron, zero photons ir- electron, one photon ouénd a  erator and associated Lagrange formalism in a larger space.
first-order calculation suffices. However, for quantization ajn Sec. |1 it is shown how this is done. As a bonus we find
classical Lagrange formalism has to be developed first. Thighat we can define an energy densiggx,t)=eqy(Xt)
is readily done for space-dependent electric and magnetig e.ux(X,1) in terms of contributions from the electromag-
permeabilitiess (x) andu(x) in various degrees of general- petic (Py in the above relationsand auxiliary fields Q),
ity [13-19 but, if the medium is absorptivand space de-  which satisfies a continuity equation, featuring the Poynting
pendent, only limited progress has been méde(for an  yector in the divergence term
extensive list of further references, see Réf]).

In this work we present an approach that handles general
space-dependent situations. The only input required is the
coordinate- and frequency-dependent complex electric per-
meability e(X,w), which can be obtained experimentally. This equation is a possible starting point for the development
We shall achieve our goal by introducing auxiliary fields of a diffusion theory in random absorptive media. In Sec. ll|
with the result that we obtain a new set of nonconvolutivewe use the unitary formalism for a proper definition of band
coupled field equations, equivalent to the original ME, suchgaps for lossy systems and give a result about the persistence
that, forJ=0, the energy of the coupled system is conservedpf gaps under a lossy perturbation. Next a Lagrange-
both globally and locally, and leading to a unitary time evo-Hamilton formalism is set up in Sec. IV and quantized in
lution. The idea behind this is that convolutive time evolu-Sec. V. Then we turn to some applications. In Sec. VI we
tions often turn up if part of the system is “integrated out,” apply the unitary formalism to the classical scattering of
the standard example being the Feshbach-Zwanzig projectetectromagnetic waves from a lossy object, whereas in Sec.

ge(X,t) + d,- E(x,t) X H(x,t) =0. (1.6

method. Hered,(t) = —iH ¢(t) in some linear spacé( is VIl its quantized counterpart is used for a quantum treatment
rewritten a§ P andQ=1— P are complementary projectors, of Cerenkov and transition radiation generated in a lossy
Qu(0)=0] dielectric. In Sec. VIII, where atomic decay is discussed, we
are led to a definition of the local density of states for an
PY(t)=—1PHPy((t)—iPHQu(1), absorptive system. In Sec. IX we discuss, among other mat-
ters, related work and some open problems.
I Qu(t)=—iQHPY(t)—iIQHQ®(1). (1.3 Finally some remarks on notation: Belaw the speed of

light in vacuum, is set equal to one, asfisn the quantized
Solving the second and substituting into the first results irtheory. e={¢;;c} is the Levi-Civita pseudotensor, antisym-

the convolutive equation metric under an interchange of each pair of indices and
€123=1, whereasp=—id,, the momentum operator of
P Y(t)=—IPHPy(t) quantum mechanics, is the generator of translatigng(y)
. is the characteristic function for the sdti.e.,¥ 4(y)=1 for
_f dsPHQexp[ —iQHQ(t—s)]QHPy(s). ye A and vanishes otherwise. Unit vectors are written as
0 e,=a/a, a=|a|. Operators pertaining to the classical formal-

(1.4) ism and classical field modes entering in quantum expres-
sions are denoted in sans serif, il§,,H, etc., whereas op-

This expression is the starting point for the construction oferators related to the quantum case are denotét] & etc.
generalized master equations in statistical mechafiigy ~ Inner products are written asf,g)=(g|f). Fourier and
where ¢ is a density operator and the Liouville operator, Laplace transformé(w), respectivelyf(z), of f(t) are de-
i.e., the commutator with the Hamiltonian. In quantum fined through
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~ +oo ishes outside absorptive particles in a uniform nonabsorptive
f(w)=f dtexdiwt]f(t), background and is constant within the particles. Later on we
o shall frequently consider the situation whegéx,t) and
- hencem(x,w) is confined to a bounded region. With this we
f dtexdizt]f(t), Imz>0 mean that the region in space where both are nonvanishing is
0

2 bounded and independent ©fln terms ofm we have
}(z2) 1.7 P

fwdtexp:—izt]f(—t), Imz<0
0 A X’(x,t)zfm(x,dw)exp[—iwt], m=0,
S0

f(w+i0)~F(w—i0)=T(w). (1.8 m(x,dw)=m(x,—dw), m(x,R)<c<e,

For the definition and properties of wave and scattering op- o
erators we refer to textbooks on quantum scattering theorp: )}(x,O):f th(x,t):f m(x,dw) o ?<w.
[18,19. 0

Substitution of Eq.(1.2) into Maxwell's equations, Egs.

II. CONSTRUCTION OF A UNITARY TIME EVOLUTION (1.1), and usingA; andA, results in

A. Assumptions

We assume that;(x) and y(x,t) are smooth, real func- de1(X)E(X,1) = dx X B(x,t)
tions of their arguments and that<@,<g;(X)<gp<w. ‘
Following the approach given in Ref20], discontinuities — | ds x'(x,t—s)E(X,s) —J(X,1)
can be obtained by a limiting procedure. We come back to to
this issue in the discussion section. Concernir{g,t) we .
make the following assumptiorithe w integrals are oveR): =9 X B(x,t) — dsf m(x,dw)
to

Al x(Xtg)=0, Xexg —io(t—s)]E(x,5) —J(X,1).

A,: X’(x,t)z&t)((x,t)zf do v(x 0)ex —iot], (2.2
For later reference we summarize some relations used in the
v(X,w)=v(X,—w)=0, text:

x’(x,O)zf do v(X,w)<c<w, c x independent.
X(x,t)=if m(x,dw)w texd —iot]

A3: i/(X,O)Z JO dt X(X,t):f dw v(X,a))w_2<00. :J' m(x,dw)wflsinwt,

In this section only the first two assumptions are required,

whereasA; is needed in the Lagrange setup, see Sec. IV. X'(X,t):f m(X,dw)qu—iwt]=f m(x,dw)coswt,
These properties generally hold for linear response expres-

sions fory and are explicit in a case of damped two-level

systemg[21]. We can allowv(x,w) to consist of an inte- .

grable part,v,.(x,w), and a sum of functions, v,,(x, w) X(X,Z)=Z_1f m(x,do)[w—2]"*
=3 ,vn(X) (0’ — 02),2va(X)<=. The latter describes a

class of systems having a phase lag but no decay(th It :f m(x, do)[ w?—22] 1

is convenient to write ' '

M(X,dw) = va(X,0)do+ vp(X,0)do. (2.1 . _ . _ - _
XX, 0+i10) = x(X,0—i0)= y(X,0) =27 v(w)/w.
From a mathematical point of viewn is an x-dependent 2.3
measure, consisting of an absolutely continuous (@&ytand
a pure point(or atomig part (pp). We can add a singular
continuous part as well, making a general positive mea-
sure, but there are no compelling physical reasons to do so. We setF,(x,t) = Ve1(X)E(X,t), F3(x,t)=B(x,t) and in-
x'(x,t), being the Fourier transform of a positive measure troduce two new auxiliary real vector fields,(x,w,t) and
has certain special propertiéBochner’'s theorem, see Ref. F,(x,w,t). Next we consider the séskippingx for brevity
[22]). In practical cases the dependence is triviain van-  as will be done at various plades

B. Unitary formalism, general m
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fields. It is therefore natural to adogtas the energy of the
more general system we consider here. Now energy can flow
from the electromagnetic to the auxiliary fields awite

o F (1) =1 Y20, X F4(t)+ ggl’zj m(dw)F4(w,t)

—SIlIZJ(t), versa Note that no recourse was made to cycle averaging, a
procedure that becomes problematic for nonmonochromatic
hFa(w,t)=wFs(w,t), (2.4 fields. In addition to global energy conservation there is also
s a local conservation law, i.e., a continuity equation. Thus let
aF3(t)=—dxXeq " F4(1), e(x,t) =egm(X,t) +esux(X,t), where
OF4(@,1)=— wFy(w,t)—e] Y2F (1), Eem(X,1) = 3{e1(X)E(X,1)%+ B(x,1)?}
subject to the initial conditions =3{F1(x,1)*+F3(x,0)%}, 2.10
Fz(a),to)zo, F4((J),to):0. (25)

eaux(x,t)z%f m(x,dw){Fo(X,,t)%+ F4(X,,t)?}.
ThenFy(w,t) =F,(w,t) +i1F,(w,t) satisfies

Then, forJ=0 and using Eqgs(2.4),
ﬁtFo((u,t)Z—inO(w,t)—iSIllel(t), g Bqsi24)

and, using Eq(2.5), de(x,t) + dy- S(x,t)=0, (2.1)
. whereS(x,t) = E(x,t) X B(x,t). We see that the energy den-
Fo(w,t)= _iSIUZJ dsex —iw(t—s)]Fy(s) sity has a contribution from the auxiliary fields but that the
to divergence term only contains the Poynting vecsx,t).
. Note further thate,,.(x,t) is nonvanishing only in those
— _if dsexd —io(t—s)]E(S). (2.6 space region.s whep@’(x,t) is nonzero. _
to For the discussion of spectral properties such as band
] ] ) ] gaps in periodic systems it is necessary to complexify the
From this we see tha, is odd and thaF, is even inw, SO formalism. There we allow the components of fgs to be

Jm(dw)Fy(w,t)=—ifm(dw)Fo(w,t) and substitution of complex, soH becomes

Eq. (2.6) into the first of Eqs(2.4) gives Eq.(2.2) back and

we have recovered Maxwell’'s equations. Also H=&]_ M, Hi=Ha=L4(R%dx;C),
D(x,t):sl(x)E(x,t)—f m(x,de)w F,(xt). (2.7) Hp=Hy=L2(R*, dxm(x,dw); (%) (212

and we set

Given that our set of fields satisfies E¢8.4) and(2.5), the

auxiliary fields are unique. If we have a second such set, then N=—iK, (2.13

the time derivative of their difference vanishes, so this dif- _ ) . )

ference is constant in time and hence must vanish due to E§/N€re K is now symmetric. LeN=N;+N,=—iK;—iK;

(2.5). with N, the operator obtained frofd by settingy=0. Then

Combining the fourF;'s into a single (12-component (recall thate is the Levi-Civita pseudotensor amd= —id,)

vectorF= @leFj , We can write Eqs(2.4) as 0 0 _81—1/26. g, 0

a4F=NF—G, (2.9 0 0 0 w

4 —-1/2 Ni= €de;¥? 0 0 o’

where G=87_,G;, Gi=g; ~J, G;=G3=G,4=0. HereN x©1
=N;+ N, is a matrix with operator entries, explicitly given 0 ) 0 0
by Egs.(2.14 and (2.16 below. As mentioned earlier it is (2.14
important thatN generates a unitary time evolution on a 0 0 al_llze-p 0
suitable Hilbert spaceH. We chooseHzEBleHj , Hi 0 0 0 i
=H3=L2(R3,dx;R3), the space of square integrable func- Ky= i
tions overR?® with value inR2 (i.e., they are realand H, —€Pgy 0 0 0
=H,=L%R*dx m(x,dw;R%)) [so for fe H, its norm 0 —iw 0 0
squared isfdx [m(x,dw)|f(x,»)|?]. We denote the norm
and inner product oft{ by || [| and (, ) and or#{; by|| ||;,  Introducing the projector®.y, and P,,, upon the electro-

(', ). Alittle calculation shows that for suitabfege 7 we ~ magnetic and auxiliary subspaces,
have (Nf,g)=—(f,Ng), so forF with F; e H; and vanishing

G, &(F,F)=(NF,F)+(F,NF)=0 and 1000 0 000
. ) B 0 0 0O B 01 00

g:§||F(t)|| (29) Pem_ oo 1 ol I:)aux_ 0 0 0o o]’
is conserved in time. For vanishing we havem=0, so& 0 0 0O 0 0 0 1

coincides with the energy stored in the electromagnetic (2.15
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we see that both commute with; andK;. Thus the latter tors is obtained by setting=0, i.e.,K ; is the generator, but

reduce to separate operators on the individual subspaces. kg H, andH, collapse since the measungx,dw) van-
Ref. [20] it is shown that the electromagnetic part K  ishes. Below we remedy this.

defines a self-adjoint operator. This is also the case for the | conclusion we observe that given(x) and y’ (x,t)
oy . 0 i i A 1 1 g
auxiliary part, which has the structua”; ) and henc&  satisfying A, and A,, we have constructed a formalism
as spectrum. We now hawé=N; + N, K=K;+K, showing a unitary time evolution. For this purpose two aux-
iliary fields were introduced that are unique, given the initial
conditions and the differential equations they obey. In the

0 0 0 SIUZJ m(x,dw)- - - casee;=1 we haveD=E+P and we can identifyP(t)
=/m(dw) o Fy(w,t) and 4;P(t)=Sm(dw)F4(w,t). Re-
N,=—iK,= 0 00 0 , ferring back to Eq(2._9) we note that the c_:onserved energy
0 0 0 0 cannot_be expressed in terms qf the polanza_tlon and its time
derivative. From a microscopic point of view these new
-2 0 0 0 fields represent the material system with which the electro-

(2.19 magnetic fields interact. See the discussion section for fur-
ther comments.

where the- - - in fm(x,dw)- - - indicate an integration over

m(X,dw) of the object on which it acts. It is a simple matter C. Unitary formalism, absolutely continuous m

to show that under the conditiods andA, the operator&, In the absolutely continuous case, wheng(x,dw)
and K, are bounded. Thu#l is anti-self-adjoint andK is =v(X,w)dw the problem we noted above is easily remedied
self-adjoint. An elucidation about taking adjoints might be inby usingdw as the measure. Replacifig by o(X,w)F;, |
place. Consider an operatdrwith X,,;= ¢(w). Then, inthe =2,4, with o(X,0)=v(x,0)'?, we have H,=H,
real case, Xasfi104)s=Sdx M(dw)@(w)f1(X)gs(x,0)  =L*(R*dxdw;R3) and Eqs(2.4 become

= [dx 1) [ m(dw) $(@)ga(x, ) =(f1,X5Gs)1, SO ¢*
=[m(dw)¢(w) ..., an example being provided by Eg.
(2.16. _ -1 —1/2

The present setup is quite elegant in that it combines the AP (=81 0Pl F ey f do o(@)Fy(w.t
ac and pp situations in a single formalism and we shall use it
in this form in Secs. Ill and IV and the first part of Sec. V.
However, it has a rather awkward feature if we consider
random systemgcharacterized by randone;(x) andior  %Fa(@.)=wFa(w,1), (2.17
x(X,t)] or scattering situations. In the random case the met- 1
ric may become random through the random measure dtFs(t)=—dxXey " F4(1),
m(x,dw), which can be undesirable, since it varies from one
realization to another. In a scattering case, whemt) is aF4(0,1) = — oF(0,t)— 1 Y2o(w)F(1),
nonzero in a bounded region in space only, the reference
system used in the definition of wave and scattering operawith the corresponding changeshihandK. Thus

—e1 VAL,

0 0 2 %%p iegl’zf do o(X,)- -
K= 0 0 0 lo . (2.18
— e pe; 2 0 0
—isl_l/ZO'(X,w) —iw
|

As before we can decompodé=K;+K,. Let A be the set The modified formalism, presented in this subsection, will
of xe R® for which y(x,t) vanishes. Then¥ is a character- be used in later sections, in particular where scattering situ-
istic function P 4=V ,(X)Pa.y is @ projector and ations are considered.

D. Unitary formalism, pure point m
P,,K]=0. 2.19 . o
[PAK] 219 If mis pure point, i.e.m(X,w) =2 ,v,(X) 5(w2—wﬁ), we
setFjn=an(X)F;(X,n), oa(X)=r,(X) % j=2,4. NowH,
This implies that ifP 4F(x,0)=0, thenP ,F(x,t)=0 forall  =H,=L3(R%dx)®1?, ie., |[Fj|[?==.fdx [Fj,(X)[? ]
othert. =2,4, and
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1 1 1 whereK is self-adjoint and hence has a real spectrum. Pro-
F1(t) =gy "0 XFa(t) + &1 zn: onFan(t) =& 7(L), jecting upon the electromagnetic fields and usig,F(0)
=0 we have
3Fon(t)= wnFan(t), ,
tFan() = @nFan(t) (2.20 PerF (1) = PenX — i Kt]PeF (0), (3.9
F3(t)=—axe1 V1),
which has the Fourier transform
F an(t) = = 0gFon(t) = &1 Yo Fa(t). ~
PerlF(N) =Ped(N—K)Po F(0). 3.9
This is basically a discretized version of E¢8.17). Obvi- enf (M) =Ped( JPenf(0) 39

ously both can be combined i is of the form Eq.(2.1). If this quantity vanishes fok € A, with A as above, theiA

is (part off a band gap. Indeed there are Rg,F(\) for A
eA.

As is the case for electrons in periodic potentials, the GenericallyK has the whole real axis as a spectr(ihis
spectrum of conservative periodic dielectrics has a bantteing the case for the decoupled auxiliary paso the pres-
structure[8], which may show gaps. In this case the spec-ence of theP,p,'s is crucial. Since the spectrum Kfis real,
trum is determined by the eigenvaluag of the electric the above definition is equivalent Ry [ z— K] P, being
Helmholtz operator analytic across the real axis for ReA. As shown in Ap-
pendix A we can recast this object according to

lll. BAND-GAP SYSTEMS

Hi=21(x) Y Hoe1(x) 12 3.9

or X1 0 X3 O
2 P K] P 000 3.1
[1(X)A"—Hp]E\=0. (3.2 em Z ] em— Xg1 0 Xgg O ) (3.10

Here, in dyadic notationH ;= —a§U+ dydy, U being the 3 0O 0O 0 O
X 3 unit matrix. Suppose there are no solutions [fofe A
=(Na,\p), in which case Maxwell’s equations have no where
eigenmodesE, (x)exd £i\t]. Then A and —A=(—X\,,
—\,) are a pair of band gaps. Alternatively we can define Xi=2eYR(22)e?,  Xiz=e?Ro(2) - (€-p),
band gaps as intervals where the density of states vanishes.
The situation is more complicated for absorptive systems: _ o 12
Using A; and A, we obtain from Eq(2.2) and the second Xg1=~(€p)-Re(Z)e1", (3.1D

Eq. (1.2),
. X33=2 H{1— (e p)-Re(Z%)- (€ P)}=2Rp(Z%).
[22&(2) —Ho]E(2)=izE(0) — 9, X B(0) (3.3
A Here R (z%)=[Z°+(e-p)e(2) - (e-p)] 1. Since the left-
for the Laplace transforri(z). Here we have takety=0.  hand side of Eq(3.10 exists for Inz#0, so doesR(z%)
Thus, assuming the inverse operator to exist, and hencé(z) in Eq. (3.4). Now if (A, —A) is a band-gap
E(2) = Ry(22)[iZE(0)— ,X B(0)} 3.4 pair for K, thenR4(z%) and R,(z?) must be analytic for?
e x ' : crossingA?=(A2,\2) andvice versa
In order to see that gaps can indeed exist, consider the
artificial example where m(dw)=sl(x)m05(w2—wg)
Re(z%)=[Z%e(2)—Ho] 1 (3.5 and e,(X)=g,(x+a) is periodic, leading to a gap?
=(\2,\2) in the spectrum ofH;=g] “*Hoe; ¥?. Then
i§ the resolvent associated with the electric Helmholtz equaé(x,z):El(x)zz{lJr(mo/wo)[wg_zz]fl}zsl(x) 2 and
tion and [e1(X)£2—H,] ! is analytic acrossk for Re/?e A2, But

. then, providedu5=0 in uf=wi—[Mp/wo+ wj][1+A7] 7,
e(2)=e1tx(2), (36 Re(Z%) is analytic through 42,u2). Another case, where
see also Appendix C. Suppose tia(z2) is analytic across Pand gaps may exist s the situation whigehas a band-gap
the real axis for|Rez| e A. Since, according to Eq1.8, Par (A, —A) as above and that is sufficiently small:
E(\)=E(\+i0)—E(A—i0), it follows that E(\)=0 for Proposition Suppose thak, has the band-gap pain(

: : A —A), A=(N\g,Ap) and let O<6<3(Ng—A\3). |f
IN|e A (i.e., E has no Fourier components in this intepval R s
and we conclude thah is (part off a band gap. However, SURcr3€1(X) fodt|X(X_,t)|$7\b o<1, then Qs —Ay),
e(A=i0) are complex and it is not clear that the above ana®s=(VAa+ 8,VAp—6), is a band-gap pair foK. _
lyticity assumption can be realized. In order to shed more The easy proof is given in Appendix B. Note that we did
light on this problem we return to the unitary time evolution NOt requires,(x) and x(x,t) to be periodic inx. For addi-
discussed in Sec. Il B. Again settiig=0, we have tional information about the eigenvectorsk#t, see Appen-

dix C. A generalization of the concept of density of states
F(t)=exd —iKt]F(0), (3.7 N(E) is discussed in Sec. VIII. It vanishes f&rin a gap.

where
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IV. LAGRANGE AND HAMILTON FORMALISM k= —(N"1Q4F) = — (N 1Q[NF— G]),

For the quantization of the classical field equations a = — QeF o+ (N"2) . NorQrGrm= — QcF e,
Lagrange formalism is required. Thus a Lagrange-Hamilton
version of the set of field equations obtained in Sec. Il isso
presented below. Here we shall need assumplignQuite
recently Tip[15] constructed a general Lagrange-Hamilton Fe= —di€e—Mele. (4.9
formalism, based upon equations of the type E98). We

H * —_ *
use the setup of Sec. Il B for the unitary time evolution andSmceM P=M" we have

use the subscripesandm to refer to the first two and the last 9 P
. . x* Estal X) IxLe
two components of vectors suchRsrespectively. Here is M*F=—-M*M{=| , (4.10
short for electric andn for magneticF, andF, dealing with Fx&m
electric andF; and F, with magnetic fields, respectively. where
SinceN has the structure
0 Nenm gstalX) =£1(X) + X(x,0) (4.1
N= . Npme=—NZ, 4.1y . . . . . .
Nme O is the static permeabilityfor space regions with vanishing

x(x,0) this is true by our definition in Sec. I, whereas in an

we have(see also Appendix C absorbing regione(X) + x(x,0)=1+ x(x,0) is the static

NerNme O He O permeability by definitioh Obviously x(0) must be finite
N2 = —N*N=(0 N )= _(0 o] for Eq. (4.10 to make sense, so it is at this point that as-
meNem m 4.2 sumptionA; must be made. SinceM*F),,=d,-B=0, ¢,
' must vanish. Also
andP=1-Q, the projector upon the null spadéN), is of
the form (M*F)e:—ax-{si’zFl—f m(dw)wle(w)J
P. O 1-Q. O
P= 0 P, “lo 1-Q,) (4.3 :—(9X~[81E—|mj m(dw)w !
Further details are given in Appendix C. We now introduce t _
the generalized coordinate fiefithrough X Ods exf —iw(t—s)]E(s)
N&=—QF. (4.4 =—dx-D=—p,
This does not fix¢ uniquely, so we add the “gauge condi- p being the charge density. Thus
tion”
— dx* Estal X) Ixde=p- (4.12
P£=0, (4.9 _ .
Equation(4.12 determine<., whereas we have faf,
giving 5
9t Ee=NemNmebe— QeGe - (4.13
&= —-N"1QF. (4.6)

These equations of motion follow from Hamilton’s principle

As discussed in Ref15] other gauges are possible as well. With the Lagrangiarisee also Ref.15])
There the present gauge is referred to asGhgauge since it 1 1
is the natural generalization of the Coulomb gauge of elec- =~ 2(%iée™ Mele,didet Mele)e™ 2(Nmefe ,Nmebe)m

trodynamics. We introduce two further, scalar, fieldsand —(QeGe.&)e— (p.Le)o

{m through (4.14
2, 0 = %(atge 10rée)et %(MegevMege)

€1 0Ox
112 - %(Nmege!Nmege)m_(QeGevge)e_(Prge)O-
B - w "e19 0|
PF=-M¢=- 0 dy (gm)' 4.7 Here M, and (, ), are the component dfl and the inner

0 0 product for the electric subspacH,®H,, respectively,

whereas ( , ), is the inner product for the magnetic subspace
. . . o H3® H, (both inner products are the sanand ( , ) is the

It is shown in Appendix C that this is the general form of ; 3~ "4 Ayt ,
PF. It follows from Egs.(4.6) and (4.7) that inner product forHy=L<(R°,dx). The momentum field as-

sociated withé, is given by the variational derivative
Fm=—Nmefe— Mmndm- (4.8 SL

e

=——=0&, (4.15
Next we observe thatQ,,=0) 0dv&e tde
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and the Hamiltonian is

H= %(Wevﬂe)e"' %(Nmegevaege)m+ %(P’ge)o

+(QeGe . &ee (4.16

where . is the solution of Eq(4.12. Here the situation is

4825

Hext:_E Jd)\ (2)\)71/2{(Geau)\a)ea*(uha)
+(Uxa,Ge)ea(U>\a)}+%(P,ge)o

=—f dx J(x)~A(x)+%f dx p(x)®(x). (5.5

completely analogous to that of the Coulomb gauge in

vacuum electrodynamics. In the present gatigés a given

. . L . ~1/ .
function, determined by the external charge distribution Here we used the fact that oniy 123_: the first component
and the initial value oP.F,, whereas the gauge condition of G4, is nonvanishing. In case the interaction with a set of

Eq. (4.5 gives

ax-[s}’zgl—f m(dw)w1§2]=0. (4.17

ComparingF,=&1%E,= — 0 &, — £1 04 With the usual ex-
pression in terms of the vector and scalar potentigds
— A= 3, ®, we identify £ =¢1?A and {,= ®.

V. QUANTIZATION

The quantization of the Hamiltonian formalism, obtained

in the preceding section, follows the pattern of Ref5],

charged scalar Schinger particles (mass m;, charge
g;,coordinatesx;, momentap;) is considered, the charge
and current densities originate from these particles and the
Hamiltonian is now(see Ref[15] for detailg

where an extensive discussion is given. Here we restrict our-

selves by only presenting the results. Kaf,}be the com-

plete set of orthonormal eigenvectors, associated with the

nonzero eigenvalues of H,. They spariH, [inner product
(', )el, the complex version oQ{H,® H,}. Thus
A>0.

Hely o, =A\2U, (5.1

A discussion of this eigenvalue problem is presented in Ap-
pendix C. LetF= F(H,) be the symmetric Fock space over
H. anda* (f) anda(g), f, ge H, are creation and annihi-

lation operators acting itF. They satisfy the commutation 1N€ potentialsb(x,y) are the solutions of

relation
[a(g),a*(f)]=Ref,g9)e. (5.2
Now
-3 | @) et ),
(5.3

and denoting the firstelectrio component ofu, , and the
second(auxiliary) by u;,, andus,,,, respectively,

A(X) =2, f dN[2he1(X)]™Y2@* (Uy o) Ugra(X)
+a(Uy ) Uno(X)}. (5.9

The Hamiltonian becomes

H=Hi+Hex,

Hfzg J‘d)\ )\a*(u)\a)a(u)\a/)l

H:Hm+Hf+Hint! (56)
where
Hn=>, ip-ZJrz e;end(X; ,Xp) (5.7
m ,—2ij1>th 17 '
and
&
Hine=Hind A) = = 25 5 —{p;-AX) +A(X) - Py}
J J
e
_ 2 2
+; 2m A (5.9
— dx Estal X) P (X,y) = 8(X—Y). (5.9

In the classical formalism the auxiliary fields vanish at the
initial time t,. Here the corresponding condition consists of
taking the vacuum state at the initial time. At this point we
note that the states on the different Fock layers can be rep-
resented in terms of linear combinations of direct sums
®g, fe F(H41), ge F(H,). Thus our initial state is of the
form f®gy, g9 being the vacuum state of(H,) and f

e F(H4). The eigenstate dfl; at the eigenvalue zero is the
vacuum state ofF(H,), the direct sum of the individual
vacuum states on th&(;)’s. Denoting the vacuum layer as
the zeroth Fock layer, the first Fock layer is simpty and

the restriction ofH; to this layer isHé’2 (for more details on
the Fock space structure, see Ré6]). Thus the eigenstates
of H; restricted to this layer are no longer products of states
from H,; andH, and similar for higher layers.

So far, the choice for the classical unitary evolution, as
discussed in Sec. I, was immaterial. As explained there, the
situation changes in scattering situations, where outside a
bounded regiony(x,t) vanishes and,=1. Supposing that
m is absolutely continuous, i.em(dw)=v(w)dw we now
use the formalism of Sec. Il C. Then the reference operator
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HO=H_ +H{Y+H (A?),

HO=S fd)\ Na* (uha(ul),
z (5.10

AO ()= f dr[20]"Y4a* (u@)uld (x)

+a(u)ui, ()}

would appear in the relevant wave operators. However, ther

is an important subtlety. Since the null spacesigfind H,(s0
differ, so do their complementd, and#?), and hence the
associated Fock spac#%H,) and ]-"(Hgo)). This fact leads

A. TIP

ation whereu®®) vanishes. Then=Qu(® can be labeled by
k andj, i.e.,u=uy and>,fd\— X, [dK.

VI. CLASSICAL SCATTERING FROM LOSSY OBJECTS

Ouir first application concerns the classical scattering of an
electromagnetic wave from a finite lossy object. The descrip-
tion of such a process involves two things. The first is the
existence of the appropriate wave operatdrs and scatter-
ing operatorS=0%Q_. We leave aside the asymptotic
completeness of the wave operators, which is needed for the
unitarity of S. Given S, the associated transitiod) opera-
tor and scattering amplitude follow. The second step consists
&f relating the scattering of a wave packet to the above scat-
tering amplitude. This involves the scattering into cones, a
subject that has been studied for Salinger systems but, as
far as the author is aware, not for the electromagnetic case.

to problems in the definition of wave operators and amend8elow we fill this gap.
must be made. The procedure goes as follows: Suppose that Thus initially an electromagnetic wave packet is moving

H, andH are related by the wave operaf@r(see Appen-
dix C), i.e., He=QHP0*. ThenH,=QH and the eigen-
vectors ofH, are uM=Qu§\°a). Also ]—"(He)=Q,:]?(Hg°)),
whereQr=100e{QeQ}®---. Let now

HY=0HOQF. (5.11)

SinceQH{YO% =H; and
A (x)=QeAQ(x)QF
=2 f dN[2)0] MA@ (Uy UL (X)
+a(Uy ) UL},
whereA)(x) acts inF(H,), we have

H®=T(p)+Hi+Hin(A%). (5.12

Now the pairH andH® act in the same space and this result

will be used in Sec. VII. The\®)’s are an orthonormal set of
eigenvectors of
0)_
H. )—< wz).

Since the electromagnetic and auxiliary fields are decouple
the eigenstates are of the fouf) = c,u{)) & c,ul), with at
least one of the c¢’s nonzero. Here u{}i(x)

= (2m) " ¥%gexdik-x], with e;, &, andeg, mutually orthogo-
nal andk=\. Furthermoreu®)= w 8(A\%2— w?)f, with {f,,n
=1,2,...} an orthogonal basis fdr?(R*,dx;C3) (functions
even in w are also allowed but do not contribute in the
present formalistn Now all eigenstates OHEO) are direct
sums of states fronf(,) and 7(H,) andX,[d\ decom-
poses intox;fdk andX,. In Sec. VIl we encounter a situ-

Ho

0 (5.13

freely towards the scatterer. We take the origin of our coor-
dinate system somewhere inside the scatterer and shall cal-
culate the amount of energy that finally arrives in the cone
CCR® with the axis along the unit vecta and aperture
Yo€(0,7), where it is recorded by a detector far away from
the object. We truncate the conedg, wherex>b>0 andb

is such that the scatterer adg do not overlap. Then the
energy ending up i@y is purely electromagnetic. We assume

m to be absolutely continuous;=1 and use the results of
Sec. Il C. The relevant wave operators are

Q.= lim exdiKt]exgd —iK;t]P+

t—+x

|

xexq—iKlt]] P+,

1+if7 dt exgiKt]Kyexd —iK,t]} P
0

1+ilim

fﬁ dt exd — ot|JexdiKt]K,
50070

(6.9

with PY=P,+P .ux, WherePg,, is the projector upon the
transverse parts of the electromagnetic fields. etk be
the space region occupied by the scatterer.dhits comple-
ment inR3. SinceW 4 (X)P.ux (¥ is a characteristic func-
tion) commutes withK; andK,, ¥ 4 (x)P,,=0 and we
haveQ .V , (X)Paux="Y 4/ (X)Paux- The existence proof of
the remaining parts df) .. follows the usual pattern of show-

cfﬂg that the norm|K,exd —iK;t]f|| is integrable int for a

dense set of's. For||K,exd —iK t]Ps,f||, see Ref[20] and
concerning Koex —iKt]W 4(X)P,,f we note that only

its first component is nonzero and equalfdw

o (X, w) w{coswtf(w) + sinwtf,(w)}, wheref; is thejth com-
ponent off. Choosing the;’s properly, its norm is an inte-
grable function oft. Note that here thex dependence of
o(x,w) and¥ 4(x) is immaterial, sd} . P, exists for spa-
tially homogeneous and periodic systems as well. The scat-
tering operator is
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S=0*0_=0%0,+0*{0,-0_} lim expf +iK;t1W ¢ (x)exi] —iKit]Per

t—
+ o
=Pi+iQﬁf dt exdiKt]K,exd —iK;t]P* =0(e-g—a)P,+0O(—ee,—a)P_

e =0,P,+0_P_, (6.4
= Pl+if dt ex i K t]Q* Kyexd —iK t]P+
’°° where P_.CP.,, project upon the eigenspaces Kf=

+oo K 1P.mWith positive and negative eigenvalues, respectively.
=Pl +i f dt exdiK;t]7exd —iK,t]Pt They are given explicitly in Appendix D. Note that the single

- cone in coordinate space gives rise to two cones in momen-
— Pl 2 TPt 6.2 tum space. This is different from the ScHioeger case and is

connected with the spectrum Kf; being the whole real axis,

rather than its positive half as in the Schirger situation.
with 7= K, and where we used the intertwining property  The complete sets of orthonormal eigenvectdis
QK=K Q% . We haveF(t)=exg —iKt]F(0), and, since ¢ p_#, Kofi;=*kfi;, j=1,2, are €, &, ande, are mu-
initially the wave packet is moving freely, there existskan  tyally orthogonal unit vectoys

such that
. _ s . + 4+ _ _ e .
tﬂ'”fw{':(t) exf —iKyt]Fi,} fig ()= (/i) =(2m) 322712 ewie exd +ik-x],
i
. . . (6.5
= lim {exd —iKt]F(0)—exd —iK;t]F;,} =0,
A with normalization
soF(0)=Q_F;,. AlsoF(t)~P.F(t), sinceF(t) becomes -
purely electromagnetic as——o . Hence, sinceP ., and (fijlfirj )= 8(k=K") 5. (6.6)
K, commute F;,=P..Fi, and its(electromagneticcompo-
nents are transverse. Let the conjugation operatd be defined by
Let ©(-) be the Heaviside step function anﬂcb(x)
=0 (e-e,—a)B®(x—Db), a=cosd, , the characteristic func- (CF),—(X)=F,—T 6.7)

tion for the setC,. It defines the projectoPCb:\Ibe(x) in
‘H. Then the energfcb(t), contained inC,, at timet, is Thenf[j(x)z(Cffkj)(x), and, sinceK=iN and K,=iN,,
Ecb(t)z%(F(t)|PC|F(t)> n=1,2, withN andN, real operators,
=%(me’iexr[iKt]{\lfcb(x)Pauer\Ibe(x)Pem} CKC=-K,CK,C=-K,, n=1,2. (6.8
xex —iKt]Q-|Fip). 6.3 For the T operator

According to Eq.(2.19, V¢, (X)P,yx commutes withK and .
K, and hence wit). . SinceP ,,Fi,=0 we are left with T(2) =Ko+ Ky[ 2= K] 7K;

E6,(0)= 1(Fin] Q* XKW ¢, (OPerXH — KU | Fip) slkellzmk izl -z kel (69

=1(Fin| Q* exdiKt]exy —iKqt] we then have

><exp:+iKlt]\lfcb(x)exp:—iKlt] CT(2)C=—-T(-2). (6.10

X PapeXd +iKit]exg —iKt]Q _|Fiy).
il ! H Fin? Returning toECb(t) we obtain, using the fact th&8 com-

As shown in Appendix D, mutes withK,; and hence withP . ,

Ec=lim &, (1)=5(Fin|S*{0 P, + O _P_}S|Fi,)
ft—o

—

=3(Fin|P+S*® PSP |Fi,)+ 3(Fin|P_S*® _P_SP_|F;,)=& +&; . (6.11)

Inserting the complete se{i;f,j,} we have, assuming;, . 0 .P.H,
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& =3(Fin|P=S*®.P.SP.|Fi,)=3(Fin|P.T*® .P.TP.|F,)

=272 f dk’ @ (@ )(Fin| (K —Kp) T* [ )(Fer /| TO(£ K —Ky) |[Fin).
]/

Since
<fk+,j,|T=<f,:,j,|QjK2=(f|:,j,|pi[1—i|;r£f0+xdt exp[—&]exdiKlt]Kzexp{—iKt]]K2
:(f;,j,|[1—ilgr;fo+mdt exp[—&]exqiik't]Kzexq—iKt]]K2=<f;j|T(ik'+i0),
we arrive at

5§=27722 fdk' @i(q(,)(Fin|5(ik’—Kl)T(ik’—i0)|fkt,j,)(fki,j,|T(ik’+i0)5(ik’—K1)|Fin).
j/
Taking Fi,(x) real, so|F;,)=C|F,),

& =2m2, fdk’ 0 _(80)(Fin|CS(—K =K T(=K'=i0)[fi,; )(fi [ T(K' +i0) 8(— k' —Ky)C|Fipn)
]-r
=272 Jdk’ 0 (8 )(Fin| 8(K' =K T(K' =T0)[f7,,/ )](F7 /[ T(K +10) 8(K' —Ky)|Fin)
]!

=2w22 fdk’ 0 (8 )(Fin| (k' =K T(K' =i0)[f; )(Fer /[ T(K' +i0) (k" —Kyp)|Fin) =&
I
and
5c=(2w)22 fdk’+(e~)<Fm|b‘(k’—Kl)T(k’—i0)|fk+,j,><f;j/|T(k’+i0)5(k’—K1)|Fm>- (6.12
J

Next we make a special choice fBt,. Let A=[—6,5], 6>0 and¥,( ) its characteristic function. We set

g
ERC

Note thatF;,(x) is real andF;,L Pe,H for b sufficiently large. AlsoF;,L © . P.H by takingk outside the coné€. Using

Fin(X)= 3% s(8c- X){fi () + i 00} = (2m) =327 2 s (- %) COK:-X. (6.13

<fk+,j,|Fm>:<|:m|fk‘,j,>=(2w)—15(ej-k')5(eK><e,.k')a(eK-k')g(k,k',a)a“,, (6.14
|
where a wave that moves towards the scatterek oints into its
direction. We obtain the scattering cross section by dividing
sink—k' )8 sink+k')é Ec=Ec(0) by the total incident fluxd () that has passed
(KK, &)=m"1 —+ - , through a plane orthogonal foin the limit §—« (where the
k—k k+k 6.15 incident wave becomes a plane wavidere
+
we obtain, by inserting complete sets, ®(5)= J:w dt E(x,t)XB(x,t) -&, (6.17)

with E(x,t) andB(x,t) given by Eq.(6.16). A little calcula-
tion shows that

exf —iKot]Fin(X) iw—S’Zdek' £k,K',8)
0

d—®

e.
" |cogk g -x—Kk't), d(8) ~ L(2m) 3. (6.19

Q(XGJ'

X

(6.16 Again using Eq.(6.14),
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O(K' = Ky)[Fin)=(2m) "1k K, O)[fr ).

Since for smooth functiong(k),

S—®

f dk’ £(k,k',8)%g(k") ~ g(k),
we have
5c<a>=§ fdk' (kK 8)%0 , (8)
XK T(K +10)[fq )P

55—

~ Smk?D, fdeK, 0, (e)
J-/
X[(fe | T(k+10)| )
~or3 [ de’ 0. (e)liki KT,
j!

where in the last two linek’ =keg, =ke' and

(6.19

is the scattering amplitude for the transitibn—k’j’. Now

f(kj—k'j ) =k(fg | T(k+i0)|fg)

S—©

EdND(5) — (2m*S [ de'®(elfiki ki)
]

=o(k,j—0C), (6.20

the cross section for scattering into the cahé&rom this we

see that the differential cross section for scattering into the

directione is
o(kj—kej")=(2m)*f(kj—kej")|?, (6.2

summed over the final polarization directiojls

We can simplify the above expressions further by noting

that only the restriction ofl to P , HC P,/ contributes.
As shown in Appendix D,

PemZT(2)Pem=1(2) Py,

t(2) = —22x(2) + 2*x(2)[2%e(2) — Ho] " 1x(2)

= —22x(2)+Z*x(2)Re(Z) X(2), (6.22

whereP ¢;={(Pea)) i} ={ 1611} projects upon the firdielec-
tric field) component of. Thus, withflfj1 the electric(first)
component of; ,

f(kj—k'J )= (T ltk+i0)|f). (623
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be made. A systematic approach has recently been discussed
by the authof23]. If the system is an absorptive Mie sphere
the formulas given there for conservative systems are readily
adapted to the present situation.

VII. TRANSITION RADIATION

Our second application makes use of the quantized for-
malism developed in Sec. V. It deals with the generation of
photons caused by the passage of fast electrons through di-
electric layers. We distinguish é@enkov radiation and the
less well known transition radiation.e@enkov radiation is
generated throughout the medium provided the speed of the
charged particle exceeds that of the radiation in the medium,
whereas this condition is not required for transition radiation.
The latter is created at places where a steep gradies(in
occurs, typically at the interfaces in stacks consisting of par-
allel layers with different electric permeability. At present
there is some interest in the use of transition radiation as an
x-ray sourcg12] and for technological reasons strongly ab-
sorptive and dispersive materials are considered. We apply
the present formalism for a quantum description of the phe-
nomenon. Thus we consider a model of an energetic charged
particle(typically in the MeV region without spin(spin does
not play a significant role and can safely be neglegted
which moves through a finite piece of absorptive dielectric.
In actual experiments only single photon production is ob-
served, so we can restrict ourselves to a calculation to first
order in the fine structure constant, i.e.,dnSince we are
dealing with fast electrons, we use the expression for the
energy of a relativistic scalar particle

Hm+ Hine=[(p—€A(X))?+m?]*2
— [p2+ m2]1/2_ (6/2)[p2+ m2]—1/4
X{p-A(X)+A(X)- p}[ p*+m?]~ ¥4+ 0(e?)
=T(p)—(e/2)T(p) “4p-A(X)+A(X)-p}
XT(p)~Y2+0(e?)

=T(p)+W(A)+0(e*)~T(p) +W(A), (7.1
whereA(x) is given by Eq(5.4) andx andp are the electron
coordinate and momentum, respectively. We shall consider
two cases, finite dielectrics and stacks of parallel layers with
incident electron momentum normal to the boundary surface.
Both can be treated as scattering situations, but, due to the
translation invariance in two orthogonal directions, the sec-
ond case slightly differs from the first. The full Hamiltonian,
acting in H=H,®H;, where’H,, and H; are the Hilbert
spaces for the material system and fields, respectively, is
now

H=T(p)+H;+W(A). (7.2

Initially an electron coupled to the free electromagnetic field

Note thatt(z) has the usual-matrix structure, the potential moves towards the target material and finally we again have
being—z2x(2). t(2), as given by Eq(6.22) is often taken as an asymptotic motion determined by the coupled electron-
the starting point for the description of electromagnetic scatfree field Hamiltonian

tering. Here we have presented a precise justification. For

— 0
spherically symmetric systems a further reductiot(zf can HO=T(p)+H{"+W(A©),

(7.3
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with H{® andA(® given in Sec. V. However, as discussed in However, sinceZ; is of first order ine we can takeP™® to
Sec. V, they do not act in the same Hilbert space since thgeroth order ine, i.e., a projector commuting witt(?),

Fock spaces are different. For the state vegi@d) we do not
have y(t) —exd —iHOt]y,—0 ast— —o, but rathery(t)
—Qrexd —iHOg, = (1) — exd —iHt]Qr ¢4, —0, S0(0)
=0 _Qr¢i,. Here(see Sec. V for notation

HO=QHOO =T(p)+H+WAD), (7.4

and the scattering and wave operators for the process at han

are
S=0*Q_, Q.= lim exdiHt]exg —iH®t].
t—*+oo
(7.5
Note that the interaction H—H®=W(A-AD) s
of order e. Let P be a projector, such
lim,_..exdiHOt]Pexd —iHOt]=P, exists. Then P®
=QP..QF commutes wittH®) and the probability to find
the system ilP(MH at timet is

We(t) =(#in| QFQ _*exd iHt IPPexd —iHt]Q _Qf| i)
=(¢in| QEQ_*exdiHt]
xex —iHYt]PYexiH ]

X[ —iHEIQ_ Q¢ in)

t—o

— (i QES* PYSQE|hin) = Wp . (7.9

Assuming that)g|4;,)L PMH this becomes

We={hin| QE{1— 271 (D* PV 1+ 27 T Q| i)

=21 Pl QE(T* PO T i),

where
?=(27r)‘1f+xdteme<1)t](Q+)*{W(A)—W(A(1>)}
x exg —iH®t]

=(277)’1fjmdtexr[iH<2)t]{W(A)—W(A(1))}

xexf —iH@t]+0(e?)
=T,+0(e%), (7.7)

with
H@=T(p)+H;. (7.8

Hence, to leadingi.e., secongorder ine,

We=(2m) X thin| QE (T0)* PY T Q| ¢in).-

that

whereas fory;, we can takey;,= yn® ¥,ac With ¢, the
initial electron state ang, . the vacuum state for the fields.
This is typical for the approximation we have made. For
Yin= Um® ¥, ac the expressions(t) — Qrexd —iH Oty no
longer tends to zero to higher orderénSince()¢ reduces to
the unit operator on the zeroth Fock layer we have

Qd:| ‘pin> = | ¢in>1 so that

WP:(Z"T)2<¢in|(71)* P<1)Tl|¢in>- (7.9

We are interested in photon production, so we consider a
detector that measures the photons emerging in a €gne
(for the definition of objects such &%, ®,, and¥,, see
Sec. V) in coordinate space and does not measure the aux-
iliary fields. In general the translation to a projector, which
now acts in the Fock space connected with the fields is far
from trivial. The second problem is to relate the cahen
coordinate space to the cogein momentum space. How-

ever, sinceZ; only contains creation operators to linear order
and ¢;,, contains the vacuum statB(® is restricted to the
first Fock layer. Thus, taking

10
P=We,(X)

0 0 (7.10

):\I,Cb(X’)Pl

for the restriction ofP to the first Fock layer, we obtaimote
that here and below’ andp’ are operators ingo) and not
electron coordinate and momentum

P.=lim exdiH t]Pexd —iHPt]=0 , (e-e,) Py,

t—o

(7.11
andPM=0.P,.QF reduces to
PY=00,(ee,)PQ* (7.12
on the first Fock layer. Let the complete orthonormal sets of
eigenvectors of T(p) be {|k)}, so (x|k)

=(2m) *%exdik-x] and that of Hy=p2A, be {uf}}(x)

= (2m) 3% exdik-x]}, wheree,, e, and g are mutually
orthogonal (see also Sec. M Since P, in P,
=0, (e-ey,)P1 projects away the auxiliary components of
the eigenvectors(® of H®), we have, with

(0)
U(O): ulk]
kj 0 d

that
pH=> dklf dkoQ[kiUd) Y0 . (e-a,)(kauid) [Q*
I2

=3 [ ki [ dicliati 0. e, kit |
2

Noting that H®[kyuy; ) ={T(k1) +kz}|kyUy,;,), we now
obtain
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WP:(ZW)ZJZ dli dka(tin| S(HP = T(ky) —kp) T [KqUy,;,) O 1 (€8, ) (KqUy,j,| 71 6(HP = T(ky) — k)| thin)
2
=(27T)2j2 dklf dKo( in| S(T(P)— T(K1) — k) T [K1Ui,j,) © 1 (-8 )(KaUy,},| 71 8(T(P) — T(K1) —Ko)| #in)
2

:(ZW)ZJZ dk2®+(e'q<2)fdk1|X(k1,k2,jz1¢in)|2:jE fdk2®+(e‘a<2)w(k2,jz), (7.13
2 2
wherew(k,,j») is the probability density for the transition into the stitgj, and

X= (Kl | T, 8(T(P) = T(Ky) = k)l tin){e 1 Mg (X) = UL 1 (0} tyac) - (Ka+ P) S(T(P) = T(Ky) = ko) i)

= —(e/2)(2ky) "M (ky) YA T(Ky) + ko] Y Kl{e1 Vg, — U 3 (ki +p) 8(T(p) = T(ky) — k)| th).  (7.14

For | ¢, we take P
X ~ —e(2ky) T (ky) YA T(ky) + ko] "Xkyl{e 1 YUy,
[hm) =W 4(x") W5 (&-x) k), (7.19

UK (ka6 | k(K kB kKo,

(7.18

wherex! is the component ok orthogonal tok (we shall
take the X; axis alongk in the following, so k=ke;,

k>0), A=[—y,y]1X[—v,y] andA=[—8,5]. Then|yp,)

tends to the plane wave stgte) as y,5—. Now (a| ¥,

= f,/(al)gls(k—ag), where;ly(aL) 1sin(aly)/7ra1]sin(azy)/

ma, for finite y and f =4 for y=o, whereas
gg(f)):sin(bé)/qzb. (&)= o&) 7 [k3+m?] " Y2=[KZ+ m?]+k,. (7.19

At this point we have to distinguish between the two
cases. For layered stacks we can take the normalized staféaen

|y =7y 16719 y,) and take the limity,6—o in w
=W,s. Although ¢, becomes spread out in coordinate 5= ek,

space, the electron will always hit the stack if it propagates in w=wy ~ 5WJ dell(k1|sl’1/2u_lkzjz|k> (ki + k)2,
the right direction. This is not the case with a finite target. 2 (7.20
Herew, s would tend to zero, since the probability that the '
electron hits the target tends to zero as the normalized state ) . 5 a1 12
spreads out. Thus we sgt=. Theni,, is no longer square Where =g and k, is determined by{k+m?]"*=[kj
integrable asy—o and does not represent a single electron+ m?]¥2+k, and the cross sectiom(k—k,,j,) becomes
but rather a pulsed beam of electrons with width. Zhen
the current due to the free motion generatedTifp),

whereky>0 is determined by

. . Wy
a(k—kz,jz)= lim —

. §*>ocq)5
jOt)=(x|Y()p+pY(t)|x),
27T4ezk1
(kalY(1) ko) =[ kI —K31 [ T(ky) T Tk
—T(kp)]exd —i{T(ky) — T(kp) Ht1(Kq| ym)
de |(k,|er Yy |K)-(k,+K)[2.
(gl (716 Xf el(kale1 Uk, K} - (kg +K)|

(7.29)

is still finite and so is

o Note that the contribution from(}); has disappeared.
Dy (x)= fw dtjxt) ~ 8(2m) 27 le;=d se,. Next we consider stacks with finite width consisting of
— parallel layers of dielectric materials with boundary surfaces
(7.17  orthogonal tok//X3. Now £,(x) and x(x,t) only depend on
X3 and the mode functions are of the formlkzjz(x)
It represents the total flux that has passgd through a unit exr[ikLoxl]vkj (x5) and u(li)j :exka‘Xl]v(koJ) (Xa).
surface orthogonal tdk in the course of time. The cross 22 gt —0) 220
section is then obtained as the ratig/® 5 as 5—o. Thus, We Set @y (X3)=£1(X3) ™ "Uk,j,(X) Uy, (X). In this
for finite dielectrics, takingy=c , case we have
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Y, 06— %

X~ —e(2kg) "M (ky) TYAT(ky) + ko] M2 (k3)

X(Kydl ¢, 1K) - (Kq+ kg +kes)(2ko)

X{gs(k—ko) + 0 s(ktko)}it —ict s> (7.22
where(xs|k) = (27) ~Y%ex(ikxs]. Then
Y,0—® 5 e2
Wyé‘ -y 527Tk13k
X [(kydle1(xa) A, (xa) [K) - (kg + k) 2.
(7.23

Hereki = —k; andk, is determined byk?+ m?]¥2=[ki,
+m?]Y2+k,. Defining o(k—k,,j,) as the ratio
W5/ {thm| ) (i-€., inw, 5 the statey, is replaced by its

normalized versiony,,) in the limit y, §— c:

o(k—ky,j2)= lim W5/ hm|thm)

y,ﬁ—m

e?m?

= Srogkadea(xa) iy, (xa) k) - (ka + kI
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ZU=NU+ k(X) D J dAs(MN Y z—A;—N]71

XUy o(X) Uy o(X), (8.0

whereU is the unit 3x3 matrix ands(\) is a cutoff func-
tion, which can be set equal to one in the expression for
Imz. Furthermorex(X) = (e/3m)?[ 2 1(X)]1 Y {¢1|p- ¢2)|?,
whereg; is the unperturbed atomic ground stétégenvalue
1) and ¢, are the three unperturbeg States(eigenvalue
N\»), which are taken to be real and combined into a single
vector, see Ref[15]. The derivation follows the lines of
[15]; the only difference from the conservative case is the
appearance ofi;, (X) rather than an eigenvector &f;.
Making an isotropy approximation, i.eujy,(X)uqy.(X)
—2|ug.(X)|?U, the calculation made in Ref15] can be
repeated with the result that to leading ordereificf. Ref.
[15], Eq. (8.13)],

PO0== Zx0)05 'S [ dh swo—N)lupu(02

(8.2

where wog=A,—\;. We can rewritel'(X) as (for Py, see
Sec. V)

(7.29

The detailed calculations leading to Eqg.21) and (7.249
are not given here but are available from the aufdt. Our
final results describe botheZenkov and transition radiation.
We have calculated the efenkov and transition radiation
yield for the case of stacks of parallel layg25]. The results whereN¢(wq,X) is the generalization of the local density of
agree with those obtained from the classical ME with thestates for the field to the absorptive situation. In this spirit a
charged particle entering through a given external currentgeneralized density of staté&(E) can be defined as
provided the photon energy is much smaller than the initial

electron energy. In the classical case the electron velocity isN (E):f

usually assumed to be constant, a condition that is not re- f

quired in the present setup: The latter can also handle large

photon energies. For a discussion @rénkov radiation gen-
erated in transparent media and including spin effects, s
Ref.[26].

P(X) == gx(X)0g (X Peid(wo—Ho)PelX)

™ -1
= =3 k(X)wg Ni(wo,X), 8.3

dx <X| Peid(E—He) PeI|X>:trPel5(E_ He) Py -
(8.4

This definition is consistent with our results in Sec.
eIFﬁ where we found that ifE falls in a band gap
Pe6(E—Hg)Pe=0 and henceN;(E)=0. Using the rela-
tions 2mS(A—Hg)=[A—i0—H.] '—[A—i0—H,] ! and

VIIl. ATOMIC RADIATIVE DECAY AND THE DENSITY P.[z—Ho] 1Py =Ry(z?)P,, We obtain

OF STATES
X
In Ref. [15] the author studied the decay of an excited I'X)=-— g(—)lm<x|Re()\2—iO)|X>
atom embedded in a conservative dielectric under a number TWo

of simplifying assumptions. Here we do the same for the

lossy case. Thus we consider a hydrogen atom with an infi- =— ‘;T—wlmGe(X,X,)\z—iO) (8.5
nitely heavy nucleus at the positiok. For the fields we 0

make the long wavelength approximation, i.e., in Eg9) and

£1(x) and x(x,0) are taken inx=X as is the vector potential . ,

A(x). In addition we neglect all atomic states except tise 1 N{(E)=(2m) “Imtr Rg(\“—i0)

and 2 states. The coupling with the electromagnetic field

causes the 2 states to turn into resonances, i.e., their eigen- =(277)*1Imj dx Ge(X,X,A%2—=i0), (8.6
values acquire an imaginary pdrt(X), which determines

their decay back to the ground state. In general the thpee 2\yhere

substates can split up due to symmetry breaking effects of

the x-dependent dielectric. To leading order the perturbed Ge(X.Y,2) = (X|Re(Z9)ly). 8.7

eigenvalues are the solutiorsof
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Once more we end up with expressions featuring the electriformalism was used to describee@nkov and transition ra-
Helmholtz resolvenR.(z?) but again we had to start from diation caused by fast electrons passing through a lossy di-
the full formalism. In case the isotropy assumption is notelectric and in Sec. VIII it was used again to study the decay
justified a more elaborate approach, as in R&E], can be of an excited atom surrounded by an absorptive dielectric.
used. The results of that reference for atoms in conservativehe decay constarii featured an objedN(x,z) that could
band-gap dielectrics are also easily generalized. Since thelkee considered as a generalization of the local density of
are no essential changes in the results obtained there, vatates for a conservative system. It can be expressed in terms

shall not repeat the calculations. of the Green'’s functior(x,x’,z) =(x|Re(2)|X’).
IX. DISCUSSION B. Generalizations
A. Summary of results Although we did not do so, it will be clear that a linear,

Starting from the phenomenological Maxwell's e uationsabsorptive magnetic system can be handled along the same
9 P 9 q lines as well as the combined case. This is also tryg i

for a linear absorptive medium characterized by the consti- . ) o
tutive equation nonlocal in coordinate spacey(x,t—Ss)E(x,s)— [dy x(X

—Vy,t—s)E(y,s). The present model does not include tem-
t perature effects, such as heat conduction. In the continuity

D(X,t)zsl(X)E(X,t)‘f‘f dsx(x,t—s)E(x,s), (9.1 equation for the energy density of the complete system
to e(x,t), i.e., including the auxiliary fields,

we constructed a unitary time evolution in a larger space by de(x,t)+dy- S(x,1)=0, 9.3
introducing two essentially unique, real, auxiliary fields. The

only inputs required were;(x) andx(x,t) or, equivalently,  so that, as observed earlier in Ref] , energy is only carried
the complex electric permeability(x, »), which can be ob- out of a volume through the Poynting vectd(x,t)
tained experimentally. Another feature is that cycle averag= E(x,t) X B(x,t). This can be traced back to the absence of
ing procedures were not required. This is important since ipace derivatives,F, 4 in the equations of motion for the
general electromagnetic waves are not monochromatic andaxiliary fields. Continuity equations and Poynting vector

cycle is not well defined. The formalism allowed us to give ahave been the subject of much recent activity, see Refs.
proper definition of band gaps in Sec. lll and to construct §28-3( for other aspects.

classical scattering formalism based upon wave and scatter- The extension of the present formalism to include nonlin-
ing operators in Sec. VI. We also showed that a sufficientlyear situations(in terms of nonlinear susceptibilitiess far
small absorptive perturbation of a conservative system posrom obvious. We can still introduce auxiliary fields to re-
sessing a band gap can still posses a band gap. More chahove the time convolutions, leaving a set of coupled nonlin-
lenging is the direct establishment of a band gap for theaar equations of motion, see Sec. IX F below. However, if
absorptive case. Its investigation is rather straightforward inhe medium is transparent, i.e., the system is dispersive but
the point interaction limit(not unreasonable in the metallic apsorption can be neglected, se &(x, ) is real, Drum-
sphere example mentioned in the Introducfias in the con-  mond[2], extending results of Hillery and MlodinoyB1],
servative situatiorf27]. It is not a priori obvious how to  gptained for the conservative case, has constructed a
define the denSity of states. However, in Sec. VI, where Wq_agrange formalism. He starts off with the assumption that
discussed the decay of an excited atom in a lossy dielectrigs piecewise constant as a functionsfind generalizes later
we were Ied in a natural Wa.y to a genera”zation Of the den'on to the case of a SIOle Varying enve|0pe situation.

sity of states for a conservative medium. There and in the aApove we did not consider discontinuities in thelepen-
definition of band gaps the problem is that in the Helmholtzgence ofe;(x) and y(x,t). In Ref.[20], using a limiting

eigenvalue problem procedure, an approach is presented that can be taken over to
) the present case. It allows quite general situations, such as
[2°€(2) —Ho]f=0, 9.2 fractal shaped objects, where normals and tangents relative

] - . to the boundary surface are no longer meaningful. A com-
the electric permeability (z) is complex, even for rea, SO mon, more pedestrian, approach consists of obtaining bound-
we cannot exclude complex eigenvalues. The unitary formalyyy conditions from the Laplace transformed equations of
ism, although having a self-adjoint generator with real specmqtion, the only difference with the conservative situation

magnetic fields are coupled to the auxiliary fields. In thegecs. Vil and VI, they play a role in the determination of
decoupled situation the latter have a real spectrum coveringye mode functionsi, .

the whole real axis, so one does not expect band gaps for the
full system. However, a projection upon the electromagnetic
subspace took care of this. At the same time the Helmholtz
operator and its resolvenRy(z)=[z2s(z)—Hy] ! reap- So far we have taken the phenomenological Maxwell’'s
peared in the formalism but now the interpretation has beequations at face value. We started out with a space and
come clear: It can only be singular fae R. Given the uni- frequency dependent(x,w) and were led in a natural way
tary evolution a Lagrange-Hamilton formalism and itsto a formalism where energy conservation is restored by in-
quantization directly followed by applying the results of atroducing new auxiliary fields. A quite different route was
recent paper by the authpt5]. In Sec. VII the quantized taken by Burges§3], who discusses a relativistic covariant

C. Microscopic and macroscopic approaches
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formalism. He does not introduce additional fields but relateghange ine in Rg(z%), which is now frequency dependent

the equations of motion to an aCtion, which is nonlocal in theand Comp|exl The experimental observation Of these ef‘fects
field. In its general form it is given by his E479). As a s doubtful in spatially homogeneous situations or for atoms
consequence, the creation and annihilation operators in uried deeply in large pieces of lossy material. In the latter
plane wave expansion of the field not only depend on thease nearly all radiation will have been absorbed before it
wave vectork, but also onx andt, see his Eqs(5)—(7). leaves the material on its way to an outside detector. Thus
After a discussion of some fundamental matters the formalatoms at the boundary of a lossy material are a better propo-
ism is applied to the phenomenon of squeezed st@es  sition [34]. The spatially homogeneous situation has been
also Ref[32]), initially for scalar fields, whereupon the elec- considered in terms of a different formalism by Barregtal.
tromagnetic case is treated. [16]. In that work the longitudinal modes are related to a
An alternative is to start directly from a microscopic decay mechanism for an atomic excited state, whereas here

quantum formalism for the combined matter-field systemthey lead to a modification of the Coulomb potentiahd
This approach was taken by Hopfila3], who considered hence the atomic eigenvaluethrough sia(x). It is at

the interaction of the electromagnetic field with a crystal.Present not clear whether the two are equivalent[16]
Among other matters he discusses the route by which eledocal field corrections are considered as well. One case is that
tromagnetic energy is transferred to the lattice phonorPf @0 atom in an empty cavity for which the atomic decay

modes. The matter part enters the formalism as a second fie(gﬁte IS .cor_13|d<|a(red.. In the present formglls”m t_he prelser:jce of
and for the interaction a special choice is made. The Hopfiel difefecrz\r/wlgyc:l; iice:I 'gg;g%ﬂ%ggﬁ;ong;cgnﬁ SLr:aCr?cg fg as to
model is also at the basis of further work by Huttner and o . N

Barnett[5] and Gruner and Welsf6]. Here we note that in modified local density of states.

the above microscopic theories only spatially homogeneous - . o .

situations are considered. Comparing the microscopic results ~ E- Initial assumptions and validity of the formalism

with the present approach in its quantized form, we see that As noted earlier the assumptios—A; are satisfied in

in both cases a second field, representing the matter systemlevant physical situations. Two crucial requirements are
appears. The main difference is that these authors only comyolved. The first is thaty’ (x,0)=m(x,R)<c<o in A,,
sider spatially homogeneous systems, allowing the use of thghich is quite acceptable. The secondis which states that
Coulomb gauge. An(_)ther, equivalent, way to describe thghe static susceptibilitﬁg(x,O):fg’dtx(x,t)<oo. This rela-
quantum situation is in terms of a quantum noise Current, agq, ,gyally holds except for critical points in the thermody-
was done by Matloob, Loudon, and co-workers in a series 0 amic case, where depends on temperature and density.
paper(7]. Here some simple spatially inhomogeneous situyye have seen that it is not needed in the construction of a

ations are considered, such as slab configurations with NOfinitary formalism but it is required for a Lagrange setup. In

r_nal |nC|dent_ field, as well as systems with gain. Vacu‘.’morder to get some further insight into this matter consider the
field fluctuations and power spectrum are given in epr|C|tSituation where

form.
Considering the various approaches, we think that oun(dw)= v(w)dw
setup, starting from the macroscopic Maxwell equations and

featuring the experimentally obtainakiéx, ), is quite use- . ) , ' 12
ful in situations where the spatial inhomogeneity is impor- = J n(do’) y(o")[(0— ")+ y(0')] “do,
tant. Our approach results in general expressions, the space (9.4)

dependence entering through the classical mode functions

u,,. Obviously the latter must be evaluated numerically inwith y(w)=0 andn satisfyingA;—A;. Thenm satisfiesA;
complicated situations. This is, for instance, the case for thand A, but notAs. In this case we can obtain a version of
description of transition radiation. The latter is very sensitiveEqgs. (2.4), featuringn instead ofm, but the motion has be-

to the precise space and frequency dependence(xfv).  come dissipative, since now

Conversely this aspect can be used to obt&(w) for a

material from transition radiation data. Especially in the x-  dtFo(@,t)=—{y(®)+iw)}Fo(w,t)—izs YFF(1).

ray regione (w) is not well known for a number of materials. (9.9

Thus in this special case either the motion is unitary Apd
is not satisfied or we have the opposite situation.

As we have seen the properties of an atom interacting Although an approach starting from the phenomenologi-
with a quantized absorbing dielectric are affected in twocal ME or a microscopic equivalent can give valuable infor-
ways. The first is a change in the atomic levels due to thenation about the behavior of certain material systems
presence of¢,(X) in Eqg. ( 5.9), which determines the po- coupled to radiation fields, the method has its limitations. In
tentials. This effect is related to the nonpropagating fieldthe transition radiation case the electrons can scatter from the
modes(the longitudinal modes in a spatially homogeneousindividual atoms or molecules constituting the dielectric.
situation) and is the same as in the conservative case. Th&his leads to a loss of active electrons, diminishing the actual
second is due to the modified propagating field modes in theadiation yield, a mechanism that plays an important role in
guantized fields and in Sec. VIl we discussed the radiativeexperimental setups. Atoms embedded in dielectrics will also
decay of a model atom. The final result is similar to thebe affected by their immediate surroundings in ways that are
conservative case. The only difference comes from theot accounted for in the phenomenological ME. The latter

D. Atomic radiative decay
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can be looked upon as a crude approximation to a more t t
detailed transport equatiofsee Ref.[15] for other com- D(t):E(t)+JOdSJOdUX(t—S,t—U)iE(S)E(U),
ments. In fact it is quite remarkable that they give a satis-

factory description of many physical situations in terms of a ©.8
single parameter, the permeability where the nonlinear susceptibilify has the usual properties
x(t1,t2) =x(t5,t;1) is real andx(t,0)=0. Since only non-
F. Outlook and open problems negative t; and t, appear, we can defingq(—ty,tp)=

. - . —x(ty,tp), sox(—ty,—t)=x(ty,t) and in terms of
The existence of a continuity equation for the energy den- Xt to) Xt~ ) =x(t )

sity is crucial for the occurrence of diffusion in a random _
situation. In the conservative case, after averaging over the\f(wl,wz)=(277)_2f dtydtzexi(wit; + waty) Ix(ty,t2),
randomness, indicated Hy), we have

and[cf. Eq. (2.6)]

de(x,t))+dy- (S(x,t))=0. (9.6
t
In a diffusive situation, for largé and an appropriate initial Fo(t,w)=—I jodsexq—lw(t—s)]E(s)
situation, the currer is assumed to become proportional to
the gradient of the energy density =F,(t,0) +iF4(t,w),
o we have, sinc@(wl,wz) is odd in eachw;, and using that
(S(x.0) Doe(xt)), D=0, ©.7 Fy(t,w) is odd inw andF4(t,w) even,

leading to a diffusion equation fa. In the absorptive case B - i
further investigation is necessary. It is natpriori clear DO=E(t)= | doidw, x(w1,02):Fo(t,01)Fo(t, 2)
whether({e) in Eq. (9.7) should be the full or only the elec-
tromagnetic energy density. —E(t _f dwdw- ¥ Eo(t F.(t

The opposite situation is that of Anderson localization, ® 10wz X1, w2):Fo(t w1)Fa(twr).
which results in a vanishing diffusion coefficient in the con- 9.9

servative case. The mathematical definition of localization is

that of spectral intervals with a dense point spectrum for thepifferentiation leads to Eqg2.4) for J=0 ands;=1, ex-

generator of the motion, each point of this spectrum correcept for the first, which now becomes nonlinear:
sponding with a square integrakfiesually exponentially de-

caying eigenvectof35]. Recently it has been found that in  5,F,(t) =, X F3(t)
conservative systems possessing a band gap, localization in-
tervals in the gap can develop if the system is randomized _ J - )

[36,37). In the lossy case we run into the same problem as 2| dordwy orx(@r,02):Fa(tol)Fa(t ).
with the definition of gaps and the density of states, i.e., we (9.10
expecto(K), the spectrum oK, to cover the whole real axis. '

However, we can again consider the restricti®a,[z  Higher-order nonlinearities can be handled in the same way.

—K]™'Pep to the electromagnetic subspace and we can tryrhe remaining, open, problem consists of finding a Lagrange

to define a localization interval as an interval where this formalism that reproduces these equations of motion and

operator has a dense set of poles and no other singularities.|#ads to a Hamiltoniahi that can be identified as the energy

o(K) is absolutely continuous outside the pointRe,{Z  of the system. Note that it is not obvious that suchHan

—K]~'P¢will have no poles im, excluding localization in  exists, there may be no constants of the motion at all.

the above sense. Thug K) must be more complicated for

the existence of Anderson localization. This makes the study

of random absorptive systems an interesting open math-

ematical problengthink of a random conservative system for  Discussions with A. Moroz, H. Maassen, and D. Frenkel

which A is a localization interval, which is subject to an are gratefully acknowledged. This work is part of the re-

absorptive perturbation search program of the Stichting voor Fundamenteel Onder-
If it turns out that localization occurs, i.eP.,Jz  zoek der Materi€Foundation for Fundamental Research on

—K] P, has a dense set of poles in some skfshere  Matter, and was made possible by financial support from the

exists the further problem of how to disentangle localizationNederlandse Organisatie voor Wetenschappelijk Onderzoek

effects from absorptive attenuation in an experimental setufNetherlands Organization for Scientific Research

where a light beam travels through a slab and the transmitted

beam is studied as a function of slab thickness. For instance,  AppeNDIX A: THE OPERATOR P, [z—K]~!P.,

in the recent experimental work on light localization by

Wiersmaet al.[38], the avoidance of absorption is an impor-  Below we use the notation given in Sec. Ill. Sineg,

tant issue. andP,,, are complementary projectorBq,+ Paux=1, we
Finally we briefly sketch how the convolution term can becan apply the Feshbach formula, EG.5), to obtain (Inz

removed in a simple nonlinear situation. Suppose that #0, A={Ajn})

ACKNOWLEDGMENTS
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X(z)=Penlz— K]_lpem: [Z—=PerKPem— Y(Z)]_lpemr
(A1)
where
Y(2)=PenKPaud Z2— I:)auxKPaux]71PauxKPem
=PenKPaud z+ PauxKPaux][Zz_ (PauxKPaux) 2]_ !

X PauxKPem. (A2)
Now
0 O 0 O
0 O 0 iw
PauxKPaux= 0 0 0 0|
0 —-iw 0 O

SO (PauxKPaux)zszPaux and  Y(2) =P KPyu{z

+ P uKPaud[ 22— 2] 1P, KPem. Evaluating this expres-

sion we have

Yin(2)=2zKid 22~ 0®] 'K 418j10m
:zs;1J M(dw)[ 22— w?] 18,16

= —2e1 'X(2) 8161 (A3)

Since only theK ;3 andK 3, elements survive iR, KPP, we

have
ZS(Z) O K13 0 -1
z 0 O
X@=| g, of Pem A4
0 0O 0 z

The operatorw=(¥? 31 has the inversqrecall that

Kiz

Re(z%)=[2%e(2) —Ho] )

W—l

[z Re(Z)e1? e1Re(2)-(eP)

| —(ep)Re(2D)e}? 7 H1-(ep)-Re(ZD) (£-p)}

_ ( X11 XlB)

(A5)
Xa1 Xs3

as is readily verified by solving=Wf for f in terms ofg.
Thus we have

X1 0 X3 0
0 0 0 0
X(z)= A
@=| % 0 x4 of (A6)
0 00 O

with the Xj,'s as in Eq.(A5). Finally we note thaz {1

—(e-p)-Re(Z?) - (€:p)} =2zR(2%), so we have verified Eq.

(3.10.

A. TIP 57

APPENDIX B: PROOF OF THE PROPOSITION

We haveK=K;+K, with K; having the band gap pair
(A,—A), A=(Na,\p), Ag=0, or, equivalently, H;

=&; YHoe; 2 has the gapd?=(A2,\2). For Imz#0 we
can write

Re(2%) =8, Y22 —H;+ 2% 'x(2)] &1 M
=e; 22— H ] 1+ 2%, X(2)

X[22—H,] 1] te V2 (B1)

Since[z?2—H,]" ! is analytic through the gap?, Re(Z%)
will be analytic through a subset ofA? for which
N7 Y(M)[N2—H;]7* remains strictly smaller than 1 in
norm. TakingA3=(\2+ 6\2—8), 0<S<(\Z—A2)/2, it is
easy to verify that the norfiA?[A2—H;] Y|<\367 %, N2

e A%, since\? keeps a minimal distancé from the spec-
trum of H;. Next we note that if fon2e AZ,

[IN2e1 T (N[N =Hq] 7Y

<|lex XI| IININ2=H,17 Y|

ssuge]ﬁasl(x)*lf dt [x(x,t)|A267t=<c<1,
0
or, sincee(x)=1 for thosex for which x(x,w) is nonzero,

sup | dt |x(x,t)|<\p 28,

xeR3

then Ry(z%) is analytic throughAZ, implying that Ay,
—Ay), Ag=(Y\2+6,\/\2=6) is a band-gap pair foK.

APPENDIX C: SPECTRAL PROPERTIES
1. Relation betweenK and the pair H., Hp,

SinceK is of the form

0 Kem .
K= Kne O v Kme=Kem

(CY
we have
KerKsy O He O
K*K= " = , (C2
0 K& mKem 0 H,
where, using fm(dw)=x'(0) and denoting H;

_ -1 —1/2
=&y Hoe, 7%,
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Hi+e, 'x'(0) sgl’zj m(dw)w- - -
He: L

8;1/200 w2

(e-p)-e1'(ep) —isgl(e-p)f m(dw) - -
Hn=
—ie; Y(ep) w2+8;1f m(dw)- - -

(C3

It is known from general principleg39] that the spectra of
KemK3m andKE  Ken, coincide, except for, possibly, the point
0. These expressions refer to the setup of Sec. Il B, whereas

for Sec. Il C

L[ Hrerx© 8;1'2fdw<w)w...
-

12

g, ‘wo(w) w?

H ,O Wo\w)w:- - -
1t x'(0) fd (w) | 4

wo(w) w?

where we used the fact that(x) =1 for thosex for which
x(X,®) is nonzero.

2. Eigenvectors related by a wave operator

Let
H=Hgy+V (CH
and suppose the wave operators

Q.= lim exgiHt]Jexd —iHqt]

t— oo

=1+i f‘ dtexgiHt]Vexd —iHot]
0

=1+i|imf_ dtexd — d|t|Jexd iHt [Vexd —iH t]
5070

(C6)

exist. Then, ifHofo=Afg andf==Q-f, , alsoHf ==\ f"*
and from Eq.(C6), in the limit §] 0,

fr=fo+[Nxid—H] Vf,. (C?)
Conversely, fronﬂifiz fo,
{1-[N*id—Hg] VI ==f,, (C9

an abstract form of the Lippmann-Schwinger equations. Le
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Vei(2)=Vi1+Vid z—Hoyl Vo,

Vi M) =lim V(A =i 8), (C9
o—0

we obtain from the Feshbach formula

P f==Pyfo+[N+i0—Hg—Vae(N)] 71
X{P Vot P VP, [N +i0—Hg,] 1P,V o}
=Pfo+[N+i0—Hg—Var(N)] 71
X{P1Ver( M) P1fo+ P1VPf o},
Pt =Pafo+ [N =10~ Ho] *PoVPy {1~ fo}
or
f1=fort[NEi0—Ho1— VoM 1 HVer(N) fort Viofod,

f§:f02+[)\+|0_Hoz-l_]'VZl(fli_fOl) (ClO)

Let f2 be the solution for whicH,=0 andf® the one for
which fy;=0. Then, since bottiy’s are orthogonal and the
wave operators, being isometric, preserve orthogonality, also
21 f°. The above results hold for the case the wave opera-
tors exist. In other situations the above relations still define
eigenvectors ofH. However, if the wave operators exist the
formal manipulations involvedi.e., 5§/0) are better con-
trolled. The crucial point is the existence &fg;¢(\)
=lim 5—>0Veff(7\ *i 5) .

3. Spectral properties ofHg

We now consider the eigenvalue problem fy for the
casem(x,dw)=v(X,w)dw and use the formulation of Sec.
Il C. Thus

Hou=\2u, A>0. (C1)

Since H, is a real operator we note that along with

- (u;(lw)) , U:(E“(lw)) is an eigenvector at the same eigenvalue
2

and this is also the case folﬂ(z(fw)). Taking linear combi-
nations we can restrict ourselves to realof the typeu
=(u;(1w)) with u,(w) odd in w and uz(ug(w)) with uy(w)
even inw. In the second case we haugu,(w)=A2u,(w)
S0 Uy(w)~ 8(w?—\?) and it remains to consider the first.
We do so by writing'see Eq.(C4)]

H, O
H.= +
€ \o w?

—_ (0
=HO+V.

x'(0) jdwa‘(w)w~~
wo(w) 0
(C12

We assume that(x,w), and hencer(X,), is confined to a
pounded region in space. L& be the projector upon the

. . 0) —1/2 4
P, and P,=1— P, two complementary projectors, which complement of the null space 6", i.e., &1 2 times the

commute with Hy,
=\P;f,. Assume further thaV¥,,=0. Then, withg;=P;g,
thz P]XPh and

H0=H01P1+H02P2 SO HOJP]fO

first component of)f is transverse. Then the wave operators
Q. =lim_, . .exdiHst]exg —iHt]Q exist and we can ap-
ply the results of the preceding subsectiorufo=Q-u{®,
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erwhereH(o)u(o)—)\zu(o) Sincew u(o)(x w)= )\ZU(O)(X,Q,), If v(X,w) is not confined to a bounded region in space, as
we haveu(o)(x 0)=w08(02—\2)g(x), whereg(x) is arbi- in spatially homogeneous or periodic systems, the above ex-
trary. Using the specific structure of the operators involvedPressions can still be used. In the spatially homogeneous
we obtain from Eq(C10 case with nontrivial [so Imy(\)>0] and settings;=1, we
have, for the transverse cas®*(A2)=[\¥{1+x (1)}
U= u;\ol)JrRr()\z)[ AU —p?] 1=[£%—p?] "%, which has the kernglx|R*(\?)]y)
=—exdié&|x—y|1/(4m|x—y|), where InE.>0. This re-

sults inuy,’s which remain bounded as functions xf con-
f dw a(w)wu(o)(w)] trary to the solutions of the Helmholtz equation,
2 * _ Nn271f —
_u(0)+R ()\ { )\2)( ()\)UM"‘)\O'()\)Q} [A {1+X ()\)} p ]f_O! (C1H

which diverge for largex. From K. K%, u=\?u it follows

U(w)=wd(w?>—N\?)g+ [ \2+i0— 2]t
ale) ( ot ol ] that H K2 u=K?, KerKE U= K2 Hu=\2K% U so KX, u is

X o(w){uy;—u9}, (C13  the corresponding eigenvector Kf, .
where 4. The eigenvalue zero and gauge condition
R*(\%) = limRe(\?%i6), In the present case 0 is an eigenvalugofis is readily
6—0 verified, the corresponding eigenvectors are of the form
Re(z%) =[2%(2) —Ho] . (C19 —81/2 vl e e3%, 0
For realu®® the functionsus, are complex conjugate, sowe , | ® ‘&1%%de| |- o 'ei%0, 0| [l M
can obtain real eigenvectors B, by taking the appropriate = — 0l N 0 dy L ¢

linear combinations. As before we have two types of or-
thogonal solutions. The first is obtained by settirfy=0 or
g=0 and the second by{?=0. Note that the requirement

Ver(N) =lim;_oVesi(A +1i6) exists of the preceding subsec- where thef;’s are scalar functions. Its first two components
tion amounts here to the existence of ,}y@y()\ﬂ&) give the corresponding eigenvectorstf and the second of
= [gdtexd =irt]x(=t), which is the case ifx(t)| is inte-  H,,. The projector upoV{H,), the null space of., and on

0 0 0
(C16

grable. MH,,) are
|
Pll _Pllf m(dw')(w’)flszllz PO 0
_851/2w71P11 w—lf m(dw’)(w’) 1/2P 8_1/2
I
Here Pyy=P[P{1+£; 1%(0)IP] 1P with P the projector APPENDIX D: CLASSICAL ELECTROMAGNETIC
uponA(H,), see Refs[15,20, SCATTERING
1. Scattering into cones
P=e12P [Pye,Po] Poel?, (C19 g

We are interested in the asymptotic behavior for largé
whereP, is the projector upon the null spagd H,) of Hy, .
e., the longitudinal functions. The vectots , discussed U)* O (e-8—a)0(x=b)U(t), (D1)
above, being eigenvectors Hf, at eigenvalue\?+0, satisfy
P.uy =0, which is equivalent to the gauge condition Eq.whereU(t) =exd —iK,t] with K, the restriction ofK for
(4.17, as can be checked explicitly. We finally note that €1=1 to the electromagnetic subspace, i.e.,

— a1 afmd 10 o0 0 €p
M = 1 x| M(dw)w , Ko=Ko(p)= Cep 0 ) (D2)
0 0 —dy O
— O e X)0 0 We note thaKy(p)=pP.—pP_, whereP- are the projec-
M* M:( stat 2)_ (c190  tors upon the eigenspaces 0§ with positive and negative
0 —dy eigenvalues, respectively. In explicit form
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A + e O(e-e,—a)=0[(t Y(e-x—ax))],
p+:%(_p ep) (D3)
Teeg A
O(x—b)=0[(t"(x—b))], (D)
and
U(t)=exd —ipt]P,. +exdipt]P_. (D4) ~Wwe have to determine howU(t)*t te-xU(t) and
U(t)* (x/t)U(t) behave. By differentiation and integration
Since, fort>0, we obtain, using[Kq(p),e-x]=Kg(€),

U(t)*t—le.xu(t):t—le-x+t—1ftdu U(u)*i[Ko(p),e-x]U(u)
0

=t—1e-x+t—1ftdu U(u)*Ko(e)U(u)
0

:tfle-x+tflftdu {exdipu]P, +exd —ipu]P_}Kq(e){exd —ipu]P,+exdipu]P_}
0

t—o

— P Ky(e)P, +P_Ky(e)P_
:ep.e(PJr—P,). (D6)

In a similar way, withi[ Ko(p),x?]=2K(X) ,
U(t)* (x/t)?U(t) = (x/t)?+ 2r2fotdu {exdipu]P,+exd —ipu]P_}Kq(x) {exd —ipu]P. +exdipu]P_}.
But exgdipu]Ko(x)exd —ipul=Kq(exdipulxexd —ipu]) =Ky(x+e,u), so

U(t)* (x/t)?U(t) = (x/t)*+ 2t‘2ftdu {exdipu]P, +exd —ipu]P_Hexd —ipulKy(x)P, +exdipu]lKy(x)P_}
0
+2t‘2ftdu ulexdipu]P, +exd —ipu]P_Hexd —ipulKy(&,) P, —exdipulKy(&,)P_}
0
=(x/t)2+2t‘2ftdu {exdipu]P, +exd —ipu]P_Hexd —ipulKy(x)P, +exdipu]lKy(x)P_}
0

+2t—2fotdu u{exdipulP., +exd —ipu]P_}{exd —ipulP, +exdipulP_}

toe (10
_>Ap( 0 1). (D7)

Hence

1 0
lim U(t)*(x/t)U(t)=Ap<0 1), (D8)

t—o
and

limU(t)* © (e-e,—a)® (x—b)U(t) = lim U(t)* @ (e-e,— a) U(t) U(t)* ® (x— b)U(t)

t—oo t—oo

10
={G)(e-ep—::1)P++(—e-ep—a)P_}Ap(0 1)

=0(e-g,—a)P, +0(—eg—-a)P_, (D9)
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which is Eq.(6.4).

2. Reduction of T(2)

We reduceP,,T(2)Pe,, to @an object(z) that only acts on electric fields by applying the Feshbach formula twice. We have
(Kg is defined above

X=Peml(2)Pem=[2—Ko]Pen{ 2= K] *Penl 27— Ko]—[2— K]Pem
=[2=Ko]Perd 2= Ko=PenKPay{ z— PauxKPaux]_lpauxKPem]_lpen{Z_ Kol=[z=Ko]Pem. (D10)

SiNCePeKPaux=1{K140k1 614} @and P, KPem={K410ka 811}, Whereas Kiayx=PausKiPau

z 0 0 O

0 z 0 iw
[z— PauxKPaux]ilz[Z_" Klaux][zz_ (Klaux)z]il:[zz_ wz]il )

0 0 z O

0 —iw 0 2z

we obtain
PemKPaudz— I3&1upraux:|71PauxKPem: ZK14[22_ w2]71K41PeI:ZJ’ dw v(w)[zz— wz]ilPeI: _23((2) Per, (D11)

whereP o ;={8,1 61} is the projector upon the electric fieftirst) component of-. Thus, rearranging terms and again applying
the Feshbach formula,

X=[2~Ko]Penl 2= Ko+2X(2)Pe] *Penf2— Kol ~[2—Ko]Pem
=Penl 2= Kot Zx(2)Pe1— 2X(2)PeilPen] 2~ Ko+ 2X(2)Pei] " *Penf 2= Kol —[2— Ko]Pem
= = PerZX(2)Pel[ 2= Ko+ ZX(2)Pei] "*Penf 2= Ko+ 2X(2)Pe1 = 2X(2)Pe 1Pem
= —2X(2)Pe 1+ Z2X(2)Pe[ 2~ Ko+ 2x(2)Pel] " *Peix(2)
= = 2X(2)Pe+ Z2X(2)Pel[ 2= PelK oPei+ 2X(2)Pei~ PelK oPmad 2~ PmadK oPmagl ~*Pmagd<oPel]  *Peix(2)
={~2x(2)+ 2x(2)[26(2) = PelK oPmaZ "PmadKoPeil }Pel
={~2x(2) + Zx(2)[2°&(2) — Ho] " }P¢|=1(2)Py,. (D12

Here P ¢=Pe |+ Pmag and we used the relatior®, K oPej=Pmagdk oPmag=0, PelKo=PeiKoPmag: Pmagd<oPei=KoPei, and
PeiK oPmagK oPei=PeiKoPei=HoPe,
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