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Linear absorptive dielectrics
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Starting from Maxwell’s equations for a linear, nonconducting, absorptive, and dispersive medium, charac-
terized by the constitutive equationsD(x,t)5«1(x)E(x,t)1*2`

t dsx(x,t2s)E(x,s) and H(x,t)5B(x,t), a
unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-
dependent, electric permeability«(x,v), no further assumptions are made. The procedure leads to a proper
definition of band gaps in the periodic case and a new continuity equation for energy flow. AnS-matrix
formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is
derived and applied to the generation of Cˇ erenkov and transition radiation as well as atomic decay. The last
case suggests a useful generalization of the density of states to the absorptive situation.
@S1050-2947~98!01906-4#

PACS number~s!: 42.50.2p, 42.50.Ct, 03.50.De
c

a
d
is

tiv
e

om
tr

an
y
rs
rp

av

e-
in

be
l

he
on,

he
nd
ps.
an

efi-

n.

ago
r-

v-

re
ond
his

pic

cur-
spa-
sys-
not
ms
and
per-
-

al

an
re
I. INTRODUCTION

The present work deals with Maxwell’s equations~ME!
for a lossy, macroscopic, nonconducting, linear medium

] tD~x,t !5]x3H~x,t !2J~x,t !,
~1.1!

] tB~x,t !52]x3E~x,t !,]x•B~x,0!50.

In the case where the fields are related by frequen
independent permeabilities, D(x)5«(x…E(x), H(x)
5m(x)21B(x), energy is conserved for vanishing extern
currentJ. This allows the introduction of a suitable norm an
corresponding Hilbert space in which the time evolution
unitary ~below we refer to such systems as conserva
ones!. A unitary time evolution is of paramount importanc
since it is generated by a self-adjoint operatorK. Band gaps
in periodic systems and Anderson localization in rand
situations can then be formulated in terms of the spec
properties ofK in complete analogy with the Schro¨dinger
case. In addition a unitary time evolution can easily be qu
tized. This is important since processes such as deca
excited embedded atoms, require a second quantized ve
of the fields. The situation changes if the medium is abso
tive and dispersive~shortened to absorptive or lossy below!.
In the simplest case, that of a linear lossy dielectric, we h
m51 and

D~x,t !5«1~x!E~x,t !1E
2`

t

dsx~x,t2s!E~x,s!

5«1~x!E~x,t !1E
t0

t

dsx~x,t2s!E~x,s!, ~1.2!

where the last line holds forE(x,t) vanishing fort,t0. This
expression differs from the usualD(x,t)5E(x,t)1P(x,t),
where P is the polarization. However, it is the natural d
composition if we think of a system of absorptive particles
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a uniform, nonabsorptive, background. Then«1(x) is the
background permeability outside the particles but may
different inside, thus leading to anx dependence. In genera
«1(x)51 if x is in an absorptive region, thus ensuring t
proper high-frequency behavior. In a nonabsorptive regi
where x(x,t) vanishes,«1(x…is the static permeability and
may be larger than one. It is the convolution part in Eq.~1.2!,
leading to a complex, frequency-dependent«(x,v) in the
Laplace or Fourier transformed ME, that prevents t
straightforward construction of a Lagrange formalism a
quantization. It is also not obvious how to define band ga
The usual definition as a vanishing density of states in
interval becomes problematic since«(x,v) is complex, lead-
ing to complex eigenvalues and the eigenstate-counting d
nition is useless.

At present the situation is under active investigatio
Transparent systems, i.e., systems where«(x,v) is real, so
absorption is neglected, were already treated a long time
by Jauch and Watson@1#. In recent times nonlinear transpa
ent systems were considered by Drummond@2#. Other recent
work, including absorption, and involving a nonlocal relati
istic action, is due to Burgess@3#. It is also possible to ap-
proach the problem from a microscopic point of view, whe
the quantized electromagnetic field is coupled to a sec
quantized field, representing the material subsystem. T
road was taken by Huttner, Barnett, and others@4–6# for
spatially homogeneous situations. A different microsco
treatment by Matloob, Loudon, and co-workers@7# considers
the quantized field in the presence of a quantum noise
rent due to the material subsystem. Here some simple
tially nonhomogeneous situations are studied, as well as
tems with gain. However, there are situations that are
adequately covered in the literature, in particular for syste
that are both spatially inhomogeneous and absorptive
where the precise frequency dependence of the electric
meability is important. We illustrate this by giving two ex
amples.

The first is that of the construction of three-dimension
photonic crystals@8# built up from lossy dielectric particles
on the lattice sites and here small metallic spheres offer
interesting possibility~colloids can be used to manufactu
4818 © 1998 The American Physical Society
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57 4819LINEAR ABSORPTIVE DIELECTRICS
such objects@9#!. The former behave as strongly absorpti
dielectric spheres@10# and are an interesting candidate f
the construction of a photonic crystal with a band gap. T
raises the question of how to define band gaps in the p
ence of absorption. The next step is then to create s
randomness in the crystal, leading to Lifshits tails in the g
that may show Anderson localization. The second examp
that of transition radiation@11#, the emission of electromag
netic radiation caused by the passage of energetic elec
through layered dielectrics. At present this mechanism
studied as a tool to produce x-ray radiation for technolog
purposes@12#. Suitable materials show strong absorpti
~partly used to suppress unwanted frequencies! and the actual
radiation yield depends sensitively on the absorption cha
teristics.

As stated, quantization of absorptive dielectrics is
quired if one wants to study the decay properties of exc
atoms or molecules embedded in a dielectric. In additio
quantized theory significantly simplifies transition radiati
calculations since it can be described as a scattering pro
~electron, zero photons in→ electron, one photon out! and a
first-order calculation suffices. However, for quantization
classical Lagrange formalism has to be developed first. T
is readily done for space-dependent electric and magn
permeabilities«(x) andm(x) in various degrees of genera
ity @13–15# but, if the medium is absorptiveand space de-
pendent, only limited progress has been made@7# ~for an
extensive list of further references, see Ref.@16#!.

In this work we present an approach that handles gen
space-dependent situations. The only input required is
coordinate- and frequency-dependent complex electric
meability «(x,v), which can be obtained experimentall
We shall achieve our goal by introducing auxiliary fiel
with the result that we obtain a new set of nonconvolut
coupled field equations, equivalent to the original ME, su
that, forJ50, the energy of the coupled system is conserv
both globally and locally, and leading to a unitary time ev
lution. The idea behind this is that convolutive time evo
tions often turn up if part of the system is ‘‘integrated out
the standard example being the Feshbach-Zwanzig proje
method. Here] tc(t)52 iHc(t) in some linear spaceH is
rewritten as@P andQ512P are complementary projectors
Qc(0)50]

] tPc~ t !52 iPHPc~ t !2 iPHQc~ t !,

] tQc~ t !52 iQHPc~ t !2 iQHQc~ t !. ~1.3!

Solving the second and substituting into the first results
the convolutive equation

] tPc~ t !52 iPHPc~ t !

2E
0

t

dsPHQexp @2 iQHQ~ t2s!#QHPc~s!.

~1.4!

This expression is the starting point for the construction
generalized master equations in statistical mechanics@17#,
wherec is a density operator andH the Liouville operator,
i.e., the commutator with the Hamiltonian. In quantu
s
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theoryc is the state vector andH the Hamiltonian. There the
Laplace transformed version of Eq.~1.4! corresponds to the
partGP(z)5P@z2H#21P of the Feshbach formula@18#

@z2H#215@z2QHQ#21Q

1$P1@z2QHQ#21QHP%

3GP~z!$P1PHQ@z2QHQ#21%,

GP~z!5†z2PHP2PHQ@z2QHQ#21QHP‡21

5@z2He f f~z!#21, ~1.5!

featuring the effective Hamiltonian or mass opera
He f f(z). We shall make frequent use of this formula as
technical tool.

The transition from Eqs.~1.3! to Eq.~1.4! suggests work-
ing backwards from the convolutive ME, thus ending
with a unitary time evolution with a time-independent ge
erator and associated Lagrange formalism in a larger sp
In Sec. II it is shown how this is done. As a bonus we fi
that we can define an energy densitye(x,t)5eem(x,t)
1eaux(x,t) in terms of contributions from the electromag
netic (Pc in the above relations! and auxiliary fields (Qc),
which satisfies a continuity equation, featuring the Poynt
vector in the divergence term

] te~x,t !1]x•E~x,t !3H~x,t !50. ~1.6!

This equation is a possible starting point for the developm
of a diffusion theory in random absorptive media. In Sec.
we use the unitary formalism for a proper definition of ba
gaps for lossy systems and give a result about the persist
of gaps under a lossy perturbation. Next a Lagran
Hamilton formalism is set up in Sec. IV and quantized
Sec. V. Then we turn to some applications. In Sec. VI
apply the unitary formalism to the classical scattering
electromagnetic waves from a lossy object, whereas in S
VII its quantized counterpart is used for a quantum treatm
of Čerenkov and transition radiation generated in a lo
dielectric. In Sec. VIII, where atomic decay is discussed,
are led to a definition of the local density of states for
absorptive system. In Sec. IX we discuss, among other m
ters, related work and some open problems.

Finally some remarks on notation: Belowc, the speed of
light in vacuum, is set equal to one, as is\ in the quantized
theory. e5$e i jk% is the Levi-Civita pseudotensor, antisym
metric under an interchange of each pair of indices a
e12351, whereasp52 i ]x , the momentum operator o
quantum mechanics, is the generator of translations.CA(y)
is the characteristic function for the setA, i.e.,CA(y)51 for
yPA and vanishes otherwise. Unit vectors are written
ea5a/a, a5uau. Operators pertaining to the classical forma
ism and classical field modes entering in quantum exp
sions are denoted in sans serif, i.e.,K, H, etc., whereas op-
erators related to the quantum case are denoted asH, V, etc.
Inner products are written as (f ,g)5^gu f &. Fourier and
Laplace transformsf̃ (v), respectivelyf̂ (z), of f (t) are de-
fined through
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f̃ ~v!5E
2`

1`

dt exp@ ivt# f ~ t !,

f̂ ~z!55 E0

`

dt exp@ izt# f ~ t !, Imz.0

E
0

`

dt exp@2 izt# f ~2t !, Imz,0

~1.7!

so

f̂ ~v1 i0!2 f̂ ~v2 i0!5 f̃ ~v!. ~1.8!

For the definition and properties of wave and scattering
erators we refer to textbooks on quantum scattering the
@18,19#.

II. CONSTRUCTION OF A UNITARY TIME EVOLUTION

A. Assumptions

We assume that«1(x) andx(x,t) are smooth, real func
tions of their arguments and that 0,«a<«1(x)<«b,`.
Following the approach given in Ref.@20#, discontinuities
can be obtained by a limiting procedure. We come back
this issue in the discussion section. Concerningx(x,t) we
make the following assumptions~thev integrals are overR):

A1: x~x,t0!50,

A2: x8~x,t !5] tx~x,t !5E dv n~x,v!exp@2 ivt#,

n~x,v!5n~x,2v!>0,

x8~x,0!5E dv n~x,v!<c,`, c x independent.

A3: x̂~x,0!5E
0

`

dt x~x,t !5E dv n~x,v!v22,` .

In this section only the first two assumptions are requir
whereasA3 is needed in the Lagrange setup, see Sec.
These properties generally hold for linear response exp
sions forx and are explicit in a case of damped two-lev
systems@21#. We can allown(x,v) to consist of an inte-
grable part,nac(x,v), and a sum ofd functions,npp(x,v)
5(nnn(x)d(v22vn

2),(nnn(x),`. The latter describes a
class of systems having a phase lag but no decay inx(t). It
is convenient to write

m~x,dv!5nac~x,v!dv1npp~x,v!dv. ~2.1!

From a mathematical point of viewm is an x-dependent
measure, consisting of an absolutely continuous part~ac! and
a pure point~or atomic! part ~pp!. We can add a singula
continuous part as well, makingm a general positive mea
sure, but there are no compelling physical reasons to do
x8(x,t), being the Fourier transform of a positive measu
has certain special properties~Bochner’s theorem, see Re
@22#!. In practical cases thex dependence is trivial,m van-
-
ry

o

,
.
s-
l

o.
,

ishes outside absorptive particles in a uniform nonabsorp
background and is constant within the particles. Later on
shall frequently consider the situation wherex(x,t) and
hencem(x,v) is confined to a bounded region. With this w
mean that the region in space where both are nonvanishin
bounded and independent oft. In terms ofm we have

A2: x8~x,t !5E m~x,dv!exp@2 ivt#, m>0,

m~x,dv!5m~x,2dv!, m~x,R!<c,`,

A3: x̂~x,0!5E
0

`

dtx~x,t !5E m~x,dv! v22,` .

Substitution of Eq.~1.2! into Maxwell’s equations, Eqs
~1.1!, and usingA1 andA2 results in

] t«1~x!E~x,t !5]x3B~x,t !

2E
t0

t

ds x8~x,t2s!E~x,s!2J~x,t !

5]x3B~x,t !2E
t0

t

dsE m~x,dv!

3exp@2 iv~ t2s!#E~x,s!2J~x,t !.

~2.2!

For later reference we summarize some relations used in
text:

x~x,t !5 i E m~x,dv!v21exp@2 ivt#

5E m~x,dv!v21sinvt,

x8~x,t !5E m~x,dv!exp@2 ivt#5E m~x,dv!cosvt,

x̂~x,z!5z21E m~x,dv!@v2z#21

5E m~x,dv!@v22z2#21,

x̂~x,v1 i0!2x̂~x,v2 i0!5x̃~x,v!52p in~v!/v.
~2.3!

B. Unitary formalism, general m

We setF1(x,t)5A«1(x)E(x,t), F3(x,t)5B(x,t) and in-
troduce two new auxiliary real vector fieldsF2(x,v,t) and
F4(x,v,t). Next we consider the set~skippingx for brevity
as will be done at various places!
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57 4821LINEAR ABSORPTIVE DIELECTRICS
] tF1~ t !5«1
21/2]x3F3~ t !1«1

21/2E m~dv!F4~v,t !

2«1
21/2J~ t !,

] tF2~v,t !5vF4~v,t !, ~2.4!

] tF3~ t !52]x3«1
21/2F1~ t !,

] tF4~v,t !52vF2~v,t !2«1
21/2F1~ t !,

subject to the initial conditions

F2~v,t0!50, F4~v,t0!50. ~2.5!

ThenF0(v,t)5F2(v,t)1 iF4(v,t) satisfies

] tF0~v,t !52 ivF0~v,t !2 i«1
21/2F1~ t !,

and, using Eq.~2.5!,

F0~v,t !52 i«1
21/2E

t0

t

dsexp@2 iv~ t2s!#F1~s!

52 i E
t0

t

dsexp@2 iv~ t2s!#E~s!. ~2.6!

From this we see thatF2 is odd and thatF4 is even inv, so
*m(dv)F4(v,t)52 i *m(dv)F0(v,t) and substitution of
Eq. ~2.6! into the first of Eqs.~2.4! gives Eq.~2.2! back and
we have recovered Maxwell’s equations. Also

D~x,t !5«1~x!E~x,t !2E m~x,dv!v21F2~x,t !. ~2.7!

Given that our set of fields satisfies Eqs.~2.4! and~2.5!, the
auxiliary fields are unique. If we have a second such set, t
the time derivative of their difference vanishes, so this d
ference is constant in time and hence must vanish due to
~2.5!.

Combining the fourF j ’s into a single ~12-component!
vectorF5 % j 51

4 F j , we can write Eqs.~2.4! as

] tF5NF2G, ~2.8!

where G5 % j 51
4 Gj , G15«1

21/2J, G25G35G450. Here N
5N11N2 is a matrix with operator entries, explicitly give
by Eqs.~2.14! and ~2.16! below. As mentioned earlier it is
important thatN generates a unitary time evolution on
suitable Hilbert spaceH. We chooseH5 % j 51

4 Hj , H1

5H35L2(R3,dx;R3), the space of square integrable fun
tions overR3 with value in R3 ~i.e., they are real! andH2
5H45L2

„R4,dx m„x,dv;R3)… @so for fPH2 its norm
squared is*dx *m(x,dv)uf(x,v)u2#. We denote the norm
and inner product onH by uu uu and ( , ) and onHj by uu uu j ,
( , ) j . A little calculation shows that for suitablef, gPH we
have (Nf,g)52(f,Ng…, so forF with F jPHj and vanishing
G, ] t(F,F)5(NF,F)1(F,NF)50 and

E4 1
2 uuF~ t !uu2 ~2.9!

is conserved in time. For vanishingx we havem50, soE
coincides with the energy stored in the electromagn
n
-
q.

ic

fields. It is therefore natural to adoptE as the energy of the
more general system we consider here. Now energy can
from the electromagnetic to the auxiliary fields andvice
versa. Note that no recourse was made to cycle averagin
procedure that becomes problematic for nonmonochrom
fields. In addition to global energy conservation there is a
a local conservation law, i.e., a continuity equation. Thus
e(x,t)5eem(x,t)1eaux(x,t), where

eem~x,t !5 1
2 $«1~x!E~x,t !21B~x,t !2%

5 1
2 $F1~x,t !21F3~x,t !2%,

~2.10!

eaux~x,t !5 1
2 E m~x,dv!$F2~x,v,t !21F4~x,v,t !2%.

Then, forJ50 and using Eqs.~2.4!,

] te~x,t !1]x•S~x,t !50, ~2.11!

whereS(x,t)5E(x,t)3B(x,t). We see that the energy den
sity has a contribution from the auxiliary fields but that t
divergence term only contains the Poynting vectorS(x,t).
Note further thateaux(x,t) is nonvanishing only in those
space regions wherex8(x,t) is nonzero.

For the discussion of spectral properties such as b
gaps in periodic systems it is necessary to complexify
formalism. There we allow the components of theF j ’s to be
complex, soH becomes

H5 % j 51
4 Hj , H15H35L2~R3,dx;C3!,

H25H45L2
„R4,dx m~x,dv!;C3

… ~2.12!

and we set

N52 iK, ~2.13!

where K is now symmetric. LetN5N11N252 iK12 iK2
with N1 the operator obtained fromN by settingx50. Then
~recall thate is the Levi-Civita pseudotensor andp52 i ]x)

N15S 0 0 2«1
21/2e•]x 0

0 0 0 v

e•]x«1
21/2 0 0 0

0 2v 0 0

D ,

~2.14!

K15S 0 0 «1
21/2e•p 0

0 0 0 iv

2e•p«1
21/2 0 0 0

0 2 iv 0 0

D .

Introducing the projectorsPem and Paux upon the electro-
magnetic and auxiliary subspaces,

Pem5S 1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

D , Paux5S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

D ,

~2.15!
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4822 57A. TIP
we see that both commute withN1 and K1. Thus the latter
reduce to separate operators on the individual subspace
Ref. @20# it is shown that the electromagnetic part ofK1
defines a self-adjoint operator. This is also the case for
auxiliary part, which has the structurev(2 i

0
0
i ) and henceR

as spectrum. We now haveN5N11N2 ,K5K11K2,

N252 iK25S 0 0 0 «1
21/2E m~x,dv!•••

0 0 0 0

0 0 0 0

2«1
21/2 0 0 0

D ,

~2.16!

where the••• in *m(x,dv)••• indicate an integration ove
m(x,dv) of the object on which it acts. It is a simple matt
to show that under the conditionsA1 andA2 the operatorsN2
and K2 are bounded. ThusN is anti-self-adjoint andK is
self-adjoint. An elucidation about taking adjoints might be
place. Consider an operatorX with X415f(v). Then, in the
real case, (X41f 1,g4)45*dx*m(dv)f(v) f 1(x)g4(x,v)
5*dx f 1(x)*m(dv)f(v)g4(x,v)5( f 1 ,X14* g4)1, so f*
5*m(dv)f(v) . . . , an example being provided by Eq
~2.16!.

The present setup is quite elegant in that it combines
ac and pp situations in a single formalism and we shall us
in this form in Secs. III and IV and the first part of Sec. V
However, it has a rather awkward feature if we consid
random systems@characterized by random«1(x) and/or
x(x,t)# or scattering situations. In the random case the m
ric may become random through the random meas
m(x,dv), which can be undesirable, since it varies from o
realization to another. In a scattering case, wherex(x,t) is
nonzero in a bounded region in space only, the refere
system used in the definition of wave and scattering op
. In

e

e
it

r

t-
re
e

ce
a-

tors is obtained by settingx50, i.e.,K 1 is the generator, bu
now H2 andH4 collapse since the measurem(x,dv) van-
ishes. Below we remedy this.

In conclusion we observe that, given«1(x) and x8(x,t)
satisfying A1 and A2, we have constructed a formalism
showing a unitary time evolution. For this purpose two au
iliary fields were introduced that are unique, given the init
conditions and the differential equations they obey. In
case«151 we haveD5E1P and we can identifyP(t)
5*m(dv) v21F2(v,t) and ] tP(t)5*m(dv)F4(v,t). Re-
ferring back to Eq.~2.9! we note that the conserved energ
cannotbe expressed in terms of the polarization and its ti
derivative. From a microscopic point of view these ne
fields represent the material system with which the elec
magnetic fields interact. See the discussion section for
ther comments.

C. Unitary formalism, absolutely continuous m

In the absolutely continuous case, wherem(x,dv)
5n(x,v)dv the problem we noted above is easily remed
by usingdv as the measure. ReplacingF j by s(x,v)F j , j
52,4, with s(x,v)5n(x,v)1/2, we have H25H4
5L2(R4,dx dv;R3) and Eqs.~2.4! become

] tF1~ t !5«1
21/2]x3F3~ t !1«1

21/2E dv s~v!F4~v,t !

2«1
21/2J~ t !,

] tF2~v,t !5vF4~v,t !, ~2.17!

] tF3~ t !52]x3«1
21/2F1~ t !,

] tF4~v,t !52vF2~v,t !2«1
21/2s~v!F1~ t !,

with the corresponding changes inN andK. Thus
K5S 0 0 «1
21/2e•p i«1

21/2E dv s~x,v!•••

0 0 0 iv

2e•p«1
21/2 0 0 0

2 i«1
21/2s~x,v! 2 iv 0 0

D . ~2.18!
ill
itu-
As before we can decompose:K5K11K2. Let A be the set
of xPR3 for which x(x,t) vanishes. Then (C is a character-
istic function! PA5CA(x)Paux is a projector and

@PA ,K#50. ~2.19!

This implies that ifPAF(x,0)50, thenPAF(x,t)50 for all
other t.
The modified formalism, presented in this subsection, w
be used in later sections, in particular where scattering s
ations are considered.

D. Unitary formalism, pure point m

If m is pure point, i.e.,m(x,v)5(nnn(x)d(v22vn
2), we

set F jn5sn(x)F j (x,vn), sn(x)5nn(x)1/2, j 52,4. NowH2
5H45L2(R3,dx) ^ l 2, i.e., uuF j uu25(n*dx uF jn(x)u2, j
52,4, and



th
an
ec

o

n
h

m

u

l
,
na
or
n

ro-

the

id

es

57 4823LINEAR ABSORPTIVE DIELECTRICS
] tF1~ t !5«1
21/2]x3F3~ t !1«1

21/2(
n

snF4n~ t !2«1
21/2J~ t !,

] tF2n~ t !5vnF4n~ t !,
~2.20!

] tF3~ t !52]x3«1
21/2F1~ t !,

] tF4n~ t !52vnF2n~ t !2«1
21/2snF1~ t !.

This is basically a discretized version of Eqs.~2.17!. Obvi-
ously both can be combined ifm is of the form Eq.~2.1!.

III. BAND-GAP SYSTEMS

As is the case for electrons in periodic potentials,
spectrum of conservative periodic dielectrics has a b
structure@8#, which may show gaps. In this case the sp
trum is determined by the eigenvaluesl2 of the electric
Helmholtz operator

H15«1~x!21/2H0«1~x!21/2, ~3.1!

or

@«1~x!l22H0#El50. ~3.2!

Here, in dyadic notation,H 052]x
2U1]x]x , U being the 3

33 unit matrix. Suppose there are no solutions foruluPD
5(la ,lb), in which case Maxwell’s equations have n
eigenmodesEl(x)exp@6ilt#. Then D and 2D5(2lb ,
2la) are a pair of band gaps. Alternatively we can defi
band gaps as intervals where the density of states vanis
The situation is more complicated for absorptive syste
Using A1 and A2 we obtain from Eq.~2.2! and the second
Eq. ~1.1!,

@z2«~z!2H0#Ê~z!5 izE~0!2]x3B~0! ~3.3!

for the Laplace transformÊ(z). Here we have takent050.
Thus, assuming the inverse operator to exist,

Ê~z!5Re~z2!$ izE~0!2]x3B~0!%, ~3.4!

where

Re~z2!5@z2«~z!2H0#21 ~3.5!

is the resolvent associated with the electric Helmholtz eq
tion and

«~z!5«11x̂~z!, ~3.6!

see also Appendix C. Suppose thatRe(z
2) is analytic across

the real axis foruRezuPD. Since, according to Eq.~1.8!,
Ẽ(l)5Ê(l1 i0)2Ê(l2 i0), it follows that Ẽ(l)50 for
uluPD ~i.e., E has no Fourier components in this interva!
and we conclude thatD is ~part of! a band gap. However
«(l6 i0) are complex and it is not clear that the above a
lyticity assumption can be realized. In order to shed m
light on this problem we return to the unitary time evolutio
discussed in Sec. II B. Again settingt050, we have

F~ t !5exp@2 iKt#F~0!, ~3.7!
e
d
-

e
es.
s:

a-

-
e

whereK is self-adjoint and hence has a real spectrum. P
jecting upon the electromagnetic fields and usingPauxF(0)
50 we have

PemF~ t !5Pemexp@2 iKt#PemF~0!, ~3.8!

which has the Fourier transform

PemF̃~l!5Pemd~l2K!PemF~0!. ~3.9!

If this quantity vanishes forlPD, with D as above, thenD
is ~part of! a band gap. Indeed there are noPemF̃(l) for l
PD.

GenericallyK has the whole real axis as a spectrum~this
being the case for the decoupled auxiliary part!, so the pres-
ence of thePem ’s is crucial. Since the spectrum ofK is real,
the above definition is equivalent toPem@z2K] 21Pem being
analytic across the real axis for RezPD. As shown in Ap-
pendix A we can recast this object according to

Pem@z2K#21Pem5S X11 0 X13 0

0 0 0 0

X31 0 X33 0

0 0 0 0

D , ~3.10!

where

X115z«1
1/2Re~z2!«1

1/2, X135«1
1/2Re~z2!•~e•p…,

X3152~e•p…–Re~z2!«1
1/2, ~3.11!

X335z21$12~e•p…–Re~z2!•~e•p…%5zRm~z2!.

Here Rm(z2)5@z21(e•p)«(z)21
•(e•p)#21. Since the left-

hand side of Eq.~3.10! exists for ImzÞ0, so doesRe(z
2)

and henceÊ(z) in Eq. ~3.4!. Now if (D, 2D) is a band-gap
pair for K, thenRe(z

2) andRm(z2) must be analytic forz2

crossingD25(la
2 ,lb

2) andvice versa.
In order to see that gaps can indeed exist, consider

artificial example where m(dv)5«1(x…m0d(v22v0
2)

and «1(x)5«1(x1a… is periodic, leading to a gapD2

5(la
2 ,lb

2) in the spectrum ofH15«1
21/2H0«1

21/2. Then
«(x,z)5«1(x)z2$11(m0 /v0)@v0

22z2#21%5«1(x)z2 and
@«1(x)z22H0#21 is analytic acrossR for Rez2PD2. But
then, providedma

2>0 in m j
25v0

22@m0 /v01v0
2#@11l j

2#21,
Re(z

2) is analytic through (ma
2 ,mb

2). Another case, where
band gaps may exist is the situation whereK1 has a band-gap
pair (D,2D) as above and thatx is sufficiently small:

Proposition: Suppose thatK1 has the band-gap pair (D,
2D), D5(la ,lb) and let 0,d, 1

2 (lb
22la

2). If
supxPR3«1(x)21*0

`dtux(x,t)u<lb
22d,1, then (Dd , 2Dd),

Dd5(Ala
21d,Alb

22d), is a band-gap pair forK.
The easy proof is given in Appendix B. Note that we d

not require«1(x) and x(x,t) to be periodic inx. For addi-
tional information about the eigenvectors ofK2, see Appen-
dix C. A generalization of the concept of density of stat
N(E) is discussed in Sec. VIII. It vanishes forE in a gap.
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IV. LAGRANGE AND HAMILTON FORMALISM

For the quantization of the classical field equations
Lagrange formalism is required. Thus a Lagrange-Hamil
version of the set of field equations obtained in Sec. II
presented below. Here we shall need assumptionA3. Quite
recently Tip @15# constructed a general Lagrange-Hamilt
formalism, based upon equations of the type Eq.~2.8!. We
use the setup of Sec. II B for the unitary time evolution a
use the subscriptse andm to refer to the first two and the las
two components of vectors such asF, respectively. Heree is
short for electric andm for magnetic,F1 andF2 dealing with
electric andF3 and F4 with magnetic fields, respectively
SinceN has the structure

N5S 0 Nem

Nme 0 D , Nme52Nem* ~4.1!

we have~see also Appendix C!

N252N* N5S NemNme 0

0 NmeNem
D 52S He 0

0 Hm
D ,

~4.2!

andP512Q, the projector upon the null spaceN(N…, is of
the form

P5S Pe 0

0 Pm
D 5S 12Qe 0

0 12Qm
D . ~4.3!

Further details are given in Appendix C. We now introdu
the generalized coordinate fieldj through

Nj52QF. ~4.4!

This does not fixj uniquely, so we add the ‘‘gauge cond
tion’’

Pj50, ~4.5!

giving

j52N21QF. ~4.6!

As discussed in Ref.@15# other gauges are possible as we
There the present gauge is referred to as theC gauge since it
is the natural generalization of the Coulomb gauge of e
trodynamics. We introduce two further, scalar, fieldsze and
zm through

PF52Mz52S «1
1/2]x 0

2v21«1
1/2]x 0

0 ]x

0 0

D S ze

zm
D . ~4.7!

It is shown in Appendix C that this is the general form
PF. It follows from Eqs.~4.6! and ~4.7! that

Fm52Nmeje2Mmzm . ~4.8!

Next we observe that (Gm50)
a
n
s

d

.

c-

] tje52~N21Q] tF!e52~N21Q@NF2G# !e

52QeFe1~N22!eeNemQmGm52QeFe ,

so

Fe52] tje2Meze . ~4.9!

SinceM* P5M* we have

M* F52M* Mz5S ]x•«stat~x!]xze

]x
2zm

D , ~4.10!

where

«stat~x!5«1~x!1x̂~x,0! ~4.11!

is the static permeability@for space regions with vanishin
x̂(x,0) this is true by our definition in Sec. I, whereas in
absorbing region«1(x)1x̂(x,0)511x̂(x,0) is the static
permeability by definition#. Obviously x̂(0) must be finite
for Eq. ~4.10! to make sense, so it is at this point that a
sumptionA3 must be made. Since (M* F)m5]x•B50, zm
must vanish. Also

~M* F!e52]x• H «1
1/2F12E m~dv!v21F2~v!J

52]x•H «1E2ImE m~dv!v21

3E
0

t

ds exp@2 iv~ t2s!#E~s!J
52]x•D52r,

r being the charge density. Thus

2]x•«stat~x!]xze5r. ~4.12!

Equation~4.12! determinesze , whereas we have forje

] t
2je5NemNmeje2QeGe . ~4.13!

These equations of motion follow from Hamilton’s princip
with the Lagrangian~see also Ref.@15#!

L5 1
2 ~] tje1Meze ,] tje1Meze!e2 1

2 ~Nmeje ,Nmeje!m

2~QeGe ,je!e2~r,ze!0 ~4.14!

5 1
2 ~] tje ,] tje!e1 1

2 ~Meze ,Meze!

2 1
2 ~Nmeje ,Nmeje!m2~QeGe ,je!e2~r,ze!0 .

Here Me and ( , )e are the component ofM and the inner
product for the electric subspaceH1%H2, respectively,
whereas ( , )m is the inner product for the magnetic subspa
H3%H4 ~both inner products are the same! and ( , )0 is the
inner product forH05L2(R3,dx…. The momentum field as
sociated withje is given by the variational derivative

pe5
dL

d] tje
5] tje , ~4.15!
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and the Hamiltonian is

H5 1
2 ~pe ,pe!e1 1

2 ~Nmeje ,Nmeje!m1 1
2 ~r,ze!0

1~QeGe ,je!e , ~4.16!

whereze is the solution of Eq.~4.12!. Here the situation is
completely analogous to that of the Coulomb gauge
vacuum electrodynamics. In the present gaugeze is a given
function, determined by the external charge distributionr
and the initial value ofPeFe , whereas the gauge conditio
Eq. ~4.5! gives

]x• H «1
1/2j12E m~dv!v21j2J 50. ~4.17!

ComparingF15«1
1/2E152] tj12«1

1/2]xze with the usual ex-
pression in terms of the vector and scalar potentialsE5
2] tA2]xF, we identify j15«1

1/2A andze5F.

V. QUANTIZATION

The quantization of the Hamiltonian formalism, obtain
in the preceding section, follows the pattern of Ref.@15#,
where an extensive discussion is given. Here we restrict
selves by only presenting the results. Let$ula%be the com-
plete set of orthonormal eigenvectors, associated with
nonzero eigenvaluesl of He . They spanHe @inner product
( , )e#, the complex version ofQe$H1%H2%. Thus

Heula5l2ula , l.0. ~5.1!

A discussion of this eigenvalue problem is presented in A
pendix C. LetF5F(He) be the symmetric Fock space ov
He and a* ( f ) and a(g), f , gPHe are creation and annihi
lation operators acting inF. They satisfy the commutation
relation

@a~g!,a* ~ f !#5Re~ f ,g!e . ~5.2!

Now

je5(
a

E dl~2l!21/2$a* ~ula!ūla1a~ula!ula%,

~5.3!

and denoting the first~electric! component ofula and the
second~auxiliary! by u1la andu2la , respectively,

A~x!5(
a

E dl@2l«1~x!#21/2$a* ~ula!ū1la~x!

1a~ula!u1la~x!%. ~5.4!

The Hamiltonian becomes

H5H f1Hext ,

H f5(
a

E dl la* ~ula!a~ula!,
n

r-

e

-

Hext52(
a

E dl ~2l!21/2$~Ge ,ula!ea* ~ula!

1~ula ,Ge!ea~ula!%1 1
2 ~r,ze!0

52E dx J~x!•A~x!1 1
2 E dx r~x!F~x!. ~5.5!

Here we used the fact that only«1
21/2J, the first component

of Ge , is nonvanishing. In case the interaction with a set
charged scalar Schro¨dinger particles ~mass mj , charge
ej ,coordinatesxj , momentapj ) is considered, the charg
and current densities originate from these particles and
Hamiltonian is now~see Ref.@15# for details!

H5Hm1H f1Hint , ~5.6!

where

Hm5(
j

1

2mj
pj

21(
j .h

ejehF~xj ,xh!, ~5.7!

and

Hint5Hint~A!52(
j

ej

2mj
$pj•A~xj !1A~xj !•pj%

1(
j

ej
2

2mj
A~xj !

2. ~5.8!

The potentialsF(x,y) are the solutions of

2]x•«stat~x!]xF~x,y!5d~x2y!. ~5.9!

In the classical formalism the auxiliary fields vanish at t
initial time t0. Here the corresponding condition consists
taking the vacuum state at the initial time. At this point w
note that the states on the different Fock layers can be
resented in terms of linear combinations of direct sumf
% g, f PF(H1), gPF(H2). Thus our initial state is of the
form f % g0, g0 being the vacuum state ofF(H2) and f
PF(H1). The eigenstate ofH f at the eigenvalue zero is th
vacuum state ofF(He), the direct sum of the individua
vacuum states on theF(Hj )’s. Denoting the vacuum layer a
the zeroth Fock layer, the first Fock layer is simplyHe and
the restriction ofH f to this layer isHe

1/2 ~for more details on
the Fock space structure, see Ref.@15#!. Thus the eigenstate
of H f restricted to this layer are no longer products of sta
from H1 andH2 and similar for higher layers.

So far, the choice for the classical unitary evolution,
discussed in Sec. II, was immaterial. As explained there,
situation changes in scattering situations, where outsid
bounded regionx(x,t) vanishes and«151. Supposing that
m is absolutely continuous, i.e.,m(dv)5n(v)dv we now
use the formalism of Sec. II C. Then the reference opera
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H ~0!5Hm1H f
~0!1Hint~A~0!!,

H f
~0!5(

a
E dl la* ~ula

~0!!a~ula
~0!!,

~5.10!

A~0!~x!5(
a

E dl@2l#21/2$a* ~ula
~0!!ū1la

~0! ~x!

1a~ula
~0!!u1la

~0! ~x!%

would appear in the relevant wave operators. However, th
is an important subtlety. Since the null spaces ofHe andHe

(0)

differ, so do their complementsHe andHe
(0) , and hence the

associated Fock spacesF(He) andF(He
(0)). This fact leads

to problems in the definition of wave operators and ame
must be made. The procedure goes as follows: Suppose
H e andHe

(0) are related by the wave operatorV ~see Appen-
dix C!, i.e.,He5VHe

(0)V* . ThenHe5VHe
(0) and the eigen-

vectors ofHe are ula5Vula
(0) . Also F(He)5VFF(He

(0)),
whereVF51% V % $V ^ V% % •••. Let now

H ~1!5VFH ~0!VF* . ~5.11!

SinceVFH f
(0)VF* 5H f and

A~1!~x!5VFA~0!~x!VF*

5(
a

E dl@2l#21/2$a* ~ula!ū1la
~0! ~x!

1a~ula!u1la
~0! ~x!%,

whereA(1)(x) acts inF(He), we have

H ~1!5T~p!1H f1Hint~A~1!!. ~5.12!

Now the pairH andH (1) act in the same space and this res
will be used in Sec. VII. Theula

(0)’s are an orthonormal set o
eigenvectors of

He
~0!5S H0 0

0 v2D . ~5.13!

Since the electromagnetic and auxiliary fields are decoup
the eigenstates are of the formuk jn

(0) 5c1u1k j
(0)

% c2u2n
(0) , with at

least one of the c’s nonzero. Here u1k j
(0) (x)

5(2p)23/2ejexp@ik–x#, with e1, e2, andek mutually orthogo-
nal andk5l. Furthermoreu2n

(0)5vd(l22v2)fn with $fn ,n
51,2, . . .% an orthogonal basis forL2(R3,dx;C3) ~functions
even in v are also allowed but do not contribute in th
present formalism!. Now all eigenstates ofH f

(0) are direct
sums of states fromF(H1) andF(H2) and(a*dl decom-
poses into( j*dk and(n . In Sec. VII we encounter a situ
re

s
hat

t

d,

ation whereu2n
(0) vanishes. Thenu5Vu(0) can be labeled by

k and j , i.e., u5uk j and(a*dl→( j*dk.

VI. CLASSICAL SCATTERING FROM LOSSY OBJECTS

Our first application concerns the classical scattering of
electromagnetic wave from a finite lossy object. The desc
tion of such a process involves two things. The first is t
existence of the appropriate wave operatorsV6 and scatter-
ing operatorS5V1* V2 . We leave aside the asymptot
completeness of the wave operators, which is needed for
unitarity of S. GivenS, the associated transition (T) opera-
tor and scattering amplitude follow. The second step cons
of relating the scattering of a wave packet to the above s
tering amplitude. This involves the scattering into cones
subject that has been studied for Schro¨dinger systems but, a
far as the author is aware, not for the electromagnetic c
Below we fill this gap.

Thus initially an electromagnetic wave packet is movi
freely towards the scatterer. We take the origin of our co
dinate system somewhere inside the scatterer and shall
culate the amount of energy that finally arrives in the co
C,R3 with the axis along the unit vectore and aperture
q0P(0,p), where it is recorded by a detector far away fro
the object. We truncate the cone toCb , wherex.b.0 andb
is such that the scatterer andCb do not overlap. Then the
energy ending up inCb is purely electromagnetic. We assum
m to be absolutely continuous,«151 and use the results o
Sec. II C. The relevant wave operators are

V65 lim
t→6`

exp@ iKt#exp@2 iK1t#P'

5H 11 i E
0

6`

dt exp@ iKt#K2exp@2 iK1t#J P'

5H 11 i lim
d↓0

E
0

6`

dt exp@2dutu#exp@ iKt#K2

3exp@2 iK1t#J P', ~6.1!

with P'5Pem
' 1P aux , wherePem

' is the projector upon the
transverse parts of the electromagnetic fields. LetA,R3 be
the space region occupied by the scatterer andA8 its comple-
ment inR3. SinceCA8(x)Paux (C is a characteristic func-
tion! commutes withK 1 and K 2, CA8(x)Paux50 and we
haveV6CA8(x)Paux5CA8(x)Paux . The existence proof of
the remaining parts ofV6 follows the usual pattern of show
ing that the normuuK2exp@2iK1t#fuu is integrable int for a
dense set off’s. For uuK2exp@2iK1t#Pem

' fuu, see Ref.@20# and
concerning K2exp@2iK1t#CA(x)Pauxf we note that only
its first component is nonzero and equals*dv
s(x,v)v$cosvtf4(v)1sinvtf2(v)%, wheref j is the j th com-
ponent off. Choosing thef j ’s properly, its norm is an inte-
grable function oft. Note that here thex dependence of
s(x,v) andCA(x) is immaterial, soV6Paux exists for spa-
tially homogeneous and periodic systems as well. The s
tering operator is
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S5V1* V25V1* V11V1* $V12V2%

5P'1 iV1* E
2`

1`

dt exp@ iKt#K2exp@2 iK1t#P'

5P'1 i E
2`

1`

dt exp@ iK1t#V1* K2exp@2 iK1t#P'

5P'1 i E
2`

1`

dt exp@ iK1t#Texp@2 iK1t#P'

5P'12p i T̄P', ~6.2!

with T5V1* K2 and where we used the intertwining proper
V1* K5K1V1* . We haveF(t)5exp@2iKt#F(0), and, since
initially the wave packet is moving freely, there exists anF in
such that

lim
t→2`

$F~ t !2exp@2 iK1t#F in%

5 lim
t→2`

$exp@2 iKt#F~0!2exp@2 iK1t#F in%50,

soF(0)5V2F in . Also F(t);P emF(t), sinceF(t) becomes
purely electromagnetic ast→2` . Hence, sinceP em and
K 1 commute,F in5PemF in and its~electromagnetic! compo-
nents are transverse.

Let Q(•) be the Heaviside step function andCCb(x…
5Q(e•ex2a)Q(x2b), a5cosq0 , the characteristic func
tion for the setCb . It defines the projectorP Cb5CCb(x… in

H. Then the energyECb(t), contained inCb at time t, is

ECb~ t !5 1
2 ^F~ t !uPCuF~ t !&

5 1
2 ^F inuV2* exp@ iKt#$CCb~x…Paux1CCb~x…Pem%

3exp@2 iKt#V2uF in&. ~6.3!

According to Eq.~2.19!, CCb(x…Paux commutes withK and
K 0 and hence withV6 . SinceP auxF in50 we are left with

ECb~ t !5 1
2 ^F inuV2* exp@ iKt#CCb~x…Pemexp@2 iKt#V2uF in&

5 1
2 ^F inuV2* exp@ iKt#exp@2 iK1t#

3exp@1 iK1t#CCb~x…exp@2 iK1t#

3Pemexp@1 iK1t#exp@2 iKt#V2uF in&.

As shown in Appendix D,
lim
t→`

exp@1 iK1t#CCb~x…exp@2 iK1t#Pem

5Q~e•ep2a!P11Q~2e•ep2a!P2

5Q1P11Q2P2 , ~6.4!

where P 6,Pem, project upon the eigenspaces ofK05
K 1Pem with positive and negative eigenvalues, respective
They are given explicitly in Appendix D. Note that the sing
cone in coordinate space gives rise to two cones in mom
tum space. This is different from the Schro¨dinger case and is
connected with the spectrum ofK 1 being the whole real axis
rather than its positive half as in the Schro¨dinger situation.

The complete sets of orthonormal eigenvectorsfk j
6

P P 6H, K0fk j
656kfk j

6 , j 51,2, are (e1, e2, andek are mu-
tually orthogonal unit vectors!

fk j
6~x!5^xufk j

6&5~2p!23/2221/2S ej

ek3ej
D exp@6 ik–x#,

~6.5!

with normalization

^fk j
6 ufk8 j 8

6 &5d~k2k8!d j j 8. ~6.6!

Let the conjugation operatorC be defined by

~CF! j~x!5F j~x!̄. ~6.7!

Then fk j
2 (x)5(Cf2k j

1 )(x), and, sinceK5 iN and K n5 iNn ,
n51,2, with N andN n real operators,

CKC52K,CKnC52Kn , n51,2. ~6.8!

For the T operator

T~z!5K21K2@z2K#21K2

5@z2K2#@z2K#21@z2K2#2@z2K2#, ~6.9!

we then have

CT~z!C52T~2 z̄!. ~6.10!

Returning toECb(t) we obtain, using the fact thatS com-

mutes withK 1 and hence withP 6 ,
EC5 lim
t→`

ECb~ t !5 1
2 ^F inuS* $Q1P11Q2P2%SuF in&

5 1
2 ^F inuP1S* Q1P1SP1uF in&1 1

2 ^F inuP2S* Q2P2SP2uF in&5EC11EC2 . ~6.11!

Inserting the complete sets$fk8 j 8
6 % we have, assumingF in'Q6P6H,
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EC65 1
2 ^F inuP6S* Q6P6SP6uF in&5 1

2 ^F inuP6T̄* Q6P6T̄P6uF in&

52p2(
j 8

E dk8 Q6~ek8!^F inud~6k82K1!T* ufk8 j 8
6 &^fk8 j 8

6 uTd~6k82K1!uF in&.

Since

^fk8 j 8
6 uT5^fk8 j 8

6 uV1* K25^fk8 j 8
6 uP'H 12 i lim

d↓0
E

0

1`

dt exp@2dt#exp@ iK1t#K2exp@2 iKt#J K2

5^fk8 j 8
6 u H 12 i lim

d↓0
E

0

1`

dt exp@2dt#exp@6 ik8t#K2exp@2 iKt#J K25^fk j
6 uT~6k81 i0!,

we arrive at

EC652p2(
j 8

E dk8 Q6~ek8!^F inud~6k82K1!T~6k82 i0!ufk8 j 8
6 &^fk8 j 8

6 uT~6k81 i0!d~6k82K1!uF in&.

Taking F in(x) real, souF in&5CuF in&,

EC252p2(
j 8

E dk8 Q2~ek8!^F inuCd~2k82K1!T~2k82 i0!ufk8 j 8
2 &^fk8 j 8

2 uT~k81 i0!d~2k82K1!CuF in&

52p2(
j 8

E dk8 Q2~ek8!^F inud~k82K1!T~k82 i0!uf2k8 j 8
1 &^f2k8 j 8

1 uT~k81 i0!d~k82K1!uF in&

52p2(
j 8

E dk8 Q1~ek8!^F inud~k82K1!T~k82 i0!ufk8 j 8
1 &^fk8 j 8

1 uT~k81 i0!d~k82K1!uF in&5EC1 ,

and

EC5~2p!2(
j 8

E dk8Q1~ek8!^F inud~k82K1!T~k82 i0!ufk8 j 8
1 &^fk8 j 8

1 uT~k81 i0!d~k82K1!uF in&. ~6.12!

Next we make a special choice forF in . Let D5@2d,d#, d.0 andCD( ) its characteristic function. We set

F in~x!5 1
2 CD~ek•x!$fk j

1~x!1fk j
2~x!%5~2p!23/2221/2CD~ek•x!S ej

ek3ej
D cosk–x. ~6.13!

Note thatF in(x) is real andF in'PCbH for b sufficiently large. AlsoF in'Q6P6H by takingk outside the coneC. Using

^fk8 j 8
1 uF in&5^F inufk8 j 8

2 &5~2p!21d~ej•k8!d~ek3ej•k8!d~ek•k8!z~k,k8,d!d j j 8, ~6.14!
ing

where

z~k,k8,d!5p21H sin~k2k8!d

k2k8
1

sin~k1k8!d

k1k8
J ,

~6.15!

we obtain, by inserting complete sets,

exp@2 iK0t#F in~x!5 1
4 p25/2E

0

`

dk8 j~k,k8,d!

3S ej

ek3ej
D cos~k8ek–x2k8t !,

~6.16!
a wave that moves towards the scatterer ifk points into its
direction. We obtain the scattering cross section by divid
EC5EC(d) by the total incident fluxF(d) that has passed
through a plane orthogonal tok in the limit d→` ~where the
incident wave becomes a plane wave!. Here

F~d!5E
2`

1`

dt E~x,t…3B~x,t ! –ek , ~6.17!

with E(x,t… andB(x,t) given by Eq.~6.16!. A little calcula-
tion shows that

F~d! ;
d→`

1
2 ~2p!23d. ~6.18!

Again using Eq.~6.14!,
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d~k82K1!uF in&5~2p!21z~k,k8,d!ufk8ek j
1 &.

Since for smooth functionsg(k),

E dk8 z~k,k8,d!2g~k8! ;
d→`

dg~k!,

we have

EC~d!5(
j 8

E dk8 z~k,k8,d!2Q1~ek8!

3 z^fk8 j 8
1 uT~k81 i0!ufk8ek j

1 & z2

;
d→`

dpk2(
j 8

E dek8 Q1~ek8!

3 z^fk8 j 8
1 uT~k1 i0!ufk j

1& z2

5dp(
j 8

E de8 Q1~e8!u f ~k j→k8 j 8!u2,

where in the last two linesk85kek85ke8 and

f ~k j→k8 j 8!5k^fk8 j 8
1 uT~k1 i0!ufk j

1& ~6.19!

is the scattering amplitude for the transitionk j→k8 j 8. Now

EC~d!/F~d! →
d→`

~2p!4(
j 8

E de8Q1~e8!u f ~k j→k8 j 8!u2

5s~k, j→C!, ~6.20!

the cross section for scattering into the coneC. From this we
see that the differential cross section for scattering into
directione is

s~k j→kej 8!5~2p!4u f ~k j→kej 8!u2, ~6.21!

summed over the final polarization directionsj 8.
We can simplify the above expressions further by not

that only the restriction ofT to P 1H,PemH contributes.
As shown in Appendix D,

PemzT~z!Pem5t~z!Pel ,

t~z!52z2x̂~z!1z4x̂~z!@z2«~z!2H0#21x̂~z!

52z2x̂~z!1z4x̂~z!Re~z2!x̂~z!, ~6.22!

whereP el5$(Pel)kl%5$dk1d l1% projects upon the first~elec-
tric field! component ofF. Thus, withfk j 1

6 the electric~first!
component offk j

6 ,

f ~k j→k8 j 8!5^fk8 j 81
1 ut~k1 i0!ufk j 1

1 &. ~6.23!

Note thatt(z) has the usualT-matrix structure, the potentia
being2z2x̂(z). t(z), as given by Eq.~6.22! is often taken as
the starting point for the description of electromagnetic sc
tering. Here we have presented a precise justification.
spherically symmetric systems a further reduction oft(z) can
e

g

t-
or

be made. A systematic approach has recently been discu
by the author@23#. If the system is an absorptive Mie sphe
the formulas given there for conservative systems are rea
adapted to the present situation.

VII. TRANSITION RADIATION

Our second application makes use of the quantized
malism developed in Sec. V. It deals with the generation
photons caused by the passage of fast electrons throug
electric layers. We distinguish Cˇ erenkov radiation and the
less well known transition radiation. Cˇ erenkov radiation is
generated throughout the medium provided the speed of
charged particle exceeds that of the radiation in the medi
whereas this condition is not required for transition radiatio
The latter is created at places where a steep gradient in«(x)
occurs, typically at the interfaces in stacks consisting of p
allel layers with different electric permeability. At prese
there is some interest in the use of transition radiation as
x-ray source@12# and for technological reasons strongly a
sorptive and dispersive materials are considered. We a
the present formalism for a quantum description of the p
nomenon. Thus we consider a model of an energetic cha
particle~typically in the MeV region! without spin~spin does
not play a significant role and can safely be neglecte!,
which moves through a finite piece of absorptive dielectr
In actual experiments only single photon production is o
served, so we can restrict ourselves to a calculation to
order in the fine structure constant, i.e., ine. Since we are
dealing with fast electrons, we use the expression for
energy of a relativistic scalar particle

Hm1Hint5@~p2eA~x!!21m2#1/2

5@p21m2#1/22~e/2!@p21m2#21/4

3$p•A~x!1A~x!•p%@p21m2#21/41O~e2!

5T~p!2~e/2!T~p!21/2$p•A~x!1A~x!•p%

3T~p!21/21O~e2!

5T~p!1W~A!1O~e2!'T~p!1W~A!, ~7.1!

whereA(x) is given by Eq.~5.4! andx andp are the electron
coordinate and momentum, respectively. We shall cons
two cases, finite dielectrics and stacks of parallel layers w
incident electron momentum normal to the boundary surfa
Both can be treated as scattering situations, but, due to
translation invariance in two orthogonal directions, the s
ond case slightly differs from the first. The full Hamiltonia
acting inH5Hm^Hf , whereHm andHf are the Hilbert
spaces for the material system and fields, respectively
now

H5T~p!1H f1W~A!. ~7.2!

Initially an electron coupled to the free electromagnetic fie
moves towards the target material and finally we again h
an asymptotic motion determined by the coupled electr
free field Hamiltonian

H ~0!5T~p!1H f
~0!1W~A~0!!, ~7.3!
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with H f
(0) andA(0) given in Sec. V. However, as discussed

Sec. V, they do not act in the same Hilbert space since
Fock spaces are different. For the state vectorc(t) we do not
havec(t)2exp@2iH(0)t#cin→0 as t→2`, but ratherc(t)
2VFexp@2iH(0)t#cin5c(t)2exp@2iH(1)t#VFcin→0, soc~0!
5V2VFc in . Here~see Sec. V for notation!

H ~1!5VFH ~0!VF* 5T~p!1H f1W~A~1!!, ~7.4!

and the scattering and wave operators for the process at
are

S5V1* V2 , V65 lim
t→6`

exp@ iHt #exp@2 iH ~1!t#.

~7.5!

Note that the interaction H2H (1)5W(A2A(1)) is
of order e. Let P be a projector, such tha
limt→`exp@iH(0)t#Pexp@2iH(0)t#5P` exists. Then P(1)

5VFP`VF* commutes withH (1) and the probability to find
the system inP(1)H at time t is

WP~ t !5^c inuVF* V2* exp@ iHt #P~1!exp@2 iHt #V2VFuc in&

5^c inuVF* V2* exp@ iHt #

3exp@2 iH ~1!t#P~1!exp@ iH ~1!t#

3@2 iHt #V2VFuc in&

→
t→`

^c inuVF* S* P~1!SVFuc in&5WP . ~7.6!

Assuming thatVFuc in&'P(1)H this becomes

WP5^c inuVF* $122p i ~ T̄!* %P~1!$112p i T̄%VFuc in&

5~2p!2^c inuVF* ~ T̄!* P~1!T̄VFuc in&,

where

T̄5~2p!21E
2`

1`

dt exp@ iH ~1!t#~V1!* $W~A!2W~A~1!!%

3exp@2 iH ~1!t#

5~2p!21E
2`

1`

dt exp@ iH ~2!t#$W~A!2W~A~1!!%

3exp@2 iH ~2!t#1O~e2!

5T̄11O~e2!, ~7.7!

with

H ~2!5T~p!1H f . ~7.8!

Hence, to leading~i.e., second! order ine,

WP5~2p!2^c inuVF* ~ T̄1!* P~1!T̄1VFuc in&.
e

nd

However, sinceT̄1 is of first order ine we can takeP(1) to
zeroth order ine, i.e., a projector commuting withH (2),
whereas forc in we can takec in5cm^ cvac with cm the
initial electron state andcvac the vacuum state for the fields
This is typical for the approximation we have made. F
c in5cm^ cvac the expressionc(t)2VFexp@2iH(0)t#cin no
longer tends to zero to higher order ine. SinceVF reduces to
the unit operator on the zeroth Fock layer we ha
VFuc in&5uc in&, so that

WP5~2p!2^c inu~ T̄1!* P~1!T̄1uc in&. ~7.9!

We are interested in photon production, so we conside
detector that measures the photons emerging in a conCb
~for the definition of objects such asCb , Q1 , andCD , see
Sec. VI! in coordinate space and does not measure the a
iliary fields. In general the translation to a projector, whi
now acts in the Fock space connected with the fields is
from trivial. The second problem is to relate the coneCb in
coordinate space to the coneC in momentum space. How
ever, sinceT̄1 only contains creation operators to linear ord
and c in contains the vacuum state,P(1) is restricted to the
first Fock layer. Thus, taking

P5CCb~x8!S 1 0

0 0D 5CCb~x8!P1 ~7.10!

for the restriction ofP to the first Fock layer, we obtain~note
that here and belowx8 andp8 are operators inHe

(0) and not
electron coordinate and momentum!

P`5 lim
t→`

exp@ iHe
~0!t#Pexp@2 iHe

~0!t#5Q1~e–ep8!P1 ,

~7.11!

andP(1)5VFP`VF* reduces to

P~1!5VQ1~e–ep8!P1V* ~7.12!

on the first Fock layer. Let the complete orthonormal sets
eigenvectors of T(p) be $uk&%, so ^xuk&
5(2p)23/2exp@ik–x# and that of H05p2Dp be $u1k j

(0) (x)
5(2p)23/2ejexp@ik–x‡%, wheree1, e2, and ek are mutually
orthogonal ~see also Sec. V!. Since P1 in P`

5Q1(e–ep8)P1 projects away the auxiliary components
the eigenvectorsu(0) of He

(0) , we have, with

uk j
~0!5S u1k j

~0!

0
D ,

that

P~1!5(
j 2

E dk1E dk2Vuk1uk2 j 2

~0! &Q1~e–ek2
!^k1uk2 j 2

~0! uV*

5(
j 2

E dk1E dk2uk1uk2 j 2
&Q1~e–ek2

!^k1uk2 j 2
u.

Noting that H (2)uk1uk2 j 2
&5$T(k1)1k2%uk1uk2 j 2

&, we now
obtain



57 4831LINEAR ABSORPTIVE DIELECTRICS
WP5~2p!2(
j 2

E dk1E dk2^c inud„H ~2!2T~k1!2k2…T1* uk1uk2 j 2
&Q1~e–ek2

!^k1uk2 j 2
uT1d„H ~2!2T~k1!2k2…uc in&

5~2p!2(
j 2

E dk1E dk2^c inud„T~p…2T~k1!2k2…T1* uk1uk2 j 2
&Q1~e–ek2

!^k1uk2 j 2
uT1d„T~p!2T~k1!2k2…uc in&

5~2p!2(
j 2

E dk2Q1~e–ek2
!E dk1uX~k1 ,k2 , j 2 ,c in!u25(

j 2

E dk2Q1~e–ek2
!w~k2 , j 2!, ~7.13!

wherew(k2 , j 2) is the probability density for the transition into the statek2 , j 2 and

X5^k1uk2 j 2
uT1d„T~p!2T~k1!2k2…uc in&$«1

21/2ū1k8 j 8~x!2ū1k8 j 8
~0!

~x!%ucvac&•~k11p!d„T~p!2T~k1!2k2…ucm&

52~e/2!~2k2!21/2T~k1!21/2@T~k1!1k2#21/2^k1u$«1
21/2ū1k2 j 2

2ū1k2 j 2

~0! %•~k11p!d„T~p!2T~k1!2k2…ucm&. ~7.14!
o
st

te
s i
et
e
ta

o

un
s

of
es
For ucm& we take

ucm&5CA~x'!CD~ek•x!uk&, ~7.15!

wherex' is the component ofx orthogonal tok ~we shall
take the X3 axis along k in the following, so k5ke3,
k.0), A5@2g,g#3@2g,g# and D5@2d,d#. Then ucm&
tends to the plane wave stateuk& as g,d→`. Now ^aucm&
5 f g(a')gd(k2a3), where f g(a')5@sin(a1g)/pa1]sin(a2g)/
pa2 for finite g and f g(a')5d(a') for g5`, whereas
gd(b)5sin(bd)/pb.

At this point we have to distinguish between the tw
cases. For layered stacks we can take the normalized
uĉm&5p3/2g21d21/2ucm& and take the limitg,d→` in w
5wgd . Although cm becomes spread out in coordina
space, the electron will always hit the stack if it propagate
the right direction. This is not the case with a finite targ
Here wgd would tend to zero, since the probability that th
electron hits the target tends to zero as the normalized s
spreads out. Thus we setg5`. Thencm is no longer square
integrable asg→` and does not represent a single electr
but rather a pulsed beam of electrons with width 2d. Then
the current due to the free motion generated byT(p),

j „x,t)5^xuY~ t !p1pY~ t !ux&,

^k1uY~ t !uk2&5@k1
22k2

2#21@T~k1!

2T~k2!#exp@2 i $T~k1!2T~k2!%t#^k1ucm&

3^cmuk2& ~7.16!

is still finite and so is

Fd~x!5E
2`

`

dt j „x,t) ;
d→`

d~2p!22p21e35Fde3.

~7.17!

It represents the total flux that has passed through a
surface orthogonal tok in the course of time. The cros
section is then obtained as the ratiowd /Fd asd→`. Thus,
for finite dielectrics, takingg5` ,
ate

n
.

te

n

it

X ;
d→`

2e~2k2!21/2T~k1!21/2@T~k1!1k2#1/2^k1u$«1
21/2ū1k2 j 2

2ū1k2 j 2

~0! %uk&•~k11k!E dk33d~k33
2 2k0

2!gd~k2k33!,

~7.18!

wherek0.0 is determined by

@k0
21m2#21/25@k1

21m2#1k2 . ~7.19!

Then

w5wd ;
d→`

d
pe2k1

2k2k E de1z^k1u«1
21/2ū1k2 j 2

uk&•~k11k!z2,

~7.20!

where e15ek1
and k1 is determined by@k21m2#1/25@k1

2

1m2#1/21k2 and the cross sections(k→k2 , j 2) becomes

s~k→k2 , j 2!5 lim
d→`

wd

Fd

5
2p4e2k1

k2k

3E de1z^k1u«1
21/2ū1k2 j 2

uk&•~k11k!z2.

~7.21!

Note that the contribution fromū1k2 j 2

(0) has disappeared.

Next we consider stacks with finite width consisting
parallel layers of dielectric materials with boundary surfac
orthogonal tok//X3. Now «1(x) andx(x,t) only depend on
x3 and the mode functions are of the formu1k2 j 2

(x)

5exp@ik'
•x'#vk2 j 2

(x3) and u1k2 j 2

(0) 5exp@ik'
•x'#vk2 j 2

(0) (x3).

We set fk2 j 2
(x3)5«1(x3)21/2ū1k2 j 2

(x)2ū1k2 j 2

(0) (x). In this

case we have
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X ;
g,d→`

2e~2k2!21/2T~k1!21/2@T~k1!1k2#1/2f g~k3
'!

3^k13ufk2 j 2
uk&•~k11k3

'1ke3!~2k0!21

3$gd~k2k0!1gd~k1k0!%uk
3
'5k

1
'1k

2
', ~7.22!

where^x3uk&5(2p)21/2exp@ikx3#. Then

wgd ;
g,d→`

g2d
e2

2pk13k

3u^k13u«1~x3!21/2vk2 j 2
~x3!uk&•~k11k!u2.

~7.23!

Herek1
'52k2

' andk13 is determined by@k21m2#1/25@k13
2

1m2#1/21k2. Defining s(k˜k2 , j 2) as the ratio
wgd /^cmucm& ~i.e., in wgd the statecm is replaced by its
normalized versionĉm) in the limit g,d→`:

s~k˜k2 , j 2!5 lim
g,d→`

wgd /^cmucm&

5
e2p2

2k13k
^k13u«1~x3!21/2vk2 j 2

~x3!uk&•~k11k!u2.

~7.24!

The detailed calculations leading to Eqs.~7.21! and ~7.24!
are not given here but are available from the author@24#. Our
final results describe both Cˇ erenkov and transition radiation
We have calculated the Cˇ erenkov and transition radiatio
yield for the case of stacks of parallel layers@25#. The results
agree with those obtained from the classical ME with
charged particle entering through a given external curr
provided the photon energy is much smaller than the ini
electron energy. In the classical case the electron veloci
usually assumed to be constant, a condition that is not
quired in the present setup: The latter can also handle l
photon energies. For a discussion of Cˇ erenkov radiation gen
erated in transparent media and including spin effects,
Ref. @26#.

VIII. ATOMIC RADIATIVE DECAY AND THE DENSITY
OF STATES

In Ref. @15# the author studied the decay of an excit
atom embedded in a conservative dielectric under a num
of simplifying assumptions. Here we do the same for
lossy case. Thus we consider a hydrogen atom with an
nitely heavy nucleus at the positionX. For the fields we
make the long wavelength approximation, i.e., in Eq.~5.9!
«1(x) andx̂(x,0) are taken inx5X as is the vector potentia
A(x). In addition we neglect all atomic states except thes
and 2p states. The coupling with the electromagnetic fie
causes the 2p states to turn into resonances, i.e., their eig
values acquire an imaginary partG(X), which determines
their decay back to the ground state. In general the threep
substates can split up due to symmetry breaking effect
the x-dependent dielectric. To leading order the perturb
eigenvalues are the solutionsz of
e
t,
l
is
e-
ge

ee

er
e
fi-

-

of
d

zU5l2U1k~X!(
a

E dl s~l!l21@z2l12l#21

3ū1la~X!u1la~X!, ~8.1!

whereU is the unit 333 matrix ands(l) is a cutoff func-
tion, which can be set equal to one in the expression
Imz. Furthermorek(X)5(e/3m)2@2«1(X)#21u^w1up•w2&u2,
wherew1 is the unperturbed atomic ground state~eigenvalue
l1) andw2 are the three unperturbed 2p states~eigenvalue
l2), which are taken to be real and combined into a sin
vector, see Ref.@15#. The derivation follows the lines o
@15#; the only difference from the conservative case is
appearance ofu1la(X) rather than an eigenvector ofH1.
Making an isotropy approximation, i.e.,ū1la(X)u1la(X)
→ 1

3 uu1la(X)u2U, the calculation made in Ref.@15# can be
repeated with the result that to leading order ine @cf. Ref.
@15#, Eq. ~8.13!#,

G~X!52
p

3
k~X!v0

21(
a

E dl d~v02l!uu1la~X!u2,

~8.2!

where v05l22l1. We can rewriteG(X) as ~for Pel see
Sec. VI!

G~X!52
p

3
k~X!v0

21^XuPeld~v02He!PeluX&

52
p

3
k~X!v0

21Nf~v0 ,X!, ~8.3!

whereNf(v0 ,X) is the generalization of the local density o
states for the field to the absorptive situation. In this spiri
generalized density of statesNf(E) can be defined as

Nf~E!5E dx ^xuPeld~E2He!Pelux&5trPeld~E2He!Pel .

~8.4!

This definition is consistent with our results in Se
III, where we found that if E falls in a band gap
Peld(E2He)Pel50 and henceNf(E)50. Using the rela-
tions 2pd(l2He)5@l2 i02He#

212@l2 i02He#
21 and

Pel@z2He#
21Pel5Re(z

2)Pel we obtain

G~X!52
k~X!

6pv0
Im^XuRe~l22 i0!uX&

52
k~X!

6pv0
ImGe~X,X,l22 i0! ~8.5!

and

Nf~E!5~2p!21Imtr Re~l22 i0!

5~2p!21ImE dx Ge~x,x,l22 i0!, ~8.6!

where

Ge~x,y,z!5^xuRe~z2!zy&. ~8.7!
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Once more we end up with expressions featuring the elec
Helmholtz resolventRe(z

2) but again we had to start from
the full formalism. In case the isotropy assumption is n
justified a more elaborate approach, as in Ref.@15#, can be
used. The results of that reference for atoms in conserva
band-gap dielectrics are also easily generalized. Since t
are no essential changes in the results obtained there
shall not repeat the calculations.

IX. DISCUSSION

A. Summary of results

Starting from the phenomenological Maxwell’s equatio
for a linear absorptive medium characterized by the con
tutive equation

D~x,t !5«1~x!E~x,t !1E
t0

t

dsx~x,t2s!E~x,s!, ~9.1!

we constructed a unitary time evolution in a larger space
introducing two essentially unique, real, auxiliary fields. T
only inputs required were«1(x) andx(x,t) or, equivalently,
the complex electric permeability«(x,v), which can be ob-
tained experimentally. Another feature is that cycle aver
ing procedures were not required. This is important since
general electromagnetic waves are not monochromatic a
cycle is not well defined. The formalism allowed us to give
proper definition of band gaps in Sec. III and to construc
classical scattering formalism based upon wave and sca
ing operators in Sec. VI. We also showed that a sufficien
small absorptive perturbation of a conservative system p
sessing a band gap can still posses a band gap. More
lenging is the direct establishment of a band gap for
absorptive case. Its investigation is rather straightforward
the point interaction limit~not unreasonable in the metall
sphere example mentioned in the Introduction! as in the con-
servative situation@27#. It is not a priori obvious how to
define the density of states. However, in Sec. VIII, where
discussed the decay of an excited atom in a lossy dielec
we were led in a natural way to a generalization of the d
sity of states for a conservative medium. There and in
definition of band gaps the problem is that in the Helmho
eigenvalue problem

@z2«~z!2H0#f50, ~9.2!

the electric permeability«(z) is complex, even for realz, so
we cannot exclude complex eigenvalues. The unitary form
ism, although having a self-adjoint generator with real sp
trum, did not directly solve this problem since the elect
magnetic fields are coupled to the auxiliary fields. In t
decoupled situation the latter have a real spectrum cove
the whole real axis, so one does not expect band gaps fo
full system. However, a projection upon the electromagn
subspace took care of this. At the same time the Helmh
operator and its resolventRe(z)5@z2«(z)2H0#21 reap-
peared in the formalism but now the interpretation has
come clear: It can only be singular forzPR. Given the uni-
tary evolution a Lagrange-Hamilton formalism and
quantization directly followed by applying the results of
recent paper by the author@15#. In Sec. VII the quantized
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formalism was used to describe Cˇ erenkov and transition ra
diation caused by fast electrons passing through a lossy
electric and in Sec. VIII it was used again to study the dec
of an excited atom surrounded by an absorptive dielect
The decay constantG featured an objectN(x,z) that could
be considered as a generalization of the local density
states for a conservative system. It can be expressed in t
of the Green’s functionG(x,x8,z)5^xuRe(z)ux8&.

B. Generalizations

Although we did not do so, it will be clear that a linea
absorptive magnetic system can be handled along the s
lines as well as the combined case. This is also true ifx is
nonlocal in coordinate space:x(x,t2s)E(x,s)→*dy x(x
2y,t2s)E(y,s). The present model does not include tem
perature effects, such as heat conduction. In the contin
equation for the energy density of the complete syst
e(x,t), i.e., including the auxiliary fields,

] te~x,t !1]x•S~x,t !50, ~9.3!

so that, as observed earlier in Ref.@4# , energy is only carried
out of a volume through the Poynting vectorS(x,t)
5E(x,t)3B(x,t). This can be traced back to the absence
space derivatives]xF2,4 in the equations of motion for the
auxiliary fields. Continuity equations and Poynting vect
have been the subject of much recent activity, see R
@28–30# for other aspects.

The extension of the present formalism to include nonl
ear situations~in terms of nonlinear susceptibilities! is far
from obvious. We can still introduce auxiliary fields to re
move the time convolutions, leaving a set of coupled non
ear equations of motion, see Sec. IX F below. However
the medium is transparent, i.e., the system is dispersive
absorption can be neglected, so«5«(x,v) is real, Drum-
mond @2#, extending results of Hillery and Mlodinow@31#,
obtained for the conservative case, has constructe
Lagrange formalism. He starts off with the assumption tha«
is piecewise constant as a function ofv and generalizes late
on to the case of a slowly varying envelope situation.

Above we did not consider discontinuities in thex depen-
dence of«1(x) and x(x,t). In Ref. @20#, using a limiting
procedure, an approach is presented that can be taken ov
the present case. It allows quite general situations, suc
fractal shaped objects, where normals and tangents rela
to the boundary surface are no longer meaningful. A co
mon, more pedestrian, approach consists of obtaining bou
ary conditions from the Laplace transformed equations
motion, the only difference with the conservative situati
being their frequency dependence. In applications, as
Secs. VII and VIII, they play a role in the determination
the mode functionsula .

C. Microscopic and macroscopic approaches

So far we have taken the phenomenological Maxwe
equations at face value. We started out with a space
frequency dependent«(x,v) and were led in a natural wa
to a formalism where energy conservation is restored by
troducing new auxiliary fields. A quite different route wa
taken by Burgess@3#, who discusses a relativistic covaria
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formalism. He does not introduce additional fields but rela
the equations of motion to an action, which is nonlocal in
field. In its general form it is given by his Eq.~79!. As a
consequence, the creation and annihilation operators
plane wave expansion of the field not only depend on
wave vectork, but also onx and t, see his Eqs.~5!–~7!.
After a discussion of some fundamental matters the form
ism is applied to the phenomenon of squeezed states~see
also Ref.@32#!, initially for scalar fields, whereupon the ele
tromagnetic case is treated.

An alternative is to start directly from a microscop
quantum formalism for the combined matter-field syste
This approach was taken by Hopfield@33#, who considered
the interaction of the electromagnetic field with a cryst
Among other matters he discusses the route by which e
tromagnetic energy is transferred to the lattice phon
modes. The matter part enters the formalism as a second
and for the interaction a special choice is made. The Hopfi
model is also at the basis of further work by Huttner a
Barnett@5# and Gruner and Welsh@6#. Here we note that in
the above microscopic theories only spatially homogene
situations are considered. Comparing the microscopic res
with the present approach in its quantized form, we see
in both cases a second field, representing the matter sys
appears. The main difference is that these authors only
sider spatially homogeneous systems, allowing the use o
Coulomb gauge. Another, equivalent, way to describe
quantum situation is in terms of a quantum noise current
was done by Matloob, Loudon, and co-workers in a serie
papers@7#. Here some simple spatially inhomogeneous s
ations are considered, such as slab configurations with
mal incident field, as well as systems with gain. Vacuu
field fluctuations and power spectrum are given in expl
form.

Considering the various approaches, we think that
setup, starting from the macroscopic Maxwell equations
featuring the experimentally obtainable«(x,v), is quite use-
ful in situations where the spatial inhomogeneity is imp
tant. Our approach results in general expressions, the s
dependence entering through the classical mode funct
ula . Obviously the latter must be evaluated numerically
complicated situations. This is, for instance, the case for
description of transition radiation. The latter is very sensit
to the precise space and frequency dependence of«(x,v).
Conversely this aspect can be used to obtain«(v) for a
material from transition radiation data. Especially in the
ray region«(v) is not well known for a number of materials

D. Atomic radiative decay

As we have seen the properties of an atom interac
with a quantized absorbing dielectric are affected in t
ways. The first is a change in the atomic levels due to
presence of«stat(x) in Eq. ~ 5.9!, which determines the po
tentials. This effect is related to the nonpropagating fi
modes~the longitudinal modes in a spatially homogeneo
situation! and is the same as in the conservative case.
second is due to the modified propagating field modes in
quantized fields and in Sec. VIII we discussed the radia
decay of a model atom. The final result is similar to t
conservative case. The only difference comes from
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change in« in Re(z
2), which is now frequency dependen

and complex. The experimental observation of these effe
is doubtful in spatially homogeneous situations or for ato
buried deeply in large pieces of lossy material. In the lat
case nearly all radiation will have been absorbed befor
leaves the material on its way to an outside detector. T
atoms at the boundary of a lossy material are a better pro
sition @34#. The spatially homogeneous situation has be
considered in terms of a different formalism by Barnettet al.
@16#. In that work the longitudinal modes are related to
decay mechanism for an atomic excited state, whereas
they lead to a modification of the Coulomb potential~and
hence the atomic eigenvalues! through «stat(x). It is at
present not clear whether the two are equivalent. In@16#
local field corrections are considered as well. One case is
of an atom in an empty cavity for which the atomic dec
rate is considered. In the present formalism the presenc
the cavity is taken into account automatically since it leads
different classical mode functionsula(x) and hence to a
modified local density of states.

E. Initial assumptions and validity of the formalism

As noted earlier the assumptionsA1–A3 are satisfied in
relevant physical situations. Two crucial requirements
involved. The first is thatx8(x,0)5m(x,R)<c,` in A2,
which is quite acceptable. The second isA3, which states that
the static susceptibilityx̂(x,0)5*0

`dt x(x,t),`. This rela-
tion usually holds except for critical points in the thermod
namic case, where« depends on temperature and densi
We have seen that it is not needed in the construction o
unitary formalism but it is required for a Lagrange setup.
order to get some further insight into this matter consider
situation where

m~dv!5n~v!dv

5p21E n~dv8!g~v8!@~v2v8!21g~v8!2#22dv,

~9.4!

with g(v)>0 andn satisfyingA1–A3. Thenm satisfiesA1
and A2 but not A3. In this case we can obtain a version
Eqs.~2.4!, featuringn instead ofm, but the motion has be
come dissipative, since now

] tF0~v,t !52$g~v!1 iv!%F0~v,t !2 i«1
21/2F1~ t !.

~9.5!

Thus in this special case either the motion is unitary andA3
is not satisfied or we have the opposite situation.

Although an approach starting from the phenomenolo
cal ME or a microscopic equivalent can give valuable info
mation about the behavior of certain material syste
coupled to radiation fields, the method has its limitations.
the transition radiation case the electrons can scatter from
individual atoms or molecules constituting the dielectr
This leads to a loss of active electrons, diminishing the ac
radiation yield, a mechanism that plays an important role
experimental setups. Atoms embedded in dielectrics will a
be affected by their immediate surroundings in ways that
not accounted for in the phenomenological ME. The lat
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can be looked upon as a crude approximation to a m
detailed transport equation~see Ref.@15# for other com-
ments!. In fact it is quite remarkable that they give a sat
factory description of many physical situations in terms o
single parameter, the permeability«.

F. Outlook and open problems

The existence of a continuity equation for the energy d
sity is crucial for the occurrence of diffusion in a rando
situation. In the conservative case, after averaging over
randomness, indicated by^ &, we have

] t^e~x,t !&1]x•^S~x,t !&50. ~9.6!

In a diffusive situation, for larget and an appropriate initia
situation, the currentS is assumed to become proportional
the gradient of the energy density

^S~x,t !&;2D]x^e~x,t !&, D.0, ~9.7!

leading to a diffusion equation fore. In the absorptive case
further investigation is necessary. It is nota priori clear
whether^e& in Eq. ~9.7! should be the full or only the elec
tromagnetic energy density.

The opposite situation is that of Anderson localizatio
which results in a vanishing diffusion coefficient in the co
servative case. The mathematical definition of localization
that of spectral intervals with a dense point spectrum for
generator of the motion, each point of this spectrum co
sponding with a square integrable~usually exponentially de-
caying! eigenvector@35#. Recently it has been found that i
conservative systems possessing a band gap, localizatio
tervals in the gap can develop if the system is randomi
@36,37#. In the lossy case we run into the same problem
with the definition of gaps and the density of states, i.e.,
expects(K), the spectrum ofK, to cover the whole real axis
However, we can again consider the restrictionPem@z
2K#21Pem to the electromagnetic subspace and we can
to define a localization intervalD as an interval where this
operator has a dense set of poles and no other singularitie
s(K) is absolutely continuous outside the point 0,Pem@z
2K#21Pem will have no poles inD, excluding localization in
the above sense. Thuss(K) must be more complicated fo
the existence of Anderson localization. This makes the st
of random absorptive systems an interesting open m
ematical problem~think of a random conservative system f
which D is a localization interval, which is subject to a
absorptive perturbation!.

If it turns out that localization occurs, i.e.,Pem@z
2K#21Pem has a dense set of poles in some setsD, there
exists the further problem of how to disentangle localizat
effects from absorptive attenuation in an experimental se
where a light beam travels through a slab and the transm
beam is studied as a function of slab thickness. For insta
in the recent experimental work on light localization b
Wiersmaet al. @38#, the avoidance of absorption is an impo
tant issue.

Finally we briefly sketch how the convolution term can
removed in a simple nonlinear situation. Suppose that
re
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D~ t !5E~ t !1E
0

t

dsE
0

t

dux~ t2s,t2u!:E~s!E~u!,

~9.8!

where the nonlinear susceptibilityx has the usual propertie
x(t1 ,t2)5x(t2 ,t1) is real andx(t,0)50. Since only non-
negative t1 and t2 appear, we can definex(2t1 ,t2)5
2x(t1 ,t2), so x(2t1 ,2t2)5x(t1 ,t2) and in terms of

x̂~v1 ,v2!5~2p!22E dt1dt2exp@ i ~v1t11v2t2!#x~ t1 ,t2!,

and @cf. Eq. ~2.6!#

F0~ t,v!52 i E
0

t

dsexp@2 iv~ t2s!#E~s!

5F2~ t,v!1 iF4~ t,v!,

we have, sincex̂(v1 ,v2) is odd in eachv j , and using that
F2(t,v) is odd inv andF4(t,v) even,

D~ t !5E~ t !2E dv1dv2 x̂~v1 ,v2!:F0~ t,v1!F0~ t,v2!

5E~ t !2E dv1dv2 x̂~v1 ,v2!:F2~ t,v1!F2~ t,v2!.

~9.9!

Differentiation leads to Eqs.~2.4! for J50 and«151, ex-
cept for the first, which now becomes nonlinear:

] tF1~ t !5]x3F3~ t !

22E dv1dv2 v1x̂~v1 ,v2!:F4~ t,v1!F2~ t,v2!.

~9.10!

Higher-order nonlinearities can be handled in the same w
The remaining, open, problem consists of finding a Lagra
formalism that reproduces these equations of motion
leads to a HamiltonianH that can be identified as the energ
of the system. Note that it is not obvious that such anH
exists, there may be no constants of the motion at all.
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APPENDIX A: THE OPERATOR Pem†z2K‡21Pem

Below we use the notation given in Sec. III. SincePem
and Paux are complementary projectors,Pem1Paux51, we
can apply the Feshbach formula, Eq.~1.5!, to obtain (Imz
Þ0, A5$Ajh%)
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X~z!5Pem@z2K#21Pem5@z2PemKPem2Y~z!#21Pem,
~A1!

where

Y~z!5PemKPaux@z2PauxKPaux#
21PauxKPem

5PemKPaux@z1PauxKPaux#@z22~PauxKPaux!
2#21

3PauxKPem. ~A2!

Now

PauxKPaux5S 0 0 0 0

0 0 0 iv

0 0 0 0

0 2 iv 0 0

D ,

so (PauxKPaux)
25v2Paux and Y(z)5PemKPaux@z

1PauxKPaux#@z22v2#21PauxKPem. Evaluating this expres
sion we have

Yjh~z!5zK14@z22v2#21K41d j 1dh1

5z«1
21E m~dv!@z22v2#21d j 1dh1

52z«1
21x̂~z!d j 1dh1 . ~A3!

Since only theK13 andK31 elements survive inPemKPem we
have

X~z!5F z«~z! 0 K13 0

0 z 0 0

K31 0 z 0

0 0 0 z

G21

Pem. ~A4!

The operatorW5(K13

z«(z)
z
K31) has the inverse„recall that

Re(z
2)5@z2«(z)2H0#21

…

W21

5S z«1
1/2Re~z2!«1

1/2 «1
1/2Re~z2!•~e•p…

2~e•p…–Re~z2!«1
1/2 z21$12~e•p…–Re~z2!•~«•p!%

D
5S X11 X13

X31 X33
D , ~A5!

as is readily verified by solvingg5Wf for f in terms ofg.
Thus we have

X~z!5S X11 0 X13 0

0 0 0 0

X31 0 X33 0

0 0 0 0

D , ~A6!

with the Xjh’s as in Eq.~A5!. Finally we note thatz21$1
2(e•p…–Re(z

2)•(e•p)%5zRm(z2), so we have verified Eq
~3.10!.
APPENDIX B: PROOF OF THE PROPOSITION

We haveK5K11K2 with K1 having the band gap pai
(D,2D), D5(la ,lb), la>0, or, equivalently, H1

5«1
21/2H0«1

21/2 has the gapD25(la
2 ,lb

2). For ImzÞ0 we
can write

Re~z2!5«1
21/2@z22H11z2«1

21x̂~z!#21«1
21/2

5«1
21/2@z22H1#21

†11z2«1
21x̂~z!

3@z22H1#21
‡

21«1
21/2. ~B1!

Since @z22H1#21 is analytic through the gapD2, Re(z
2)

will be analytic through a subset ofD2 for which
l2«1

21x̂(l)@l22H1#21 remains strictly smaller than 1 in
norm. TakingDd

25(la
21d,lb

22d), 0,d,(lb
22la

2)/2, it is
easy to verify that the normuul2@l22H1#21uu<lb

2d21, l2

PDd
2 , sincel2 keeps a minimal distanced from the spec-

trum of H1. Next we note that if forl2PDd
2 ,

uul2«1
21x̂~l!@l22H1#21uu

<uu«1
21x̂~l!uu uul2@l22H1#21uu

<supxPR3«1~x!21E
0

`

dt ux~x,t !ulb
2d21<c,1,

or, since«~x!51 for thosex for which x~x,v! is nonzero,

sup
xPR3

E
0

`

dt ux~x,t !u,lb
22d,

then Re(z
2) is analytic throughDd

2 , implying that (Dd ,
2Dd), Dd5(Ala

21d,Alb
22d) is a band-gap pair forK.

APPENDIX C: SPECTRAL PROPERTIES

1. Relation betweenK and the pair He , Hm

SinceK is of the form

K5S 0 Kem

Kme 0 D , Kme5Kem* ~C1!

we have

K* K5S KemKem* 0

0 Kem* Kem
D 5S He 0

0 Hm
D , ~C2!

where, using *m(dv)5x8(0) and denoting H1

5«1
21/2H0«1

21/2,
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He5S H11«1
21x8~0! «1

21/2E m~dv!v•••

«1
21/2v v2

D ,

Hm5S ~e•p…–«1
21~e•p… 2 i«1

21(e•p…E m~dv! v•••

2 i«1
21~e•p… v21«1

21E m~dv!•••
D .

~C3!

It is known from general principles@39# that the spectra o
KemKem* andKem* Kem coincide, except for, possibly, the poin
0. These expressions refer to the setup of Sec. II B, whe
for Sec. II C

He5S H11«1
21x8~0! «1

21/2E dv s~v!v•••

«1
21/2vs~v! v2

D
5S H11x8~0! E dv s~v!v•••

vs~v! v2
D , ~C4!

where we used the fact that«1(x)51 for thosex for which
x(x,v) is nonzero.

2. Eigenvectors related by a wave operator

Let

H5H01V ~C5!

and suppose the wave operators

V65 lim
t→6`

exp@ iHt #exp@2 iH 0t#

511 i E
0

6`

dt exp@ iHt #Vexp@2 iH 0t#

511 i lim
d→0

E
0

6`

dt exp@2dutu#exp@ iHt #Vexp@2 iH 0t#

~C6!

exist. Then, ifH0f 05l f 0 and f 65V7 f 0 , alsoH f 65l f 6

and from Eq.~C6!, in the limit d↓0,

f 65 f 01@l6 id2H#21V f0 . ~C7!

Conversely, fromV
7
* f 65 f 0,

$12@l6 id2H0#21V% f 65 f 0, ~C8!

an abstract form of the Lippmann-Schwinger equations.
P1 and P2512P1 two complementary projectors, whic
commute with H0, H05H01P11H02P2 so H0 j Pj f 0
5lPj f 0. Assume further thatV2250. Then, withgj5Pjg,
Xjh5PjXPh and
as

t

Ve f f~z!5V111V12@z2H02#
21V21,

Ve f f
6 ~l!5 lim

d→0
Ve f f~l6 id!, ~C9!

we obtain from the Feshbach formula

P1f 65P1f 01@l6 i02H012Ve f f
6 ~l!#21

3$P1V f01P1VP2@l6 i02H02#
21P2V f0%

5P1f 01@l6 i02H012Ve f f
6 ~l!#21

3$P1Ve f f
6 ~l!P1f 01P1VP2f 0%,

P2f 65P2f 01@l6 i02H02#
21P2VP1$ f 62 f 0%

or

f 1
65 f 011@l6 i02H012Ve f f

6 ~l!#21$Ve f f
6 ~l! f 011V12f 02%,

f 2
65 f 021@l1 i02H02#

21V21~ f 1
62 f 01!. ~C10!

Let f a be the solution for whichf 0250 and f b the one for
which f 0150. Then, since bothf 0’s are orthogonal and the
wave operators, being isometric, preserve orthogonality, a
f a' f b. The above results hold for the case the wave ope
tors exist. In other situations the above relations still defi
eigenvectors ofH. However, if the wave operators exist th
formal manipulations involved~i.e., d↓0) are better con-
trolled. The crucial point is the existence ofVe f f

6 (l)
5 limd→0Ve f f(l6 id).

3. Spectral properties ofHe

We now consider the eigenvalue problem forHe for the
casem(x,dv)5n(x,v)dv and use the formulation of Sec
II C. Thus

Heu5l2u, l.0. ~C11!

Since He is a real operator we note that along withu

5(u2(v)
u1 ), ū5(

ū2(v)

ū1 ) is an eigenvector at the same eigenva

and this is also the case for (
2u2(2v)
u1 ). Taking linear combi-

nations we can restrict ourselves to realu of the type u
5(u2(v)

u1 ) with u2(v) odd in v and u5(u2(v)
0 ) with u2(v)

even inv. In the second case we havev2u2(v)5l2u2(v)
so u2(v);d(v22l2) and it remains to consider the firs
We do so by writing@see Eq.~C4!#

He5S H1 0

0 v2D 1S x8~0! E dv s~v!v•••

vs~v! 0
D

5He
~0!1V. ~C12!

We assume thatn(x,v), and hences(x,v), is confined to a
bounded region in space. LetQ be the projector upon the
complement of the null space ofH e

(0) , i.e., «1
21/2 times the

first component ofQf is transverse. Then the wave operato
V65 limt→6`exp@iHet#exp@2iHe

(0)t#Q exist and we can ap
ply the results of the preceding subsection toul

65V7ul
(0) ,



e

e

or

t
c-

as
ex-
ous

ts
f

4838 57A. TIP
erwhereHe
(0)ul

(0)5l2ul
(0) . Sincev2u2l

(0)(x,v)5l2u2l
(0)(x,v),

we haveu2l
(0)(x,v)5vd(v22l2)g„x), whereg(x) is arbi-

trary. Using the specific structure of the operators involv
we obtain from Eq.~C10!

ul1
6 5ul1

~0!1R6~l2!H 2l2x̂6~l!ul1
~0!

1E dv s~v!vul2
~0!~v!J

5ul1
~0!1R6~l2!$2l2x̂6~l!ul1

~0!1ls~l!g%,

ul2
6 ~v!5vd~v22l2!g1v@l26 i02v2#21

3s~v!$ul1
6 2ul1

~0!%, ~C13!

where

R6~l2!5 lim
d→0

Re~l26 id!,

Re~z2!5@z2«~z!2H0#21. ~C14!

For realu(0) the functionsu1l
6 are complex conjugate, so w

can obtain real eigenvectors ofHe by taking the appropriate
linear combinations. As before we have two types of
thogonal solutions. The first is obtained by settingu2l

(0)50 or
g50 and the second byu1l

(0)50. Note that the requiremen
Ve f f(l)5 limd→0Ve f f(l1 id) exists of the preceding subse
tion amounts here to the existence of limd↓0x̂(l6 id)
5*0

`dt exp@6ilt#x(6t), which is the case ifux(t)u is inte-
grable.
q

d

-

If n(x,v) is not confined to a bounded region in space,
in spatially homogeneous or periodic systems, the above
pressions can still be used. In the spatially homogene
case with nontrivialx @so Imx̂(l).0# and setting«151, we
have, for the transverse case,R6(l2)5@l2$11x̂6(l)%
2p2#215@j6

2 2p2#21, which has the kernel̂xuR6(l2)uy&
52exp@ij6ux2yu#/(4pux2yu), where Imj6.0. This re-
sults in ul’s which remain bounded as functions ofx, con-
trary to the solutions of the Helmholtz equation,

@l2$11x6~l!%2p2# f 50, ~C15!

which diverge for largex. From KemKem* u5l2u it follows
that HmKem* u5Kem* KemKem* u5Kem* Heu5l2Kem* u so Kem* u is
the corresponding eigenvector ofHm .

4. The eigenvalue zero and gauge condition

In the present case 0 is an eigenvalue ofK. As is readily
verified, the corresponding eigenvectors are of the form

f5S 2«1
1/2]xze

v21«1
1/2]xze

2]xzm

0

D 52S «1
1/2]x 0

2v21«1
1/2]x 0

0 ]x

0 0

D •S ze

zm
D 52Mz,

~C16!

where thez j ’s are scalar functions. Its first two componen
give the corresponding eigenvectors ofHe and the second o
Hm . The projector uponN(He), the null space ofHe , and on
N(Hm) are
Pe5S P11 2P11E m~dv8!~v8!21«1
21/2

2«1
21/2v21P11 v21E m~dv8!~v8!21«1

21/2P11«1
21/2

D , Pm5S P0 0

0 0D . ~C17!
Here P115P@P$11«1
21x̂(0)%P#21P with P the projector

uponN(H1), see Refs.@15,20#,

P5«1
1/2P0@P0«1P0#21P0«1

1/2, ~C18!

whereP0 is the projector upon the null spaceN(H0) of H0,
i.e., the longitudinal functions. The vectorsul

6 , discussed
above, being eigenvectors ofHe at eigenvaluel2Þ0, satisfy
Peul

650, which is equivalent to the gauge condition E
~4.17!, as can be checked explicitly. We finally note that

M* 5S 2]x«1
1/2

]xE m~dv!v21 0 0

0 0 2]x 0
D ,

M* M5S 2]x•«stat~x!]x 0

0 2]x
2D . ~C19!
.

APPENDIX D: CLASSICAL ELECTROMAGNETIC
SCATTERING

1. Scattering into cones

We are interested in the asymptotic behavior for larget of

U~ t !* Q~e–ex2a!Q~x2b!U~ t !, ~D1!

whereU(t)5exp@2iK0t# with K0 the restriction ofK 1 for
«151 to the electromagnetic subspace, i.e.,

K05K0~p!5S 0 e•p

2e•p 0 D . ~D2!

We note thatK0(p)5pP12pP2 , whereP6 are the projec-
tors upon the eigenspaces ofK0 with positive and negative
eigenvalues, respectively. In explicit form
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P65 1
2 S Dp 6e•ep

7e•ep Dp
D ~D3!

and

U~ t !5exp@2 ipt#P11exp@ ipt#P2 . ~D4!

Since, fort.0,
Q~e–ex2a!5Q@„t21~e–x2ax!…#,

Q~x2b!5Q@„t21~x2b!…#, ~D5!

we have to determine howU(t)* t21e•xU(t) and
U(t)* (x/t)U(t) behave. By differentiation and integratio
we obtain, usingi @K0(p),e•x#5K0(e),
U~ t !* t21e•xU~ t !5t21e•x1t21E
0

t

du U~u!* i @K0~p!,e•x#U~u!

5t21e•x1t21E
0

t

du U~u!* K0~e!U~u!

5t21e•x1t21E
0

t

du $exp@ ipu#P11exp@2 ipu#P2%K0~e!$exp@2 ipu#P11exp@ ipu#P2%

→
t→`

P1K0~e!P11P2K0~e!P2

5ep–e~P12P2!. ~D6!

In a similar way, withi @K0(p),x2#52K0(x) ,

U~ t !* ~x/t !2U~ t !5~x/t !212t22E
0

t

du $exp@ ipu#P11exp@2 ipu#P2%K0~x! $exp@2 ipu#P11exp@ ipu#P2%.

But exp@ipu#K0(x)exp@2ipu#5K0(exp@ipu#xexp@2ipu#)5K0(x1epu), so

U~ t !* ~x/t !2U~ t !5~x/t !212t22E
0

t

du $exp@ ipu#P11exp@2 ipu#P2%$exp@2 ipu#K0~x!P11exp@ ipu#K0~x!P2%

12t22E
0

t

du u$exp@ ipu#P11exp@2 ipu#P2%$exp@2 ipu#K0~ep!P12exp@ ipu#K0~ep!P2%

5~x/t !212t22E
0

t

du $exp@ ipu#P11exp@2 ipu#P2%$exp@2 ipu#K0~x!P11exp@ ipu#K0~x!P2%

12t22E
0

t

du u$exp@ ipu#P11exp@2 ipu#P2%$exp@2 ipu#P11exp@ ipu#P2%

→
t→`

DpS 1 0

0 1D . ~D7!

Hence

lim
t→`

U~ t !* ~x/t !U~ t !5DpS 1 0

0 1D , ~D8!

and

lim
t→`

U~ t !* Q~e–ex2a!Q~x2b!U~ t !5 lim
t→`

U~ t !* Q~e–ex2a!U~ t !U~ t !* Q~x2b!U~ t !

5$Q~e–ep2a!P11Q~2e–ep2a!P2%DpS 1 0

0 1D
5Q~e–ep2a!P11Q~2e–ep2a!P2 , ~D9!
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which is Eq.~6.4!.

2. Reduction ofT„z…

We reducePemT(z)Pem to an objectt(z) that only acts on electric fields by applying the Feshbach formula twice. We
(K0 is defined above!

X5PemT~z!Pem5@z2K0#Pem@z2K#21Pem@z2K0#2@z2K0#Pem

5@z2K0#Pem@z2K02PemKPaux@z2PauxKPaux#
21PauxKPem#21Pem@z2K0#2@z2K0#Pem. ~D10!

SincePemKPaux5$K14dk1d l4% andPauxKPem5$K41dk4d l1%, whereas (K1aux5PauxK1Paux)

@z2PauxKPaux#
215@z1K1aux#@z22~K1aux!

2#215@z22v2#21S z 0 0 0

0 z 0 iv

0 0 z 0

0 2 iv 0 z

D ,

we obtain

PemKPaux@z2PauxKPaux#
21PauxKPem5zK14@z22v2#21K41Pel5zE dv n~v!@z22v2#21Pel52zx̂~z!Pel , ~D11!

whereP el5$dk1d l1% is the projector upon the electric field~first! component ofF. Thus, rearranging terms and again applyi
the Feshbach formula,

X5@z2K0#Pem@z2K01zx̂~z!Pel#
21Pem@z2K0#2@z2K0#Pem

5Pem@z2K01zx̂~z!Pel2zx̂~z!Pel#Pem@z2K01zx̂~z!Pel#
21Pem@z2K0#2@z2K0#Pem

52Pemzx̂~z!Pel@z2K01zx̂~z!Pel#
21Pem@z2K01zx̂~z!Pel2zx̂~z!Pel#Pem

52zx̂~z!Pel1z2x̂~z!Pel@z2K01zx̂~z!Pel#
21Pelx̂~z!

52zx̂~z!Pel1z2x̂~z!Pel@z2PelK0Pel1zx̂~z!Pel2PelK0Pmag@z2PmagK0Pmag#
21PmagK0Pel#

21Pelx̂~z!

5$2zx̂~z!1z2x̂~z!@z«~z!2PelK0Pmagz
21PmagK0Pel#

21%Pel

5$2zx̂~z!1z3x̂~z!@z2«~z!2H0#21%Pel5t~z!Pel . ~D12!

HereP em5Pel1Pmag and we used the relationsPelK0Pel5PmagK0Pmag50, PelK05PelK0Pmag, PmagK0Pel5K0Pel, and
PelK0PmagK0Pel5PelK0

2Pel5H0Pel .
et
A

ys.
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