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Correlated input-port, matter-wave interferometer:
Quantum-noise limits to the atom-laser gyroscope
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I derive the quantum phase-noise limit to the sensitivity of a Mach-Zehnder interferometer in which the
incident quantum particles enter via both input ports. I show that if the incident particles are entangled and
correlated properly, then the phase sensitivity scales asymptotically like the Heisenberg-limitedDw
5O(1/N), for largeN, whereN is the number of particles incident per unit time.~In a one-input-port device,
the sensitivity can be at bestDw51/AN.! My calculation applies to bosons or fermions of arbitrary integer or
half-integer spin. Applications to optical, atom-beam, and atom-laser gyroscopes are discussed—in particular,
an atom-laser can be used to obtain the required entanglements for achieving this Heisenberg-limited sensi-
tivity with atomic matter waves.@S1050-2947~98!06506-8#

PACS number~s!: 03.75.Dg, 42.50.Vk, 07.60.Ly, 42.87.Bg
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I. INTRODUCTION

In an earlier paper, Scully and I gave a general proof t
the quantum-limited phase sensitivityDw of a one-input-
port, Mach-Zehnder interferometer, is preciselyDw51/AN,
whereN is the total number of quantum particles~in Fock
states! that have passed one at a time through the device
given unit of time@1#. Our result was very general in that
applied equally well to fermions or bosons of arbitrary ha
integer or integer spin, respectively.

In comparison to this Fock-state result, it is well know
that in an optical interferometer, in which light in a cohere
stateua& enters via onlyone port, that the phase sensitivit
scales asDw5O(1/An̄), wheren̄5uau2 is the mean numbe
of photons to have passed through the interferometer@2#. It
would seem that any desired sensitivityDw could be attained
by simply increasing the laser power and hencen̄. However,
sinceDw scales only slowly as 1/An̄, the laser power rapidly
becomes so large that the power fluctuations at the inte
ometer’s mirrors introduce additional noise terms that ev
tually limit the device’s overall sensitivity@3,4#. Steady im-
provements in optical laser gyroscope designs indicate
quantum-noise fluctuations such as these will be the do
nant effect limiting laser gyroscope accuracy in the near
ture @5#. Much of the early interest in coherent photon-sta
squeezing centered around overcoming this signal-to-n
roadblock. In the early 1980s Caves@3#, as well as Bondu-
rant and Shapiro@4#, demonstrated that when phas
squeezed coherent states are fed intoboth input ports of the
interferometer, then phase sensitivity can asymptotically
proachDw5O(1/n̄), for large n̄. This is a great achieve
ment in that the total laser power required for a given amo
of phase sensitivityDw is greatly reduced.

In the late 1980s and early 1990s there was a flurry
interest in a proposal by Shapiro and co-workers@6# of a
many-photon superposition state whose phase sensitivity
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claimed to scale asymptotically as a remarkableDw
5O(1/n̄2). Schleich and I studied some of the interesti
properties of this ‘‘Shapiro’’ state@7#, and I also proposed a
related photon state that apparently had the sameDw scaling
law @8#. However, in the mid-1990s, Lane, Braunstein, a
Caves showed that—when all of the steps in the phase m
surement process were properly accounted for—the Sha
and my related state apparently had a sensitivity no gre
thanDw5O(1/n̄); that obtained by ordinary squeezing of
coherent state@9#. The conventional wisdom now seems
be thatDw5O(1/n̄) is the best one can do with states
which many-photon number states are superposed in a g
boson mode—and this sensitivity is often called ‘‘Heise
berg limited,’’ by applying the uncertainty principle to th
number and phase difference operators between the two
put ports of the interferometer.

As early as 1986, Yurke had considered the question
phase-noise reduction using correlated spin-1

2 fermions—in
Fock states—incident upon both input ports of a Mac
Zehnder interferometer@10#. For Fock states—unlike coher
ent states—there are no number fluctuations, and for fer
ons only one number state can be occupied at a time, du
the Pauli-exclusion principle. This rules out squeezing in
conventional sense. Nevertheless, Yurke was able to s
that if N spin-12 fermions entered into each input port of th
interferometer in nearly equal numbers—and in a highly c
related and entangled fashion—then it was indeed possib
obtain an asymptotic phase sensitivity ofDw5O(1/N), for
largeN. This should be compared to theDw51/AN that is
the best one can do using only one input port@1,10,11#. As
intriguing as Yurke’s result is, his proof relied heavily on th
utilization of properties of the su~2! spin-angular-momentum
algebra for a collection ofN, spin-12 fermions. In addition,
Yurke seems to have envisioned either neutrons or elect
for his correlated input beams, and it is difficult to imagin
how the requisite, cross-port entanglements might actu
be made experimentally.

Shortly after Yurke’s paper was published@10#, there ap-
peared a second, related paper by Yurke, McCall, a
4736
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57 4737CORRELATED INPUT-PORT, MATTER-WAVE . . .
Klauder~YMK ! for photons. In this YMK work@11#, a simi-
lar su~2! formalism was developed for abosonic, Fock-state,
correlated-input-port interferometer. In particular, th
showed that a phase sensitivity ofDw5O(1/N) could be
obtained using correlated photons emanating from a non
ear, optical four-wave mixing device@11#.

In this current paper, I will show that it is possible
discuss both fermions and bosons on an equal footing
simple fashion that does not utilize the su~2! spin-algebra
representation. Even though the su~2! formalism is math-
ematically elegant, the method I will use here makes so
aspects of the physical interpretation more transparent. H
I wish to discuss gyroscopic interferometers using atom
beams or atom lasers as my input beams, and so trea
fermions and bosons with the same formalism seems
sensible thing to do.

I will digress here only briefly to mention that the su~2!
angular-momentum algebra treatment, ofN particles passing
through a Mach-Zehnder interferometer, is isomorphic
that of the Dicke manifold@12# for studying the properties o
a collection of N spin-12 particles or two-level atoms
@11,13,14#. Hence, using this formalism it is possible to pr
duce coherent and squeezed-coherent atomic ensemble
@13–16# that can be used to lower the quantum-noise lim
to atomic Ramsey spectroscopy. In addition, Bollingeret al.,
as well as Bouyer and Kasevitch~working with degenerate
gases! have shown that the correlated Fock-state techniq
employed by Yurke and co-workers, to reduce interferome
noise toDw5O(1/N), can also be applied to spectroscop
noise@17#. This is due to the fact that the Ramsey spect
scopic technique forN atoms is isomorphic to Mach
Zehnder interferometry withN particles@11,13,14#.

In this paper I will demonstrate that it is possible
achieve an asymptotic interferometer phase sensitivity
Dw5O(1/N), using either fermions or bosons of arbitra
half-integer or integer spin, respectively. Only three requ
ments need be met to attain this level of sensitivity:~1! the
particles must be in Fock states;~2! they must be incident on
both input ports in roughly equal numbers; and~3! they must
enter the two ports in a highly entangled or correlated fa
ion. The immediate ramification of this result is that it ope
the way for a new type of correlated-input-port interfero
eter using bosonic atom-matter waves emanating from
atom laser. Correlated beams of bosonic atom-matter wa
have recently been produced in the atom-laser experime
Ketterle and co-workers@18#. These experiments give a re
sonable hope that the input correlations required
correlated-input-port increased phase sensitivity might
generated from such atomic bosonic sources, and I will g
some indication herewith how this might be done.

This paper is divided into six sections. In Sec. II I w
review the Fock-state formalism for computing the pha
sensitivity in a simple Mach-Zehnder interferometry throu
which N particles pass in unit time. I will use this formalism
to recalculate theone-input-port, Fock-state, sensitivity limi
of Dw51/AN. In Sec. III I will give the calculation for the
correlated two-input-port, Fock-state interferometer, an
show that—for largeN—an asymptotic phase sensitivity o
Dw5O(1/N) is achievable for highly correlated atomic ma
ter waves of fermions or bosons of arbitrary half-integer
integer spin, respectively. This provides a simple formali
n-
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for treating the correlated-input-port, atom-laser gyrosco
and that treatment comprises the primary result of the pre
paper.

In Sec. IV I will show that an analogous correlated-inpu
port technique usingcoherentbosonic states—rather tha
Fock states—gives a sensitivity of, at best, onlyDw
5O(1/An̄), wheren̄ is the mean number of particles. Th
calculation demonstrates that the use of Fock states is es
tial for obtaining an asymptotic phase sensitivity ofDw
5O(1/N) by this approach. In Sec. V I will compare and
contrast typical one-input-port optical and matter-wave gy
scopes to potential two-input-port devices. In particular
correlated-two-input-port laser gyroscope could be as m
as eight orders of magnitude more sensitive to rotations t
an equivalent one-port device. Similarly, a two-port, ato
laser gyroscope could be six orders of magnitude more s
sitive than a one-port atom-beam gyroscope, and a rem
able ten orders of magnitude more sensitive than
comparable one-input-port ring-laser device. Finally, in S
VI I will summarize and conclude.

II. ONE-INPUT-PORT, FOCK-STATE INTERFEROMETER

In this section I will recalculate the phase sensitivityDw
of a one-input-port, Mach-Zehnder interferometer@1,10,11#,
depicted in Fig. 1. A stream ofN, Fock-state particles are
incident upon the upper input port that I shall callA. At the
first beam splitter,S1 , the particles are split evenly into e
ther upper pathU of length l U , or lower pathL, of length
l L . They reflect off either upper mirrorMU or lower mirror
ML , and then recombine at beam splitterS2 . Finally, the
particles emerge from either upper output portC or lower
output portD, whereupon they strike upon upper detec
DU or lower detectorDL . Without loss of generality, I will
assume that the particles are sufficiently well collimated
be in single spatial modes, and I assume their velocity spr
is negligible, so that all particles have the same cons
wave numberk @10#. Let â and b̂ be the annihilation opera
tors for each particle in input modesA and B, with corre-
sponding creation operatorsâ† and b̂†, respectively. Simi-
larly, let ĉ and d̂ ~and their Hermitian conjugates! be the
operators corresponding to output portsC and D, respec-
tively. The operators of each mode obey the usual comm
tation relations,

ââ†6â†â51, ~1a!

b̂b̂†6b̂†b̂51, ~1b!

ĉĉ†6 ĉ†ĉ51, ~1c!

d̂d̂†6d̂†d̂51, ~1d!

where the plus sign is for bosons and the minus for fermio
Now there is a simple scattering matrix relationship b

tween the input operatorsâ andb̂ and the output operatorsĉ
and d̂, namely@1,10,11,19#,

F ĉ

d̂G5
1

2 F2 i ~eim2ein! ~eim1ein!

~eim1ein! i ~eim2ein!
G F â

b̂G , ~2!
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FIG. 1. A one-port particle Mach-Zehnder interferometer. Particles are incident on input portA while only vacuum comes into input por
B. The paths taken in the upper and lower branchesU andL are of lengthl V and l L , respectively. The phases accumulated along e
branch of the interferometer, and at the equidistant detectors, is also shown.
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wherem[kl U andn[kl L are the phases accumulated
the particles when traversing the upper or lower pathsU or
L, respectively. As in Ref.@1#, I have also assumed that ea
beam splitter is 50-50, which is accounted for by the fac
of 1

2 in Eq. ~2!. In addition, also as in Ref.@1#, I have as-
sumed ap/2 phase shift upon each reflection and ap phase
shift upon each beam-splitter transmission, which is resp
sible for the minus signs and the factors of imaginary6 i .

In general, time-reversal symmetry and par
conservation—as embodied in the Stokes recipro
relations—implies that, after passage through asymmetric
beam splitter, the difference in phase between the refle
and transmitted components of the beammustbe6p/2. That
requirement is met in the choice of beam-splitter pha
given above. If I assume the more general case of a ph
shift a andb on transmission and reflection, respectively,
each of the beam splitters, and a shiftg upon reflection at
each of the mirrors, I recover the form of the matrix, E
~2!—up to an unimportant overall phase factor—provide
demanda2b56p/2, but independent of the choice ofg.
For a5p, b5p/2, andg5p, the phases accumulated
the end of each branch of the interferometer and at the e
distant detectors are depicted in Fig. 1.

Carrying out the matrix multiplication, I arrive at an ex
pression relating the input operators to the output num
operators, namely,

ĉ†ĉ5â†âsin2w/21b̂†b̂cos2w/21 1
2 ~ â†b̂1b̂†â!sin w,

~3a!

d̂†d̂5â†âcos2w/21b̂†b̂sin2w/22 1
2 ~ â†b̂1b̂†â!sin w,

~3b!

wherew[m2n5k(l U2l L) corresponds to the phase di
ference between the two interferometer paths—the quan
to be measured. Let us define output-port sum and differe
number operatorsN̂ andM̂ , respectively, by
r

n-
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ed

s
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t

.
I
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ce

N̂[d̂†d̂1 ĉ†ĉ, ~4a!

M̂[d̂†d̂2 ĉ†ĉ. ~4b!

Then, from Eq.~3!, it is trivial to reexpress these output su
and difference operators in terms of the input operatorsâ and
b̂, via

N̂[b̂†b̂1â†â, ~5a!

M̂[~ â†â2b̂†b̂!cosw2~ â†b̂1b̂†â!sin w. ~5b!

The expression~5a! for the output sum operatorN̂ expresses
conservation of particles. The phase informationw we are
measuring is contained in the output difference operatorM̂ ,
as is clearly seen in Eq.~5b!. This quantity^M̂ & is measured
by counting the difference of the detection rate between
per and lower detectorsDU andDL , respectively. The root
mean square of the quantum phase fluctuations,Dw2, asso-
ciated with this measurement ofw can be obtained from
@1,10,11#

Dw25
DM2

u]^M̂ &/]wu2
, ~6!

where the varianceDM2 is defined as usual as

DM2[^M̂2&2^M̂ &2, ~7!

with the expectation values to be carried out with respec
the appropriate input stateuc&.

A simple heuristic argument for the validity of this equ
tion ~6! can be given as follows. Consider a differentiab
function y5y(x). I have y8(x)5dy/dx>Dy/Dx. The ap-
proximation becomes an equality in the limitDx→0. How-
ever, ify(x) is a fluctuating dependent random variable, th
I cannot takeDy→0. Hence the best that I can resolve t
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independent variablex is to within the associatedDx.
Hence, givenDy, the minimal resolvableDx is given im-
plicitly by uy8(x)u5Dy/Dx or explicitly by Dx
5Dy/uy8(x)u. Setting^M̂ &[y andw[x and squaring gives
Eq. ~6! for the variance of the minimal detectable pha
Dw2, if I identify DM>D^M̂ &.
e,

n
he
-

th
,

Without yet specifying the form ofuc&, I can expand Eq.
~6! in terms of expectation values of various products of
input operatorsâ and b̂ and their conjugates. This is easi
accomplished by taking Eq.~5b! for the output difference
operatorM̂ and inserting it into the expression~6! for Dw2,
yielding
Dw25
DX2cos2w2~^X̂Ŷ&22^X̂&^Ŷ&1^ŶX̂&!sin wcosw1DY2sin2w

u^X̂&sin w1^Ŷ&coswu2
, ~8!
ea-

hing

to
the

in
om
-

rs
nd
a

l in

e
op-

de-
er
where I have defined the difference operatorX̂ and the ex-
change operatorŶ as combinations of the input operatorsâ
and b̂, and their conjugates, namely,

X̂[â†â2b̂†b̂, ~9a!

Ŷ[â†b̂1b̂†â, ~9b!

with corresponding variances,

DX2[^X̂2&2^X̂&2, ~10a!

DY2[^Ŷ2&2^Ŷ&2. ~10b!

Equation~8! for Dw2 will provide the workhorse of this
paper. Once an input stateuc& is given, I merely need to
compute the expectation values in Eq.~8! to arrive at a phase
sensitivity associated with that input state. As an exampl
will calculate the sensitivity associated withN particles en-
tering one at a time in only top input portA, Fig. 1. Such a
calculation will reproduce my earlier result with Scully@1#,
or that of Yurke@10#. The appropriate input stateuc& for this
initial condition is the Hilbert space product

uc& I[uN&Au0&B , ~11!

indicatingN particles entering portA and vacuum in portB.
Writing the input state in this form assumes that only o
fermion is in a Fock state at a time—in order to satisfy t
exclusion principle.~This restriction obviously can be re
laxed for bosons.! I now compute the pieces of Eq.~8! for
Dw2, in terms of the expectation values and variances of
operatorsX̂ and Ŷ, defined in Eqs.~9! and ~10!. First,

^X̂& I5BŠ0zA^Nuâ†â2b̂†b̂uN&Az0‹B

5A^Nuâ†âuN&A B^0u0&B2A^NuN&A B^0ub̂†b̂u0&B

5~N!~1!2~1!~0!5N. ~12!

Similarly, I have

^Ŷ& I50, ~13!

^Ŷ2& I5N, ^X̂2& I5N2, ~14!

^X̂Ŷ& I5^ŶX̂& I50. ~15!
I

e

e

Inserting these expressions~11!–~14! into Eq. ~8! for the
phase varianceDw2, I obtain

Dw I
25

Nsin2w

uNsin wu2 5
1

N
, ~16!

an expression that is completely independent of the m
sured phasew. Hence, the phase sensitivityDw I for the one-
input-port interferometer is precisely

Dw I5
1

AN
, ~17!

reproducing the earlier calculations@1,10,11#. This is just the
classical Poisson noise associated with the random switc
of the particles between interferometer branches.

I now proceed to the next section where I show how
use two ports with correlated inputs in order to reduce
noise toDw5O(1/N).

III. CORRELATED-TWO-INPUT-PORT, FOCK-STATE
INTERFEROMETER

Consider Fig. 2 for a Mach-Zehnder interferometer
which the particles are incident upon both input ports. Fr
the work of Yurke with spin-12 particles, I have a phase sen
sitivity of Dw5O(1/N) when approximately equal numbe
of particles enter each port in a highly correlated fashion, a
the phase differencew to be measured is set to zero. Since
zero phase can always be obtained by monitoring a nul
the interference pattern with a feedback mechanism@11#,
without loss of generality, I may setw50 in Eq. ~8! for the
phase varianceDw2 to obtain

Dw2uw505
DX2

u^Ŷ&u2
, ~18!

which greatly simplifies my calculation at the outset.
To see why this choice ofw50 for the measured phas

reduces the noise, consider the difference and exchange
eratorsX̂ andŶ, Eqs.~9a! and~9b!, respectively. BecauseX̂
is the difference of two number operators, the quantities^X̂&
and ^X̂2& can be made to be small integer constants, in
pendent ofN, if input states of approximately equal numb
of particlesN/2 are used. This is not true for^Ŷ& and ^Ŷ2&
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FIG. 2. Same as in Fig. 1, but now entangled correlated particles are incident on both input portsA andB.
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sinceŶ is the sum of two exchange operators. Hence, in
general expression forDw2, Eq.~8!, I wish to choose a value
of w that removes all factors of̂Ŷ& and ^Ŷ2& from the
numerator—in order to makeDw2 as small as possible. Th
choice w50 does this, since all the undesirable terms
multiplied by factors of sinw. Now I choose a highly
correlated-input state with roughly equal numbers of p
ticles entering each port. Again, using Yurke’s result
spin-12 fermions as our guide, we make the ansatz

uc& II[
1

& H UN11

2 L
A

UN21

2 L
B

1UN21

2 L
A

UN11

2 L
B
J

[
1

&
$uN1&AuN2&B1uN2&AuN1&B%, ~19!

where the total number of incident particles,N, is taken to be
odd and we define

N6[~N61!/2. ~20!

A physical picture of why I might expect such a state
exhibit such a small amount of phase noise can be foun
the YMK paper and also the recent work by Kim, Pfist
Noh, Holland, and Hall@11#. The idea is to minimize the
quantum uncertainty in su~2!, angular momentum, Heisen
berg uncertainty relations.

A simple argument for this choice of input state can
given as follows. Already I have chosenw50 in order to
make the numerator of Eq.~8! for Dw2 as small as possible
I see that I can make this expectation value as small as
sible again by choosing an input state with approximat
equal numbers of particles nearN/2 in each port—and with a
quantum uncertainty overwhich particle number is associ
ated withwhichport, as in Eq.~19!. In this case,DX2 will be
a small constant integer—independent ofN.

In order to evaluate the expression~18! for Dw2uw50 , I
need the following expectation values:
e

e

-
r

in
,

s-
y

^X̂& II50, ~21!

^Ŷ& II5N1 , ~22!

^X̂2& II5~N12N2!251, ~23!

DXII
251, ~24!

which are computed using the input stateuc& II , Eq.~19!, and
the operator definitions of Eqs.~9! and ~10!. An important
point to note is thatDXII

2 is a constant on the order of unit
independent ofN, as desired. It is this fact that drives th
change in the phase-noise power law. Inserting Eqs.~21!–
~24! into Eq. ~18! for the variance atw50 yields

Dw II
2uw505

1

N1
2 , ~25!

and hence

Dw IIuw505
1

N1
5

2

N11
5O~1/N!, ~26!

which shows the required Heisenberg-limited scaling of s
sitivity with N. This is then the primary result of this pape
As it turns out, all the dependence on the fermionic
bosonic nature of the particles appears in the general Eq~8!
for Dw2 only in terms proportional to sinw. Hence, these
statistics-dependent terms always vanish for the choice
w50, clinching my argument that the power law in Eq.~26!
holds for either bosons or fermions—provided t
correlated-input state has the form ofuc& II in Eq. ~19!.

Also, by inspecting Eq.~23! for ^X̂2& II , I see that I could
have chosenN15(N1 i )/2 and N25(N2 j )/2 so long as
both i and j are small integers independent ofN. Bouyer and
Kasevitch have shown that the 1/N power-law sensitivity is
robust, even in spite of small variations ini or j . However,
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there seems to be no obvious mechanism for producing s
a correlated state, Eq.~19!, using fermions@10#.

For photons, one can make such states using four-w
mixers, degenerate-parametric amplifiers, or possibly p
metric downconverters—at least in theory@11#. To my
knowledge, this effect—the reduction of the phase-no
power law using correlated Fock states—has never been
experimentally. The theoretical proposals to implement t
noise reduction using nonlinear optical devices, such as f
wave mixers, apparently are difficult to implement in t
laboratory. Perhaps other techniques of producing entan
photon states of type Eq.~19! might be employed—such a
parametric down-conversion. The payoff in producing
bright source of such entangled photons would
enormous—particularly in the application to optical inte
ferometric devices such as laser gyroscopes and la
interferometer gravity wave detectors. What I would like
emphasize here is that recent experimental@18# and theoret-
ical work @20,21# on the interference of Bose condensa
seems to indicate that such an entangled state as Eq.~19! is
feasibly manufacturable with atoms. On the experimen
side is the recent demonstration of long-range coherenc
the atom-laser experiment of Ketterle and co-workers.
the theoretical side are a series of papers demonstrating
the first-order phase coherence of a condensate can ma
itself in interference experiments in which the interferi
condensates are treated by a Fock-state formalism—ra
than a coherent-state analysis@20–23#. In particular, Jav-
anainan and Yoo gave a convincing argument that a Fo
state approach suffices, which seems intuitive since the
number of atoms in the condensate is measurable—at lea
principle @20#. Of particular interest for my argument here
the theoretical work of Wong, Collett, and Walls~WCW!
@20#, and Castin and Dalibard~CD! @23#, that suggests tha
entangled states such asuc& II , Eq. ~19!, can be readily made
by performing a selective measurement on two interfer
condensates. I will show why this is so, in a simple gedan
experiment.

Consider Fig. 3, adapted from the CD paper@23#. Two
Bose-Einstein condensatesA andB with P particles each are

FIG. 3. In a dual Bose condensate, I start withP particles in
each condensate, with a Hilbert product stateuc&before5uP&uP&.
Particles are allowed to be incident on input portsA andB to the
beam splitter. The first click of either detector projects the d
condensate into an entangled stateuc&after5$uP21&uP&1uP&uP
21&%/&, which is needed for Heisenberg-limited interferomet
as per Eq.~19!, if I take N52P21.
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output coupled via the upper and lower channelsA and B,
respectively, and made incident on a 50-50 beam splitteS,
as shown. The upper and lower output channels,U and L,
respectively, lead directly to the upper and lower detect
DU andDL , respectively. I will assume that the dual co
densate system is in a Fock state, and hence the wave f
tion is represented by the Hilbert space direct product

uc& III 5uP&AuP&B . ~27!

The first click at either detectorDL or DU projects the con-
densate wave function into

uc& IV5
1

&
~ â1b̂!uP&AuP&B

5
1

&
$uP21&AuP&B1uP&AuP21&B%, ~28!

which is precisely the requisite correlated-input stateuc& II of
Eq. ~19!, once I make the identification thatN52P21. The
entanglement arises because I cannot now—even
principle—say which condensate the detected atom ca
from, nor which atom in that condensate it was.

As Yurke has pointed out@10#, it is difficult to see how
one might construct such a correlated-input state asuc& II ,
Eq. ~19!, with massive fermionic particles such as neutro
Here I show what an atom laser can do that an ordin
atomic beam cannot.

Although this gedanken method of preparing the requis
correlated state may seem a bit contrived, recently Spekk
and Sipe have shown that precisely such states can be
pared by forming a dual condensate in a double poten
well with an adiabatically adjustable barrier height@24#.

In the next section, I will demonstrate why using a corr
lated Fock—rather than a coherent—state is important
achieving this type of sensitivity by this mechanism.

IV. CORRELATED-TWO-INPUT-PORT,
COHERENT-STATE INTERFEROMETER

The question arises, what is so important about usin
Fock-state description to attain the phase-noise sensitivit
Dw5O(1/N)? To answer this, I thought it would be instruc
tive to try and replicate the argument of the preceding s
tion using correlatedcoherentstates of bosonic degenera
particles rather than Fock states. Of course, coherent-s
phase-noise squeezing techniques have long been know
produce interferometers with a phase sensitivity ofDw
5O(1/n̄), where n̄5uau2 is the mean photon number of
coherent stateua& @3,4#. In addition, Knight@25#, as well as
Schleich and co-workers@26#, have shown that a type o
phase squeezing can occur when two coherent states o
ferent particle number, but of the same phase, are superp
properly. Furthermore, recent experimental evidence s
ports the conclusion that a Bose-Einstein condensate gro
state is a number-squeezed coherent state@27#. Hence, it
seems plausible that the scheme used in the preceding
tion, to reduce the phase noise of a superposition of F
states of different total particle number, might well be e
ployed to a superposition of coherent states of different m

l

,



t-
th

r

s

re

e

rt

o

a

-

e
e

e
his
f a

put

t

t
tate

ort
en-

la-
ted
res-

u-

4742 57JONATHAN P. DOWLING
particle number. I will see if this type of correlated-inpu
port state manipulation would work instead to achieve
desired phase sensitivity ofDw5O(1/n̄).

First, I will calculate the sensitivity of a Mach-Zehnde
interferometer in which a coherent stateua& is incident on
only one input port, as in the setup in Fig. 1. The pha
sensitivity is still obtained from Eq.~8! for Dw2, with the
expectation values taken with respect to the two cohe
states

uc&V5ua&Au0&B , ~29!

where we have the vacuum coherent stateu0&B incident on
the input portB. We need to compute the expectation valu
used in Eq.~8! for Dw2. I first consider

^X̂&V5BŠ0zA^auâ†â2b̂†b̂ua&Az0‹B

5A^auâ†âua&A2B^0ub̂†b̂u0&B

5uau2205n̄, ~30!

which is the mean number of particles inua&. In a similar
fashion I have

^Ŷ&V50, ~31!

^X̂2&V5n̄21n̄, ^Ŷ2&V5n̄, ~32!

^X̂Ŷ&V5^ŶX̂&V50, ~33!

where I have made use of the coherent-state properties@28#

^aua&51, ~34a!

^auN̂Aua&5uau2[n̄, ~34b!

^auN̂A
2 ua&5n̄21n̄, ~34c!

and where I have defined the number operatorN̂A[â†â.
Inserting Eqs.~31!–~33! into the general expression~8! for
Dw2, I have

DwV
2 5

@~ n̄21n̄!2n̄2#cos2w201n̄sin2w

un̄sin w10u2
5

1

n̄sin2w
,

~35!

which is minimal at w5p/2 ~and odd integer multiples
thereof!. Hence, I have

DwVuw5p/25
1

An̄
, ~36!

the expected minimal uncertainty for the one-input-po
coherent-state, Mach-Zehnder interferometer.

Notice that this result is not independent of the choice
phase, as was the Fock-state phase noiseDw I , Eq. ~17!. This
is because the varianceDX2 is much different for the two
types of states. In particular,DXI

250 for the Fock input
state,uc& I5uN&Au0&B , because there are no number fluctu
tions in the Fock stateuN&. Hence, the cos2 w factor in the
numerator ofDw2, Eq. ~8!, vanishes—allowing the remain
e

e

nt

s

,

f

-

ing factors of sin2 w to cancel identically. In contrast, th
varianceDXV

2 5n̄Þ0, due to the number uncertainty of th
coherent stateua&. Hence, the cos2 w does not vanish and th
w dependence does not cancel. I will now show how t
additional number uncertainty affects the performance o
correlated-two-input-port, coherent-state device.

To mimic the entangled Fock stateuw& II , Eq. ~19!, as
much as possible, I construct a coherent correlated-in
stateuc&VI as

uc&VI[
1

&
$ua1d&Aua2d&B1ua2d&Aua1d&%

[
1

&
$ua1&Aua2&B1ua2&Aua1&B%, ~37!

where I assumeudu!uau with udu2>1. Without loss of gen-
erality, I take a and d to be real, which is equivalent to
setting the absolute~and arbitrary! phase of the stateua6&
[ua6d& to zero. With this input stateuc&VI , I compute the
following requisite expectation values:

^X̂&VI5^N̂A&VI2^N̂B&VI50, ~38!

which can be obtained easily by noting that the stateuc&VI ,
Eq. ~37!, is symmetric under the interchange ofA↔B, and
hence ^N̂A&VI5^N̂B&VI , where I defineN̂A5â†â and N̂B

5b̂†b̂, as before. Hence, this is analogous to^X̂& II50, as per
Eq. ~21! for the correlated Fock stateuc& II , Eq. ~19!. Next I
have

^Ŷ&VI5
1
2 $B^a2uA^a1u1B^a1uA^a2u%~ â†b̂1b̂†â!

3$ua1&Aua2&B1ua2&Aua1&B%

52~a22d2!12~a21d2!e2d2
, ~39!

where I have made use ofa6[a6d, with a andd real, and
I have also used the coherent-state properties@28#

âua&5aua&5a* ^au5^auâ†, ~40a!

z^aub& z25ue2uau2/22ubu2/21a* bu25e2ua2bu2, ~40b!

for arbitrary coherent statesua& and ub&. Hence, I see tha

^a1ua2&5^a2ua1&5e22d2
, with d>1. Therefore I see

that ^Ŷ&VI5O(a2)5O(n̄), the leading term. This resul
should be compared to the correlated, two-port, Fock-s
expectation of Eq.~22!, namely, ^Ŷ& II5N115O(N). So
far, so good—the analogy between the correlated two-p
Fock and coherent states seems to be holding with the id
tification N↔n̄.

Notice at this point that a choice of phase differencew
5p/2, as was made in the one-port coherent input calcu
tion, does not minimize the phase noise for the correla
two-import coherent state. This is clear in the general exp
sion, Eq.~8!, for the phase varianceDw2, where now I have
^X̂& IV50. A choice ofw5p/2 now would makeDw2 for-
mally singular and maximize the phase noise. So I takew
50, using a similar argument as in the two-port Fock calc
lation. Hence, once again the expression forDw2 simplifies
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to that of Eq.~18!, and I see that I need to calculate on
DXVI

2 . Using the fact thatuc&VI is symmetric underA↔B
interchange, I may write

^X̂2&VI5^N̂A
22N̂AN̂B2N̂BN̂A1N̂B

2&VI

52^N̂A
2&VI22~N̂AN̂B!VI

52~a21d218a2d2!12~a22d2!e2d2
, ~41!

where I have made use of the coherent-state properties
~40!, and have used the fact that the particles are bosons
they must be for a coherent state—when commuting the r
ing and lowering operators. Hence,

DXVI
2 5^X̂2&VI2^X̂&VI

2 5^X̂2&VI20

5O~a2!5O~ n̄!, ~42!

and now I see a difference between this two-port cohe
result and the two-port Fock-state result, Eq.~24!, namely,
DXII

251 for the two-port Fock state. The fact that th
correlated-two-port, Fock-state variance forDXII

2 is indepen-
dent ofN is directly a result of the fact that a Fock state h
zero number fluctuations. The fact that the two-po
coherent-state varianceDXVI

2 is of ordern̄ is due to the fact
that coherent-state number fluctuations are of this same o
n̄. This extra source of fluctuations will spoil my attempt
improve the power law for the two-port, coherent-state ph
noise by this mechanism, as will be seen. Inserting Eqs.~39!
and ~42! for ^Ŷ&VI and DXVI

2 , respectively, into the expres
sion ~18! for the phase varianceDw2, I get

DwVI
2 uw505

~a21d218a2d2!1~a22d2!e2d2

@~a21d2!e2d2
12~a22d2!#2

5O~1/a2!

5O~1/n̄! ~43!

and hence

DwVIuw505O~1/An̄!, ~44!

for large n̄, and there is no improvement in power-law sc
ing, over the coherent one-port result, Eq.~36!.

I think this exercise with correlated-two-port, cohere
states demonstrates the need for correlated Fock states
reducing the power law of the phase noise via this correla
two-input-port mechanism. I apply this Fock-state result
the next section to compare and contrast the sensitivity
one- and two-input-port optical and matter-wave interfero
eters operating as inertial gyroscopes.

V. ATOM-LASER GYROSCOPES

In this section I will review the theory of gyroscopy bas
on Mach-Zehnder interferometry. The treatment is similar
that of the Sagnac effect for massive particles found in
paper by Scully and me@1#. Consider in Fig. 4 an idealize
circular interferometer used as a rotation sensor. From
figure, I can see easily that the path differencedl for par-
ticles on the upper and lower paths,U andL, respectively, is
given by dl 52rVt, where r is the radius of the circula
q.
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interferometer,V the angular velocity about the center in th
plane of the interferometer, andt5pr /v is the transit time of
the particle through the arms of the interferometer for p
ticles of velocityv @29#. ~A fully relativistic treatment, re-
quired for massless particles such as photons, can be fo
also in the paper by Gea-Banacloche and co-workers,
@29#.! From these expressions, I can compute the Sag
phase differencew as

w5k~ l U2l L!5
2pr 2V

|v
5

2AV

|v
, ~45!

wherek is the particle wave number,l U and l L the path
lengths of the upper and lower areas of the interferome
respectively,|[\/mv is the circular de Broglie wavelengt
for a particle of massm; andA5pr 2 is the area enclosed b
the interferometer. Hence, the phase signalw that I am trying
to detect is given by

w5
2AmV

\
, ~46!

and it turns out that this expression is independent of
actual interferometer shape—so long asA is the total area
enclosed by the arms@7#. It also turns out that—after a fully
relativistic treatment@29#—the exact same expression~46!
holds for massless particles such as photons, as long a
define an effective photon ‘‘mass’’mg by

mg5
\v

c2 . ~47!

Using this effective mass, I see that the ‘‘mass’’ of an optic
photon corresponds to only a few electron volts, while t
mass of an atom is on the order of 103 MeV. It is this mass-
enhancement factor that is largely responsible for the gre
increased sensitivity of matter-wave over light-wave gy
scopes.

The use of one-port, atom-beam, atomic matter-wave
terferometers has been demonstrated by Pritchard and
workers@30# and also by Kasevich and co-workers@31#. Prit-
chard and co-workers use material gratings for the ato
beam splitters and mirrors, and they measure the 1/AN

FIG. 4. Interferometer as gyroscope. The path difference
tween the upper and lower branches of the gyroscope is given
dl 5pr 2V/v, as shown. This difference is measured as a Sag
phase shiftw in the operation of the gyroscope. In general, the a
A5pr 2 may be replaced with that of an arbitrarily shaped gy
scope which has the same area.
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TABLE I. Compared and contrasted are different properties of one- and two-port matter-wave and optical gyroscopes in the term
sensitivity to phase differences—or equivalently—rotation rates. We see that the high mass of atoms initially contributes an inc
sensitivity of 1010, but that the low atomic beam intensity, compared to photon beams, removes some of this advantage, as does th
number of round-trips possible in an atom interferometer.

Matter Laser

One-port
atom-to-light

factor

Two-port
matter-to-light

factor

Two-port
to

one-port atom

Two-port
to

one-port light

Two-port
atom to

one-port light

Mass
factor

104 MeV 1 eV 1010 1010 1 1 1010

Flux
N51012

particles

sec
N51016

photons

sec

A1012/101651022 1012

101651024 1012

A1012
5106

1016

A1016
5108

1012

A1016
5104

Round-
trips

1 104 1024 1024 1 1 1024
m
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power law for phase sensitivity, Eq.~17!, as I have predicted
for a one-input-port device. Kasevich and co-workers de
onstrate the best absolute atomic matter-wave sensitivit
rotation seen to date, namely 231028 ~rad/s!/AHz. ~The
Earth’s rotation rate isVE57.331025 rad/s.! In this sec-
tion, I would like to estimate how much better I could expe
a comparable, correlated-two-input-port device to perform

If N is the total number of particles passing through
gyroscope in unit time, then I can write

N5JT, ~48!

whereJ is the particle flux andT the measurement or inte
gration time. Combining Eq.~46! for the phase with this
expression~48!, I can write two expressions for the min
mum detectable rotation rateV; one for a one-port device
and a second for a correlated two port, using Eqs.~17! and
~26!, respectively,

Vone-port5
\

2Am

1

AJT
5

\

2AmAN
, ~49!

V two-port5
\

Am

1

JT
5

\

AmN
, ~50!

whereA is the gyroscope area andm the particle mass, a
before. These expressions hold for photons if I takem5mg ,
Eq. ~47!, and also identify the fluxJ with the optical power
P via

J5
P

\v
. ~51!

Although these formulas are useful to calculate the m
mum detectable rotation rate for a given device, to comp
one-input-port to two-input-port devices, it is handy to lea
Eqs.~49! and~50! in terms ofN instead ofJT. For an inte-
gration time of 1 sec, Table I compares and contrasts typ
mass-enhancement factors for an atom matter wave ove
optical gyroscope @1#. I show that, from the mass
enhancement factor alone, an increase in sensitivity of4

can be expected by using atoms rather than photons in
equivalent one-port device. In the fourth column I show on
an enhancement of 102 can be expected for a two-port ato
-
to

t

e

i-
re

al
an

0
an

matter wave over an optical correlated-two-input device, d
to the change in the scaling laws withN. However, in the
fifth column, I note that a two-port atom-laser gyroscope c
be 106 times more sensitive than an equivalent one-p
atom-beam gyroscope.

Because of the higher photon flux in an optical interfe
ometer, I show in the sixth column of Table I that a corr
lated two-port optical gyroscope is 108 times more sensitive
than an equivalent optical one-port gyroscope. This f
alone should serve as impetus to the quantum optics com
nity to try and find an all-optical implementation of
correlated-two-port, photon interferometer using four-wa
mixing, parametric down-conversion, or some other optica
nonlinear process@11#.

Finally, in the last column, I contrast a correlated-tw
input-port atom gyroscope with a comparable, one-input-p
photon gyroscope. I show that an amazing ten orders of m
nitude increase in sensitivity can be expected. As one-p
optical gyroscopes become more, and more limited by
shot-noise scaling law ofDw51/AN—as opposed to othe
technical sources of noise—it becomes clear that correla
input-port gyroscopy is a field that warrants further serio
theoretical and experimental investigation.

VI. SUMMARY

In this paper I have given a very general proof that
correlated-two-input-port, Fock-state, Mach-Zehnder int
ferometer has a phase detection sensitivityDw that scales
asymptotically asDw5O(1/N), Eq. ~26!, where N is the
number of particles passing through the device in unit tim
This is to be compared with the usual shot-noise limit
Dw51/AN, Eq. ~17!, that is the best one can do with
one-port device. The result is independent of the part
statistics, and applies equally well to bosons or fermions
long as they are amenable to a Fock-state treatment.
treatment can always be applied to bosons, and the app
tion to fermions entails the caveat that only one fermio
particle be in the interferometer at a time, so that the Pa
exclusion principle is obeyed. Important in obtaining th
increased sensitivity is the use of a correlated, entang
Fock input state of the form given in Eq.~19!. It is difficult
to imagine how such entangled input states can be m
using fermions. However, for photons, correlated states s



m
th

h

at
ic

iv
er
ta
oc
n
ca
re
a
s
, E
e
th
.
n
v
a

op

rs
b

a

of
l
ut-

r is

ates
th
of

for
have
en-
n to

at
or-

er-
nts

n
ve
ng
c-
of

57 4745CORRELATED INPUT-PORT, MATTER-WAVE . . .
as this can be made using such processes as four-wave
ing, parametric down-conversion, or perhaps some o
nonlinear optical process@11#.

For massive atomic bosonic particles, I have shown t
such entangled input states, Eq.~19!, can in principle be
generated from suitably prepared dual Bose condens
This idea has additional support from other recent theoret
papers on interference between condensates@17,24#. I have
also shown that an analogous enhancement of sensit
doesnot occur for a correlated-two-input-port, interferomet
if the inputs are in comparable coherent states. The impor
point that Bose condensates are in fact amenable to a F
state—rather than a coherent-state—treatment has bee
cently advanced rather forcefully in a number of theoreti
papers@20–23,32#. The use of a dual condensate in the
cent atom-laser experiments of Ketterle and co-workers
lows me to conjecture that a suitably prepared atom-la
source could provide the necessary entangled input state
~19!, needed to change the power-law scaling. For this r
son, I have adopted the not-so-whimsical moniker of
‘‘atom-laser gyroscope,’’ as I used in the title of this work

Finally, in the penultimate section above, I compared a
contrasted one- and two-input-port matter- and light-wa
interferometers, used as gyroscopes. As summarized in T
I: ~1! a two-port atom-laser device can be 106 times more
sensitive than a comparable one-port atom-beam gyrosc
~2! a two-port optical interferometer can be 108 times more
sensitive than a one-port photon gyroscope; and~3! a two-
port atom-laser gyroscope can be an amazing ten orde
magnitude more sensitive to rotations than a compara
one-port optical gyroscope.

Current state-of-the-art one-port optical gyroscopes
e
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operating close to their shot-noise limit of sensitivity
Dw51/AN. A breakthrough in device sensitivity to inertia
effects can be had by utilizing atom waves, correlated-inp
ports, or both.

As I mentioned in the Introduction, the mathematics ofN
particles passing through a Mach-Zehnder interferomete
formally isomorphic to that ofN two-level atoms passing
through a Ramsey interferometer. Hence, entangled st
that improve the signal-to-noise ratio will do so for bo
types of interferometers. However, implementing this type
procedure experimentally is, of course, much different
each of these scenarios. Recently, Ekert and co-workers
considered applying quantum computing techniques of
tanglement generation and decoherence error correctio
the Ramsey interferometer@33#. For example, entangled
states as in Eq.~19! can be obtained for a collection ofN
two-level atoms by applying a sequence ofN controlled-
NOT gates to the initial Fock ground stateuN/2&uN/2&. Re-
cent work by Cerf, Adami, and Kwiat seems to indicate th
all-optical quantum computing techniques such as error c
rection may be applied to the optical Mach-Zehnder interf
ometer, by treating the device as only one of many eleme
in an extended, optical, quantum-logic circuit@34#.
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