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Correlated input-port, matter-wave interferometer:
Quantum-noise limits to the atom-laser gyroscope
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| derive the gquantum phase-noise limit to the sensitivity of a Mach-Zehnder interferometer in which the
incident quantum particles enter via both input ports. | show that if the incident particles are entangled and
correlated properly, then the phase sensitivity scales asymptotically like the Heisenberg-limjted
=0(1/N), for largeN, whereN is the number of particles incident per unit tinfln a one-input-port device,
the sensitivity can be at beatp=1/\/N.) My calculation applies to bosons or fermions of arbitrary integer or
half-integer spin. Applications to optical, atom-beam, and atom-laser gyroscopes are discussed—in particular,
an atom-laser can be used to obtain the required entanglements for achieving this Heisenberg-limited sensi-
tivity with atomic matter waved.S1050-294{©@8)06506-§

PACS numbgs): 03.75.Dg, 42.50.Vk, 07.60.Ly, 42.87.Bg

[. INTRODUCTION claimed to scale asymptotically as a remarkahlep
=0(1/n?). Schleich and | studied some of the interesting

In an earlier paper, Scully and | gave a general proof thaproperties of this “Shapiro” statg7], and | also proposed a
the quantum-limited phase sensitivityp of a one-input- related photon state that apparently had the sAmscaling
port, Mach-Zehnder interferometer, is precisaly=1/\/N, law [8]. However, in the mid-1990s, Lane, Braunstein, and
whereN is the total number of quantum particléa Fock  Caves showed that—when all of the steps in the phase mea-
stateg that have passed one at a time through the device in surement process were properly accounted for—the Shapiro
given unit of time[1]. Our result was very general in that it and my related state apparently had a sensitivity no greater
applied equally well to fermions or bosons of arbitrary half-thanA ¢=0O(1/n); that obtained by ordinary squeezing of a
integer or integer spin, respectively. coherent stat¢9]. The conventional wisdom now seems to

In comparison to this Fock-state result, it is well known be thatA¢=0(1/n) is the best one can do with states in
that in an optical interferometer, in which light in a coherentwhich many-photon number states are superposed in a given
state|a) enters via onlyone port, that the phase sensitivity boson mode—and this sensitivity is often called “Heisen-
scales ag\ ¢ =0(1/yn), wheren=|«|? is the mean number berg limited,” by applying the uncertainty principle to the
of photons to have passed through the interferom@prit  number and phase difference operators between the two in-
would seem that any desired sensitivity could be attained put ports of the interferometer.
by simply increasing the laser power and hencélowever, As early as 1986, Yurke had considered the question of
sinceAo scales only slowly as 3, the laser power rapidly phase-noise reduction using correlated spilermions—in
becomes so large that the power fluctuations at the interfelFock states—incident upon both input ports of a Mach-
ometer’s mirrors introduce additional noise terms that evenZehnder interferometdrl0]. For Fock states—unlike coher-
tually limit the device’s overall sensitivit}3,4]. Steady im- ent states—there are no number fluctuations, and for fermi-
provements in optical laser gyroscope designs indicate thatns only one number state can be occupied at a time, due to
guantum-noise fluctuations such as these will be the domithe Pauli-exclusion principle. This rules out squeezing in the
nant effect limiting laser gyroscope accuracy in the near fuconventional sense. Nevertheless, Yurke was able to show
ture [5]. Much of the early interest in coherent photon-statethat if N spin- fermions entered into each input port of the
squeezing centered around overcoming this signal-to-nois@terferometer in nearly equal numbers—and in a highly cor-
roadblock. In the early 1980s Cavg3], as well as Bondu- related and entangled fashion—then it was indeed possible to
rant and Shapiro[4], demonstrated that when phase-obtain an asymptotic phase sensitivity &&= O(1/N), for
squeezed coherent states are fed buth input ports of the largeN. This should be compared to thep= 1/{N that is
interferometer, then phase sensitivity can asymptotically apthe best one can do using only one input gdrt0,11. As
proachA¢=0(1/n), for largen. This is a great achieve- intriguing as Yurke's result is, his proof relied heavily on the
ment in that the total laser power required for a given amountitilization of properties of the $8) spin-angular-momentum
of phase sensitivitAe is greatly reduced. algebra for a collection oN, spin+ fermions. In addition,

In the late 1980s and early 1990s there was a flurry ofrurke seems to have envisioned either neutrons or electrons
interest in a proposal by Shapiro and co-workg$ of a  for his correlated input beams, and it is difficult to imagine
many-photon superposition state whose phase sensitivity wagmw the requisite, cross-port entanglements might actually

be made experimentally.
Shortly after Yurke's paper was publishgtD], there ap-
*Electronic address: jdowling@redstone.army.mil peared a second, related paper by Yurke, McCall, and
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Klauder(YMK) for photons. In this YMK worl{11], a simi-  for treating the correlated-input-port, atom-laser gyroscope,
lar su2) formalism was developed fork@osonic Fock-state, and that treatment comprises the primary result of the present
correlated-input-port interferometer. In particular, theypaper.

showed that a phase sensitivity Afp=0(1/N) could be In Sec. !V I will §how that an anal_ogous correlated-input-
obtained using correlated photons emanating from a nonlinPort technique usingoherentbosonic states—rather than
ear, optical four-wave mixing devidd 1]. Fock states—gives a sensitivity of, at best, oniyp

In this current paper, | will show that it is possible to =O(1/Vn), wheren is the mean number of particles. This
discuss both fermions and bosons on an equal footing in galculation demonstrates that the use of Fock states is essen-
simple fashion that does not utilize the(8uspin-algebra tial for obtaining an asymptotic phase sensitivity &fp
representation. Even though the(3uformalism is math- =O(1/N) by this approach. In Sed/ | will compare and
ematically elegant, the method | will use here makes somgontrast typical one-input-port optical and matter-wave gyro-
aspects of the physical interpretation more transparent. Her&copes to potential two-input-port devices. In particular, a
| wish to discuss gyroscopic interferometers using atomicorrelated-two-input-port laser gyroscope could be as much
beams or atom lasers as my input beams, and so treatir@p eight orders of magnitude more sensitive to rotations than
fermions and bosons with the same formalism seems th&n equivalent one-port device. Similarly, a two-port, atom-
sensible thing to do. laser gyroscope could be six orders of magnitude more sen-

| will digress here only briefly to mention that the(8u  sitive than a one-port atom-beam gyroscope, and a remark-
angular-momentum algebra treatmentNoparticles passing able ten orders of magnitude more sensitive than a
through a Mach-Zehnder interferometer, is isomorphic tocomparable one-input-port ring-laser device. Finally, in Sec.
that of the Dicke manifold12] for studying the properties of VI I will summarize and conclude.

a collection of N spin4 particles or two-level atoms

[11,13,14. Hence, using this formalism it is possible to pro- II. ONE-INPUT-PORT, FOCK-STATE INTERFEROMETER
duce coherent and squeezed-coherent atomic ensemble states . , .
[13—16 that can be used to lower the quantum-noise limits In thls.sectlon I will recalculate the phase sensitivity
to atomic Ramsey spectroscopy. In addition, Bollingeal, ~ ©f @ one-input-port, Mach-Zehnder interferomeftej10,11,
as well as Bouyer and Kasevitdworking with degenerate depicted in Fig. 1. A stream dfl, Fock-state particles are
gases have shown that the correlated Fock-state techniquel§icident upon the upper input port that | shall call At the
employed by Yurke and co-workers, to reduce interferometefirst beam splittersS;, the particles are split evenly into ei-
noise toA ¢=0(1/N), can also be applied to spectroscopic ther upper patiJ of length/y, or lower pathL, of length
noise[17]. This is due to the fact that the Ramsey spectro/ L - They reflect off either upper mirrok1,, or lower mirror
scopic technique forN atoms is isomorphic to Mach- Mu, and then recombine at beam split®y. Finally, the
Zehnder interferometry witlN particles[11,13,14. particles emerge from either upper output pGrior lower

In this paper | will demonstrate that it is possible to Qutput portD, whereupon they strike upon upper detector
achieve an asymptotic interferometer phase sensitivity oPu Or lower detectoD, . Without loss of generality, | will
A@=0(1/N), using either fermions or bosons of arbitrary 8ssume that thg particles are sufficiently wgll colllmated to
half-integer or integer spin, respectively. Only three require2€ in single spatial modes, and | assume their velocity spread
ments need be met to attain this level of sensitiviy:the IS negligible, so that all particles have the same constant
particles must be in Fock statg®) they must be incident on wave numbek [10]. Let a andb be the annihilation opera-
both input ports in roughly equal numbers; a@iithey must  tors for each particle in input modés and B, with corre-
enter the two ports in a highly entangled or correlated fashsponding creation operatoes and b', respectively. Simi-
ion. The immediate ramification of this result is that it opensiarly, let ¢ andd (and their Hermitian conjugatede the
the way for a new type of correlated-input-port interferom-gperators corresponding to output po@isand D, respec-

eter using bosonic atom-matter waves emanating from afively. The operators of each mode obey the usual commu-
atom laser. Correlated beams of bosonic atom-matter wavestion relations,

have recently been produced in the atom-laser experiment of

Ketterle and co-workergL8]. These experiments give a rea- aat+a'a=1, (1a

sonable hope that the input correlations required for

correlated-input-port increased phase sensitivity might be bb'+bb=1, (1b)

generated from such atomic bosonic sources, and | will give

some indication herewith how this might be done. cet+gte=1, (10
This paper is divided into six sections. In Sec. Il | will

review the Fock-state formalism for computing the phase Jat+atd=1 (1d)
sensitivity in a simple Mach-Zehnder interferometry through - '

which N particles pass in unit time. | will use this formalism
to recalculate theneinput-port, Fock-state, sensitivity limit
of Ae=1/y/N. In Sec. Ill | will give the calculation for the
correlated two-input-port, Fock-state interferometer, and
show that—for largeN—an asymptotic phase sensitivity of 21dd, namely[1,10,11,19,

A ¢=0(1/N) is achievable for highly correlated atomic mat- in aiv i1 iy
ter waves of fermions or bosons of arbitrary half-integer or _ 1 !(e _ e”) (e _ te _)
integer spin, respectively. This provides a simple formalism 2 | (e'*+e'") i(e'*—e'?)

where the plus sign is for bosons and the minus for fermions.
Now there is a simple scattering matrix relationship be-

tween the input operatogsandb and the output operatots

, 2
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FIG. 1. A one-port particle Mach-Zehnder interferometer. Particles are incident on inpé pdvite only vacuum comes into input port
B. The paths taken in the upper and lower branddesndL are of length/, and/ , respectively. The phases accumulated along each
branch of the interferometer, and at the equidistant detectors, is also shown.

where u=k/, and v=Kk/ are the phases accumulated by N=dd+&'¢, (43)
the particles when traversing the upper or lower pather
L, respectively. As in Ref.1], | have also assumed that each M=dtd—zate. (4b)

beam splitter is 50-50, which is accounted for by the factor

of 3 in Eq. (2). In addition, also as in Refl], | have as- Then, from Eq(3), it is trivial to reexpress these output sum
sumed amr/2 phase shift upon each reflection aner @hase  and difference operators in terms of the input operaacaad
shift upon each beam-splitter transmission, which is resporfg, via

sible for the minus signs and the factors of imaginari.

In general, time-reversal symmetry and parity N=b'b+a'a, (5a)
conservation—as embodied in the Stokes reciprocity R L o
relations—implies that, after passage througlsymmetric M=(a'a—b'b)cose—(a'b+b'a)sing.  (5b)

beam splitter, the difference in phase between the reflected .

and transmitted components of the beawnstbe = 7/2. That  The expressioii5a) for the output sum operatdt expresses
requirement is met in the choice of beam-splitter phasesonservation of particles. The phase informatiprwe are
given above. If | assume the more general case of a phasseasuring is contained in the output difference operftor
shift « and 8 on transmission and reflection, respectively, atas is clearly seen in E¢5Sh). This quantity(M) is measured
each of the beam splitters, and a shyfupon reflection at - py counting the difference of the detection rate between up-
each of the mirrors, | recover the form of the matrix, EQ.per and lower detector®, and D, , respectively. The root
(2)—up to an unimportant overall phase factor—provided Imean square of the quantum phase fluctuatidng?, asso-

demanda— =+ /2, but independent of the choice ¢f  cjated with this measurement af can be obtained from
For a=m, B=m/2, and y=, the phases accumulated at [1,10,11

the end of each branch of the interferometer and at the equi-
distant detectors are depicted in Fig. 1. AM?2

Carrying out the matrix multiplication, | arrive at an ex- A=, (6)
pression relating the input operators to the output number (M) 9]

operators, namely, where the varianca M?2 is defined as usual as

¢1e=arasirte/2+ bbcoLe/2+ L (aTh+b'a)sin o, AMZ=(K12)— (M2, o

(3a)
o o L with the expectation values to be carried out with respect to
d'd=a'acog¢/2+b'bsirt¢/2— 3 (a’b+b'a)sin ¢, the appropriate input state).

(3b) A simple heuristic argument for the validity of this equa-

tion (6) can be given as follows. Consider a differentiable
where p=u—v=Kk(/y—7) corresponds to the phase dif- function y=y(x). I havey’(x)=dy/dx=Ay/Ax. The ap-
ference between the two interferometer paths—the quantitgroximation becomes an equality in the lintik— 0. How-
to be measured. Let us define output-port sum and differencgver, ify(x) is a fluctuating dependent random variable, then
number operatordl and M, respectively, by | cannot takeAy— 0. Hence the best that | can resolve the
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independent variable< is to within the associated\x.
Hence, givenAy, the minimal resolvable\x is given im-
plicity by [y'(x)|=Ay/Ax or explicitly by Ax
=Ay/ly’(x)]. Setting{(M)=y and¢=x and squaring gives

CORRELATED INPUT-PORT, MATTER-WAE . . .

4739

Without yet specifying the form off), | can expand Eq.
(6) in terms of expectation values of various products of the
input operatorsa andb and their conjugates. This is easily
accomplished by taking Eq5b) for the output difference

Eqg. (6) for the variance of the minimal detectable phase,operatorM and inserting it into the expressid6) for A ¢?,

A2, if | identify AM=A(M).

A ¢?

_ AXPcoSe— (XYY = 2(X)(Y)+(YX))sin gcos ¢+ AY2sir2e

yielding

where | have defined the difference operai@and the ex-
change operatoy as combinations of the input operat@s
andb, and their conjugates, namely,

X=a'a-b'b, (93)
Y=a'b+b'a, (9b)
with corresponding variances,
AX2=(X2) —(X)?, (103
AYZ=(Y2) —(Y)2. (10b)

Equation(8) for A¢? will provide the workhorse of this
paper. Once an input state) is given, | merely need to
compute the expectation values in E8). to arrive at a phase

sensitivity associated with that input state. As an example,

will calculate the sensitivity associated wikh particles en-
tering one at a time in only top input poft, Fig. 1. Such a
calculation will reproduce my earlier result with Scully],
or that of Yurke[10]. The appropriate input state) for this
initial condition is the Hilbert space product

[4)=IN)a|0)g,

indicatingN particles entering po and vacuum in porB.

11

Writing the input state in this form assumes that only on
fermion is in a Fock state at a time—in order to satisfy the
exclusion principle.(This restriction obviously can be re-

laxed for boson$.l now compute the pieces of E¢) for

Ag?, in terms of the expectation values and variances of th

operatorsX andY, defined in Eqs(9) and(10). First,
<;(>I:B(0|A<N|é-Té-_6T6|N>A|O>B
= a(N[&@"a|N)a 5(0|0)a—a(N|N) &(0|b'b|0)g

=(N)(1)~(1)(0)=N. (12
Similarly, | have

(Yn=0, (13

(Y2)=N, (X3)=N?, (14)

(XY),=(YX),=0. (15)

[(X)sin @+ (Y)cos ¢|2

e

: 8

Inserting these expressiori$1)—(14) into Eq. (8) for the
phase variancé ¢?, | obtain

Nsirfe 1
-, (16)

2:—:
INsing|2 N

A@l

an expression that is completely independent of the mea-
sured phase. Hence, the phase sensitivityxp, for the one-
input-port interferometer is precisely

1
Ap=—=

W

reproducing the earlier calculatiofis,10,11. This is just the
classical Poisson noise associated with the random switching
of the particles between interferometer branches.

| now proceed to the next section where | show how to
lise two ports with correlated inputs in order to reduce the
noise toA ¢=0O(1/N).

(17

Ill. CORRELATED-TWO-INPUT-PORT, FOCK-STATE
INTERFEROMETER

Consider Fig. 2 for a Mach-Zehnder interferometer in
which the particles are incident upon both input ports. From
the work of Yurke with spin particles, | have a phase sen-
sitivity of A¢=0(1/N) when approximately equal numbers
of particles enter each port in a highly correlated fashion, and
the phase difference to be measured is set to zero. Since a
zero phase can always be obtained by monitoring a null in
the interference pattern with a feedback mechanjdf,

Svithout loss of generality, | may set=0 in Eq.(8) for the

phase variancd ¢? to obtain

AX2

F (19

AQDZ|<p:0:
which greatly simplifies my calculation at the outset.

To see why this choice op=0 for the measured phase
reduces the noise, consider the difference and exchange op-
eratorsX andY, Egs.(9a) and(9b), respectively. Because
is the difference of two number operators, the quantités
and(X?) can be made to be small integer constants, inde-
pendent ofN, if input states of approximately equal number
of particlesN/2 are used. This is not true fdl) and{Y?)
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FIG. 2. Same as in Fig. 1, but now entangled correlated particles are incident on both inp# pod$8.

sinceY is the sum of two exchange operators. Hence, in the <§()II=0, (2D
general expression fax¢?, Eq.(8), | wish to choose a value
of ¢ that removes all factors o(Y) and <Y2) from the (\A(>”=N+, (22)
numerator—in order to maké& ¢? as small as possible. The
choice ¢=0 does this, since all the undesirable terms are (5(2>|,=(N+ N_)2=1, (23

multiplied by factors of sin. Now | choose a highly
correlated-input state with roughly equal numbers of par-
ticles entering each port. Again, using Yurke's result for
spin+ fermions as our guide, we make the ansatz

AXZ=1, (24)

which are computed using the input stage,,, Eq.(19), and
the operator definitions of Eq$9) and (10). An important

|¢>“Ei [N+1> N_1> +‘N_1> N+1> point to note is thaﬁxﬁ is a constant on the order of unity
V2 2 A 2 B 2 A 2 B independent oN, as desired. It is this fact that drives the
change in the phase-noise power law. Inserting EZ$)—
Ei (N AIN g+ INYAIN el (19) (24) into Eq. (18) for the variance ap=0 yields
vz AT CATER
inci iclét, Agilo=0=7 (25
where the total number of incident particl®s, is taken to be Pile=0 N2’
odd and we define *
L=(N=1)i2 (20 ~@andhence

1

A physical picture of why | might expect such a state to Agploco=c ==
Y Ny N+1

exhibit such a small amount of phase noise can be found in
the YMK paper and also the recent work by Kim, Pfister, . . o _
Noh, Holland, and Hal[11]. The idea is to minimize the Which shows the required Heisenberg-limited scaling of sen-
guantum uncertainty in $D), angu|ar momentum, Heisen- sitivity with N. This is then the primary result of this paper.
berg uncertainty relations. As it turns out, all the dependence on the fermionic or

A simple argument for this choice of input state can bebOSOnIC nature of the particles appears in the general&q.
given as follows. Already | have chose;n:O in order to  for A@? only in terms proportional to sip. Hence, these
make the numerator of E¢8) for A ¢? as small as possible. statistics-dependent terms always vanish for the choice of
| see that | can make this expectation value as small as pog=0, clinching my argument that the power law in E26)
sible again by choosing an input state with approximatelyholds for either bosons or fermions—provided the
equal numbers of particles nedf2 in each port—and with a correlated-input state has the form|gf), in Eq. (19).

—O(1N), (26)

guantum uncertainty ovewhich particle number is associ- Also, by inspecting Eq(23) for <X2>u, | see that | could
ated withwhichport, as in Eq(19). In this caseA X? will be have choserN, =(N+i)/2 andN_=(N—j)/2 so long as
a small constant integer—independent\of bothi andj are small integers independenthf Bouyer and

In order to evaluate the expressi@iB) for Acp2|¢=o, I Kasevitch have shown that theNLpower-law sensitivity is

need the following expectation values: robust, even in spite of small variationsiiror j. However,
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output coupled via the upper and lower chann&land B,

_ _ respectively, and made incident on a 50-50 beam spliiter
P-12? ATEN as shown. The upper and lower output channelsandL,
w...... A respectively, lead directly to the upper and lower detectors
Detector € Dy and D, respectively. | will assume that the dual con-
A densate system is in a Fock state, and hence the wave func-
tion is represented by the Hilbert space direct product
[)n=IP) 4 P)s- (27)
P-1?
w.ooooo B Detector ) ) The first click at either detectdp, or Dy projects the con-
densate wave function into
B
FIG. 3. In a dual Bose condensate, | start withparticles in |¢>Nzi (é+6)|P>A|P>B
each condensate, with a Hilbert product stBfeperore=|P)|P). V2

Particles are allowed to be incident on input pokt&nd B to the

beam splitter. The first click of either detector projects the dual _

condensate into an entangled State .ue=1{|P—1)|P)+|P)|P “ {[P=1)alP)g+|P)alP—1)e}, (28)
—1)}/v2, which is needed for Heisenberg-limited interferometry,

as per Eq(19), if | take N=2P—1. which is precisely the requisite correlated-input statl, of

Eq. (19), once | make the identification thBt=2P—1. The
there seems to be no obvious mechanism for producing suantanglement arises because | cannot now—even in
a correlated state, E19), using fermiond 10]. principle—say which condensate the detected atom came

For photons, one can make such states using four-wavieom, nor which atom in that condensate it was.
mixers, degenerate-parametric amplifiers, or possibly para- As Yurke has pointed oUtl0], it is difficult to see how
metric downconverters—at least in theofgl]. To my  one might construct such a correlated-input statéyas ,
knowledge, this effect—the reduction of the phase-noiseEq. (19), with massive fermionic particles such as neutrons.
power law using correlated Fock states—has never been seefere | show what an atom laser can do that an ordinary
experimentally. The theoretical proposals to implement thisatomic beam cannot.
noise reduction using nonlinear optical devices, such as four- Although this gedanken method of preparing the requisite
wave mixers, apparently are difficult to implement in the correlated state may seem a bit contrived, recently Spekkens
laboratory. Perhaps other techniques of producing entangleghd Sipe have shown that precisely such states can be pre-
photon states of type E419) might be employed—such as pared by forming a dual condensate in a double potential
parametric down-conversion. The payoff in producing awell with an adiabatically adjustable barrier heigad].
bright source of such entangled photons would be Inthe next section, | will demonstrate why using a corre-
enormous—yparticularly in the application to optical inter- lated Fock—rather than a coherent—state is important for
ferometric devices such as laser gyroscopes and laseschieving this type of sensitivity by this mechanism.
interferometer gravity wave detectors. What | would like to
emphasize here is that recent experimefit&] and theoret- IV. CORRELATED-TWO-INPUT-PORT
ical work [20,21] on the interference of Bose condensates COHERENT-STATE INTERFEROMETE’R
seems to indicate that such an entangled state aglBgis
feasibly manufacturable with atoms. On the experimental The question arises, what is so important about using a
side is the recent demonstration of long-range coherence iRock-state description to attain the phase-noise sensitivity of
the atom-laser experiment of Ketterle and co-workers. Om\ ¢=O(1/N)? To answer this, | thought it would be instruc-
the theoretical side are a series of papers demonstrating thtitte to try and replicate the argument of the preceding sec-
the first-order phase coherence of a condensate can manifé&tn using correlatedoherentstates of bosonic degenerate
itself in interference experiments in which the interfering particles rather than Fock states. Of course, coherent-state
condensates are treated by a Fock-state formalism—rathphase-noise squeezing techniques have long been known to
than a coherent-state analy$®0—23. In particular, Jav- produce interferometers with a phase sensitivity op
anainan and Yoo gave a convincing argument that a Fock=0(1/n), wheren=|a|? is the mean photon number of a
state approach suffices, which seems intuitive since the totabherent statéx) [3,4]. In addition, Knight[25], as well as
number of atoms in the condensate is measurable—at least 8thleich and co-workerg26], have shown that a type of
principle[20]. Of particular interest for my argument here is phase squeezing can occur when two coherent states of dif-
the theoretical work of Wong, Collett, and Walf¢CW)  ferent particle number, but of the same phase, are superposed
[20], and Castin and Dalibar@_D) [23], that suggests that properly. Furthermore, recent experimental evidence sup-
entangled states suchfag), , Eq.(19), can be readily made ports the conclusion that a Bose-Einstein condensate ground
by performing a selective measurement on two interferingstate is a number-squeezed coherent sta®@. Hence, it
condensates. | will show why this is so, in a simple gedankerseems plausible that the scheme used in the preceding sec-
experiment. tion, to reduce the phase noise of a superposition of Fock

Consider Fig. 3, adapted from the CD papeB]. Two  states of different total particle number, might well be em-
Bose-Einstein condensatdsand B with P particles each are ployed to a superposition of coherent states of different mean
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particle number. | will see if this type of correlated-input- ing factors of sif ¢ to cancel identically. In contrast, the
port state manipulation would work instead to achieve thQ/arianceAX\Z/:F¢ 0, due to the number uncertainty of the

desired phase sensitivity afo=0(1/n).

coherent statky). Hence, the cdsp does not vanish and the

First, I will calculate the SensitiVity of a Mach-Zehnder 10 dependence does not cancel. | will now show how this

interferometer in which a coherent stdte is incident on

additional number uncertainty affects the performance of a

only one input port, as in the setup in Fig. 1. The phaserrelated-two-input-port, coherent-state device.

sensitivity is still obtained from Eq(8) for A¢?, with the

To mimic the entangled Fock state),, Eqg. (19), as

expectation values taken with respect to the two cohererfych as possible, | construct a coherent correlated-input

states
l)v=]a)al0)g, (29

where we have the vacuum coherent s{@fg incident on

state| )y, as

1
|¢>VI55{|a+5>A|a_5>B+|a_5>A|a+5>}

the input portB. We need to compute the expectation values

used in Eq(8) for A¢?. | first consider
<k>V:B<0|A<a|éTé_BTB|Q>A|O)B
:A<a|afa|a>A_B<o|bTb|0>B
=|al?~0=n, (30)

which is the mean number of particles fim). In a similar
fashion | have

(Y)v=0, (31)
(X2)y=n%+n, (¥Y?),=n, (32
(XY)y=(YX)y=0, (33

where | have made use of the coherent-state prop¢&&s

(ala)=1, (349
(alNala)y=]al?=n, (34b)
(a|N2|a)=n2+T, (340

and where | have defined the number operadtge=2'a.
Inserting Egs(31)—(33) into the general expressia8) for
A¢?, | have

[(n?+n)—n?]code—0+nsirfe 1

[nsin ¢+ 0|?

A= ==,
v nsirfe
(35
which is minimal ate=/2 (and odd integer multiples

thereoj. Hence, | have

A§('>V|<p=71'/2:_! (36)
yn

the expected minimal uncertainty for the one-input-port,

coherent-state, Mach-Zehnder interferometer.

37

EE {la)ala )gt|a)ala)e},
where | assumés|<|a| with | §]?=1. Without loss of gen-
erality, | take @ and é to be real, which is equivalent to
setting the absolutéand arbitrary phase of the statgr..)
=|a=* 8) to zero. With this input stath),,, | compute the
following requisite expectation values:

<)A(>V| =( &A>VI - <|§|B>VI =0,

which can be obtained easily by noting that the statg,
Eq. (37), is symmetric under the interchange A-B, and
hence (Na)vi=(Ng)vi, where | defineNAzAéTé and Ng
=b'b, as before. Hence, this is analogougXd, =0, as per
Eq. (22) for the correlated Fock staté), , Eq.(19). Next |
have

(Vyvi=3{e(a_|a(a | +a(a:[a(a_[}(ATD+bTa)
X{|las)ala)pt|a_)alas)e}

=2(a?— )+ 2(aP+ 82)e %,

(38)

(39

where | have made use af.=a=* §, with « andé real, and
| have also used the coherent-state propef&é

(409

ala)=ala)=a*{a|=(a|a",

1219 pnl2 * W pnl2
(| B)]P=]e la|“2—|B|/12+ a F2=¢ la=pBI* (40b)

for arbitrary coherent statda) and |3). Hence, | see that

<a+|a:>=<a,|a+>=e_252, with 8=1. Therefore | see
that (Y),,=0(a?)=0(n), the leading term. This result
should be compared to the correlated, two-port, Fock-state
expectation of Eq(22), namely,(Y),=N+1=0(N). So
far, so good—the analogy between the correlated two-port
Fock and coherent states seems to be holding with the iden-
tification N—n.

Notice at this point that a choice of phase difference
= /2, as was made in the one-port coherent input calcula-

Notice that this result is not independent of the choice oftion, does not minimize the phase noise for the correlated

phase, as was the Fock-state phase ndisg Eq.(17). This
is because the varianaeX? is much different for the two
types of states. In particulaAXFzO for the Fock input

two-import coherent state. This is clear in the general expres-
sion, Eq.(8), for the phase varianck ¢?, where now | have
(X)y=0. A choice of o= /2 now would makeA ¢? for-

state,|#),=|N)a|0)g, because there are no number fluctua-mally singular and maximize the phase noise. So | take

tions in the Fock statéN). Hence, the cdsp factor in the

=0, using a similar argument as in the two-port Fock calcu-

numerator ofA 2, Eq. (8), vanishes—allowing the remain- lation. Hence, once again the expressionas? simplifies
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to that of Eq.(18), and | see that | need to calculate only
AX\Z,l. Using the fact that#)y, is symmetric unde”A~ B
interchange, | may write

(X2)y1=(Nz—NaNg—NgNa+ N3}y,
= 2<Ni>V| —2(NaNg)y

=2(a?+ 82+8a28) +2(a?— Ve~ %, (41)

where | have made use of the coherent-state properties, Eq.
(ﬁ'o)' and hSV(? used trr:e fact that the Eartlcles are_bosans—_as FIG. 4. Interferometer as gyroscope. The path difference be-
,t ey must be .or a coherent state—when commuting the ralSveen the upper and lower branches of the gyroscope is given by
ing and lowering operators. Hence, 8/=xr?Qlv, as shown. This difference is measured as a Sagnac
~ ~ ~ phase shiftp in the operation of the gyroscope. In general, the area
2 _ /g2 2 _ /g2
AXG = (X = (X)u=(XH—0 A= 7r? may be replaced with that of an arbitrarily shaped gyro-
_ O(az) _ O(F), (42 scope which has the same area.

and now | see a difference between this two-port cohereripterferometer() the angular velocity about the center in the

result and the two-port Fock-state result, E24), namely plane of the interferometer, amek 7r/v is the transit time of
Axﬁzl for the two-port Fock state. The fact that the the particle through the arms of the interferometer for par-

correlated-two-port, Fock-state variance fox2 is indepen- ticles of velocityv [29]. (A fully relativistic treatment, re-
dent ofN is directly a result of the fact that a Fock state hasqwre_d for massless particles such as photons, can be found
zero number fluctuations. The fact that the two-port azlsgo mFthe paper by Gea-BanacIIoche and co-worzkerss, Ref.
; " —. '[29].) From these expressions, | can compute the Sagnac
coherent-state varianceXZ, is of ordern is due to the fact [29]) XP ! pu g

that coherent-state number fluctuations are of this same ordgrhase difference as

n. This extra source of fluctuations will spoil my attempt to 2ar2Q0  2AQ0

improve the power law for the two-port, coherent-state phase o=k(/y—=7\)= =—, (45)
noise by this mechanism, as will be seen. Inserting E2@. Av v

and (42) for (Y)y, and AX2,, respectively, into the expres-

wherek is the particle wave number;, and /| the path

sion (18) for the phase varianca¢?, | get lengths of the upper and lower areas of the interferometer,
2 respectivelyx=7%/mv is the circular de Broglie wavelength
A2 [ o= (a®+8°+8a%6%) +(a’— 6%)e”’ —O(Ua?) for a particle of massn; andA= 7r? is the area enclosed by
PVle=0T 2 e Py 2(aP— 67)]2 the interferometer. Hence, the phase signgiat | am trying
_ to detect is given by
=0(1/n) (43
2AmQ
and hence ¢=—7 (46)
A‘PVI|¢:O:O(1/\/‘E—)’ (44 and it turns out that this expression is independent of the

for laraen. and there is no improvement in power-law scal- actual interferometer shape—so long Ads the total area
in O\Q/]er t1he coherent one- oFr)t result Eﬁﬁ)p enclosed by the arn{g]. It also turns out that—after a fully
9, P ' : relativistic treatmen{29]—the exact same expressig#6)

| think this exercise with correlated-two-port, coherent .
olds for massless particles such as photons, as long as we
states demonstrates the need for correlated Fock states, fQr .. ) o
efine an effective photon “massth,, by

reducing the power law of the phase noise via this correlate
two-input-port mechanism. | apply this Fock-state result in ho

the next section to compare and contrast the sensitivity of m.=—. (47)
one- and two-input-port optical and matter-wave interferom-

eters operating as inertial gyroscopes. ) ) ) )
Using this effective mass, | see that the “mass” of an optical

photon corresponds to only a few electron volts, while the
mass of an atom is on the order of*IldleV. It is this mass-

In this section | will review the theory of gyroscopy based enhancement factor that is largely responsible for the greatly
on Mach-Zehnder interferometry. The treatment is similar toincreased sensitivity of matter-wave over light-wave gyro-
that of the Sagnac effect for massive particles found in thescopes.
paper by Scully and mEL]. Consider in Fig. 4 an idealized The use of one-port, atom-beam, atomic matter-wave in-
circular interferometer used as a rotation sensor. From thterferometers has been demonstrated by Pritchard and co-
figure, | can see easily that the path differer2é for par-  workers[30] and also by Kasevich and co-work¢8d]. Prit-
ticles on the upper and lower paths$,andL, respectively, is chard and co-workers use material gratings for the atom-
given by 8/=2rQt, wherer is the radius of the circular beam splitters and mirrors, and they measure th¢N1/

V. ATOM-LASER GYROSCOPES
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TABLE I. Compared and contrasted are different properties of one- and two-port matter-wave and optical gyroscopes in the terms of their
sensitivity to phase differences—or equivalently—rotation rates. We see that the high mass of atoms initially contributes an increase of
sensitivity of 13°, but that the low atomic beam intensity, compared to photon beams, removes some of this advantage, as does the reduced
number of round-trips possible in an atom interferometer.

One-port Two-port Two-port Two-port Two-port
atom-to-light matter-to-light to to atom to
Matter Laser factor factor one-port atom one-port light one-port light

Mass 10* MeV 1eVv 10° 101 1 1 10°
factor
Flux No1012 particles N10i5 photons V10'910'°=10"% 10 10-4 102 10L6 1042

10 e NV e 107~ e ¢ Y g
Round- 1 10t 104 104 1 1 104
trips

power law for phase sensitivity, E€L7), as | have predicted matter wave over an optical correlated-two-input device, due
for a one-input-port device. Kasevich and co-workers dem+o the change in the scaling laws with However, in the
onstrate the best absolute atomic matter-wave sensitivity thfth column, | note that a two-port atom-laser gyroscope can
rotation seen to date, namelyx20 8 (rad/9/\Hz. (The be 16 times more sensitive than an equivalent one-port
Earth’s rotation rate i€)g=7.3x 10 ° rad/s) In this sec- atom-beam gyroscope.
tion, I would like to estimate how much better | could expect Because of the higher photon flux in an optical interfer-
a comparable, correlated-two-input-port device to perform. ometer, | show in the sixth column of Table | that a corre-
If N is the total number of particles passing through thelated two-port optical gyroscope is &@mes more sensitive

gyroscope in unit time, then | can write than an equivalent optical one-port gyroscope. This fact
alone should serve as impetus to the quantum optics commu-
N=JT, (48)  nity to try and find an all-optical implementation of a

] ) ) correlated-two-port, photon interferometer using four-wave
whereJ is the particle flux and’ the measurement or inte- mixing, parametric down-conversion, or some other optically
gration time. Combining Eq(46) for the phase with this nonlinear procesfl1].
expression(48), | can write two expressions for the mini-  Finally, in the last column, | contrast a correlated-two-
mum deteCtab|e rotation ra@; one for a Ol’.le-port deV|Ce, input_port atom gyroscope with a Comparab|e, One_input_port
and a second for a correlated two port, using E§3) and  photon gyroscope. | show that an amazing ten orders of mag-

(26), respectively, nitude increase in sensitivity can be expected. As one-port
optical gyroscopes become more, and more limited by the
Q A1 h (49) shot-noise scaling law of ¢=1/\/N—as opposed to other

one-por 5 Am ~/JT: 2AmMN’ technical sources of noise—it becomes clear that correlated
input-port gyroscopy is a field that warrants further serious
51 A theoretical and experimental investigation.

Cwoport= A 3T~ AmN' 0
whereA is the gyroscope area amd the particle mass, as VI SUMMARY

before. These expressions hold for photons if | takem,,, In this paper | have given a very general proof that a
Eq. (47), and also identify the flud with the optical power correlated-two-input-port, Fock-state, Mach-Zehnder inter-

P via ferometer has a phase detection sensitivity that scales

asymptotically asA ¢=0(1/N), Eg. (26), whereN is the
P number of particles passing through the device in unit time.
J= o (52) This is to be compared with the usual shot-noise limit of

Ap=1IN, Eqg. (17), that is the best one can do with a
Although these formulas are useful to calculate the mini-one-port device. The result is independent of the particle
mum detectable rotation rate for a given device, to comparstatistics, and applies equally well to bosons or fermions, so
one-input-port to two-input-port devices, it is handy to leavelong as they are amenable to a Fock-state treatment. This
Egs.(49) and(50) in terms ofN instead ofJT. For an inte-  treatment can always be applied to bosons, and the applica-
gration time of 1 sec, Table | compares and contrasts typicdlon to fermions entails the caveat that only one fermionic
mass-enhancement factors for an atom matter wave over guarticle be in the interferometer at a time, so that the Pauli-
optical gyroscope([1]. | show that, from the mass- exclusion principle is obeyed. Important in obtaining this
enhancement factor alone, an increase in sensitivity 6f 10increased sensitivity is the use of a correlated, entangled,
can be expected by using atoms rather than photons in dfock input state of the form given in E(L9). It is difficult
equivalent one-port device. In the fourth column | show onlyto imagine how such entangled input states can be made
an enhancement of 1@an be expected for a two-port atom using fermions. However, for photons, correlated states such
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as this can be made using such processes as four-wave mipperating close to their shot-noise limit of sensitivity of
ing, parametric down-conversion, or perhaps some othef o=1/\/N. A breakthrough in device sensitivity to inertial

nonlinear optical proced41]. effects can be had by utilizing atom waves, correlated-input-
For massive atomic bosonic particles, | have shown thaports, or both.
such entangled input states, Ed.9), can in principle be As | mentioned in the Introduction, the mathematicd\Nof

generated from suitably prepared dual Bose condensatesarticles passing through a Mach-Zehnder interferometer is
This idea has additional support from other recent theoreticaflormally isomorphic to that oN two-level atoms passing
papers on interference between condensité®4. | have through a Ramsey interferometer. Hence, entangled states
also shown that an analogous enhancement of sensitivifhat improve the signal-to-noise ratio will do so for both
doesnotoccur for a correlated-two-input-port, interferometer types of interferometers. However, implementing this type of
if the inputs are in comparable coherent states. The importamrocedure experimentally is, of course, much different for
point that Bose condensates are in fact amenable to a Fockach of these scenarios. Recently, Ekert and co-workers have
state—rather than a coherent-state—treatment has been knsidered applying quantum computing techniques of en-
cently advanced rather forcefully in a number of theoreticatanglement generation and decoherence error correction to
papers[20—23,32. The use of a dual condensate in the re-the Ramsey interferometdi33]. For example, entangled
cent atom-laser experiments of Ketterle and co-workers alstates as in Eq(19) can be obtained for a collection of
lows me to conjecture that a suitably prepared atom-lasefvo-level atoms by applying a sequence Mfcontrolled-
source could provide the necessary entangled input state, E§OT gates to the initial Fock ground stdte/2)|N/2). Re-
(19), needed to change the power-law scaling. For this reacent work by Cerf, Adami, and Kwiat seems to indicate that
son, | have adopted the not-so-whimsical moniker of theall-optical quantum computing techniques such as error cor-
“atom-laser gyroscope,” as | used in the title of this work. rection may be applied to the optical Mach-Zehnder interfer-
Finally, in the penultimate section above, | compared antbmeter, by treating the device as only one of many elements

contrasted one- and two-input-port matter- and light-waven an extended, optical, guantum-logic circB4].
interferometers, used as gyroscopes. As summarized in Table

. ; 6
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