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Thermal dephasing and the echo effect in a confined Bose-Einstein condensate

A. B. Kuklov and N. Chencinski
Department of Applied Sciences, The College of Staten Island, CUNY, Staten Island, New York 10314

~Received 24 December 1997!

Thermal fluctuations of the normal component induce dephasing—reversible damping of the low-energy
collective modes of a confined Bose-Einstein condensate. The dephasing rate is calculated for the isotropic
oscillator trap, where the Landau damping is expected to be suppressed. This rate is characterized by a steep
temperature dependence. It is weakly amplitude dependent, and is sensitive to the total number of atoms in the
trap. The value of the rate belongs to the range of the damping rates observed by Jinet al. @Phys. Rev. Lett.77,
420 ~1996!#. We suggest that a reversible nature of the damping caused by the thermal dephasing in the
isotropic trap can be tested by the echo effect. A reversible nature of the Landau damping is also discussed, and
a possibility of observing the echo effect in an anisotropic trap is considered as well. The parameters of the
echo for the isotropic trap are calculated in the weak echo limit. Results of the numerical simulations of the
echo are also presented.@S1050-2947~98!02906-0#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.1z
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I. INTRODUCTION

Properties of trapped ultracold atomic gases demons
ing the phenomenon of Bose-Einstein condensation@1–3#
have been attracting much attention. A confined geometr
the cloud leads to circumstances under which new phen
ena, such as, e.g., a specific scaling in the thermodynam
properties@4#, and two-step condensation@5# can be antici-
pated. It was also suggested that the phase of the con
condensate should demonstrate the phenomenon of colla
and revivals@6# and the phase diffusion effect@7#.

Recently it was discussed in Refs.@8,9# that the dynami-
cal quantum behavior of an atomic cloud consisting o
finite number of bosons is very different from the propert
of infinite systems. Specifically, the amplitude of a norm
mode of the confined condensate should demonstrate q
tum dephasing, which results in an apparent damping of
mode even at zero temperatureT. The rate of such damping
is determined by the interparticle interaction, and turns ou
be linearly dependent on the mode amplitude, if it is sm
@8,9#. A possibility of the mode revival has also been pr
dicted@8,9#. A current experimental situation does not allo
us to resolve this effect because of the presence of the
mal component, which introduces a substantial damping
its own.

Damping of the normal modes at finiteT of the confined
condensate was experimentally studied in Refs.@10# and
@11#. Recently, it was stressed by Pitaevskii@12# ~see also
Refs.@13–16#! that the damping in the trap containing co
densate is essentially Landau damping~LD!, which is colli-
sionless in nature. In other words, it is the dephasing of
collective modes rather than their irreversible dissipat
@17#. It is worth noting that the reversible nature of the LD
the classical uniform plasma can be revealed in the pla
echo effect@17#.

Theoretical approaches@13–16# are based on applying th
standard results of the perturbation theory developed fo
infinite and uniform medium. Accordingly, a discrete stru
ture of the quasiparticle spectrum is tacitly replaced by
effective continuum@13–16#. In recent work@18#, it was
571050-2947/98/57~6!/4699~11!/$15.00
t-

of
-

al

ed
ses

a
s
l
n-
e

o
ll
-

r-
n

e
n

a

n

n

emphasized that the existence of the LD is directly related
the presence of randomness in the spectrum of the an
tropic traps. Conversely, in the isotropic trap the LD shou
be suppressed because the quasiparticle spectrum is re
@18#.

In this paper, we suggest that in a confined condens
where the LD is suppressed, the damping of the collec
modes can still be observed. Specifically, thermal fluct
tions of the population factors of the normal component
duce a reversible dephasing of the collective oscillatio
The nature of such a damping is similar to that of the deph
ing observed in quantum dots~see Ref.@19#!. We show that,
while being essentially zero for a traditional uniform conde
sate, the rate of such a dephasing 1/td in the trap containing
103–104 atoms can be comparable to the rate of the damp
observed experimentally in Ref.@10#.

We also suggest that the reversibility of the damping in
confined condensate can be tested in a kind of phonon e
experiment~see Ref.@20#!, when two consecutive externa
pulses imposed on the trap induce a third pulse—
echo—at a time approximately equal to twice the time int
val between the first two pulses. In this paper we analyze
case of the isotropic trap, where the LD is not expected to
an important mechanism of dissipation. In a future work
will investigate the echo in strongly anisotropic traps, whe
the main mechanism of damping is the LD.

II. THERMAL FLUCTUATIONS AND DEPHASING
IN THE ATOMIC TRAP

In Refs.@8,9# it was shown that a collective mode of th
confined condensate should exhibit a dephasing cause
the interparticle interaction. In the caseT50, the dephasing
is produced by the particles forming the mode. Below,
will consider a similar effect caused by the interaction b
tween a low-energy collective mode and the quasipartic
forming a normal cloud.

Let us discuss general reasons for the thermally indu
dephasing in the presence of the interparticle interaction.
will especially clarify why this effect is not significant for a
4699 © 1998 The American Physical Society
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4700 57A. B. KUKLOV AND N. CHENCINSKI
infinite condensate, where the only cause of the depha
should be the LD. The following analysis is based on
approach suggested by Pitaevskii in Ref.@9# for the caseT
50. We extend this analysis forTÞ0.

If an external modulation at some frequencyv0 has ex-
cited a system, the many-body time-dependent wave fu
tion ut& constructed in terms of the quasiparticle sta
uN0 ,N1 , . . . & acquires the form

ut&5 (
N0 ,N1 , . . .

CN0 ,N1 , . . .e
2 iEN0 ,N1, . . . tuN0 ,N1 , . . . &,

~1!

where Nn is a population number for thenth (n
50,1,2, . . . ) quasiparticle state;EN0 ,N1 , . . . stands for the

energy of the stateuN0 ,N1 , . . . &, andCN0 ,N1 , . . . denotes the

normalized coefficients ((N0 ,N1 , . . . uCN0 ,N1 , . . . u251). For
the case of weak interaction between quasiparticles, the
ternal drive, which is in resonance with the energy of, e
the zeroth quasiparticle state, creates a coherent mixtur
the quasiparticles in the zeroth state and does not sig
cantly affect the other states. Accordingly, one can facto
CN0 ,N1 , . . . as

CN0 ,N1 , . . .5CN0

~0!CN1

~1!CN2

~2! , . . . , ~2!

and assume that@9#

uCN0

~0!u25
N̄0

N0

N0!
exp~2N̄0!, ~3!

with the rest of theC coefficients corresponding to the num
ber states (CNn

(n)51 for someNn5Nn8 , and CNn

(n)50 other-

wise!. In Eq. ~3! N̄0 is given by the value of the classica
amplitude of the resonant mode@8,9#.

The expectation value of the single-particle operatorA(t),
which changes the number of quasiparticles in the given s
by 1, acquires a resonant contribution from the zeroth st
This is

^tuAut&5(
N0

CN011
~0!* CN0

~0!Āexp@ i ~EN011,N1 , . . .

2EN0 ,N1 , . . . !t#1c.c., ~4!

whereĀ is a corresponding single-particle matrix element.
the case of a weak interaction between quasiparticles,
can expand the energy in accordance with the Landau th
of quantum liquids as

EN0 ,N1 , . . .5(
n

vnNn1 1
2 (

mn
gmnNmNn1o~NiNjNk!,

~5!

where the coefficientsgmn arise due to interaction betwee
quasiparticles.

At finite T, solution~4! should be averaged over the initi
values ofNn with n.0, distributed in accordance with
ng
e

c-
s

x-
.,
of
fi-
e

te
e.

ne
ry

thermal ensemble. Substituting Eq.~5! into Eq. ~4!, and ne-
glecting the term;N0

2 significant for very smallT only ~see
Refs.@8,9#!, one obtains

^tuAut&T5Āeiv0t(
N0

CN011
~0!* CN0

~0!

3K expS i t (
n.0

g0nNnD L
T

1c.c., ~6!

with ^•••&T denoting the thermal average with respect to
population factorsNn .

In what follows we will assume thatNn are distributed in
accordance with the grand canonical distribution. As will
discussed below, this assumption is valid as long as the m
number of atoms in the condensateNc is sufficiently large.
Thus, after straightforward calculations, one finds

K expS i t (
n.0

g0nNnD L
T

5expS 2 (
n.0

ln
12exp@ ig0nt2vn /T#

12exp~2vn /T! D . ~7!

We note that in a large system the matrix elementsg0n are
scaled asg0n;1/V by the effective volumeV of the system.
Accordingly, in the formal limitV→`, one should expand
exp(ig0nt) in Eq. ~7! up to the first term;1/V only. Then the
smallness of 1/V will be compensated for by the summatio
(n;V. This results in

K expS i t (
n.0

g0nNnD L
T

5expS i t (
n.0

g0nN̄nD , ~8!

whereN̄n denotes a Bose distribution of the noninteracti
quasiparticles. As one can see, in the infinite system fluc
tions of the numbers of the quasiparticles do not cause
dephasing. Instead, the frequencyv0 experiences a therma
shift v0→v01(ng0nN̄n , and the only cause of the depha
ing is the LD.

In the case of a finite system, one should keep high
order terms in Eq.~7!. As will be shown below, the dephas
ing rate in the oscillator trap contains a smallnessa/r trap
!1, where a and r trap stand for the scattering lengt
;1027–1026 cm, and some typical scale;1024 cm asso-
ciated with the trapping potential, respectively. Therefore,
long as a/r trap!1, one can neglect the higher term
o(a2/r trap

2 ). Such an approximation corresponds to expa
ing exp(ig0nt)'11ig0nt2g0n

2 t2/21o(g0n
3 ). This results in Eq.

~7! being rewritten as

K expS i t (
n.0

g0nNnD L
T

5expS i (
n.0

g0nN̄nt2t2/td
2D , ~9!

where the notation

1

td
5A1

2(n
g0n

2 N̄n~11N̄n! ~10!

for the dephasing rate is introduced.
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57 4701THERMAL DEPHASING AND THE ECHO EFFECT INA . . .
Equations~9! and ~10! indicate that a collective mode o
the confined atomic condensate should exhibit a depha
induced by thermal fluctuations of the normal compone
Below, we suggest a model of dephasing of a collect
mode of the confined condensate in the Thomas-Fermi li
and calculate the value oftd for the isotropic trap.

III. ADIABATIC EFFECTIVE ACTION
FOR LOW-ENERGY COLLECTIVE MODES

In order to obtain 1/td , one should find the coefficient
g0n , and perform the summation in Eq.~10!. An explicit
expression forg0n can be derived from a many-body Ham
tonianH taken in the standard form

H5E drC†~H12m!C1H int ,

H152
\2

2m
D1 (

i 51,2,3

1

2
mv i

2r 2,

H int5
1

2
uoE dr C†C†CC, ~11!

where the Bose operatorsC and C† obey the usual Bose
commutation rule;m is the chemical potential;v i denotes
three frequencies characterizing the trapping potential;
the interaction constantuo54p\2a/m is expressed in term
of the scattering lengtha and the atomic massm. As usual,
in the presence of the condensate, one uses the conven
representation

C5Fc1C8, ~12!

whereFc is a classical condensate wave function giving
condensate densitync5uFcu2, and normalized to the numbe
Nc of atoms in the condensate;C8 stands for the excitation
part. For the latter, the Bogolubov representation should
employed as

C85(
n

~Unan1Vn* an
†!, ~13!

where an destroys a quasiparticle on the level having t
energyEn , and (Un ,Vn) is an eigenvector of the linearize
Bogolubov equations

EnUn5H18Un1u0Fc
2Vn , 2EnVn5H18Vn1u0Fc

2* Un ,

H185H112u0uFcu22m. ~14!

Expressed in terms of the quasiparticle operatorsan andan
† ,

Hamiltonian~11! acquires the form

H5(
n

Enan
†an1H int , ~15!

where the interaction partH int contains the terms

H int8 5(
mnk

~gmnkam
† anak1H.c.!1 (

mnkl
gmnklam

† an
†akal ,

~16!
ng
t.
e
it,

d

nal

e

e

which could be identified with the terms;NmNn in Eq. ~5!.
Specifically, performing calculations in the first and seco
orders of the perturbation theory with respect toH int given
by Eqs.~11!–~13!, one finds the coefficientsgkn in Eq. ~5! as

gkn54gknkn12(
m

F ugmnku2

En1Ek2Em
2

ugknmu2

En2Ek1Em

2
ugnkmu2

Ek2En1Em
G , ~17!

where the coefficientsgknkn andgmnl are expressed explicitly
in terms of the Bogolubov amplitudes in Eq.~13! as

gknkn5
u0

2 E dr @~ uUku21uVku2!~ uUnu21uVnu2!

1~Uk* VkVn* Un1c.c.!# ~18!

and

gmnk5u0E dr Fc@Uk~Um* Un1Vm* Vn1Um* Vn!

1Vk~Um* Un1Vm* Vn1Vm* Un!#, ~19!

andFc is taken real.
We note that in the case of a continuum or quasic

tinuum spectrum@18#, the sum in Eq.~17! makes the main
contribution to the imaginary part corresponding to the LD
the lowest order of the perturbation theory@13–15,18#. In the
isotropic trap, this imaginary contribution is not significa
@18#, which implies that the LD is suppressed. Therefore,
real value ofgkn @Eq. ~17!# could be employed in Eq.~10!
for calculating 1/td . Unfortunately, such an approach lea
to an expression 1/td which formally diverges at low ener
gies, despite the natural expectation that the main contr
tion to the dephasing is produced by high-energy excitatio
Accordingly, rate~10! acquires the incorrectT dependence
1/td;AT for T.m. In fact, this divergence can be elim
nated by a proper renormalization of the vertex in the lo
energy region, where an adequate description relies on
hydrodynamical approach@21#. In order to solve this prob-
lem for the low-energy collective modes, we employ
simple scaling procedure which yields a description of
effect of thermal dephasing in closed form at finiteT in the
limit of large N.

First, we note that the dephasing effect discussed her
an adiabatic process when the high-energy component
lows the evolution of the low-energy collective mode wit
out dissipating energy. As discussed in Ref.@22#, the low-
energy modes atT50 can be viewed as a time-depende
scaling r i→r i /bi of the coordinatesr i by some time-
dependent scaling variablesbi5bi(t). Furthermore, it has
been shown@22# that, if one ignores the kinetic-energy term
such a scaling approach is exact for any given initial state
the many-body wave function. As will be seen below, th
implies that no dephasing of the low-energy scaling mo
should occur in such an approximation. The dephasing
induced by the kinetic-energy terms, which are, howev
small in the Thomas-Fermi limit@22#. Such smallness im-
plies that one can still consider the scaling variablesbi as



il

d

of

tio

h
-
u

re

d

s
s.

f.

n
et

tion

en-

the
s

e

ion
t in

e
r-
de
e
nce

pic

he
the

if

4702 57A. B. KUKLOV AND N. CHENCINSKI
proper collective degrees of freedom, whose dynamics
modified in the presence of the kinetic terms. Below, we w
derive an adiabatic classical action for theb variables. In
order to do this, we treat theC operator as a classical fiel
by means of considering thea anda† operators in Eq.~13!
asc numbers. Then we employ the scaling ansatz@22#

C~r i ,t !→
eiw

Ab1b2b3

CS r i

bi
,t8~ t ! D , w5

m

2\(
i

ḃi

bi
r i

2 ,

~20!

wheret8 (t) is some function of time determined in terms
the variablesbi and their time derivativesḃi . In what fol-
lows, we assume that the scale invariant shape ofC is given
by Eqs. ~12!–~14! obtained forbi51. In this manner we
eliminate the nonadiabatic processes induced due toḃiÞ0.
Consequently, one can derive an effective classical ac
Sb5S@bi ,ḃi # for the variablesbi by means of performing
the scaling transformation~20! in the full classical action

S5E dtH E dr
i

2
~C* Ċ2H.c.!2HJ . ~21!

Note that a substitution of forms~12! and~13! is to be done
in Eq. ~11! and, then, in Eq.~21!. Then the off-diagonal
productsan* am andanam (mÞn) should be eliminated in the
adiabatic approximation because they oscillate in time. T
diagonal termsan* an , which do not oscillate, should be re
tained and then identified with the population factors. Let
denote the action obtained as a result of such a procedu
Sb5^S&. Then we find

Sb5E dtH(
i

Fm

2
Ri~ ḃi

22v i
2bi

2!2
Pi

2bi
2G2

G

b1b2b3
J ,

~22!

where the notations

Ri5 K E dr C* r i
2C L , Pi5 K E dr

\2

m
¹ iC* ¹ iC L ,

G5 K uo

2 E dr C* C* CC L ~23!

are introduced. Taking into account that these quantities
not depend onbi , one can varySb with respect tobi , and
obtain the classical equations of motion

b̈i1v i
2bi2

G

mRi

1

bib1b2b3
2

Pi

mRi

1

bi
3 50, i 51,2,3.

~24!

We note that the procedure suggested above extend
variational approach@23# to the case of finite temperature
Equations~24! @see also Eqs.~9! of Ref. @23## reproduce
correctly theT50 low-energy spectrum obtained in Re
@24# for the isotropic trap characterized by the relationv1
5v25v35vho. Indeed, in the case of zero temperature o
should take the means~23! over the condensate state by s
ting an5an* 50 in Eq. ~13!, and, accordingly, takingC
5Fc in Eq. ~23!. Then, the virial theorem yields
is
l

n

e

s
as

o

the

e
-

mv i
2Ri

~c!2Pi
~c!2G~c!50, ~25!

with the superscript (c) indicating that the means in Eq.~23!
are taken over the condensate state. Employing this rela
in Eqs.~24!, one finds

b̈i1v i
2bi2v i

2~12j i
~c!!

1

bib1b2b3
2j i

~c!v i
2 1

bi
3 50, ~26!

where the notation

j i
~c!5

Pi
~c!

mv i
2Ri

~c!
~27!

is introduced. We note thatj i
(c) determines the ratio of the

averages of the kinetic energy to the harmonic potential
ergy both taken for thei direction. Accordingly, for the case
of the isotropic trap considered in Ref.@24#, one can find
j i

(c)5Ekin /Eho, whereEkin andEho stand for the total kinetic
and the total harmonic energies, respectively. Then, from
linearized version of Eqs.~26!, we reproduce the frequencie
of the quadrupolar modevQ5A2vho(11Ekin /Eho)

1/2 and
the breathing modevM5vho(52Ekin /Eho)

1/2 derived in
Ref. @24# by means of the sum rule technique.

Note also that forTÞ0, Eqs. ~24! coincide with those
derived in Refs.@22# in the Thomas-Fermi limit. This can b
seen by means of setting the kinetic-energy termsPi50 in
Eqs.~24!, and performing the scaling transformation

bi5k i b̃i , ~28!

with somek i chosen in such a way as to make the solut
b̃i51 the equilibrium one. Furthermore, it can be seen tha
the isotropic two-dimensional~2D! case, when only two
scaling variablesb1 andb2 should be taken into account, th
dependence onPi can be eliminated by the scaling transfo
mation ~28!, so that the frequency of the breathing mo
does not depend onPi . This implies that no dephasing of th
2D breathing mode should occur in this case, in accorda
with the result of exact calculations of Ref.@25#.

In order to simplify the following analysis of theTÞ0
case, let us consider a breathing mode in the 3D isotro
trap. Thus we setb5b15b25b3 andb5kb̃ in transforma-
tion ~20! as well as in the actionSb @Eq. ~21!#. Then, varying
dSb /db50, we obtain the nonlinear equation describing t
low-energy adiabatic dynamics of the breathing mode in
presence of the normal component:

b̈̃1vho
2 b̃2

vho
2

b̃4
1jvho

2
12b4

b̃4
50, j5

P

mRvho
2 k4

,

~29!

where P5P11P21P3, R5R11R21R3, and k obeys the
relation

vho
2 2

P

mk4R
2

3G

mk5R
50. ~30!

An explicit form of j can be found in the limitP→0, which
corresponds to neglecting the kinetic energy of the system
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compared with the interaction energy. SettingP50 here,
one findsk, and then, resorting back to Eq.~29!, obtains

j5
P

vho
2/5~mR!1/5~3G!4/5

. ~31!

In order to expressP, R, and G in terms of the products
an* an which, as was mentioned above, should then be id
tified with the population factorsNn5an* an of the quasipar-
ticles in the second quantized picture, one should use re
sentations~12!, ~13!, and ~23!. However, in the Thomas
Fermi limit valid for large numbersNc of atoms in the
condensate, one may neglect corrections toR, G, andNc due
to the excitations. Indeed, in the condensate stateR;G
;Ncr c

2 , wherer c stands for the condensate radiusr c;Nc
1/5

@26# in such a limit. Therefore,R;G;Nc
7/5. The kinetic

term P;Nc /r c
2;Nc

3/5. High-energy excitations produc
changesdR, dG, dNc , anddP of R, G, Nc , andP, respec-
tively. These changes can be estimated asdR;dP
;N8T/vho, dG;uoncN8 anddNc52N8, whereN8 stands
for a fluctuation of the normal component. Therefore,
relative contributionsdR/R, dG/G, dNc /Nc , anddP/P to
the value of j are very different. Specifically, on
finds (dP/P)(R/dR);Nc

4/5@1 and (dP/P)(G/dG)
;(dP/P)(Nc /dNc);N2/5T/vho@1, as long asNca/r ho@1
andT.vho, wherer ho stands for the oscillator radius ass
ciated with vho. Thus, in calculatingj in Eq. ~31!, one
should take into account only the contribution due todP, and
take the valuesR andG determined for the condensate sta
by Eq. ~23! for some mean value ofNc .

Finally, employing representations~12! and ~13! in Eq.
~23!, and taking the means so that^am

† an&5Nndmn , one
finds

j5j~c!1(
n

gnNn , Rc5E dr r 2uFcu2,

gn52
\2

m2Rcvho
2 E dr ~Un* DUn1Vn* DUn!, ~32!

where the virial relation~25! has been utilized, andj (c) de-
notes the contribution due to the kinetic energy of the c
densate. In what follows we will neglect this term whic
does not depend onNn .

The solutionb̃ of Eq. ~29! should be averaged overj
represented by Eq.~32!. Such an averaging can be unde
stood as a thermal ensemble averaging over possible F
states of the quasiparticles. This interpretation closely
sembles the case of destructive measurements@10#, when the
initial conditions determined byNn for each newly created
condensate can vary from one condensate to another. In
case of nondestructive measurements, the averaging o
solution b̃ should be performed over a single many-bo
state, which is a mixed state rather than a pure Fock s
with respect toNn . In accordance with the ergodic hypoth
esis, such an averaging should give the same result as
obtained by means of thermal averaging as long as the n
ber of quasiparticles is sufficiently large. In what follows w
will not distinguish these two cases, and will employ t
n-

re-

e

-

ck
-

the
the

te

hat
m-

thermal averaginĝ•••&T with respect toNn . This averaging
can be performed explicitly for the linearized solution of E
~29!. Specifically, representingb̃511h in Eq. ~29! and
keeping the terms linear inh, one finds

^h~ t !&T5h0^e
ivho~52j!1/2t&T1c.c.;ei v̄Mt2t2/tdM

2
1c.c.,

v̄M5A5vho2
1

2A5
^j&T , ~33!

whereh05const accounts for the initial conditionb̃(0)51
1h0, and the dephasing rate of the breathing mode is

1

tdM
5vhoA 1

40(n
gn

2N̄n~11N̄n!, N̄n5
1

expS En

T D21

,

~34!

with the coefficientsgn given by Eq.~32!. Performing simi-
lar calculations for the quadrupolar mode, we find the re
tion 1/tdQ5A5/2/tdM for the dephasing rate of the quadr
polar mode. Taking into account Eqs.~32! and ~34!, we
obtain an explicit expression for the rate 1/tdM @Eq. ~34!# in
the WKB approximation@27# ~see Appendix A! as

1

tdM
5GMD~T/2m!, ~35!

where the coefficientGM is

GM5
35

A5p
S r ho

r c
D 2 a

r ho
vho , r ho5A \

mvho
, ~36!

and the universal dimensionless functionD(b) is defined in
Appendix A ~see Fig. 1!, with the parametersr c andm given
explicitly in Eq. ~A2!.

In the limitsb@1 (T@2m) andb!1 (T!2m) the func-
tion D(b) can be found explicitly@see Eqs.~A28! and
~A32!, respectively#. The current experimental situation
closer to the first case. It is convenient to expressT in units

FIG. 1. The universal functionD(b): the solid line is the result
of numerical calculations~A18! and ~A19!; the dashed line corre
sponds to the approximate formula~A28!.
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of the transition temperatureTc of the Bose-Einstein conden
sation in the isotropic oscillator trap

Tc5\vhoS N

z~3! D
1/3

, ~37!

where z(3)'1.202; N is the total number of the trappe
atoms~for T not very close toTc we setNc'N). Then we
find

1

tdM

5
35A0.3

157/5
„z~3!…5/6 S T

Tc
D 5/2S r ho

a
D 2/5

N217/30vho ~38!

from Eqs.~35!–~37!, ~A28! and ~A29!. Choosing the values
T/Tc50.9, N523(103–104) and vho52p3200 s21, r ho
51024 cm typical for the experiment@10#, we obtain the rate
1/tdM'40–20 s21. We note that these values are close
the damping rate observed in Ref.@10#. However, for the
chosen parameters,b5T/2m'1.3 which is, formally speak-
ing, far from the requirementb@1, insuring the validity of
Eq. ~38!. Nevertheless, the above estimates remain valid.
deed, evaluating the complete expressions~A18! and ~A19!
numerically ~see Fig. 1! changes these estimates by on
about 20%. Specifically, the rate becomes'50–25 s21. For
the lowest temperature achieved in the experiment@10#,
T'0.4Tc , Eq. ~38! becomes invalid because this tempe
ture corresponds tob'0.6. Accordingly, a numerical evalu
ation of D(b) by means of Eqs.~A18! and~A19! and, then,
a substitution of the result into Eq.~35! yields the rate 1/tdM
58 –4 s21, which is also in the range obtained in Ref.@10#.

We emphasize that in the anisotropic trap employed
Ref. @10# the damping is most likely to be caused by the L
@12–16,18#, and not by the mechanism discussed above.
discussed mechanism in its pure form can be realized in
isotropic trap only. Therefore, a correspondence between
rates calculated above for the isotropic case and those m
sured in Ref.@10# for the anisotropic trap indicates tha
while decreasing a degree of the trap anisotropy, the da
ing rate should practically stay unchanged despite the
that the nature of the damping changes.

In the caseT!2m, one could use an explicit form@Eq.
~A32!# for D(b) and, correspondingly, find an explicitT
dependence of rate~35!. However, in this case the rate b
comes so small that the mechanism of the quantum s
dephasing@8,9# comes into play.

It is interesting to investigate the dependence of
dephasing rate on the amplitude of the oscillations. It
worth noting that in the caseT50 such a dependence is ve
pronounced@8,9#. As will be seen below, the amplitude de
pendence at finiteT is weak. Indeed, this dependence is d
to the nonlinearity of the term;j in Eq. ~29!. In the lowest
order with respect to the initial valueh0 in Eq. ~33!, this
dependence can be obtained by expanding Eq.~29! up to the
terms ;h2 and h3, and finding the correction to the fre
quency of the lowest harmonic in the order;uh0u2. Perform-
ing straightforward calulations~see Appendix B!, and then
averaging over the ensemble, we obtain

tdM

tdM~A1!
512

7

3
uA1u2, ~39!
-

-

n

e
e

he
a-

p-
ct

lf-

e
s

the ratio of the rate 1/tdM(A1) determined in first order with
respect to the amplitudeA152h0 of the collective mode to
the rate 1/tdM in the zeroth order given by Eqs.~34! and
~35!. As one can see, the rate demonstrates a slow decr
as a function of the amplitudeA1!1.

Here we have shown that the collective excitations of
confined Bose-Einstein condensate should demonstra
dephasing caused by thermal fluctuations of the normal c
ponent. In Sec. IV we will discuss how this dephasing eff
can be distinguished from irreversible dissipation experim
tally.

IV. ECHO EFFECT IN A CONFINED
BOSE-EINSTEIN CONDENSATE

The reversible nature of the damping can be tested in
echo experiment similar to the spin echo, photon echo,
phonon echo effects~see Ref.@20#!. The nature of this effect
can be briefly outlined as follows@20#. A short external pulse
imposed on the system at the timet50 excites a collective
mode. The collective-mode amplitude decays due to dep
ing as well as due to irreversible dissipation. Both proces
are characterized by their typical rates 1/td and g, respec-
tively. The second pulse imposed at the timet5t partly
reverses in time the evolution of the system initiated by
first pulse. This implies a partial revival of the dephas
amplitude at the timet'2t. We note that the occurrence o
the echo is a general property of the system, where irrev
ible damping is weaker than the dephasing. Thus a neces
condition for observing a distinct echo istd,1/g and td
,t,1/g .

Specific features of the echo depend on the details of
system. The time profiles of the responses, as Eq.~33! indi-
cates, should be Gaussian in the case of the thermal dep
ing discussed above. In the case of the LD these respo
should be characterized by exponential relaxation. Prese
available experimental data@10,11# do not allow the distin-
guishing of the Gaussian type damping from the exponen
one @28#. In the next paper we will analyze the echo in th
anisotropic confined condensate, where the main cause o
damping is the LD. Below we will study the situation in th
isotropic trap, where the dephasing is caused by the ther
mechanism described above.

A relevant description for the case under considerat
relies on Eq.~29! modified to incorporate the external driv
as well as some possible irreversible dissipation. As d
cussed in Ref.@22#, the external drivedv2(t), which
changes the curvature of the trapping potential should
included in the linear part of the equation for the scali
variableb̃. Accordingly, Eq.~29! is rewritten as

b̈̃1@vho
2 1dv2~ t !#b̃2

vho
2

b̃4
12g ḃ̃1jvho

2 12b̃

b̃4
50.

~40!

For j5g50, one obtains the equation derived in Refs.@22#
for the caseT50. The term;g describes the irreversible
dissipation atTÞ0. The term;j, already introduced in Eq
~29!, with j given by Eq.~32!, accounts for the dephasin
effect discussed above.
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The time-dependent partdv2(t) of the frequency should
be driven so as to be in resonance with the collective mo
that is, in the form

dv2~ t !52 f ~ t !exp~ iv0t !2 f * ~ t !exp~2 iv0t !,

v05A5vho, ~41!

where f (t) stands for the complex amplitude of the extern
drive. This amplitude should be considered as a slow en
lope of the resonant drive with a typical timet f@v0

21 in
order to avoid exciting other modes of the system. The ec
then, can be produced by makingf (t) reach a maximum a
t50 and then become zero until the timet5t, when f (t)
peaks again. For the sake of simplicity, we will ignore oth
modes, and will analyze the simplest situation when the
ternal drive produces twod pulses

dv2~ t !52 f 1d~ t !2 f 2d~ t2t! ~42!

at t50 andt5t, having amplitudesf 1 and f 2, respectively.
For the case of small amplitudesf 1 and f 2 of the drive,

one should look for an evolution of the small perturbati
around the equlibrium valueb̃51. We note that, in contras
to the conventional situation@20#, the echo response in ou
model does not require nonlinearity of the dynamical eq
tion. This is due to the fact that the external drive plays
twofold role. Specifically, on one hand, it gives rise to
effective external force2dv2(t), and, on the other hand,
excites the system parametrically. Indeed, linearizing
~40! by the substituteb̃511h, with h!1, one obtains

ḧ1@vho
2 ~52j!1dv2~ t !#h12gḣ52dv2~ t !, ~43!

where the higher-order terms ofh are neglected.
We assume that initially att52` the mode was not ex

cited @h(2`)5ḣ(2`)50#. Then, taking into account Eq
~42!, one finds, from Eq.~43!,

h~0!50, ḣ~0!5 f 1 ~44!

after the first pulse. The second pulse att5t results in a
jump of ḣ, so that

ḣ~t1«!5ḣ~t2«!1 f 2@11h~t!#,

h~t1«!5h~t2«!5h~t!, ~45!

where«→10.
We are looking for a solution att.t. It has the forms

h~ t !5Ae~ iQ2g!~ t2t!1A* e~2 iQ2g!~ t2t!,

Q5v0~52j!1/2'A5v0S 12
j

10D , ~46!

where we have taken into account thatg!vho and j
!vho. An explicit expression for the coefficientA can be
obtained if one employs conditions~44! and~45!. Finally, we
find solution~46! for t.t expressed as
e,

l
e-

o,

r
x-

-
a

.

h~ t !5
f 1

2iQS 11
f 2

2iQ De~ iQ2g!t1
f 2

2iQ
e~ iQ2g!~ t2t!1he~ t !

1c.c., ~47!

where

he~ t !5
f 2f 1

4Q2 eiQ~ t22t!2gt ~48!

represents the echo occurring at the time momentt52t.
After the thermal averaging overNn , one finds

^he~ t !&T5
f 2f 1

10vho
2

cos@v~ t22t!#e2gt2~ t22t!2/tdM
2

~49!

for timest.t.tdM . Then, the echo amplitude can be foun
as

Ae5
f 2f 1

10vho
2

e22gt. ~50!

In deriving Eqs.~49! and ~50! in the limit under consider-
ation, we have made the replacementQ5A5vho everywhere
in Eqs.~47! and~48! except in the exponents, where the for
of Q linearized inj and given by Eq.~46! has been em-
ployed. Then the averaging procedure results in the deca
all terms buthe(t) in Eq. ~47! at the timest'2t. Thus we
obtained the echo effect in the linear approximation.

We have also analyzed the nonlinear echo problem
Eq. ~40! numerically. This equation was solved for a give
value ofj, and then the final solution was averaged over
values of j distributed in accordance with the Gaussi
G(j)5exp(2j2/u 2)/Apu, whereu determines the effective
width of the distribution in such a way that the averaging
the linearized solution reproduces results~33! and~34!. Spe-
cifically, we setu5A80/vhotdM . The results of the calcula
tions are shown in Fig. 2. In case~a! the amplitude of the

FIG. 2. The echo effect in the breathing mode oscillations of
isotropic confined Bose-Einstein condensate: the numerical solu

b̃(t) of Eqs. ~40! and ~42! (g50.01vho, u250.02, and t
580vho

21). Cases~a!, ~b!, and~c! are different in amplitudesf 1 and
f 2: ~a! f 150.5vho, f 250.1vho; ~b! f 15 f 250.5vho; ~c! f 1

51vho, f 250.5vho.
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4706 57A. B. KUKLOV AND N. CHENCINSKI
second pulse is too small to make the echo observable
case~b!, the second amplitude is five times stronger, so t
the echo is distinct. In case~c!, while the second pulse am
plitude f 2 is the same as in the case~b!, the amplitude of the
first pulsef 1 is two times larger than that in cases~a! and~b!
@note the different scale of the vertical axis in the case~c!#.
As one can see, the echo in this case merges with the ta
the second pulse, which creates an impression that the d
time of the second pulse increases by several times. In o
to produce the echo in the case of the large amplitudesf 1 and
f 2, the time separationt between the pulses should be i
creased. However, in this case the irreversible dissipa
may strongly suppress the echo, in accordance with Eq.~50!.

The echo effect analyzed above is a classical mecha
effect. Below a certain temperatureTQ , the rate of the quan
tum dephasing@8,9# should become faster than the dampi
induced by the normal component. Accordingly, the class
treatment employed above becomes no longer valid.
problem should be reformulated in terms of the quant
dynamics of the variableb̃ in a sense of the approach@9#,
with the external drive~42! taken into account. It can b
shown that the echo still exists att52t. Therefore, the spon
taneous quantum revival, determined by the interaction c
stant and thereby occurring at very long times@9#, can be
induced to occur at much shorter times comparable with
time of the quantum collapse@9#. This problem will be con-
sidered in a separate publication.

V. DISCUSSION

We have suggested a mechanism for the apparent da
ing of a Bose-Einstein condensate confined in the isotro
oscillator trapping potential. This damping is a reversib
dephasing of the collective modes caused by thermal fluc
tions of the population factors of the normal component. T
calculation of the dephasing rate gives a value which is co
parable with the experimentally observed rate of the dam
ing of the low-energy collective modes in the atomic trap

This mechanism of dephasing relies on the ensemble
eraging of the collective mode over the initial population
the normal component. Thus an assumption is made tha
any given initial distribution of the population factors of th
‘‘hot’’ quasiparticles, this distribution does not relax to equ
librium during the time of the dephasingtd . Accordingly,
processes of relaxation due to the LD or collisions may s
press the discussed mechanism, if their relaxation times
comparable withtd . As long as the collisional damping in
troducing irreversibility is unlikely to be relevant for suc
small temperatures and densities, the LD is the only com
ing mechanism. However, the LD is expected to be sign
cant for substantially anisotropic traps only. Therefore,
traps characterized by small anisotropy, our mechan
should dominate.

Both mechanisms of damping—Landau damping and
considered above—are reversible in nature, and therefore
evolution of the system can be partly reversed in time.
suggest testing this in the atomic traps by employing
echo effect. As our analytical and numerical calculations
dicate, the echo amplitude as well as its position depend
the parameters of the external drive which can be varied o
a wide range.
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APPENDIX A: WKB CALCULATION
OF THE DEPHASING RATE

The WKB calculation of the dephasing rate presen
here is essentially based on the results of Ref.@27#. Employ-
ing Eqs. ~14!, as well as the normalization conditio
*dr (uUnu22uVnu2)51 in Eq. ~32!, one finds

gn5
2

mRcvho
2 H En2E dr F S mvho

2 r 2

2
12uKu22m D

3~ uUnu21uVnu2!1~KVnUn* 1c.c.!G J , ~A1!

where the notationK5uoFc
2 is introduced, and for the con

densate wave functionFc5Anc we employ the Thomas
Fermi solution@26#

nc5
mvho

2

2u0
~r c

22r 2!Q~r c2r !, r c5r hoS 15Nca

r ho
D 1/5

,

m5
mvho

2 r c
2

2
, ~A2!

whereQ(z) is the step function;uo and r ho are defined in
Eqs. ~11! and ~36!, respectively. Accordingly, one finds th
value ofRc in Eq. ~32! as

Rc5
r c

7

35arho
4

. ~A3!

States in the isotropic trap can be classified in terms of
angular momentumL, its z componentLz , and the radial
quantum numbernr . Thus the index in Eq.~A1! as well as in
the sum~34! should be understood as consisting of the
three quantum numbers. This implies that the summa
(n••• in Eq. ~34! runs over three quantum numbersn
5(nr ,L,Lz). Because of the spherical symmetry, the su
mation over Lz can be performed trivially, which gives
(n•••5(nr

(L(2L11) . . . . As will be seen below, the

large valuesnr@1, L@1 dominate this sum. Therefore, w
replace the summation by the integration overnr , L

(
n

•••'E
0

`

dnrE
0

L0
dL2L . . . , ~A4!

where the upper limitL0 is to be determined, and we mad
the replacement 2L11'2L. It is convenient to change th
variable nr to E by employing the quantization conditio
@27#
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nr1
1

2
5

1

p\
E

r 1

r 2
dr pr , pr5A2m@AE21uKu22Ueff~r !#,

~A5!

where

Ueff~r !5
1

2
mvho

2 r 21
\2~L11/2!2

2mr2 12uKu2m ~A6!

denotes the effective WKB potential@27#, and the turning
points r 1 and r 2 obey the equationpr50 or

AE21K22Ueff~r !50. ~A7!

Then integral~A4! acquires the form

2

p\E0

`

dEE
0

L0
dL LE

r 1

r 2dr

v r
•••, ~A8!

where Eq.~A5! has been employed, andv r stands for the
WKB radial velocity @27#.

Before we proceed, it is convenient to employ dimensio
less variables of length, energy, and angular momentum

x5
r

r c
, e5

E

\vho

r ho
2

r c
2

, J5L
r ho

2

r c
2

, ~A9!

respectively. Note that in these units the condensate radiur c
equals 1, and the chemical potentialm and the quantityK
become

m85
m

\vho

r ho
2

r c
2

5
1

2
, k5

1

2
~12x2!Q~12x!, ~A10!

respectively. Accordingly, Eq.~A7! yields two sets of solu-
tions for the dimensionless turning pointsx1,25r 1,2/r c ,

x15Ay0, x25Ab1, J,A2e ~A11!

where

y05
J2~11A114e212J2!

4e212J2
,

b65e1
1

2
6AS e1

1

2D 2

2J2 , ~A12!

and

x15Ab2, x25Ab1, A2e,J,e1 1
2 , e. 1

2 .
~A13!

As has been discussed in Ref.@27#, solutions ~A11! and
~A13! correspond to the case when the classically allow
region extends into the condensate, and to the case when
totally outside the condensate, respectively.

The U and V amplitudes inside the classically allowe
region are@27#
-
s

d
t is

U5
C0~e,J!

2r c
3/2
„
AA11~k/e!21~k/e!

1AA11~k/e!22~k/e! …
sin f

xAvx

YL,Lz
,

V5
C0~e,J!

2r c
3/2

~AA11~k/e!21~k/e!

2AA11~k/e!22~k/e! ! sin f

xAvx

YL,Lz
. ~A14!

HereYL,Lz
is the spherical harmonic; the normalization co

stant is

C0
22~e,J!5

1

2Ex1

x2dx

vx
, ~A15!

and the dimensionless radial velocityvx5Amrho
2 /\vhor c

2v r

is given by

vx5A2
e21k2

e2 SAe21k22k2
J2

2x2D , x1,x<1

~A16!

inside the condensate, and by

vx5A2e112x22J2/x2, 1,x,x2 ~A17!

outside the condensate. In calculation ofC0(e,J) and in
what follows, we replace sin2f by 1

2 because the WKB phas
f @27# varies rapidly inside the classically allowed regio
The integrals outside this region are exponentially small, a
we neglect them.

Substituting Eq.~A14! into Eq. ~A1!, and employing the
units ~A9! in Eq. ~34!, we find expressions~35! and ~36!,
where the dimensionless functionD(b) is defined as

D~b!5F E
0

`

de
ee/b

~ee/b21!2
r~e!G 1/2

, ~A18!

with the notation

r~e!5E
0

J0~e!

dJ J
C0

2~e,J!

2

3H E
x1

x2dx

vx
Fe2S 1

2
x22

1

2
12kDA11

k2

e21
k2

e G J 2

~A19!

introduced, andk determined in Eq.~A10!. The value of the
limit J0(e) can be found from Eqs.~A11! and ~A13!. Spe-
cifically, for e<1/2, only case~A11! can be realized. This
implies that

J0~e!5A2e, e< 1
2 . ~A20!
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For e. 1
2, Eq. ~A13! yields

J0~e!5e1 1
2 , e. 1

2 . ~A21!

Consequently, integral~A19! can be expressed asr(e)
5r1(e)1r2(e),

r1~e!5E
0

A2e
dJ J

C0
2~e,J!

2
@ In1~e,J!1In2~1,e,J!#2,

r2~e!5QS e2
1

2
D EA2e

e11/2

dJ J
C0

2~e,J!

2
@ In2~Ab2,e,J!#2,

~A22!

where the notations

In1~e,J!5E
x1

x2dx

vx

eAe21k2

k1Ae21k2
, x1,1

In2~a,e,J!5E
a

Ab1dx

vx
S e1

1

2
2

1

2
x2D , a>1 ~A23!

are introduced;C0
2(e,J) is given by Eq.~A15!, and vx is

determined by Eqs.~A16! and~A17!. Note that here we have
employed the explicit expressions~A11!–~A13! for the turn-
ing points.
s

.

The value of the normalization constantC0 can be found
explicitly @27#. The integrals~A23! can also be calculated
explicitly. We find

C0
2~e,J!

2
5

2

p
, In2~Ab2,e,J!5

p

4 S e1
1

2D ~A24!

for e. 1
2, A2e,J,e1 1

2, and

C0
2~e,J!

2
5S 2e arccosa1

A2e21J2
1arccosa2D 21

,

In2~1,e,J!5
1

2S e1
1

2Darccosa22
1

4
A2e2J2,

In1~e,J!5
e2arccosa1

A2e21J2
1

1

4
A2e2J22

1

2A2
lna3

~A25!

for J,A2e, where we have introduced the notations
a15A2e21J22e1eA114e212J2

2eA114e212J2
,

a25A 1
2 2e1A~e1 1

2 !22J2

2A~e1 1
2 !22J2

,

a35

A112e2A114e212J21A112e1A114e212J2

A2@114e212J2#1/4
. ~A26!
y

e

We note that in the formal limitb@1, the functionD(b)
given by Eq.~A18! can be found explicitly. Indeed, in thi
case the main contribution to Eq.~A19! comes frome@1.
This implies that only the termr2(e) in Eq. ~A22! should be
taken into account because it gives the highest power ofe as
r2(e);e4. As simple analysis of Eq.~A22! shows, the term
r1(e);e3. Thus takingr(e)'r2(e), and combining Eqs
~A24!, ~A22!, ~A25!, and~A12!, we find

r~e!5
p

16S e22
1

4D 2

QS e2
1

2D'
p

16
e4 ~A27!

for e@1. Substituting this into Eq.~A18! and taking the limit
b@1, we obtain

D~b!'A3p

2
b5/2, ~A28!
which yields Eq.~38!. This expression is shown in Fig. 1 b
the dashed line. As one can see, in the range ofb of the
order of 1 the approximation~A28! underestimates the rat
by approximately 20%.

We note that actual values ofb5T/2m are far from being
b@1. Indeed, employing Eqs.~A2! and ~37!, we find

b5
T

2m
5S r ho

15aD 2/5

z21/3~3!N21/15
T

Tc
, ~A29!

which yields valuesb'1 for the experiment@10# for T
'Tc . Therefore, for these values the functionD(b) should
be found numerically~see the solid line in Fig. 1!.

In the opposite limit b→0, which corresponds toT
!2m or large N, the contribution toD(b) due to r2(e)
becomes exponentially small. Thus the term;r1(e) @Eq.
~A22!# dominates in Eq.~A18!. Taking into account that the
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effective values ofe;b, one may perform an expansion
terms of the small parametere in Eqs.~A26! and~A25!, and
obtain

r~e!'r1~e!5r01e
7/2, e→0, ~A30!

where the notation

r015
1

A2
E

0

p/2

dx sin x
@x1 1

12 sin 2x~7111 cos2!#2

x1 1
2 sin 2x

~A31!

has been introduced. A numerical evaluation of this integ
givesr01'1.5. This yields, for Eq.~A18!,

D~b!'D0b9/4, D05Fr01E
0

`

dx
ex

~ex21!2
x7/2G 1/2

'4.4

~A32!

in the limit b!1.

APPENDIX B: CALCULATION OF THE AMPLITUDE
DEPENDENCE OF THE DEPHASING RATE

Expanding Eq.~29! up to the third order with respect t
h, one obtains

ḧ1vM
2 h2aMh21bMh350, ~B1!
an

n,
tt.

et

tt

tt

,

E

n,
ev
l

where the notations are

vM
2 5~52j!vho

2 , aM510S 12
2

5
j Dvho

2 ,

bM520S 12
j

2Dvho
2 . ~B2!

The solution of Eq.~B1! up to the second order with respe
to h0 has a form

h5
2aM

vM
2 uh0u21~h0eivt1c.c.!2

aM

3vM
2 ~h0

2ei2vt1c.c.!,

~B3!

where the effective frequencyv in the same order is

v5vM1v8uh0u2, v852
5aM

2

3vM
3 1

3bM

2vM
. ~B4!

Now employing Eq.~B2! in Eq. ~B4!, and performing the
thermal averaging of Eq.~B1! over j in the limit j!1, we
obtain

^h&T5h0ei ^v&Tt2t2/tdM
2

~A1!1c.c., ~B5!

where the constant as well as the second harmonic have
omitted; the dephasing rate 1/tdM(A1) as a function of the
amplitude A152h0 of the first harmonic is given by Eq
~39!.
n,

v.
t.
.

n,
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