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Thermal dephasing and the echo effect in a confined Bose-Einstein condensate
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Thermal fluctuations of the normal component induce dephasing—reversible damping of the low-energy
collective modes of a confined Bose-Einstein condensate. The dephasing rate is calculated for the isotropic
oscillator trap, where the Landau damping is expected to be suppressed. This rate is characterized by a steep
temperature dependence. It is weakly amplitude dependent, and is sensitive to the total number of atoms in the
trap. The value of the rate belongs to the range of the damping rates observedbglJjfPhys. Rev. Lett77,

420 (1996]. We suggest that a reversible nature of the damping caused by the thermal dephasing in the
isotropic trap can be tested by the echo effect. A reversible nature of the Landau damping is also discussed, and
a possibility of observing the echo effect in an anisotropic trap is considered as well. The parameters of the
echo for the isotropic trap are calculated in the weak echo limit. Results of the numerical simulations of the
echo are also presentd&1050-29478)02906-0

PACS numbsgfs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.9&

I. INTRODUCTION emphasized that the existence of the LD is directly related to
the presence of randomness in the spectrum of the aniso-
Properties of trapped ultracold atomic gases demonstratropic traps. Conversely, in the isotropic trap the LD should
ing the phenomenon of Bose-Einstein condensafiba3] be suppressed because the quasiparticle spectrum is regular
have been attracting much attention. A confined geometry dfL8]-
the cloud leads to circumstances under which new phenom- In this paper, we suggest that in a confined condensate
ena, such as, e.g., a specific scaling in the thermodynamic#ihere the LD is suppressed, the damping of the collective
properties[4], and two-step condensati§f] can be antici- modes can still be observed. Specifically, thermal fluctua-
pated. It was also suggested that the phase of the confiné@ns of the population factors of the normal component in-
condensate should demonstrate the phenomenon of collapséiéce a reversible dephasing of the collective oscillations.
and revivalg 6] and the phase diffusion effefT]. The nature of such a damping is similar to that of the dephas-
Recently it was discussed in Ref8,9] that the dynami- ing observed in quantum dotsee Ref[19]). We show that,
cal quantum behavior of an atomic cloud consisting of awhile being essentially zero for a traditional uniform conden-
finite number of bosons is very different from the propertiessate, the rate of such a dephasingylih the trap containing
of infinite systems. Specifically, the amplitude of a normal10°~10* atoms can be comparable to the rate of the damping
mode of the confined condensate should demonstrate quagbserved experimentally in Ref10].
tum dephasing, which results in an apparent damping of the We also suggest that the reversibility of the damping in a
mode even at zero temperatifeThe rate of such damping confined condensate can be tested in a kind of phonon echo
is determined by the interparticle interaction, and turns out t&xperiment(see Ref[20]), when two consecutive external
be linearly dependent on the mode amplitude, if it is smallpulses imposed on the trap induce a third pulse—the
[8,9]. A possibility of the mode revival has also been pre-echo—at a time approximately equal to twice the time inter-
dicted[8,9]. A current experimental situation does not allow val between the first two pulses. In this paper we analyze the
us to resolve this effect because of the presence of the nogase of the isotropic trap, where the LD is not expected to be
mal component, which introduces a substantial damping o@n important mechanism of dissipation. In a future work we
its own. will investigate the echo in strongly anisotropic traps, where
Damping of the normal modes at finifeof the confined  the main mechanism of damping is the LD.
condensate was experimentally studied in Réid] and
[11]. Recently, it was stress_ed k_Jy PitaevdkiP] (s_ee also Il THERMAL FLUCTUATIONS AND DEPHASING
Refs.[lS_—lQ) that the damping in the trap containing con- IN THE ATOMIC TRAP
densate is essentially Landau dampia@), which is colli-
sionless in nature. In other words, it is the dephasing of the In Refs.[8,9] it was shown that a collective mode of the
collective modes rather than their irreversible dissipationconfined condensate should exhibit a dephasing caused by
[17]. It is worth noting that the reversible nature of the LD in the interparticle interaction. In the ca$e=0, the dephasing
the classical uniform plasma can be revealed in the plasmia produced by the particles forming the mode. Below, we
echo effec{17]. will consider a similar effect caused by the interaction be-
Theoretical approach¢$3-16 are based on applying the tween a low-energy collective mode and the quasiparticles
standard results of the perturbation theory developed for aforming a normal cloud.
infinite and uniform medium. Accordingly, a discrete struc- Let us discuss general reasons for the thermally induced
ture of the quasiparticle spectrum is tacitly replaced by ardephasing in the presence of the interparticle interaction. We
effective continuum[13-16. In recent work[18], it was  will especially clarify why this effect is not significant for an
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infinite condensate, where the only cause of the dephasintpermal ensemble. Substituting E®) into Eq. (4), and ne-
should be the LD. The following analysis is based on theglecting the term~ Ng significant for very smalll only (see
approach suggested by Pitaevskii in R&f| for the caseT  Refs.[8,9]), one obtains
=0. We extend this analysis far+0.

If an external modulation at some frequenoy has ex-
cited a system, the many-body time-dependent wave func-

(tAl) =R, CO7,C
0
tion |t) constructed in terms of the quasiparticle states

INg,N4, ...) acquires the form ><<exp( it> gonN, > +ec., ©6)
n>0 T
- ~iE t
|t>_N0’% Chgny, .. & Mo [No,Ny, -..), with (- - - ) denoting the thermal average with respect to the

(1) population factordN,,.
In what follows we will assume thall, are distributed in
where N, is a population number for thenth (n  accordance with the grand canonical distribution. As will be
=0,1,2...) quasiparticle stateEy, n ... stands for the discussed below, this assumption is valid as long as the mean

energy of the statiNo,N;, . ..), andCy, denotes the Number of atoms in the condensag is sufficiently large.
. . oL, Thus, after straightforward calculations, one finds
normalized coefficients Xy, ___|CN0,N1, ~1#=1). For

the case of weak interaction between quasiparticles, the ex- )

ternal drive, which is in resonance with the energy of, e.g., <exr{ Itn§>:o gOnNn>>
the zeroth quasiparticle state, creates a coherent mixture of T
the quasiparticles in the zeroth state and does not signifi- r{

2 Ir‘Il—ex;{ig(,nt—wn/T]

=0 l—exp(—wy/T) @)

cantly affect the other states. Accordingly, one can factorize
CNg Ny, ... @S

We note that in a large system the matrix elemegtsare

Cng.N,, ...:CNO())CN?CNZZ), ce (2)  scaled ag)y,~ 1NV by the effective volume/ of the system.
Accordingly, in the formal limitV—, one should expand
and assume th4g] exp(gont) in Eq. (7) up to the first term~1/V only. Then the
smallness of N will be compensated for by the summation
Ngo . 2,~V. This results in
|CRaI*=,r X7~ No). (3)

<exl{itnzo gOnNn)> :exp<itn§0 gOnﬁn)i (8)
T

- whereN,, denotes a Bose distribution of the noninteracting
wise). In Eq. (3) Ny is given by the value of the classical quasiparticles. As one can see, in the infinite system fluctua-
amplitude of the resonant modi@,9]. tions of the numbers of the quasiparticles do not cause any
The expectation value of the single-particle operdift),  dephasing. Instead, the frequensy experiences a thermal
which changes the number of quasiparticles in the given statg;s wo— wo+ EngOnﬁn! and the only cause of the dephas-
by 1, acquires a resonant contribution from the zeroth stathﬂg is the LD.
This is In the case of a finite system, one should keep higher-
order terms in Eq(7). As will be shown below, the dephas-
_ (0% ~O) N ayrdi ing rate in the oscillator trap contains a smalln@gs,,
(tlAlt) % Cng+ 10N ASXH T (Engrany, .. <1, where a and ry,, stand for the scattering IenE]th
~10 7-10® cm, and some typical scale 10" % cm asso-
- ENO,Nl, L ot+ee., (4) ciated with the trapping potential, respectively. Therefore, as
long as alry,,<1, one can neglect the higher terms
whereA is a corresponding single-particle matrix element. Ino(azlrf,a,). Such an approximation corresponds to expand-
the case of a weak interaction between quasiparticles, oriag exp(g()nt)~1+ig0nt—ggnt2/2+ o(ggn). This results in Eq.
can expand the energy in accordance with the Landau theo«¥) being rewritten as

of quantum liquids as
<ex;{it2 gOHNn)> =exr{i2 JonNpt—t2/72], (9)
n>0 T n>0

with the rest of theC coefficients corresponding to the num-
ber states C¢{’=1 for someN,=Nj, and C{’=0 other-

ENO*va :; “’n'\ln'|'%%1 ImnNmNR+0o(NiN;Ny),
(55  where the notation

where the coefficientg,,, arise due to interaction between i_ \/} 2 — —

quasiparticles. Ty 2; GonNn(1+Np)
At finite T, solution(4) should be averaged over the initial

values ofN, with n>0, distributed in accordance with a for the dephasing rate is introduced.

(10
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Equations(9) and (10) indicate that a collective mode of which could be identified with the termsN,N,, in Eq. (5).
the confined atomic condensate should exhibit a dephasingpecifically, performing calculations in the first and second
induced by thermal fluctuations of the normal componentorders of the perturbation theory with respectHg; given
Below, we suggest a model of dephasing of a collectiveby Egs.(11)—(13), one finds the coefficient,, in Eq. (5) as
mode of the confined condensate in the Thomas-Fermi limit,
and calculate the value af; for the isotropic trap. | 9mnd? |Gkl

E,+Ex—Ey, E,—E(+En

Okn= 49knknT 22

m

Ill. ADIABATIC EFFECTIVE ACTION 2
FOR LOW-ENERGY COLLECTIVE MODES |Gkl

 E—E,+E.| (17

In order to obtain 1y, one should find the coefficients

Jon, and perform the summation in E¢LO). An explicit  where the coefficients, ., andg,,, are expressed explicitly

expression fogy, can be derived from a many-body Hamil- in terms of the Bogolubov amplitudes in EG.3) as
tonianH taken in the standard form

— OJ 2 2 2 2
dr[(JUy|+|V ) U +V )
I I_f dr\l,T( ) )\P . Oknkn 2 [(| k| | k| (| n| | n|

+(UkVViU+c.c)] (18
Hy= h2A+ L o2
=75, i:1232mwir ; and
Hintzluoj dr \I’T\I’T\If\lf (ll) Imnk= UOJ’ dr q)c[Uk(UEUn""VEVn_FU:an)
2 ’

+V (UXU,+V*V,+ViU,)], 19
where the Bose operatot and W' obey the usual Bose (UmUn+ ViV VmUn) ] (

commutation ruleju is the chemical potentiaky; denotes andd, is taken real.

three frequencies characterizing the trapping potential; and \we note that in the case of a continuum or quasicon-
the interaction constamto=47rﬁ2a/m is expressed in terms tinuum Spectrun‘[lg]’ the sum in Eq(l?) makes the main
of the scattering length and the atomic mass. As usual, contribution to the imaginary part corresponding to the LD in
in the presence of the condensate, one uses the conventiongé lowest order of the perturbation the¢fid—15,18. In the
representation isotropic trap, this imaginary contribution is not significant
Ve 12 [18], which implies that the LD is suppressed. Therefore, the
e ' (12) real value ofg,, [Eq. (17)] could be employed in Eq10)

whered, is a classical condensate wave function giving thelOF calculating 1#4. Unfortunately, such an approach leads

condensate density,=|®.|2, and normalized to the number to an expression 4 which formally diverges at IQW ener-

N.. of atoms in the condensat®’ stands for the excitation 9i€S, despite the natural expectation that the main contribu-
C 1

part. For the latter, the Bogolubov representation should bloN 0 the dephasing is produced by high-energy excitations.
employed as Accordingly, rate(10) acquires the incorrect dependence

1/m4~ T for T>u. In fact, this divergence can be elimi-
, .t nated by a proper renormalization of the vertex in the low-
v :; (Upapt+Vioay), 13 energy region, where an adequate description relies on the
hydrodynamical approacf2l]. In order to solve this prob-
where a, destroys a quasiparticle on the level having thelem for the low-energy collective modes, we employ a
energyE,, and U,,V,,) is an eigenvector of the linearized Simple scaling procedure which yields a description of the

Bogolubov equations effect of thermal dephasing in closed form at firilitén the
limit of large N.
E,U,=HiU,+ UOCI>§Vn, —EnV,=HV,+ u(,CI)g*Un, First, we note that the dephasing effect discussed here is
an adiabatic process when the high-energy component fol-
Hi=Hy+2ug|®|?— u. (14)  lows the evolution of the low-energy collective mode with-

out dissipating energy. As discussed in Re2], the low-
Expressed in terms of the quasiparticle operamrandaﬁ, energy modes at =0 can be viewed as a time-dependent

Hamiltonian(11) acquires the form scaling r;—r;/b; of the coordinatesr; by some time-
dependent scaling variabldg=Db;(t). Furthermore, it has
- t been show22] that, if one ignores the kinetic-energy term,
= +H; ; . - L
H ; EnnantHint, (19 such a scaling approach is exact for any given initial state of

the many-body wave function. As will be seen below, this
where the interaction paH,,; contains the terms implies that no dephasing of the low-energy scaling modes
should occur in such an approximation. The dephasing is
r_ t Tt induced by the kinetic-energy terms, which are, however
= a,a,+H.c)+ a,andid, , g ' ' X '
nt r%k(gm"@m nk ) n%:kl ImnkBmAnc small in the Thomas-Fermi limif22]. Such smallness im-
(16 plies that one can still consider the scaling variallesas
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proper collective degrees of freedom, whose dynamics is mw?R{® - P(® - G(© =0, (25)
modified in the presence of the kinetic terms. Below, we will

derive an adiabatic classical action for thevariables. In  with the superscriptd) indicating that the means in E®3)
order to do this, we treat th& operator as a classical field are taken over the condensate state. Employing this relation

by means of considering the anda' operators in Eq(13) in Egs.(24), one finds
asc numbers. Then we employ the scaling ang&#|

. . . 20 204 g0\ T g0), 27 _
i‘l’(ﬂ t'(t)) CPZEE Erz b+ 0y~ 0i(1=4; )biblbzbg & i b3 0, (26
\/b1b2b3 bi7 ’ Zﬁ i bi i

(20) where the notation

\I’(ri 1t)_>

wheret’ (t) is some function of time determined in terms of
the variablesb; and their time derivative$;. In what fol-
lows, we assume that the scale invariant shap& af given
by Egs.(12)—(14) obtained forb;=1. In this manner we is introduced. We note that® determines the ratio of the
eliminate the nonadiabatic processes induced dug#®. averages of the kinetic energy to the harmonic potential en-
Consequently, one can derive an effective classical actiogrgy both taken for the direction. Accordingly, for the case

S,=S[b;,b;] for the variablesh; by means of performing o{ the isotropic trap considered in R¢R4], one can find

the scaling transformatiof20) in the full classical action = Eyin/Eno, whereE,i, andEy, stand for the total kinetic
and the total harmonic energies, respectively. Then, from the

B i e linearized version of Eq$26), we reproduce the frequencies
S_f dt fdr 5 (WP¥—H.C)—H . @D of the quadrupolar mode o= \2wno(1+ Ey,/Eng ¥ and
the breathing modewy = wno(5— Exin/Eng 2 derived in
Note that a substitution of formd2) and(13) is to be done Ref.[24] by means of the sum rule technique.
in Eq. (11) and, then, in Eq(21). Then the off-diagonal Note also that forT+0, Egs.(24) coincide with those
productsa’ a,, anda,a,, (m#n) should be eliminated in the derived in Refs[22] in the Thomas-Fermi limit. This can be
adiabatic approximation because they oscillate in time. Th@een by means of setting the kinetic-energy teRns 0 in
diagonal termsa; a,, which do not oscillate, should be re- Egs.(24), and performing the scaling transformation
tained and then identified with the population factors. Let us ~
denote the action obtained as a result of such a procedure as b= kib;, (28
Sy=(S). Then we find

€9 =— (27)

with somek; chosen in such a way as to make the solution
szj S TR-(b-Z— w?b?)— Pl G b;=1 the equilibrium one. Furthermore, it can be seen that in
™2 " T o2 bibobg|” the isotropic two-dimensional2D) case, when only two
(22) scaling variable®; andb, should be taken into account, the
dependence oR; can be eliminated by the scaling transfor-

where the notations mation (28), so that the frequency of the breathing mode
52 does not depend dB; . This implies that no dephasing of the
Ri=< f dr lIf*ri2\1f>, Pi=< f dr—Vi\p*Viqf>, 2D breathing mode should occur in this case, in accordance
m with the result of exact calculations of R¢R5].

In order to simplify the following analysis of th&#0
G=<%J' dr‘P*‘lf*\If\P> 23) case, let us consider a breathing mode in the 3D isotropic

trap. Thus we seb=hb,=b,=b; andb=«b in transforma-
tion (20) as well as in the actioB, [Eq. (21)]. Then, varying
%Sb/5b=0, we obtain the nonlinear equation describing the
low-energy adiabatic dynamics of the breathing mode in the
presence of the normal component:

are introduced. Taking into account that these quantities d
not depend orb;, one can vang, with respect tob;, and
obtain the classical equations of motion

G 1 P, 1

n - - _
DI+ b~ R bibbsb; MR b7

i=1,23. o e o, , 1-b* P
b+whob_ﬁ+§whoT:0’ 52—24,
(24) b b mMRwif .«

We note that the procedure suggested above extends the (29
variational approach23] to the case of finite temperatures. ywhere P=P,+ P,+ P53, R=R;+R,+ R3, and x obeys the
Equations(24) [see also Eqs(9) of Ref. [23]] reproduce (g|ation
correctly theT=0 low-energy spectrum obtained in Ref.

[24] for the isotropic trap characterized by the relation ) P 3G

= w,=w3=wp,. Indeed, in the case of zero temperature one DT AR MRSR - (30
should take the mean23) over the condensate state by set-

ting a,=a} =0 in Eq. (13), and, accordingly, takingV An explicit form of ¢ can be found in the limiP— 0, which
=®. in Eq. (23). Then, the virial theorem yields corresponds to neglecting the kinetic energy of the system if
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compared with the interaction energy. SettiRg=0 here, 1
one findsk, and then, resorting back to E@9), obtains
1251

P
= . 31
g w%{)S( m R) 1/5( 3G)4/5 ( )

In order to expres®, R, and G in terms of the products
aja, which, as was mentioned above, should then be iden-
tified with the population factorbl,=ay a,, of the quasipar- st
ticles in the second quantized picture, one should use repre-
sentations(12), (13), and (23). However, in the Thomas- 25k
Fermi limit valid for large numberdN, of atoms in the
condensate, one may neglect correctionR t&, andN, due .
to the excitations. Indeed, in the condensate sRteG 02
~N,r2, wherer stands for the condensate radiys- N

[26] in such a limit. ThereforeR~G~NZ/5_ The kinetic FIG. 1. The universal functio®(B): the solid line is the result
term PNNC/TENNE/S- High-energy excitations produce of numerical caIcuIatianAlS) and (A19); the dashed line corre-
changessR, 6G, SN, andSP of R, G, N, andP, respec-  SPonds to the approximate formulazs).

tively. These changes can be estimated &R~ 5P . . . .
~N'T/wpy, 6G~Ugn,N' andsN,=—N’, whereN’ stands thermal averaging- - - )1 with respect td\,,. This averaging

for a fluctuation of the normal component. Therefore, thec@n be performed explicitly for~the linearized solution of Eq.
relative contributionsSR/R, 8G/G, SN./N., andSP/P to  (29). Specifically, representing=1+ in Eg. (29) and
the value of ¢ are very different. Specifically, one keeping the terms linear in, one finds
finds (5P/P)(RISR)~N2®>1 and (SP/P)(G/5G) _ " L,
~(8PIP)(N./ 8Ny ~N?5T/ w1, as long aNa/r 1 (n(t))r=no(d“nd>~ 9 )+ c.c~eom™amtc .,
andT> wy,,, Wherer, stands for the oscillator radius asso-
ciated with wp,. Thus, in calculatingé in Eqg. (31), one — 1
should take into account only the contribution dueSi, and @p=5wne m@h’
take the value® andG determined for the condensate state
by Eg.(23) for some mean value dfl...

Finally, employing representatiorid2) and (13) in Eq.
(23), and taking the means so thé!a,)=N,&nn, one
finds

7.5F

D(B)

(33

where 7,= const accounts for the initial conditidn(0)=1
+ 770, and the dephasing rate of the breathing mode is

1 \/1 — _ _

TdM_who 4_0; 9nNn(1+Nn), Nn_E—n'
§:§(C)+E OnNy, Rc:f dr r2|(I>C|2, ex ? -1
n

(34)

§ with the coefficientg,, given by Eq.(32). Performing simi-

lar calculations for the quadrupolar mode, we find the rela-
tion 1/74q= \/5/2/74y for the dephasing rate of the quadru-
where the virial relatior(25) has been utilized, angl® de-  polar mode. Taking into account Eq&32) and (34), we
notes the contribution due to the kinetic energy of the conobtain an explicit expression for the raterdy [Eq. (34)] in
densate. In what follows we will neglect this term which the WKB approximatiori27] (see Appendix Aas

does not depend oN,,.

The solutionb of Eq. (29) should be ‘averaged ovef izFMD(T/Z,u), (35)
represented by Eq32). Such an averaging can be under- Tdm
stood as a thermal ensemble averaging over possible Fock . .
states of the quasiparticles. This interpretation closely rewhere the coefficient’y, is
sembles the case of destructive measurenjé@fiswhen the

Oh=-— jdr(U:AUn-i—V:AUn), (32

h
mchwﬁo

.. . . 2
initial conditions determined bW, for each newly created 35 (rpe|° @ _ h

FM_ Who Mho= ’ (36)
condensate can vary from one condensate to another. In the J5a\ e/ Tho Mwpo

case of nondestructive measurements, the averaging of the

solution b should be performed over a single many-bodyand the universal dimensionless functibig) is defined in
state, which is a mixed state rather than a pure Fock statdppendix A(see Fig. 1, with the parametens, andu given
with respect toN,,. In accordance with the ergodic hypoth- explicitly in Eq. (A2).

esis, such an averaging should give the same result as that In the limits 8>1 (T>2u) andB<1 (T<2u) the func-
obtained by means of thermal averaging as long as the nuntion D(8) can be found explicitly[see Egs.(A28) and
ber of quasiparticles is sufficiently large. In what follows we (A32), respectively. The current experimental situation is
will not distinguish these two cases, and will employ thecloser to the first case. It is convenient to exprésa units
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of the transition temperatufE, of the Bose-Einstein conden- the ratio of the rate Xf,(A;) determined in first order with
sation in the isotropic oscillator trap respect to the amplitudd, =27, of the collective mode to
the rate 1f4, in the zeroth order given by Eq$34) and
(35). As one can see, the rate demonstrates a slow decrease
E (37 as a function of the amplituda; <1.

Here we have shown that the collective excitations of the
where £(3)~1.202; N is the total number of the trapped confined Bose-Einstein condensate should demonstrate a
atoms(for T not very close tdT, we setN.~N). Then we dephasing caused by thermal fluctuations of the normal com-

1/3

Tc=ﬁwho

find ponent. In Sec. IV we will discuss how this dephasing effect
can be distinguished from irreversible dissipation experimen-
1 35 /03 T 5/2 Mo 2/5 tally
P 15%5:3)% | 7. | a N, (38)
am ¢ IV. ECHO EFFECT IN A CONFINED
from Egs.(35—(37), (A28) and(A29). Choosing the values BOSE-EINSTEIN CONDENSATE
T/T,=0.9, N=2X(10°-10") and wp,=2mX200 ™%, rp, The reversible nature of the damping can be tested in an

=10"* cm typical for the experimeniL0], we obtain the rate  echo experiment similar to the spin echo, photon echo, and
1/rqm~40-20 s *. We note that these values are close tophonon echo effectsee Ref[20]). The nature of this effect
the damping rate observed in R¢L0]. However, for the  can be briefly outlined as followi0]. A short external pulse
chosen parameterg=T/2u~1.3 which is, formally speak- imposed on the system at the tirhe 0 excites a collective
ing, far from the requiremeng>1, insuring the validity of mode. The collective-mode amplitude decays due to dephas-
Eq. (38). Nevertheless, the above estimates remain valid. Ining as well as due to irreversible dissipation. Both processes
deed, evaluating the complete expressiohs8) and (A19)  are characterized by their typical rates-dand vy, respec-
numerically (see Fig. 1 changes these estimates by onlytively. The second pulse imposed at the titver partly
about 20%. Specifically, the rate becomeS0-25 s *. For  reverses in time the evolution of the system initiated by the
the lowest temperature achieved in the experim®ll,  first pulse. This implies a partial revival of the dephased
T~0.4T., Eq. (38) becomes invalid because this tempera-amplitude at the timé¢~2r. We note that the occurrence of
ture corresponds tB~0.6. Accordingly, a numerical evalu- the echo is a general property of the system, where irrevers-
ation of D(B) by means of Eq9/A18) and(A19) and, then, ible damping is weaker than the dephasing. Thus a necessary
a substitution of the result into E(B5) yields the rate W3y condition for observing a distinct echo ig<1/y and 74
=8-4 s, which is also in the range obtained in REX0]. <7<1lly.

We emphasize that in the anisotropic trap employed in  Specific features of the echo depend on the details of the
Ref.[10] the damping is most likely to be caused by the LD system. The time profiles of the responses, as(&8).indi-
[12-16,18, and not by the mechanism discussed above. Theates, should be Gaussian in the case of the thermal dephas-
discussed mechanism in its pure form can be realized in thiag discussed above. In the case of the LD these responses
isotropic trap only. Therefore, a correspondence between thshould be characterized by exponential relaxation. Presently
rates calculated above for the isotropic case and those meavailable experimental dafd0,11] do not allow the distin-
sured in Ref.[10] for the anisotropic trap indicates that, guishing of the Gaussian type damping from the exponential
while decreasing a degree of the trap anisotropy, the damne[28]. In the next paper we will analyze the echo in the
ing rate should practically stay unchanged despite the facinisotropic confined condensate, where the main cause of the
that the nature of the damping changes. damping is the LD. Below we will study the situation in the

In the caseT<2u, one could use an explicit forfEq.  isotropic trap, where the dephasing is caused by the thermal
(A32)] for D(B) and, correspondingly, find an explick  mechanism described above.
dependence of rate85). However, in this case the rate be- A relevant description for the case under consideration
comes so small that the mechanism of the quantum selkelies on Eq(29) modified to incorporate the external drive
dephasing8,9] comes into play. as well as some possible irreversible dissipation. As dis-

It is interesting to investigate the dependence of thecussed in Ref.[22], the external drivedw?(t), which
dephasing rate on the amplitude of the oscillations. It ischanges the curvature of the trapping potential should be
worth noting that in the case=0 such a dependence is very included in the linear part of the equation for the scaling

pronounced8,9]. As will be seen below, the amplitude de- | 4riableb. Accordingly, Eq.(29) is rewritten as
pendence at finitd is weak. Indeed, this dependence is due

to the nonlinearity of the term- ¢ in Eq. (29). In the lowest 2 1

order with respect to the initial valug, in Eq. (33), this BT + St 5_%+2 Bt w2 — ~0
dependence can be obtained by expanding(E%).up to the [whot 005(1)] b4 Yb+Ewi, b4 '
terms ~ 5? and #°, and finding the correction to the fre- (40)

quency of the lowest harmonic in the ordef 7,|2. Perform-
ing straightforward calulationgsee Appendix B and then  For ¢&= y=0, one obtains the equation derived in R¢&2]

averaging over the ensemble, we obtain for the caseT=0. The term~ y describes the irreversible
dissipation aff #0. The term~ ¢, already introduced in Eq.
TdMm —1- Z|A 2 (39) (29), with ¢ given by Eq.(32), accounts for the dephasing

Tam(A;) 3!mh effect discussed above.
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The time-dependent pasiw?(t) of the frequency should ' ' ‘ ' T
be driven so as to be in resonance with the collective mode,
that is, in the form 1

5w2(t)=—f(t)exp(iwot)—f*(t)exp(—iwot), ) 50 100 150 200 250 300

wo=5who, (41
wheref(t) stands for the complex amplitude of the external
drive. This amplitude should be considered as a slow enve- % 50 100 150 200 250 300
lope of the resonant drive with a typical time> wgl in I
order to avoid exciting other modes of the system. The echo,
then, can be produced by makifft) reach a maximum at
t=0 and then become zero until the tirhe 7, when f(t) . . ‘ . .
peaks again. For the sake of simplicity, we will ignore other % 50 100 150, 200 250 300
modes, and will analyze the simplest situation when the ex- "

ternal drive produces twé pulses
Sw?(t)=—1,8(t)—f,8(t—7) (42)

att=0 andt= 7, having amplituded$, andf,, respectively.
For the case of small amplitudds and f, of the drive,

FIG. 2. The echo effect in the breathing mode oscillations of the
isotropic confined Bose-Einstein condensate: the numerical solution
b(t) of Egs. (40) and (42) (y=0.0lw,,, 6°=0.02, and 7
=80w,j01). Casega), (b), and(c) are different in amplitudes; and
fo: (@ f1=0.50phy, f2=0.lwpy; (b) f1=1,=0.5wy,; (c) f;
= l(l)ho, f2: 0.5wh0.

one should look for an evolution of the small perturbation

around the equlibrium value= 1. We note that, in contrast fq fs, (10—t fs (10— (t—7)

to the conventional situatiof20], the echo response in our ~ 7(1)= 2i0 1+ 2i0 elif™Y +me 2 + 7e(t)
model does not require nonlinearity of the dynamical equa-

tion. This is due to the fact that the external drive plays a +c.c., (47)
twofold role. Specifically, on one hand, it gives rise to an

effective external force- dw2(t), and, on the other hand, it Where

excites the system parametrically. Indeed, linearizing Eq. fof,

(40) by the substitutd=1+ 7, with <1, one obtains ne(t) = We“?“-zf)—vt (48)

1+ [ 05— &)+ Sw?(1) n+2yn=— dw?(t), (43

where the higher-order terms af are neglected.
We assume that initially at=—o the mode was not ex-

cited [ 7(— =)= 5(—)=0]. Then, taking into account Eq.

(42), one finds, from Eq(43),

7(0)=0, 7(0)=f, (44)

after the first pulse. The second pulsetatr results in a
jump of 7, so that

n(r+e)=n(r—e)+f[1+7(7)],

n(rte)=n(r—e)=n(7), (45)

wheree— +0.
We are looking for a solution dt> 7. It has the forms

(t)=AelQ=V1=7 4 Ax o(ZIQ=¥)(t=7)

¢
Q=wo(5- )~ ﬁwo( 1- E). (46)

where we have taken into account thaw,, and &
<wpne- An explicit expression for the coefficiet can be
obtained if one employs conditioit44) and(45). Finally, we
find solution(46) for t> 7 expressed as

represents the echo occurring at the time monten®r.
After the thermal averaging ové\,,, one finds

fof
<7]e(t)>T:l()2w; COS{w(t—27)]e77t7(t727)2/7c2uv| (49

ho

for timest> 7> 74y, . Then, the echo amplitude can be found
as

fof
__21 e—Z‘}/T.

A =
¢ 1002,

(50

In deriving Egs.(49) and (50) in the limit under consider-
ation, we have made the replacemént /5wy, everywhere

in Egs.(47) and(48) except in the exponents, where the form
of Q linearized in¢ and given by Eq(46) has been em-
ployed. Then the averaging procedure results in the decay of
all terms butz(t) in Eg. (47) at the times~27. Thus we
obtained the echo effect in the linear approximation.

We have also analyzed the nonlinear echo problem for
Eq. (40) numerically. This equation was solved for a given
value of¢, and then the final solution was averaged over the
values of ¢ distributed in accordance with the Gaussian
G(&)=exp(-&/6%)/\76, where § determines the effective
width of the distribution in such a way that the averaging of
the linearized solution reproduces resy8) and(34). Spe-
cifically, we setd= \/80/wpyrqy . The results of the calcula-
tions are shown in Fig. 2. In cade) the amplitude of the



4706 A. B. KUKLOV AND N. CHENCINSKI 57

second pulse is too small to make the echo observable. In ACKNOWLEDGMENTS
case(b), the second amplitude is five times stronger, so that
the echo is distinct. In cade), while the second pulse am-
plitude f, is the same as in the caé®, the amplitude of the
first pulsef, is two times larger than that in cas@s and(b)
[note the different scale of the vertical axis in the cégé
As one can see, the echo in this case merges with the tail
the second pulse, which creates an impression that the decay
time of the second pulse increases by several times. In order APPENDIX A: WKB CALCULATION
to produce the echo in the case of the large amplitdigesd OF THE DEPHASING RATE
f,, the time separation between the pulses should be in-
creased. However, in this case the irreversible dissipatioHe
may strongly suppress the echo, in accordance with( ). ing
The echo effect analyzed above is a classical mechanicjs;dr (
effect. Below a certain temperatufg, the rate of the quan-
tum dephasing8,9] should become faster than the damping
induced by the normal component. Accordingly, the classical
treatment employed above becomes no longer valid. The
problem should be reformulated in terms of the quantum

dynamics of the variabl® in a sense of the approa¢8],

with the external drive(42) taken into account. It can be
shown that the echo still existstat 2 7. Therefore, the spon-
taneous quantum revival, determined by the interaction conwhere the notatiofk =u,®?2 is introduced, and for the con-

stant and thereby occurring at very long tin{€3, can be densate wave functio®.=n, we employ the Thomas-
induced to occur at much shorter times comparable with thgermi solution[26]

time of the quantum collap4®]. This problem will be con-

The authors greatly appreciate very useful discussions
with Lev Pitaevskii, Eric Cornell, and Joseph Birman. We
also thank Alfred Levine and William Schreiber for stimu-
lating conversations related to this work. This work was sup-
&orted by the PSC-CUNY Research Award Program.

The WKB calculation of the dephasing rate presented
re is essentially based on the results of REf]. Employ-
Egs. (14), as well as the normalization condition
|U,12=|Va?) =1 in Eq.(32), one finds

2.2
Moyl
En—Jdr[( 2"" +2|K|2—,u)

] , (A1)

gn: 2
MR.wj,

X (|Upl?+|Va|®) + (KV,U* +c.c)

sidered in a separate publication. maw?, . 15N, a| 15
Ne= 2U, (re=ro)0(re=r), re=rpo Mo )
V. DISCUSSION
. 2.2
We have suggested a mechanism for the apparent damp- _ Moy ¢ (A2)
ing of a Bose-Einstein condensate confined in the isotropic K 2

oscillator trapping potential. This damping is a reversible

dephasing of the collective modes caused by thermal fluctuayhere ®(z) is the step functionu, andr, are defined in

tions of the population factors of the normal component. Theegs. (11) and (36), respectively. Accordingly, one finds the
calculation of the dephasing rate gives a value which is comyalue of R in Eq. (32) as

parable with the experimentally observed rate of the damp-

ing of the low-energy collective modes in the atomic traps. r7
This mechanism of dephasing relies on the ensemble av- = (A3)
eraging of the collective mode over the initial population of 35ar,‘,1‘0

the normal component. Thus an assumption is made that for

any given initial distribution of the population factors of the  States in the isotropic trap can be classified in terms of the
“hot” quasiparticles, this distribution does not relax to equi- angular momentunt, its z componentL,, and the radial
librium during the time of the dephasing. Accordingly,  quantum numben, . Thus the index in EqA1) as well as in
processes of relaxation due to the LD or collisions may supthe sum(34) should be understood as consisting of these
press the discussed mechanism, if their relaxation times at@iree quantum numbers. This implies that the summation
comparable withry. As long as the collisional damping in- X,--- in Eq. (34) runs over three quantum numbens
troducing irreversibility is unlikely to be relevant for such =(n,,L,L,). Because of the spherical symmetry, the sum-
small temperatures and densities, the LD is the only compeination overL, can be performed trivially, which gives
ing mechanism. However, the LD is expected to be signifi-3 . . . =3, 3 (2L+1)... . As will be seen below, the
cant for substantially anisotropic traps only. Therefore, INarge values,>1,L>1 dominate this sum. Therefore, we

traps chara_cterized by small anisotropy, our meCha”is%place the summation by the integration ower L
should dominate.

Both mechanisms of damping—Landau damping and that - Lo
considered above—are reversible in nature, and therefore the > . wf dnrf dL2L ..., (A4)
evolution of the system can be partly reversed in time. We n 0 0
suggest testing this in the atomic traps by employing the
echo effect. As our analytical and numerical calculations inwhere the upper limit, is to be determined, and we made
dicate, the echo amplitude as well as its position depend othe replacement2+1~2L. It is convenient to change the
the parameters of the external drive which can be varied overariable n, to E by employing the quantization condition
a wide range. [27]
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1 1 ry EJ)
nr+5=5£ dr p,, prz\/Zm[ E2+|K|2=Uex(r)], (\/\/1+ kle)?+ (kle)
1
(A5)
sin ¢
where +\/\/l+(k/6)2 (k/e)) \/_YLL,
1, RAL+122 o
Uei(r) = 5 Mo *+ ——5—7—+2[K| = (A6)

Co(f \]

(\/\/1+(k/e)2+(k/6

denotes the effective WKB potenti@27], and the turning
pointsr, andr, obey the equatiop,=0 or

VEZ+K?=Uqx(r)=0. (A7) —\/\/l+(k/e)2—(k/e) )

Then integral(A4) acquires the form

SII’]

x\/y
HereY, is the spherical harmonic; the normalization con-

L rdr i

_f dEJOLL 2_”.’ (A8) stant is

Uy

YL,LZ. (A14)

x20d X
Cy (e, I g (A15)
where Eq.(A5) has been employed, and stands for the 2)x, Ux

WKB radial velocity[27].
Before we proceed, it is convenient to employ dimension-and the dimensionless radial velocity= \/mrhzo/hwhorczvr
less variables of length, energy, and angular momentum ass given by

r E Tho o \/ e+
X—E, €= ﬁwho—z, J—LE, (Ag) Ux= 2

respectively. Note that in these units the condensate ragius
equals 1, and the chemical potentjaland the quantityK
become

2 JZ
JET—ke 2_) —
X

(A16)

inside the condensate, and by

U= V2e+1—x2=J%IX%,  1<X<X, (A17)

,_ P The 1 _1 2 outside the condensate. In calculation ©f(e,J) and in
K= 2 k=2 (1=xH0(1=x), (A10) what follows, we replace st by 3 because the WKB phase
¢ [27] varies rapidly inside the classically allowed region.
respectively. Accordingly, EqA7) yields two sets of solu- The integrals outside this region are exponentially small, and

tions for the dimensionless turning pointg,=r ,/r, we neglect them.
Substituting Eq(A14) into Eq. (A1), and employing the
x1=\Vo, Xp=vby, J<\2e (A11)  units (A9) in Eq. (34), we find expression$35) and (36),
where the dimensionless functi@(3) is defined as
where
D f wd —eé/ﬁ " Al8
P(1+\1T4i 2R (B)=| |, degan_pyerte| + A9
Yo 4€2+2)2 ’ . .
with the notation
1 1\? 2
et = T e Cied)
b.=et+ 5= (e+2 2, (A12) p(e):fo 03 3%
and xedy (1 1 K K22
X f —1 €— §X2—§+2k 1+?+:
x;=vb_, X,=+b,, J2e<i<e+i, e>1i. X1 Ux
(A13) (A19)

As has been discussed in R¢R7], solutions(All) and introduced, andk determined in Eq(A10). The value of the
(A13) correspond to the case when the classically allowedimit Jy(e) can be found from Eq9All) and (A13). Spe-
region extends into the condensate, and to the case when itdffically, for e<1/2, only casgA1l) can be realized. This
totally outside the condensate, respectively. implies that

The U and V amplitudes inside the classically allowed
region are[27] Jo(€)=+2e, e<1i. (A20)
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For >3, Eq. (A13) yields

Jo(e)=€+3, €>3. (A21)

Consequently, integralA19) can be expressed as(e)
= p1(€)+pa(e),

e)—fz_ J

1
riomo|-

2
J—)[Inl(e N +1ny(1,e,)1?,

e+1/2 (e J)

dJ J—[mz(\/_ &2,
(A22)

V2e

where the notations

Iny(e.d) fXZdX e+ K?
n l = T
e x; Ux k+ \/62+k
1 1

+§—§X

X <1

|n2 a, €J)—J\/Fdx(

are introducedCj(e,J) is given by Eq.(A15), and v, is

) a=1 (A23)

determined by EqgA16) and(A17). Note that here we have

employed the explicit expressiof&11)—(A13) for the turn-
ing points.
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The value of the normalization consta@g can be found
explicitly [27]. The integrals(A23) can also be calculated
explicitly. We find

Ci(e,J) 1
=S bl ed) =gl et 5| (a29)
for e>1, J2e<J<e+3, and
2 -1
Cy(e,d) [ 2€ arccosa; N
= arccosy :
2 V2€°+ 32 2
1 1
In,(le,d)=5| et = 5 arccosy,— Z\/Ze—.]z,
e’arccosy; 1 1
Iny(€,d)= ———=+ —/2e—J°— —Ina
! 22+32 4 22 °
(A25)

for J<\/2¢, where we have introduced the notations

262+ — e+ eV1+4€2+27?
a'1= 1]
2e\1+4€2+2)?

J2

_ \/ e+ (et 7=
TN oflerir

\/l+26—\/l+4e +23%+ \/1+2e+ V1+4€? +2J2

az=

We note that in the formal limi3>1, the functionD ()
given by Eq.(A18) can be found explicitly. Indeed, in this
case the main contribution to EA19) comes frome>1.
This implies that only the term,(€) in Eq. (A22) should be
taken into account because it gives the highest powerasf
po(€)~€*. As simple analysis of EqA22) shows, the term
p1(€)~ €. Thus takingp(e)~p,(€), and combining Egs.
(A24), (A22), (A25), and(Al12), we find

4 2) 16
for e>1. Substituting this into EA18) and taking the limit

B>1, we obtain
D(B)~ \/3777/35’2,

T 1\2 1 T
ple)=1g €3] Ol e 5|~ 5t (A2D)

(A28)

V2[ 1+ 42+ 23214

(A26)

which yields Eq.(38). This expression is shown in Fig. 1 by
the dashed line. As one can see, in the rangg aif the
order of 1 the approximatiofA28) underestimates the rate
by approximately 20%.

We note that actual values gf=T/2u are far from being
B>1. Indeed, employing Eq$A2) and(37), we find

2/5
:8: L: (ﬁ) é/— 1/3(3)N_1/15Tl (A29)

2. \15a .

which yields valuesg~1 for the experimen{10] for T
~T.. Therefore, for these values the functibrfB) should
be found numericallysee the solid line in Fig.)1

In the opposite limit3—0, which corresponds td
<2u or large N, the contribution toD(B) due to p,(e)
becomes exponentially small. Thus the terap,(€) [EQ.
(A22)] dominates in Eq(A18). Taking into account that the
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effective values ok~ 3, one may perform an expansion in where the notations are
terms of the small parameterin Egs.(A26) and(A25), and

btai 2
obtain wﬁ4=(5—§)wﬁo, aM=lO<1—§§)wﬁo,
p(€)~pi(€)=pue”? €0, (A30)
&)
where the notation Bm= 20( 1= 3] @ho (B2)
1 (2 [X+ &sin 2x(7+11 cof)]? The solution of Eq(B1) up to the second order with respect
Po1=——= dx sin x . to 5o has a form
\/5 0 X+ 3sin 2x
(A31) 2ay . ay .
7= 7| mol*+ (m€ ' +c.C) — 2= (nRei2“t+c.c),
has been introduced. A numerical evaluation of this integral M M (B3)
gives pg;~1.5. This yields, for Eq(A18),
where the effective frequenay in the same order is
1/2
o ex
D(B)~DyBY", Do= f dx———x"?| ~44 5a2, 3
(,B) OB 0 Po1 0 (ex_l)Z w:wM+wr|,’]0|2’ wr:__';/l_’_ﬂ. (84)

Now employing Eq.(B2) in Eqg. (B4), and performing the
thermal averaging of EqB1) over ¢ in the limit ¢é<1, we
obtain

in the limit B<<1.

APPENDIX B: CALCULATION OF THE AMPLITUDE
DEPENDENCE OF THE DEPHASING RATE (7)1=moe (@ anA 4 c e (B5)

Expanding Eq(29) up to the third order with respect to

one obtains where the constant as well as the second harmonic have been
771

omitted; the dephasing rate7}{;,(A;) as a function of the

. ) 5 5 amplitude A;=2n, of the first harmonic is given by Eq.
ntoyn—awn +pBun =0, (B1)  (39).
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