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Two-fluid hydrodynamics for a trapped weakly interacting Bose gas
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We derive coupled equations of motion for the condensate~superfluid! and noncondensate~normal fluid!
degrees of freedom in a trapped Bose gas at finite temperatures. Our results are based on the Hartree-Fock-
Popov approximation for the time-dependent condensate wave function, and thermodynamic local equilibrium
for the noncondensate atoms. In the special case of a uniform weakly interacting gas, our hydrodynamic
equations are shown to be consistent with the two-fluid equations of Landau. The collective modes in a
parabolically trapped Bose gas include the analog of the out-of-phase second-sound mode in superfluid4He.
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PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Bz
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The low-frequency dynamics of superfluid4He is com-
monly described using the two-fluid phenomenology first
veloped by Tisza@1# and Landau@2#. This description, later
shown to be a consequence of a Bose broken symm
@3,4#, accounts for the characteristic features associated
superfluidity in terms of the relative motion of normal flu
and superfluid degrees of freedom. In particular, it pred
the existence of second sound as an out-of-phase oscilla
of the two components. In the present paper, we giv
simple microscopic derivation of two-fluid equations for
inhomogeneousweakly interacting gas of trapped atoms.
this situation, the superfluid is identified with the condens
atoms as described by a macroscopic wave function, w
the normal fluid density is associated with the nonconden
thermal cloud. In the uniform density limit, we show that o
equations are consistent with the standard two-fluid eq
tions @2,3#. However, the hydrodynamic behavior of Bo
gases is quite different from that of superfluid4He.

Our analysis is based on the equation of motion of
macroscopic Bose wave function@3,4# F(r ,t), as determined
within the time-dependent Hartree-Fock-Popov~HFP! ap-
proximation, which is a generalization of Refs.@5# and @6#.
This condensate wave function is coupled to the therm
excited atoms making up the noncondensate which is
scribed in terms of a semiclassical phase space distribu
function f (r ,p,t). The further assumption that collisions a
sufficiently rapid to force local equilibrium within the the
mal cloud leads to a set of hydrodynamic conservation la
for the noncondensate component. We are thus able to g
simple and direct derivation of a closed set of equations
the coupled motion of the condensate and noncondensate
trapped Bose gas. This complements more formal der
tions @4# of two-fluid equations which are very complicate
and, moreover, still require some microscopic model for
evalution of thermodynamic quantities.

While the hydrodynamic regime requires the size of
trapped gas to be much larger than the collisional mean
path~see the discussion in Ref.@7#!, this regime has recently
been studied in traps used at MIT@8#. We give quantitative
predictions for the hydrodynamic normal modes of a trapp
Bose gas involving both condensate and noncondensate
ponents.
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We first consider the dynamics of the condensate.
usual, the Bose field operator is conveniently separated
condensate and noncondensate parts:ĉ(r )5F(r )1c̃(r ).
For an arbitrary nonequilibrium state, the spatially and tim
varying macroscopic wave functionF(r ,t)[^ĉ(r )& t is de-
scribed within the time-dependent Hartree-Fock-Popov
proximation by the equation of motion

i\
]F~r ,t !

]t
5F2

\2¹2

2m
1Uext~r !12gñ~r ,t !1gnc~r ,t !G

3F~r ,t ![Ĥ~r ,t !F~r ,t !. ~1!

Here the nonequilibrium noncondensate density is given
ñ(r ,t)5^c̃†(r )c̃(r )& t , the condensate density isnc(r ,t)
5uF(r ,t)u2, and g54pa\2/m is the interaction strength
Equation~1! represents a natural extension of recent wo
@5,6# which approximatedñ(r ,t) in Eq. ~1! by the equilib-
rium valueñ0(r ), thereby ignoring the collective behavior o
the noncondensate. In contrast, the time-dependent con
sate wave functionF(r ,t) in Eq. ~1! is coupled into the
fluctuations of the noncondensate, and a dynamical equa
for the latter is also required.

It is convenient to recast the condensate equation of
tion into a pair of hydrodynamic equations using the amp
tude and phase representationF(r ,t)5uF(r ,t)ueiu(r ,t). Sub-
stituting this form into Eq.~1! and separating real an
imaginary parts, one finds

]nc

]t
52¹•~ncvc!,

~2!

mF]vc

]t
1

1

2
¹vc

2G52¹f,

wherevc(r ,t)[\¹u(r ,t)/m. The potentialf(r ,t) is defined
by

f~r ,t ![
1

uF~r ,t !u
Ĥ~r ,t !uF~r ,t !u, ~3!
4695 © 1998 The American Physical Society
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whereĤ(r ,t) is the HFP Hamiltonian given in Eq.~1!. An-
ticipating the identification ofvc with the superfluid velocity
vS , we see thatf plays the role of the chemical potenti
associated with the superfluid motion@3#.

We next consider the dynamics of the noncondensat
the low-frequency collision-dominated hydrodynamic r
gime. In the semiclassical limit valid at finite temperatur
@9# @with kBT@\v0 , gn0(r ), wherev0 is a characteristic
trap frequency#, the dynamics can be formulated in terms
a quantum kinetic equation for the distribution functio
f (r ,p,t) @10,11#. Since Eq.~2! implies that the number o
particles in the condensate is conserved, we must for con
tency exclude those processes which scatter atoms in an
of the condensate@11#. In this situation, only collisions be
tween excited atoms are relevant, and we can use the kin
equation@10#

F ]

]t
1

p

m
•¹r2¹U~r ,t !•¹pG f ~r ,p,t !5

] f

]t U
coll

. ~4!

Here U(r ,t)[Uext(r )12g@ ñ(r ,t)1nc(r ,t)# includes the
self-consistent Hartree-Fock dynamic mean field in wh
the condensate part 2gnc(r ,t) can be viewed as an addition
external field acting on the noncondensate.

The required hydrodynamic equations are obtained fr
Eq. ~4! by making the further assumption that collisio
force the distribution function to take the local equilibriu
form @10#

f 0~r ,p,t !5
1

expFbH 1

2m
@p2mvn#21U2mJ G21

, ~5!

where the thermodynamic variablesb, vn , andm, together
with U, all depend onr and t. When Eq.~5! is substituted
into Eq. ~4!, the collision integral vanishes by virtue of th
local equilibrium form of the distribution function. Takin
moments of Eq.~4! with respect to1, pm , andp2, we obtain
the closed set of equations@12#

]ñ

]t
1¹•~ ñvn!50,

mñF]vn

]t
1~vn•¹!vnG52¹P̃2 ñ¹U,

~6!

]ẽ

]t
1

5

3
¹•~ ẽvn!5 vn•¹P̃.

The quantity ẽ is the nonconvective part of the kinetic
energy density defined withvn50 in Eq. ~5!. Similarly, P̃

5 2
3 ẽ is the kinetic contribution to the local equilibrium pre

sure defined by

P̃~r ,t ![E dp

h3

p2

3m
f 0~r ,p,t !uvn505

1

bL3 g5/2„z~r ,t !…,

~7!

with
in
-
s

f

is-
out

tic

h

z~r ,t ![eb~r ,t ![m~r ,t !2U~r ,t !]

and

L~r ,t !5„2p\2/mkBT~r ,t !…1/2.

z~r ,t ![eb~r ,t !@m~r ,t !2U~r ,t !#

~8!

L~r ,t !5
2?\2

mkBT~r ,t !1/2 .

Equations~2! and ~6! constitute our full set of nonlinea
hydrodynamic equations for a trapped Bose gas at finite t
peratures.

At the level of approximation we are considering, the co
densate and noncondensate satisfy separate continuity e
tions. Combining these two equations gives the expec
two-fluid continuity equation

]n

]t
52¹• j , ~9!

wheren[ñ1nc and j[ñvn1ncvc . We identify the normal
fluid density with ñ(r ,t) and the superfluid density with
nc(r ,t). The former identification is supported by noting th
Eq. ~5! yields

ñ~r ,t !52E dp

h3

p2

3m

] f 0~«p!

]«p
, ~10!

where«p(r ,t)[(p2/2m)1U(r ,t)2m(r ,t) is the excitation
energy. This is the usual Landau formula for the normal flu
density@2,3#.

The linearized version of Eqs.~2! and ~6! allows one to
consider small-amplitude oscillations about equilibrium. T
equilibrium condensate wave function is determined by
solution of

Ĥ0~r !F0~r ![F2
\2¹2

2m
1Uext~r !12gñ0~r !

1gnc0~r !GF0~r !

5m0F0~r !, ~11!

with nc0(r )5uF0(r )u2. The equilibrium noncondensate de
sity ñ0(r ) is g3/2(z0)/L3, the equilibrium fugacity is defined
as z05eb0[m02U0(r )] , with U0(r )5Uext(r )
12gn0(r ). Equation~11! must be solved self-consistentl
together withñ0(r ).

The linearization of Eq.~2! around equilibrium leads to
the condensate equations

]dnc

]t
52¹•~nc0dvc!,

m
]dvc

]t
52¹df, ~12!

where
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df~r ,t ![
1

uF0~r !u @Ĥ0~r !2m0#duF~r ,t !u1gdnc~r ,t !

12gdñ~r ,t !. ~13!

In arriving at this result, we have noted that¹f0(r )50 in
equilibrium. Similarly, the linearization of Eq.~6! leads to
the equations

]dñ

]t
52¹•~ ñ0dvn!,

mñ0

]dvn

]t
52¹d P̃2dñ¹U022gñ0¹~dñ1dnc!,

~14!

]d P̃

]t
52

5

3
¹•~ P̃0dvn!1

2

3
dvn•¹P̃0 ,

whereP̃0(r ) is the equilibrium kinetic pressure which sati
fies¹P̃052ñ0¹U0. AboveTBEC, these equations reduce
those of Ref.@7# if we ignore the effect of interactions (g
50).

For its intrinsic interest, and in order to better understa
the implications of our two-fluid equations, we now consid
the limit of ahomogeneoussystem@Uext(r )50#. In this spe-
cial case, Eq.~11! yields a uniform condensate with th
chemical potential having the Thomas-Fermi~TF! valuem0

52gñ01gnc0. Taking all equilibrium quantities to be spa
tially independent, and noting that the first term on the rig
hand side of Eq.~13! can be neglected in the long
wavelength limit, the two velocity equations reduce to

m
]dvc

]t
522g¹dñ2g¹dnc ,

~15!

mñ0

]dvn

]t
52¹d P̃22gñ0¹dñ22gñ0¹dnc ,

with

]d P̃

]t
52

5

3
P̃0¹•dvn . ~16!

The two equations in Eq.~15! can be combined to give

m
]

]t
d j52¹d P̃22g~nc01ñ0!¹dñ2g~nc012ñ0!¹dnc

[2¹dP. ~17!

One can verify that Eq.~17! is consistent with the following
expression for thetotal local thermodynamic pressure:

P5 P̃1 1
2 g@n212nñ2ñ2#, ~18!

which is the equation of state at the level of approximat
we are considering. Within the same approximation, the t
internal energy density is given by
d
r

-

n
al

e~r ,t !5 ẽ~r ,t !1 1
2 g^ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !& t

. ẽ~r ,t !1 1
2 g@n212nñ2ñ2#. ~19!

Assuming the equilibrium thermodynamic relation

e1P5sT1mn ~20!

allows us to identify the entropy densitys. Using m0

5g(2ñ01nc0) together with Eqs.~18!, ~19!, and~20! gives

s0T05 5
2 P̃01gnc0ñ0 . ~21!

Here P̃0 is the equilibrium kinetic pressure defined in E
~7!, with z[z05eb0(m022gn0)5e2b0gnc0. Using the local
equilibrium expression forP̃ in Eq. ~7!, one finds that the
fluctuation in the total pressureP is given by

dP5s0dT1ñ0dm1gnc0~2dñ1dnc!, ~22!

with s0 defined by Eq.~21!. Comparing this to the thermo
dynamic relationdP5s0dT1n0dm, we arrive at

dm5d~2gñ1gnc!. ~23!

This result confirms~in the case of a uniform equilibrium
density! that df(r ,t) in Eqs. ~12! and ~13! is indeed the
fluctuation in the local chemical potential. More general
we have verified that Eq.~2! is equivalent to the key Landa
equation for superfluid flow@2,3#,

mF]vS

]t
1

1

2
¹vS

2G52¹m~r ,t !. ~24!

Finally, using Eq.~19!, we find

de5 3
2 d P̃1gnc0~2dñ1dnc!12gñ0dn. ~25!

Inserting this result into the thermodynamic relationde
5T0ds1m0dn, a simple calculation gives

T0ds5 3
2 d P̃1gnc0dñ. ~26!

Taking the time derivative, and using Eq.~16! and the con-
tinuity equation fordñ(r ,t), we obtain the linearized form o
Landau’s entropy conservation equation@2,3#

]ds

]t
52s0¹•dvn. ~27!

In the uniform case, Eqs.~15! and ~16! are easily solved
to give the expected first and second sound phonon mo
@13#. In contrast to superfluid4He, the second sound mode
a gas involves a condensate oscillation largely uncoup
from the noncondensate, with a velocity given byu2
5(gnc0 /m)1/2.

As a specific application to a trapped Bose gas, we c
sider the center-of-mass mode solution for an anisotro
parabolic potentialUext(r )5 1

2 m(vx
2x21vy

2y21vz
2z2). On

the basis of the generalized Kohn theorem@14#, one expects
three modes in which the gas oscillates rigidly along each
the principal directions at the appropriate trap frequencyv i .
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Denoting the displacement along one of these directions
h(t), the condensate and noncondensate densitiesboth be-
have asn0@r2h(t)#, giving a density fluctuationdn(r ,t)5

2¹n0(r )•h(t), and a velocity fieldv(r ,t)5ḣ(t) which is
spatially independent. Our linearized equations~12! and~14!
admit a solution of this kind, with both the condensate a
noncondensate having identical displacementsh(t)
5h0cosvit. Thus, in contrast to the static HFP used in R
@5#, the dynamic HFP theory given by Eq.~1! is consistent
with the generalized Kohn theorem.

Our equations also admit an out-of-phase dipole mod
which the condensate and noncondensate oscillate ag
each other. Although a rigorous estimate of the mode
quency can be obtained by recasting our hydrodyna
equations~12!–~14! into the form of a variational principle
@15#, the same result can be derived using the following p
ture. The condensate and noncondensate are represent
two particles with massesMc5mNc and Mn5mÑ, each
confined in the parabolic potential and coupled together b

FIG. 1. ~a! Mode frequencies for the in-phase~solid dots! and
out-of-phase~open dots! dipole modes vs temperature for 2000 R
atoms in an isotropic parabolic trap~see Ref.@5# for the physical
parameters used!. ~b! Condensate (hc) and noncondensate (hn)
amplitudes for the out-of-phase dipole mode.~c! Fraction of atoms
in the condensate as a function of temperature.
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spring with force constantk. Since the interaction energ
between the two components isEint52g*dr nc(r )ñ(r ), k
can be determined by considering small displacements of
two components along thei th direction. The equations o
motion for the two coupled masses can then be solved,
ing the in-phase center-of-mass mode at the frequencyv i
discussed above, and an out-of-phase mode at the frequ
@15#

V i
25v i

222g
Mc1Mn

McMn
E dr

]nc0~r !

]xi

]ñ0~r !

]xi
. ~28!

In Fig. 1 we show the in- and out-of-phase mode frequenc
as functions of temperature for a gas trapped in an isotro
parabolic potential. We also show, for the out-of-pha
mode, the relative amplitudes of the condensate and non
densate oscillations which satisfy the conditionMchc
1Mnhn50, corresponding to the center of mass being s
tionary for any temperature. A measurement of these am
tudes would therefore determine directly the ratioNc /Ñ of
the two fluid components. This out-of-phase mode of
trapped Bose gas is the analog of the usual second so
mode @3# in bulk superfluid 4He ~for which rSvS1rNvN
50).

In summary, we have given a simple derivation of tw
fluid hydrodynamics for a trapped weakly interacting Bo
gas, as summarized by Eqs.~12!–~14!. Our analysis illus-
trates how such a two-fluid description arises naturally fr
the existence of a macroscopic condensate wave func
which is coupled to the noncondensate atoms. We have
verified how our two-fluid equations can lead to the we
known equations@Eqs. ~2!, ~9!, ~17!, and ~27!# of Landau
@2–4#. Finally, we have shown that our equations are con
tent with the generalized Kohn theorem, and obtained
out-of-phase mode analog of second sound in a trapped B
gas. A complete discussion of the normal-mode solutions
our two-fluid equations will be given elsewhere@15#.
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