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Two-fluid hydrodynamics for a trapped weakly interacting Bose gas
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We derive coupled equations of motion for the condengstperfluid and noncondensat@ormal fluid
degrees of freedom in a trapped Bose gas at finite temperatures. Our results are based on the Hartree-Fock-
Popov approximation for the time-dependent condensate wave function, and thermodynamic local equilibrium
for the noncondensate atoms. In the special case of a uniform weakly interacting gas, our hydrodynamic
equations are shown to be consistent with the two-fluid equations of Landau. The collective modes in a
parabolically trapped Bose gas include the analog of the out-of-phase second-sound mode in sdplexfluid
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The low-frequency dynamics of superfluitHe is com- We first consider the dynamics of the condensate. As
monly described using the two-fluid phenomenology first de-usual, the Bose field operator is conveniently separated into

veloped by Tiszd1] and Landal2]. This description, later -ondensate and noncondensate paiter) = d(r) + 9(r).
shown to be a consequence of a Bose broken symmetr

or an arbitrary nonequilibrium state, the spatially and time-
[3,4], accounts for the characteristic features associated Witﬁ . y . g functioh(r t)= P2 y_ d
superfluidity in terms of the relative motion of normal fluid V&Ying macroscopic wave functioh(r,t)=(y(r)). is de-

and superfluid degrees of freedom. In particular, it predict$CriPed within the time-dependent Hartree-Fock-Popov ap-
the existence of second sound as an out-of-phase oscillatidifoximation by the equation of motion
of the two components. In the present paper, we give a

simple microscopic derivation of two-fluid equations for an IO (r,1) - _ h?v?2 +U (1) +2g0(r, 1)+ gng(r,t)
inhomogeneouweakly interacting gas of trapped atoms. In at 2m ex ' e

this situation, the superfluid is identified with the condensate R

atoms as described by a macroscopic wave function, while XD (r,t)=H(r,t)P(r,t). 1)

the normal fluid density is associated with the noncondensate o o

thermal cloud. In the uniform density limit, we show that our Here the nonequilibrium noncondensate density is given by

equations are consistent with the standard two-fluid equan(r,t)=("(r)¥(r));, the condensate density is.(r,t)

tions [2,3]. How_ever, the hydrodynamic behavior of Bose =|®d(r,t)|?, and g=4mah?/m is the interaction strength.

gases is quite different from that of superfifitie. Equation (1) represents a natural extension of recent work
Our analysis is based on the equation of motion of theg g1 \which anproximatedi(r.t) in Eg. (1) by the equilib-

macroscopic Bose wave functi¢d,4] o(r,1), as d“eFtermined eElurg valuen (Fr)? thereby ig(n(,)r)ing th;q .c(ol)leci/ive ber?avior of
o L i s i o(n),

within the time-dependent Hartree-Fock-Po P ap the noncondensate. In contrast, the time-dependent conden-

proximation, which is a generalization of Ref§] and[6]. ate wave functionb(r 1) in Eq. (1) is coupled into the
%

This condensate wave function is coupled to the thermall X . .
excited atoms making up the noncondensate which is d uctuations of the noncondensate, and a dynamical equation
r the latter is also required.

scribed in terms of a semiclassical phase space distributio . . .
It is convenient to recast the condensate equation of mo-

function f(r,p,t). The further assumption that collisions are tion into a pair of hydrodynamic equations using the ampli-
sufficiently rapid to force local equilibrium within the ther- ude and phase representatior,t) = | (r, )|, Sub-

mal cloud leads to a set of hydrodynamic conservation law ituting this f into Eq.(1 d i | and
for the noncondensate component. We are thus able to give_sgl' uting this form into 9.(1) and separating real an
maginary parts, one finds

simple and direct derivation of a closed set of equations fot

the coupled motion of the condensate and noncondensate in a an
C

trapped Bose gas. This complements more formal deriva- —=-V-(nVe),
tions [4] of two-fluid equations which are very complicated at @)
and, moreover, still require some microscopic model for the
evalution of thermodynamic quantities. m %Jr Esz _
While the hydrodynamic regime requires the size of the a2 ¢ '

trapped gas to be much larger than the collisional mean free _ _ _
path(see the discussion in R¢fZ]), this regime has recently Wherevg(r,t)=%V6(r,t)/m. The potentiakp(r,t) is defined
been studied in traps used at M[8]. We give quantitative by
predictions for the hydrodynamic normal modes of a trapped 1
Bose gas involving both condensate and noncondensate com- _ ~

ponents. ¢(r,H= |<I>(r,t)|H(r’t)|q)(r’t)|’ ®
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whereH(r,t) is the HFP Hamiltonian given in Eql). An- z(r,t)=efr0lurH-U.0]
ticipating the identification of; with the superfluid velocity
Vs, We see thaip plays the role of the chemical potential and
associated with the superfluid moti@ai.

We next consider the dynamics of the noncondensate in
the low-frequency collision-dominated hydrodynamic re- B~ U]
gime. In the semiclassical limit valid at finite temperatures zr.n=e (8
[9] [with kgT>hAwg, gng(r), where wg is a characteristic 202
trap frequency; the dynamics can be formulated in terms of =,
a quantum kinetic equation for the distribution function AL mkgT(r, 1)1
f(r,p,t) [10,11]. Since Eq.(2) implies that the number of . . .
particles in the condensate is conserved, we must for consi _quatlons(2)_ and (6? constitute our full set of ”Or?"'."eaf
tency exclude those processes which scatter atoms in and Ol)(drodynamm equations for a trapped Bose gas at finite tem-
of the condensatEl1]. In this situation, only collisions be- peratures.

tween excited atoms are relevant, and we can use the kineti Atthe level of approximation we are conS|derlng,_ th_e con-
ensate and noncondensate satisfy separate continuity equa-

A(r,t)= Qa2 ImkgT(r,1))¥2

equation[10] tions. Combining these two equations gives the expected
a p of two-fluid continuity equation
E%—E'Vr—VU(r,t)-Vp}f(r,p,t)=E (4) an
coll

N =V ©
Here U(r,t)=Ugr)+2g[n(r,t)+n.(r,t)] includes the

self-consistent Hartree-Fock dynamic mean field in which,paren=1+n
the condensate parga.(r,t) can be viewed as an additional ¢
external field acting on the noncondensate.

The required hydrodynamic equations are obtained fro

andj=nv,+n.v.. We identify the normal

fluid density withn(r,t) and the superfluid density with
<(r,t). The former identification is supported by noting that

Eq. (4) by making the further assumption that collisions 9. (5 yields

force the distribution function to take the local equilibrium 2

form [10] Hr t):_fd_pp_afo(sp) 10
' h33m Jdg, '

1

fo(r,p,t)= (8 whereey(r,t)=(p%2m)+U(r,t)— u(r,t) is the excitation
ex;{/g(_[p_ mVn]2+ Uu-— M] } -1 energy. This is the usual Landau formula for the normal fluid
2m density[2,3].
The linearized version of Eq$2) and (6) allows one to
consider small-amplitude oscillations about equilibrium. The

equilibrium condensate wave function is determined by the

where the thermodynamic variablgs v,, and ., together
with U, all depend orr andt. When Eq.(5) is substituted
into Eq. (4), the collision integral vanishes by virtue of the

local equilibrium form of the distribution function. Taking solution of
moments of Eq(4) with respect tdl, p,,, and p2, we obtain R £2y2 -
the closed set of equation$2] Ho(r)cbo(r)z[— > +Ugulr)+2gng(r)
an -
V- (V) =0, +gngo(r) | Po(r)
~[av, -~ = poPo(r), (11)
mnﬁ+(vn-V)vn =—-VP—- nVU, _ o
(6)  with neo(r)= |®o(r)|?. The equilibrium noncondensate den-
e 5 _ ~ sity no(r) is g3,2[(202/UA(*:’),] the equil_ibrium fugacity is defined
— 3V ()= v VP, as zo=ePolro™ Vo], with Uo(r) =Uex(r)

+2gn(r). Equation(11) must be solved self-consistently
. _ _ together withny(r).

The quantity e is the nonconvective part of the kinetic-  “The |inearization of Eq(2) around equilibrium leads to
energy density defined with,=0 in Eq. (5). Similarly, P the condensate equations

= Z¢ is the kinetic contribution to the local equilibrium pres-

. aon
sure defined by - = —V-(NgdVy),
ﬁun—fd“f¢Upo| L gela(r )
L)= a oll,M, h=0"" 5/2 ’ ’ AoV,
h3 3m v BA - m— ‘= _V5g, 12

with where
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1 n = Tt oeY T e o 7
5¢(r,t)5|(1) (r)|[Ho(l’)—ﬂo]5|q)(r,t)|+g5l’lc(r,t) E(r!t) E(r!t)+2g<w (r)lﬂ (r)‘/’(r)lﬂ(r»t
° ~&(r,t)+ 1g[n?+2nh—12]. (19
+2g4n(r,t). (13

Assuming the equilibrium thermodynamic relation

In arriving at this result, we have noted tH&tpy(r)=0 in (20)

equilibrium. Similarly, the linearization of Eq6) leads to
the equations

e+ P=sT+un

allows us to identify the entropy densitg. Using ug
=g(2ny+ o) together with Eqs(18), (19), and(20) gives

aon U.(sy
g =V (Nodva), SoTo=5Po+gneoNo. (22)
~ OV, ~ o~ ~ - Here P, is the equilibrium kinetic pressure defined in Eq.
mny——=—VéP—4dnVU,—2gneV(dn+dne), (7), with z=z,=efolro~29M) =g~ Fod%0, Using the local
(14 equilibrium expression foP in Eq. (7), one finds that the
9P 5 2 B fluctuation in the total pressui is given by
T: - §V~(Poé\/n)+ gb\/n- VPo,

SP=5u8T +Nydu+gne(25n+46n,), (22)

wherePy(r) is the equilibrium kinetic pressure which satis- with s, defined by Eq(21). Comparing this to the thermo-
fies VPy= —NyVU,. Above Tgec, these equations reduce to dynamic relationsP=sy6T +ngdu, we arrive at

those of Ref[7] if we ignore the effect of interactiongy(
=0).

For its intrinsic interest, and in order to better understand].
the implications of our two-fluid equations, we now consider

the limit of ahomogeneousystem U, (r)=0]. In this spe-

cial case, Eq.11) yields a uniform condensate with the

chemical potential having the Thomas-Fer(fiF) value ug

=Zg?10+gnco. Taking all equilibrium quantities to be spa-
tially independent, and noting that the first term on the right-

hand side of Eq.(13) can be neglected in the long-
wavelength limit, the two velocity equations reduce to

P -
m——=—2gVén—gvén,,
at
(15
96V, e e
mn07=—V5P—29n0V5n—29n0V5nc,
with
doP 5E> . 16
St 3rov (10

The two equations in Eq15) can be combined to give

J ~ ~ ~ ~
mﬁ 8j=—VSP—2g(ng,+ng) Ven—g(ngy+2ng) Von,
=—V5P. 17

One can verify that Eq.17) is consistent with the following
expression for théotal local thermodynamic pressure:

P=P+ig[n?+2nn—n?], (18)

Su=38(2gn+gn,). (23)

his result confirmgin the case of a uniform equilibrium
density that §¢(r,t) in Egs. (12) and (13) is indeed the
fluctuation in the local chemical potential. More generally,
we have verified that Eq2) is equivalent to the key Landau
equation for superfluid flow2,3],

Msy lngl- v 24
mW+§ VS__ /,L(I',t). ( )

Finally, using Eq.(19), we find
Se=32 5P +gng(28n+ 8n.) +2gnydn. (25)

Inserting this result into the thermodynamic relatide
=Tyds+ uodn, a simple calculation gives

Tods=25P+gngon. (26)

Taking the time derivative, and using E{.6) and the con-

tinuity equation forsn(r,t), we obtain the linearized form of
Landau’s entropy conservation equati@3]

J6s

7: —SOV' é\/n.

(27)

In the uniform case, Eq¢15) and(16) are easily solved
to give the expected first and second sound phonon modes
[13]. In contrast to superfluidHe, the second sound mode in
a gas involves a condensate oscillation largely uncoupled
from the noncondensate, with a velocity given lhy
=(gneo/m)*2

As a specific application to a trapped Bose gas, we con-
sider the center-of-mass mode solution for an anisotropic
parabolic potentialU g,(r) = 3m(wix?+ wZy’+ w5z%). On

which is the equation of state at the level of approximationthe basis of the generalized Kohn theorgid], one expects
we are considering. Within the same approximation, the totathree modes in which the gas oscillates rigidly along each of
internal energy density is given by the principal directions at the appropriate trap frequesagcy
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o 1.4 . (@) spring with force constank. Since the interaction energy
3 10 BALLITTTITTINN between the two components B,=2g/dr n.(r)n(r), k
3 06 J can be determined by considering small displacements of the
’ two components along thigh direction. The equations of
e 1.0 (v) motion for the two coupled masses can then be solved, giv-
& 05 - ing the in-phase center-of-mass mode at the frequesicy
:3 ’ e Nn discussed above, and an out-of-phase mode at the frequency
0.0 [15]
1.0 -
=, (c) -
N i s 2 Mc+Mnf dNgo(r) dng(r)
s 0.5 2— wi—
> .. QOr=w—2g MM, dr ox, x (28
. T T T L
0 50 100 150 In Fig. 1 we show the in- and out-of-phase mode frequencies
as functions of temperature for a gas trapped in an isotropic
T(nK) parabolic potential. We also show, for the out-of-phase

mode, the relative amplitudes of the condensate and noncon-

FIG. 1. M f ies for the in-ph li o . - "
G. 1. (&) Mode frequencies for the in-phassolid dot and densate oscillations which satisfy the conditidvz,

out-of-phasgopen dots dipole modes vs temperature for 2000 Rb - . h f .
atoms in an isotropic parabolic trdpee Ref[5] for the physical +M;7,=0, corresponding to the center of mass being sta-

parameters used(b) Condensate #,) and noncondensater() tionary for any temperature. A measurement of theEe ampli-

amplitudes for the out-of-phase dipole mod®. Fraction of atoms  tudes would therefore determine directly the ratig/N of

in the condensate as a function of temperature. the two fluid components. This out-of-phase mode of the
trapped Bose gas is the analog of the usual second sound

Denoting the displacement along one of these directions bgnode [3] in bulk superfluid “He (for which psvs+ pyvy

7(t), the condensate and noncondensate denditéisbe- =0).

have asg[r— »(t)], giving a density fluctuatio@n(r,t) = In summary, we have given a simple derivation of two-

—Vny(r)- 7(t), and a velocity fieldv(r,t)= 7(t) which is  fluid hydrodynamics for a trapped weakly interacting Bose

spatially independent. Our linearized equati¢h® and(14) ~ 92, as summarized by E¢d2)—(14). Our analysis illus-

admit a solution of this kind, with both the condensate andrates how such a two-fluid description arises naturally from
noncondensate having identical displacementy(t) the existence of a macroscopic condensate wave function

= yocoswit. Thus, in contrast to the static HFP used in Ref.whi_c_h is coupled to the rjoncond_ensate atoms. We have also
[5], the dynamic HFP theory given by E€L) is consistent verified how our two-fluid equations can lead to the well-
with the generalized Kohn theorem. known equationgEgs. (2), (9), (17), and (27)] of Landau
Our equations also admit an out-of-phase dipole mode ih2—4- Finally, we have shown that our equations are consis-
which the condensate and noncondensate oscillate agaif§'t With the generalized Kohn theorem, and obtained the
each other. Although a rigorous estimate of the mode fre®Ut-0f-phase mode analog of second sound in a trapped Bose
quency can be obtained by recasting our hydrodynami&@s- A Complete d|§cu55|9n of the normal-mode solutions of
equations(12)—(14) into the form of a variational principle ©OUr two-fluid equations will be given elsewhe[Es].
[15], the same result can be derived using the following pic- A, G. would like to thank Wen-Chin Wu for discussions
ture. The condensate and noncondensate are representeddp¥he early stages of this work, and E. Z. would like to thank
two particles with masseM.=mN, and M,=mN, each Brian W. King for help with the numerical calculations. This
confined in the parabolic potential and coupled together by aesearch was supported by grants from NSERC of Canada.
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