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Matched pulse propagation in a three-level system

Q-Han Park* and H. J. Shin†

Department of Physics and Research Institute of Basic Sciences, Kyunghee University, Seoul, 130-701, Korea
~Received 19 August 1997!

The Bäcklund transformation for the three-level coupled Schro¨dinger-Maxwell equation is presented in the
matrix potential formalism. By applying the Ba¨cklund transformation to a constant-electric-field background,
we obtain a general solution for matched pulses~a pair of solitary waves! that can emit or absorb a light
velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution
describes a steady-state pulse without emission or absorption, and becomes the matched pulse solution recently
obtained by Hioe and Grobe@Phys. Rev. Lett.73, 2559~1994!#. A nonlinear superposition rule is derived from
the Bäcklund transformation and used for the explicit construction of two solitons as well as non-Abelian
breathers. Various features of these solutions are addressed. In particular, we analyze in detail the scattering of
‘‘binary solitons,’’ a specific pair of different wavelength solitons, one of which moves with the velocity of
light. Unlike the usual case of soliton scattering, the broader soliton changes its sign after the scattering, thus
exhibiting a binary behavior. Surprisingly, the light velocity soliton receives a time advance through the
scattering, thereby moving faster than light, which, however, does not violate causality.
@S1050-2947~98!09206-3#

PACS number~s!: 42.50.Md, 42.65.Tg, 42.55.2f
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I. INTRODUCTION

The nonlinear interaction between radiation and a mu
level optical medium has received considerable interest
many years. Recently, this topic has attracted more atten
in the context of lasing without inversion@1,2# and electro-
magnetically induced transparency~EIT! @3#. EIT is a tech-
nique for rendering an otherwise optically thick mediu
transparent to a weak probe laser by coupling the upper l
coherently to a third level by a strong laser field. The tra
parency for pulses propagating through an optically th
medium has been known earlier, particularly for a solit
~2p pulse! in the shape of the hyperbolic-secant type@4# and
through a three-level medium@5#. More recently, there ap
peared exact analytic solutions for a pair of solitary wav
so-called matched-solitary-wave pairs~MSPs!, propagating
through a three-level medium whose invariant shapes
more general than the hyperbolic-secant type@6#.

In this paper, we present an analysis of the three-le
coupled Scho¨dinger-Maxwell equation based on the matr
potential formalism. In particular, we find the Ba¨cklund
transformation of the coupled Scho¨dinger-Maxwell equation
in terms of the matrix potential variable and apply the Ba¨ck-
lund transformation to the constant electric field backgrou
to obtain MSP solutions that generalize the result in Ref.@6#.
These solutions in general describe the breakup of a M
into another MSP with slower velocity and a soliton pul
moving with light velocity, or the reverse process of fusing
MSP and a soliton into another MSP. With a specific cho
of parameters, these solutions reduce to the MSP solutio
Ref. @6#, which describes steady-state propagation of M
without breakup. The generality in the shape of a MSP so
tion is explained through the SU~2!3U~1! group symmetry
of the three-levelL system with equal oscillator strength

*Electronic address: qpark@nms.kyunghee.ac.kr
†Electronic address: thjshin@nms.kyunghee.ac.kr
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We show that the Ba¨cklund transformation also allows
nonlinear superposition rule for solitons as well as MSP
lutions. An explicit formula for the nonlinear superposition
given in terms of matrix potentials and used to generate t
soliton and non-Abelian breather solutions. We consider
detail the scattering of a specific type of soliton that exhib
a binary behavior during the scattering process. They a
pair of different wavelength solitons, one of which is movin
with the velocity of light and the other with slower velocity
Unlike the usual case of soliton scattering, the broader s
ton changes its sign during the scattering process. Surp
ingly, the light velocity soliton receives a time advan
through the scattering, thereby moving faster than light.
show, however, that causality is not violated. A typical no
Abelian breather describes a breathing 0p pulseE1(v,c),
which afterwards transfers to the nonbreathingE2 pulse
moving with light velocity.

II. MATRIX POTENTIAL FORMALISM
OF THE L SYSTEM

Consider aL configuration where level three is highe
than levels one and two. The system of equations govern
the propagation of pulses is given by the Schro¨dinger equa-
tion

]c1

]t
5 iV1c3 ,

]c2

]t
5 iV2c3 , ~1!

]c3

]t
5 i ~V1* c11V2* c2!,

and the Maxwell equation
4643 © 1998 The American Physical Society
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i S ]

]x
1

1

c

]

]t DV15 l 1c1c3* ,
~2!

i S ]

]x
1

1

c

]

]t DV25 l 2c2c3* .

Here,l i52pNm i
2v i /\, i 51,2, andck , k51,2,3, are slowly

varying probability amplitudes for the level occupation
V i5m iEi /2\ are the Rabi frequencies for the transitionsi
→3, E1 andE2 are the slowly varying electromagnetic fie
amplitudes,m i is the dipole matrix element for the releva
transition,v i is the corresponding laser frequency, andN is
the density of resonant three-level atoms. For brevity,
introduce a coordinatez5t2x/c, z̄5x/c, so that][]/]z

5]/]t, ]̄[]/] z̄5]/]t1c]/]x.
As in our earlier papers@7,8#, the main tool of our analy-

sis will be using a matrix potentialg instead of the probabil-
ity amplitudesci in the following way: letg be a 333 uni-
tary matrix whose second row is the complex conjugation
probability amplitudes, i.e.,

g5S * * *

c1* c2* c3*

* * *
D , ~3!

where the first and the third rows are to be determined la
In terms ofg, the density matrixr whose components ar
rmk5cmck* takes a simple form

r5
i

l 1
g21T̄g, T̄5S 0 0 0

0 2 i l 1 0

0 0 0
D . ~4!

The specific choice of the matrixT̄ is not essential. One ma
consider an arbitrary diagonal matrixT̄ to handle density
matrices in a more general context. Note that the first and
third rows of the matrixg do not affect the density matrixr.
In other words, the density matrixr is invariant under the
left multiplication of g by any matrixh,

g→g85hg, ~5!

which commutes withT̄ and is thus of the form

h5S * 0 *

0 * 0

* 0 *
D . ~6!

At first sight, introducing the matrixg with more redundant
components thanci ’s may seem an unnecessary complic
tion. However, this is not so. In fact, it not only manifests t
symmetry group structure of the system, but it also simplifi
the problem of solving differential equations. Later, we sh
that the Ba¨cklund transformation of the system, a solutio
generating technique, also takes a simple form in terms og.
The main advantage of usingg is that g solves the Schro¨-
dinger equation identically. In order to see this, we fix t
redundancy introduced by Eqs.~5! and ~6!. Adopting the
notation for the following matrix decomposition:
,

e

f

r.

e

-

s

S5SM1SH , SM5S 0 0 *

0 0 *

* * 0
D ,

~7!

SH5S * * 0

* * 0

0 0 *
D ,

we fix the redundancy by imposing the constraint condit
on g,

~g21]g!H50, ~ ]̄gg21!H50. ~8!

One can always solve the constraint by finding anh that
makesg satisfy the constraint via the transform in Eq.~5!.1

We also parametrize the remaining components ofg21]g
such that2

g21]g5S 0 0 2 iV1

0 0 2 iV2

2 iV1* 2 iV2* 0
D . ~9!

The nonzero components in Eq.~9! express the Rabi fre
quencies in terms ofg. In this parametrization, one ca
readily check that the Schro¨dinger equation~1! arises from
the simple identity

]g†5]g2152g21]gg2152g21]gg†. ~10!

This situation may be compared with ordinary electromag
tism where the static electric fieldEW in terms of a scalar
potentialf, EW 52¹W f, solves the curl-free condition¹W 3EW

50W . Likewise, we solve the Schro¨dinger equation in terms o
a matrix potentialg and express the electric field componen
V i in terms ofg as in Eq.~9!. Originally, the Schro¨dinger
and the Maxwell equations are made of five complex, co
ponent equations in total. Three of them~the Schro¨dinger
part! are now solved identically in terms ofg, whereg is
partially constrained by Eq.~8!. Then, the remaining degre
of g can be parametrized by two unknown complex functio
and the Maxwell equation changes into two compon
equations for these two unknown functions only.3 In this

1The existence of such anh can be proved by adopting the fiel
theory formulation of the problem as in@8#. However, we do not
need the explicit expression ofh.

2Note thatg21]g is anti-Hermitian andg is unitary.
3In mathematical terms, we have associated the density matrr

with the cosetG/H5@SU~3!/SU~2!3U~1!# and introduced the ma
trix g for the parametrization ofG/H. The constraint equation ong
makes a specific choice for each equivalence class, and varia
that parametrize equivalence classes are determined by the Ma
equation. Since the constraint restricts the subgro
H@5SU~2!3U~1!# part of the variableg, the remaining uncon-
strained part ofg can be expressed in terms of two unknown co
plex functionsw1 andw2. In the gauged sigma model formulation
the Maxwell equation is vector gauge invariant so that it decoup
from the H degree of freedom, i.e., it reduces to two compl
equations only inw1 andw2.
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57 4645MATCHED PULSE PROPAGATION IN A THREE-LEVEL SYSTEM
way, the Maxwell equation resembles the Poisson equa
in electrostatics. However, we do not need explicit com
nent expressions in this paper so we suppress them. Wha
need is the expression of the Maxwell equation in terms og
such that

]̄~g21]g!5Q@T,g21T̄g#Q, ~11!

where

T5S 2
i

2
0 0

0 2
i

2
0

0 0
i

2

D , Q5S 1 0 0

0 l 2 / l 1 0

0 0 1
D . ~12!

Note that this is indeed consistent with Eq.~9!. The Maxwell
equation in Eq.~11! possesses a symmetry under the chan
g→g85gh whereh is an arbitrary constant diagonal matri
That is,g8 again satisfies Eqs.~9! and ~11!. This symmetry
becomes enhanced to a larger one when the oscill
strengths are equal (l 15 l 25s) so thatQ is the identity ma-
trix. For theL system, the oscillator strengths is positive,
which we assume throughout the paper. With equal oscilla
strengths,h̃ can be a constant unitary matrix of the form

h̃5S h11 h12 0

h21 h22 0

0 0 h33

D . ~13!

In other words,h̃ is a constant matrix belonging to the grou
SU~2!3U~1!. In terms of physical variables, this symmet
amounts to the transform,

S V18

V28
D 5S h11* h21*

h12* h22*
D S V1

V2
D ,

~14!

S c18

c28

c38
D 5S h11* h21* 0

h12* h22* 0

0 0 h33*
D S c1

c2

c3

D ,

where the primed variables are solutions of Eqs.~9! and~11!
provided that unprimed variables are. In particular, if t
unprimed solution is a single 2p pulse @V150, V2
; sech(t2x/v)/tp#, the primed solution represents a simu
ton solution @10#. When the oscillator strengths are equ
(Q51), the theory becomes integrable and exact anal
solutions can be found. However, even forQÞ1, the Max-
well equation admits a Lax pair representation and infin
n
-
we

e;

or

or

l
ic

e

sequences of conserved integrals can be found@12#. In this
paper, we assume the equal oscillator strengths so tha
Maxwell equation becomes

]̄~g21]g!5@T,g21T̄g#. ~15!

III. BÄ CKLUND TRANSFORMATION

The Maxwell equation in Eq.~15! is equivalent to the
consistency condition@L1 ,L2#50 of the overdetermined lin-
ear equations:

L1C5~]1g21]g1lT!C50,
~16!

L2C5S ]̄1
1

l
g21T̄gDC50,

wherel is a spectral parameter. We may apply the inve
scattering method to Eq.~16! and obtain exact solutions as i
@8#. Instead, we present in this paper an alternative, sim
method—the Ba¨cklund transformation~BT!—which allows
a more direct construction of exact solutions. Moreover,
advantage of using the matrix potentialg becomes clear
when the BT is used to establish a nonlinear superposi
rule for a couple of single pulses. This is similar to the line
case where the application of the usual superposition rul
easier in terms of the scalar potential rather than the elec
field itself. Let g0 and C0 be a particular solution of Eqs
~15! and ~16!, then g1 is also a solution of Eq.~15! if it
satisfies the Ba¨cklund transformation of type I~type-I BT!:

type-I BT:

g1
21]g12g0

21]g02 ih@g1
21g0 ,T#50,

~17!

ih]̄~g1
21g0!1g1

21T̄g12g0
21T̄g050.

Here,h is an arbitrary parameter of the transformation. On
again, the type-I BT is a set of overdetermined first-ord
partial differential equations whose consistency requires
g0 andg1 should be both solutions of Eq.~15!. An equiva-
lent expression of the BT is in terms of the linear functionC
as in@13#. We define the Ba¨cklund transformation of type II
~type-II BT!:

type-II BT:

C15
l

l2 ihS 11
ih

l
g1

21g0DC0 . ~18!

It can be readily checked thatg1 and C1 satisfy Eqs.~15!
and~16! provided Eq.~17! holds and vice versa. The type-
BT is particularly useful for establishing a nonlinear sup
position rule. Assume that (ga ,Ca) and (gb ,Cb) are two
sets of solutions with BT parametersha and hb , respec-
tively, solving the BT for a particular solution, (g0 ,C0). If
we apply the BT once more to (ga ,Ca) with h5hb and also
to (gb ,Cb) with h5ha , and require that they result in th
same solution~this amounts to the commutability of the dia
gram in Fig. 1!, then we obtain from the type-II BT,
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C5
l

~l2 ihb!

l

~l2 iha! S 11
ihb

l
g21gaD

3S 11
iha

l
ga

21g0DC0

5
l

~l2 iha!

l

~l2 ihb! S 11
iha

l
g21gbD

3S 11
ihb

l
gb

21g0DC0 . ~19!

Equivalently, we have the nonlinear superposition of t
solutions,

g5~hbga2hagb!g0
21~hbgb

212haga
21!21. ~20!

Combining this expression with the type-I BT, we obtain
useful formula for the nonlinear superposition of the Ra
frequencies,

g21]g5
1

2
~ga

21]ga1gb
21]gb!1

i

2
@g21~hagb1hbga!,T#,

~21!

or,

V15
1

2
~V1

a1V1
b!2

i

2
F13,

V25
1

2
~V2

a1V2
b!2

i

2
F23, ~22!

F[~hbgb
212haga

21!g0~hbga2hagb!21~hagb1hbga!.

IV. MATCHED PULSES

Now, we construct solutions by integrating the type-I B
directly. We choose the particular solutiong0 for a constant
electric field.

g0
21]g05S 0 0 2 iV1

0 0 2 iV2

2 iV1* 2 iV2* 0
D

5S 0 0 2 iV0

0 0 0

2 iV0 0 0
D [L ~23!

FIG. 1. Commutability diagram for the nonlinear superpositi
rule.
i

for a real constantV0, so that

g05eLz5S cos~V0z! 0 2 isin~V0z!

0 1 0

2 isin~V0z! 0 cos~V0z!
D . ~24!

If we set f [e2Lzg1, the type-I BT becomes

f 21] f 1 f 21L f 2L2 ih@ f 21,T#50, ~25!

ih]̄ f 211 f 21T̄f 2T̄50. ~26!

Since f 21] f is anti-Hermitian, Eq.~25! requires that

@ f 212 f ,T#50, ~27!

which we solve by taking

f 212 f 52isinu ~28!

for an arbitrary real parameter sinu. If we rewrite f in terms
of another matrixP,

f [e2Lzg15cosu~2P21!2 isinu, ~29!

then Eqs.~28! and ~29! imply that P is a Hermitian projec-
tion operator, i.e.,

P25P, P†5P. ~30!

In terms ofP, Eqs.~25! and ~26! can be written by

~12P!~]1L2 i h̃T!P50,
~31!

~12P!~ i h̃ ]̄2T̄!P50,

where h̃[eiuh. SinceP is a projection operator acting o
the three-dimensional space, we may expressP using a
three-dimensional vectorsW5(s1 ,s2 ,s3) by

Pi j 5sisj* Y S (
k51

3

sksk* D , ~32!

which transforms Eq.~31! into a linear one,

~]1L2 i h̃T!sW50,
~33!

~ i h̃ ]̄2T̄!sW50.

SinceL andT̄ commute, this may be integrated immediate
resulting in

si5 (
k51

3

@expD# ikuk for D5~ i h̃T2L!z2
i

h̃
T̄z̄, ~34!

whereuW 5(u1 ,u2 ,u3) is an arbitrary complex constant vec
tor. Explicitly,
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s15S coshAKz1
h̃

2AK
sinhAKzD u11

iV0

AK
~sinhAKz!u3 ,

s25expS h̃z

2
2

sz̄

h̃
D u2, ~35!

s35
iV0

AK
~sinhAKz!u11S coshAKz2

h̃

2AK
sinhAKzD u3 ,

whereK5h̃2/42V0
2. Finally, Rabi frequencies are given b

V15V022ih~cosu!s1s3* Y S (
k51

3

sksk* D ,

~36!

V2522ih~cosu!s2s3* Y S (
k51

3

sksk* D
and probability amplitudes are obtained through Eqs.~3! and
~29!,

c152~cosu!s1s2* Y S (
k51

3

sksk* D ,
c25~cosu!F2s2s2* Y S (
k51

3

sksk* D 21G1 isinu,

c352~cosu!s3s2* Y S (
k51

3

sksk* D . ~37!

Note that this solution, combined with the symmetry tran
formation in Eq.~14!, represents a rich family of single puls
solutions. For the vanishing (V050), it becomes

V15
1

N
@22ih~cosu!u1u3* exp~ ihzsinu!#,

~38!

V25
1

N H 22ih~cosu!u2u3*

3expF i S hz1
s

h
z̄D sinu2

s

h
z̄cosuG J

and
c15
1

N H 2~cosu!u1u2* expF S hz2
s

h
z̄D cosu2 i

s

h
z̄sinuG J ,

c25
1

N H 2uu1u2exp@hz~cosu!2 iu#1uu2u2expF S hz22
s

h
z̄D cosu1 iuG2uu3u2exp@2hzcosu2 iu#J , ~39!

c35
1

N H 2~cosu!u3u2* expF2
s

h
z̄cosu2 i S hz1

s

h
z̄D sinuG J ,

where

N[uu1u2exp@hzcosu#1uu2u2expFhzcosu2
2s

h
z̄cosuG1uu3u2exp@2hzcosu#. ~40!
n

of
This solution for u1Þ0, u2Þ0, hcosu.0 describes the
transfer of the 2p pump pulse in the limitx→2`:

V1→0, V2→2 ih~cosu!~sechS1!eiS2,

c1→0, c2→
eS11 iu2e2S12 iu

eS11e2S1
,

c3→cosue2 iS2 sechS1 , ~41!

S15~cosu!S ht2
~h21s!

ch
x1f1D ,

S25~sinu!S ht2
~h22s!

ch
x1f2D
to the 2p-Stokes pulse moving with the velocity of light i
the limit x→`:

V1→2 ih~cosu! sechF ~cosu!hS t2
x

cD G
3expF i ~sinu!hS t2

x

cD G ,
V2→0, c1→0, c2→2e2 iu, c3→0, ~42!

where the arbitrary constantsf i , i 51,2 determine soliton
positions in time and space. In the case ofu50, this transfer
of 2p pulse has been given in@14#. For u150 or u250, the
solution remains as the steady-state 2p pulse given in Eqs.
~41! or ~42!, respectively, without causing any transfer
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4648 57Q-HAN PARK AND H. J. SHIN
pulses. This steady pulse, in connection with the symm
transform in Eq.~14!, is the simulton solution@10#. The free
parameteru measures the amount of self-detuning of a pu
from the carrier frequency. The 2p Stokes pulse in Eq.~42!
is the same as the usual 2p pulse (u50) but with the carrier
frequency shifted by the amountdw5hsinu. On the other
hand, Eq.~41! shows that the 2p pump pulse receives
time-independent phase factor exp@i(ssinu/ch)x# in addition
to the shift of carrier frequency. We emphasize that this
tuning has nothing to do with the frequency detuning of el
tromagnetic fields from the resonance line. In fact, our s
tem is on resonance and thus the parameteru measures the
self-generated detuning of each pulse. The effect ofu to a
single 2p pulse is to broaden the pulse shape maintaining
2p area of the envelope, which is adjusted by the shift of
carrier frequency. Recall that due to the symmetry in E
~14!, a more general expression for a single pulse arises
linear mixture ofV1 and V2 in Eq. ~38!, which possess a
wide range of free parameters.

If V0Þ0, the solution describes pulses more general t
the hyperbolic-secant type. For the simplicity of analysis,
assume thatu50 and uhu>2uV0u. We also restrict to the
parametersu15r 1 , u25r 2 , u35 ir 3 for real r i and rewrite
Eq. ~35! for the notational convenience as follows:

s15Aexp~AKz!1Bexp~2AKz!,

s25AA21C2expS hz

2
2

sz̄

h
D , ~43!

s35 iCexp~AKz!1 iDexp~2AKz!,

wherer 2 is chosen to beAA21C2 by an appropriate choice
of the coordinate origin. The coefficients are defined by

A5
1

2 S 11
h

2AK
D r 12

V0

2AK
r 3 ,

B5
1

2 S 12
h

2AK
D r 11

V0

2AK
r 3 ,

C5
V0

2AK
r 11

1

2 S 12
h

2AK
D r 3 , ~44!

D52
V0

2AK
r 11

1

2 S 11
h

2AK
D r 3 ,

K5
1

4
h22V0

2 .

In the limit wherex→2`, the solution takes an asymptot
form:

V152V0 tanhS I , V25
hC

AA21C2
sechS I ~45!

and
ry

e

-
-
-

e
e
.

s a

n
e

c152
hC

AA21C2
sechS I , c252 tanhS I ,

c35
iC

AA21C2
sechS I , ~46!

S I5
2s1~h222hAK !

2hc
~x2v I t !,

where the velocityv I is

v I5
h222hAK

2s1h222hAK
c, ~47!

which is less than the light velocityc. Comparison of electric
fields in Eq.~45! with initial populations in Eq.~46! shows
that two laser pulses are arranged in the so-called counte
tuitive order@9#. In the x→` limit, the asymptotic form of
the solution is

V152V0 tanhSF1V1
S, V25

hC

AA21C2
sechSF ~48!

and

c15
B

AB21D2
sechSF , c252 tanhSF ,

~49!

c35
iD

AB21D2
sechSF,

where

SF5
2s1~h212hAK !

2hc
~x2vFt !2D0 ,

vF5
h212hAK

2s1h212hAK
c,

~50!

D05
1

2
ln

B21D2

A21C2 ,

V1
S[

V0~r 1
21r 3

2!2hr 1r 3

~A21C2!eD0 cosh@2AK~ t2x/c!2D0#1AB1CD
.

In the far past, this solution represents a matched-solita
wave pair~MSP! moving with velocityv I whose invariant
shape is not the hyperbolic-secant type. Equation~48! shows
that this MSP in general breaks up into another MSP w
slower velocity (vF,v I) and a soliton pulse moving with
light velocity. Figure 2 shows explicitly this breakup beha
ior with parameters,s51, r 150.7, r 351, V050.5, andh
51.5.

By changing the sign ofh, one could equally consider th
reverse process of fusing a MSP and a soliton into ano
MSP. In the specific case whereK5h2/42V0

2 vanishes, this
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57 4649MATCHED PULSE PROPAGATION IN A THREE-LEVEL SYSTEM
solution reduces to the steady state pulse, which agrees
the MSP solution by Hioe and Grobe@6#,

V152V0 tanhSS , V25A2V0 sechSS ~51!

and

c15
1

A2
sechSS , c252 tanhSS , c35

i

A2
sechSS ,

~52!

where

FIG. 2. Rabi frequenciesE15V1 ~a! and E25V2 ~b! of the
MSP.
ith

SS5
s12V0

2

2V0c
~x2vSt !, vS52V0

2/~s12V0
2!. ~53!

Thus, our solution generalizes the result of Hioe and Gro
and shows that the MSP propagates steadily only when
velocity vS of the MSP is specifically given by the paramet
V0 as in Eq.~53!. Otherwise, it breaks up as explained b
fore. In other words, in the case of MSPs whereKÞ0, the
hyperbolic-tangent pulseV1 induces a partial transfer of th
other soliton pulseV2 into the light velocity one. This is
similar to the behavior of adiabaton moving with a slow
velocity which also generates a light velocity solitary pul
during its formation@11#. The most general expression of o
MSP solution arises when we incorporate the SU~2!3U~1!
symmetry transform as in Eq.~14! as well as the self-
detuning effect (uÞ0). This solution contains a large num
ber of free parameters that account for the variety of pu
shapes and initial conditions required for the atoms. The
bility of this MSP solution against small perturbations is
important issue@15# that we plan to consider elsewhere.

V. BINARY SOLITONS AND BREATHERS

The nonlinear superposition rule given in Eqs.~20!–~22!
allows the superposition of two MSP solutionsga and gb
whenever they are obtained fromg0 with BT parametersha
and hb , respectively. In general,ga and gb could possess
different set of free parameters and the superposition
requires only that they are obtained from the sameg0
through BT. If ga and gb have the same set of paramete
except for BT parameters, we could analytically continue
BT parameter in Eq.~20! to the complex case in such a wa
that

ha5exp@ iuB#, hb5exp@2 iuB# ~54!

for a certain real parameteruB , and thatg is still unitary and
becomes a non-Abelian breather solution. As an example
take the one-soliton to be the MSP in the previous sec
with a set of parameters

V050, u151, u251, u352 i . ~55!

Then, the non-Abelian breather solution has an asympt
form for x→2`,
V150,
~56!

V25
~sin2uB!$exp@~2x/c2t !cosuB#sin~uB1tsinuB!1exp@~ t22x/c!cosuB#sin~uB2tsinuB!%

211cos2uBcos~2tsinuB!2cosh@~4x/c22t !cosuB#sin2uB
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and forx→`,

V15
~sin2u!B$eZCsin~uB2ZS!1e2ZCsin~uB1ZS!%

211cos2uBcos~2ZS!2cosh~2ZC!sin2uB

,

V250,

ZC5~ t2x/c!cosuB , ZS5~ t2x/c!sinuB . ~57!

This describes a breathing 0p pulseV2(v,c), which trans-
fers to the non-breathingV1 pulse moving with the velocity
of light. This is a typical motion of a non-Abelian breathe
Figure 3 shows a breathing motion withuB51.2. Different
values of parametersui in general distort the shape of the 0p
pulse so that the time area of the pulse is nonzero, but
lead to the essentially same type of transferring motion
cept for the caseu150 or u250 where it becomes a stead
state breather.

For real BT parametersha andhb , the superposed solu
tion g in general describes the scattering of two MSP so
tions. Here, we concentrate only on a particular case of
soliton solutions that exhibit a binary behavior during t
scattering process. Consider one-solitonsga andgb given by

ga5S 21 0 0

0 cosfa sinfa

0 sinfa 2cosfa

D ,

cosfa5 tanhFhat2
ha

21s

cha
xG , ~58!

sinfa5 sechFhat2
ha

21s

cha
xG ,

and

gb5S cosfb 0 sinfb

0 21 0

sinfb 0 2cosfb

D ,

cosfb5 tanh@hb~ t2x/c!#, ~59!

sinfb5 sech@hb~ t2x/c!#.

In terms of Rabi frequencies, these correspond to

V1
~a!50, V2

~a!52 iha sechFhat2
ha

21s

cha
xG ~60!
ey
-

-
o

and

V1
~b!52 ihb sech@hb~ t2x/c!#, V2

~b!50, ~61!

that is, they represent two 2p pulses with different resonanc
frequencies, one moving with light velocity and the oth
moving with slower velocity.

The nonlinear superposition rule gives rise to the sup
posed Rabi frequencies and probabilities such that

FIG. 3. Rabi frequenciesE15V1 ~a! and E25V2 ~b! of the
breather.
V152 ihbsinfb

ha
2cosfa1hahb~11cosfa!1hb

2

ha
21hb

21hahb~11cosfa1cosfb2cosfacosfb!
,

~62!

V252 ihasinfa

ha
21hahb~11cosfb!1hb

2cosfb

ha
21hb

21hahb~11cosfa1cosfb2cosfacosfb!

and
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c15
~ha1hb!hbsinfasinfb

ha
21hb

21hahb~11cosfa1cosfb2cosfacosfb!
,

c25
2~ha

21hb
2!cosfa2hahb~11cosfa2cosfb1cosfacosfb!

ha
21hb

21hahb~11cosfa1cosfb2cosfacosfb!
,

c35
2@ha

21hahb~11cosfb!1hb
2cosfb#sinfa

ha
21hb

21hahb~11cosfa1cosfb2cosfacosfb!
. ~63!
er
g
re

pa-
This solution describes the scattering of two solitons wh
the fast moving solitonI F passes through the slow movin
one I S . Before the collision, their asymptotic forms a
given by the following configurations:

soliton I F :

cosfa51,

c150, c2521, c350, ~64!

V152 ihb sech@hb~ t2x/c!#, V250

and solitonI S :

cosfb51,

c150, c252tanhFhat2
ha

21s

cha
xG ,

~65!

c352 sechFhat2
ha

21s

cha
xG ,

V150, V252 iha sechFhat2
ha

21s

cha
xG .

After the collision, their asymptotic forms are as follows:

soliton I F :

cosfa521,

c150, c251, c350,
~66!

V15 ihb sgnS ha1hb

ha2hb
D sech@hb~ t2x/c!1d#,

V250

and solitonI S :

cosfb521,

c150, c252tanhFhat2
ha

21s

cha
x1dG ,

~67!

c352 sgnS ha1hb

ha2hb
D sechFhat2

ha
21s

cha
x1dG ,
e
V150, V252 iha sgnS ha1hb

ha2hb
D sechFhat2

ha
21s

cha
x1dG ,

where sgn denotes the sign function and the phase shift
rameterd is

d5 lnUha1hb

ha2hb
U. ~68!

FIG. 4. Rabi frequenciesE152 iV1 ~a! andE252 iV2 ~b! of
the soliton.
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FIG. 5. Energy transfer process between the binary solitons. The energy ofE1 field (uE1u2) is shown by thick lines, while those ofE2

and matter (uE2u2 and ucu2) are shown by dashed and dot-dashed lines. Time is att527,23,21,0,1,3.
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The appearance of the signum function is a feature of sol
scatterings in a three-levelL system that does not arise in th
two-level atom case. A careful analysis of the abo
asymptotic solutions shows that the broader pulse change
sign after the collision while the sharper pulse remains
same. Also, the phase shift always arises in such a way
the slow soliton receives time retardation while the fast o
receives time advance. This implies that the fast soliton m
ing with light velocity moves faster than light through th
scattering process. However, this does not violate causa
In fact, the fast soliton has infinitely stretched tails that tr
ger the slow soliton to transfer its energy to the fast one

Figure 4 shows the scattering of the binary solitons w
parametersha50.5, hb50.9, ands51. In order to see tha
causality is not violated, we consider the energy conserva
law given by

]

]t
r52

]

]x
j , ~69!

where
n

e
its
e
at
e
v-

ty.
-

n

r5uV1u21uV2u21uc1u21uc2u25uV1u21uV2u2112uc3u2,

~70!

j 5c~ uV1u21uV2u2!.
Figure 5 shows the energy transfer process between

two binary solitons. When the right end tail of the fast so
ton I F reaches the slow solitonI S , the energy is transferred
from I S to I F andI F receives phase advance. After the cen
of I F reachesI S , the energy ofI F is absorbed into theI S ,
which results in a retarded phase shift ofI S . Thus, no energy
is really transferred faster than light. The scattering proc
is indeed a nicely balanced exchange process where the
tered solitons maintain their shapes invariant except for
change of sign. The change of polarizations of simultons
the scattering process has been known earlier@16# and the
scattering of two single-frequency 2p pulses with different
resonance frequencies is also considered in@14#. However,
the binary, sign changing behavior of solitons is an asp
that did not receive attention in earlier works, and hopefu
will find some applications in the future.
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VI. DISCUSSION

In this paper, we have introduced a formalism for t
three-level coupled Scho¨dinger-Maxwell equation based on
matrix potential variable, and through the Ba¨cklund transfor-
mation we obtained various solutions that generalize pr
ously known solutions. We found MSP solutions, more g
eral than the steady-state MSP found by Hioe and Gro
which account for the generic breakup behavior of a M
into another MSP and a light velocity soliton. Two-solito
solutions and non-Abelian breathers are obtained through
nonlinear superposition rule and scattering of solitons
analyzed in detail. In this formalism, we have demonstra
the SU~2!3U~1! group symmetry of the three-level syste
with equal oscillator strengths and using that we have fo
a general expression of solutions which mixes pulses w
different velocities. This group symmetry also accounts
the variety of the steady-state MSP solution by Hioe a
Grobe which linearly superpose different Jacobi ellip
functions. Another feature of our formalism is the introdu
tion of a self-detuning parameteru to the solutions. For each
2p pulse, theseu values are conserved in time and survi
from the scattering process. That is, it is a conserved ch
that can be used to label each pulse in addition to the are
pulses. We also emphasize that our formalism is not
stricted to the three-level case but also can be extende
other multilevel cases@8# with the same analytic power.

Finally, we comment on matched pulse propagat
through absorbing media. In this case, the time rate equa
for the probability amplitudec3 in Eq. ~1! is replaced by
]c3 /]t→]c3 /]t1gc3, which implies the decaying of the
tt.

is
,
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-
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excited stateu3& at a rateg to states other thanu1& and u2&.
This obviously breaks the probability conservation la
uc1u21uc2u21uc3u251 so that our matrix potential formalism
does not apply to this case. Nevertheless, it is importan
note that the SU~2!3U~1! group symmetry of the three-leve
system with equal oscillator strengths persists even in
case of an absorbing medium. This shows that recent a
lytic and numerical studies on matched pulse propaga
through absorbing media@17–21# can be extended to mor
general initial conditions. For instance, most studies assu
the standard initial condition of the population being in t
ground state. The SU~2!3U~1! group symmetry as indicate
in Eq. ~14! maps the standard initial condition to a coheren
prepared one which linearly superposesu1& and u2&. This
also maps two Rabi frequenciesV1 and V2 via the linear
transform as in Eq.~14! so that one obtains a more gener
description of pulse propagation. Thus, for example, whe
matched pulse of equal amplitude is found, the above s
metry generates a set of new solutions with unequal am
tudes. This agrees with results in the recent numerical st
@21#, which showed the existence of stable, shape invar
matched pulses of unequal amplitudes depending on the
herent preparation of initial conditions.
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