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Matched pulse propagation in a three-level system
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The Bzklund transformation for the three-level coupled Sdimger-Maxwell equation is presented in the
matrix potential formalism. By applying the Blund transformation to a constant-electric-field background,
we obtain a general solution for matched pulsasair of solitary wavesthat can emit or absorb a light
velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution
describes a steady-state pulse without emission or absorption, and becomes the matched pulse solution recently
obtained by Hioe and Grolj€hys. Rev. Lett73, 2559(1994)]. A nonlinear superposition rule is derived from
the Backlund transformation and used for the explicit construction of two solitons as well as non-Abelian
breathers. Various features of these solutions are addressed. In particular, we analyze in detail the scattering of
“binary solitons,” a specific pair of different wavelength solitons, one of which moves with the velocity of
light. Unlike the usual case of soliton scattering, the broader soliton changes its sign after the scattering, thus
exhibiting a binary behavior. Surprisingly, the light velocity soliton receives a time advance through the
scattering, thereby moving faster than light, which, however, does not violate causality.
[S1050-294{@8)09206-3

PACS numbgs): 42.50.Md, 42.65.Tg, 42.55f

[. INTRODUCTION We show that the Bzklund transformation also allows a
nonlinear superposition rule for solitons as well as MSP so-
The nonlinear interaction between radiation and a multidutions. An explicit formula for the nonlinear superposition is
level optical medium has received considerable interest fogiven in terms of matrix potentials and used to generate two-
many years. Recently, this topic has attracted more attentiopPliton and non-Abelian breather solutions. We consider in
in the context of lasing without inversidi.,2] and electro- detail the scattering of a specific type of soliton that exhibits
magnetically induced transparen@IT) [3]. EIT is a tech- @ binary behavior during the scattering process. They are a
nique for rendering an otherwise optica”y thick medium pair of different wavelength solitons, one of which is moving
transparent to a weak probe laser by coupling the upper levayith the velocity of light and the other with slower velocity.
coherently to a third level by a strong laser field. The transUnlike the usual case of soliton scattering, the broader soli-
parency for pulses propagating through an optically thickion changes its sign during the scattering process. Surpris-
medium has been known earlier, particularly for a solitoningly, the light velocity soliton receives a time advance
(27 pulse in the shape of the hyperbolic-secant tygéand  through the scattering, thereby moving faster than light. We
through a three-level med|u|ﬁ5] More recenﬂy’ there ap- show, however, that Causality is not violated. A typiC&' non-
peared exact analytic solutions for a pair of solitary wavesAbelian breather describes a breathing pulse E;(v<c),
so-called matched-solitary-wave paifSP9, propagating Which afterwards transfers to the nonbreathiBg pulse
through a three-level medium whose invariant shapes ar@oving with light velocity.
more general than the hyperbolic-secant tjpe

In this paper, we present an analysis of the three-level II. MATRIX POTENTIAL FORMALISM
coupled Schdinger-Maxwell equation based on .'ghe matrix OF THE A SYSTEM
potential formalism. In particular, we find the &dund
transformation of the coupled Satinger-Maxwell equation Consider aA configuration where level three is higher

in terms of the matrix potential variable and apply theBa than levels one and two. The system of equations governing
lund transformation to the constant electric field backgroundhe propagation of pulses is given by the Schinger equa-

to obtain MSP solutions that generalize the result in R&gf.  tion

These solutions in general describe the breakup of a MSP

into another MSP with slower velocity and a soliton pulse ac,

moving with light velocity, or the reverse process of fusing a ETRALELET

MSP and a soliton into another MSP. With a specific choice

of parameters, these solutions reduce to the MSP solution in

Ref. [6], which describes steady-state propagation of MSP Jdcy .

without breakup. The generality in the shape of a MSP solu- ot 1€925C3, (1)

tion is explained through the §B)xU(1) group symmetry
of the three-levelA system with equal oscillator strengths.

dcz ., .
- ~H(Q1c1+Q50),
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Here,l;=27Nulw; /%, i=1,2, andc,, k=1,2,3, are slowly Sy=(* * 0],
varying probability amplitudes for the level occupations, 0 0 *

Q,= u;E;/2h are the Rabi frequencies for the transitidns , ) ) ) .
.3, E, andE, are the slowly varying electromagnetic field W& fix the redundancy by imposing the constraint condition
amplitudes u; is the dipole matrix element for the relevant °" 9
transition,w; is the corresponding laser frequency, awhds 1 P N
the density of resonant three-level atoms. For brevity, we (9°99)u=0, (999" Hn=0. ®)
introduce a coordinate=t—x/c, z=x/c, so thatg=d/dz  One can always solve the constraint by finding larthat
=9lot, 9=l 9z=dl gt + cal ox. makesg satisfy the constraint via the transform in E§).!

As in our earlier paper§7,8], the main tool of our analy- We also parametrize the remaining componentg ofdg
sis will be using a matrix potentig@ instead of the probabil- such that

ity amplitudesc; in the following way: letg be a 3< 3 uni- 0 0 ~iQ,
tary matrix whose second row is the complex conjugation of ]
probability amplitudes, i.e., g log= 0 0 —iQy . (9)
. % -iQFy —-iQ3 0
g=|cf ¢c5 c3|, (3)  The nonzero components in E(Q) express the Rabi fre-
x % % quencies in terms of). In this parametrization, one can

readily check that the Schdinger equatior(1) arises from
where the first and the third rows are to be determined latethe simple identity
In terms ofg, the density matrixo whose components are

t— 9gy—1— _ -1 -1_ _ -1 t
pPmk=CmCr takes a simple form 99 =dg "=—g "d99 9 999 (10
0 0 0 This situation may be compared with ordinary electromagne-
i S — . tism where the static electric fielf in terms of a scalar
p=1,9'Tg, T=| 0 —ily 0. @ ial ¢, E=—V &, solves the curl-f ditioR % E
1 0 0 0 potential ¢, E= &, solves the curl-free conditio

=0. Likewise, we solve the Schdinger equation in terms of
The specific choice of the matrik is not essential. One may & matrix potentia and express the electric field components

. . . — .~ Q; in terms ofg as in Eq.(9). Originally, the Schrdinger
consllder an arbitrary diagonal matrix to handle Qen3|ty and the Maxwell equations are made of five complex, com-
matrices in a more general context. Note that the first and th

. : . . Sonent equations in total. Three of thefthe Schrdinger
third rows of the matridg do not affect the density matrix. : . : )
In other words, the density matrix is invariant under the pary are now solved identically in terms @f, whereg is

left multiolicati ta b trixh partially constrained by Eq8). Then, the remaining degree
€t muftiplication otg by any matrixh, of g can be parametrized by two unknown complex functions
and the Maxwell equation changes into two component

9—g'=hg, © equations for these two unknown functions oflyn this

which commutes withT and is thus of the form

* 0 * 1The existence of such amcan be proved by adopting the field
. theory formulation of the problem as [i8]. However, we do not
h=| 0 0]. (6) need the explicit expression bf
* 0 * Note thatg~*dg is anti-Hermitian andy is unitary.

3In mathematical terms, we have associated the density matrix
At first sight, introducing the matrig with more redundant with the coselG/H=[SU(3)/SU(2)xU(1)] and introduced the ma-
components thawe;’s may seem an unnecessary complica-trix g for the parametrization d&/H. The constraint equation an
tion. However, this is not so. In fact, it not only manifests themakes a specific choice for each equivalence class, and variables
symmetry group structure of the system, but it also simplifieshat parametrize equivalence classes are determined by the Maxwell
the problem of solving differential equations. Later, we showequation. Since the constraint restricts the subgroup
that the Baklund transformation of the system, a solution H[=SU(2)xU(1)] part of the variableg, the remaining uncon-
generating technique, also takes a simple form in terngs of strained part ofy can be expressed in terms of two unknown com-
The main advantage of usingis thatg solves the Schro  plex functionse; and ¢,. In the gauged sigma model formulation,
dinger equation identically. In order to see this, we fix thethe Maxwell equation is vector gauge invariant so that it decouples
redundancy introduced by Eq&5) and (6). Adopting the from the H degree of freedom, i.e., it reduces to two complex
notation for the following matrix decomposition: equations only inp; and ¢,.
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way, the Maxwell equation resembles the Poisson equatiosequences of conserved integrals can be fda@dl In this
in electrostatics. However, we do not need explicit compopaper, we assume the equal oscillator strengths so that the

nent expressions in this paper so we suppress them. What viaxwell equation becomes
need is the expression of the Maxwell equation in termg of

such that (g tag)=[T,g 'Tg]. (15
o1 _ — 17, .
99 "99)=Q[T,9 "Tg]Q, (11 IIl. BA CKLUND TRANSFORMATION

where The Maxwell equation in Eq(15) is equivalent to the

consistency conditiofL,,L,]=0 of the overdetermined lin-
ear equations:

-5 0 O L, ¥ =(a+g toag+AT)¥=0,
2 | 1 o0 o (16)
| 1 —
T=( 0 -5 0f, Q=|0 I/ 0]. (12 LW = 0+Xg‘ng)\P=0,
| 0 0 1
0 0 =
2

where\ is a spectral parameter. We may apply the inverse
scattering method to E@16) and obtain exact solutions as in
L : . [8]. Instead, we present in this paper an alternative, simpler
Note that this is indeed consistent with Eg). The Maxwell method—the Beklund transformatio(BT)—which allows

equation in Eq(11) possesses a symmetry under the change; . : :
g—g’ =gh whereh is an arbitrary constant diagonal matrix. a more direct construction of exact solutions. Moreover, the

That is,g’ again satisfies Eq$9) and (11). This symmetry advantage of.usmg the maltrix potentlgl_ becomes clea_r.
7. when the BT is used to establish a nonlinear superposition
becomes enhanced to a larger one when the oscillator

sengins are cqual{-1;5) S0 harQ s te ety ma- o OIS o nge pulee T s stvler o e et
trix. For the A system, the oscillator strengthis positive, Pp perp

; - . easier in terms of the scalar potential rather than the electric
which we assume throughout the paper. With equal OSC'Ilatoﬁeld itself. Letg, and W, be a particular solution of Egs.

strengthsh can be a constant unitary matrix of the form (15) and (16), theng;, is also a solution of Eq(15) if it
satisfies the Beklund transformation of type (type-1 BT):

type-| BT:
hll h12 0

h=| hx hypy 0 |. (13 1 . . . B
0 0 hy 917991~ 9o 990~ 17[9; "90.T]=0, a7

i 79(91 *90) + 91 T2~ gy ' Tgo=0.
In other wordsh is a constant matrix belonging to the group

SU(2)xU(1). In terms of physical variables, this symmetry

amounts to the transform Here, 7z is an arbitrary parameter of the transformation. Once

again, the type-1 BT is a set of overdetermined first-order
partial differential equations whose consistency requires that
QO h* £\ 10 0o andg; should be both solutions of E¢l5). An equiva-
( 1) :( 1 21) ( 1) , lent expression of the BT is in terms of the linear functibn

Q; T2 h3/ Qs 14 8 in[13]. We define the Beklund transformation of type II
(type-1l BT):
type-Il BT:
Cy 1 h3y 0 C1 N i
’ /-
CZ = hIZ h;Z 0 Cz , \I,l:)\—ln 1+ Tgl 190)\1’0. (18)
Cé 0 0 33 C3

It can be readily checked that and V¥, satisfy Egs.(15)

and(16) provided Eq.(17) holds and vice versa. The type-I|
where the primed variables are solutions of E§s.and(11) BT is particularly useful for establishing a nonlinear super-
provided that unprimed variables are. In particular, if theposition rule. Assume thatg(,¥,) and @y, ¥,) are two
unprimed solution is a single 2 pulse [Q;=0,Q, sets of solutions with BT parameterg, and 7,, respec-
~ sech(—x/v)/t,], the primed solution represents a simul- tively, solving the BT for a particular solutiongg, Vo). If
ton solution[10]. When the oscillator strengths are equalwe apply the BT once more tgf,V,) with = 7, and also
(Q=1), the theory becomes integrable and exact analytito (g,,%¥,) with »=»n,, and require that they result in the
solutions can be found. However, even fQk: 1, the Max-  same solutiorithis amounts to the commutability of the dia-
well equation admits a Lax pair representation and infinitegram in Fig. 3, then we obtain from the type-Il BT,
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G0, Vs for a real constanf),, so that
Na m ..
cogQgz) 0 —isin(Qg2)
9.7 go=e'?= 0 1 0 (24)
—isin(Qyz) 0 co0g0y2)
12 Na
If we setf=e "?g,, the type-l BT becomes
-1 —1AF_ A -1 77—
FIG. 1. Commutability diagram for the nonlinear superposition Frot+ 1 2AT=A=ig[f 7 T]=0, (25
rule. — .
inof 1+ 1Tf—T=0. (26)
A A |77b ) . -1 . . - .
= i i 1+ 291 Sincef™*gf is anti-Hermitian, Eq(25) requires that
=) =iz |~ x99
. [f~1-f,T]=0, (27)
x| 14 Tagt )\If
N Ja o) %o which we solve by taking
A A 17 f~1—f=2ising 28
S ( i1 1gb) (28)
(N=ima) (N—imp) A

for an arbitrary real parameter ginlf we rewrite f in terms

of another matrixP,

i
x| 1+ ~ 9 lgo)q’O- (19

f=e ?g,=cos#(2P—1)—isind, (29

Equivalently, we have the nonlinear superposition of two ) ] N .
then Egs.(28) and(29) imply that P is a Hermitian projec-

solutions, ! C
tion operator, I.e.,
— -1 -1 -1\-1
= - - . 20
9=(7v9a~ 7a90)90 (769p ~ 7a9a ) (20 p2_p, pl=p, 30
Combining this expression with the type-I BT, we obtain a .
useful formula for the nonlinear superposition of the Rabil térms ofP, Eqs.(25) and(26) can be written by
frequencies, 1-P)(d+A—iyT)P=0
- i =0,
( ( 7 (31)

159 = (g2 29ga+ g5 20ge) + ~g -1 + T
9 799=5(9a 99at9p "99p) + 519 (7206 F 708a), T],
(21)

or,

1 a b i
Q125(91"'91)_ §F131
1 a b i
9225(92"‘92)—5':23: (22

F=(795 "~ 7292 ) 9o( 768a— 7a0b) ~ X(7a0p+ 7p3a)-

IV. MATCHED PULSES

Now, we construct solutions by integrating the type-l BT

directly. We choose the particular solutigg for a constant
electric field.

0 0 -iQ,
9o '9go=| O 0 -ig,
-i0r —i03 o
0 0 -i0,
| o o 0 |=a 23

~-iQy, 0 0

(1-P)(ipd—T)P=0,

where=€'?7. SinceP is a projection operator acting on
the three-dimensional space, we may exprBssising a
three-dimensional vect(ﬁ=(51,sz,s3) by

3
Pij:SiSj*/ (2 Sksﬁ), (32
k=1
which transforms Eq(31) into a linear one,
d+A—ipT)s=0,
( inT) (33

(ipd—T)s=0.

SinceA andT commute, this may be integrated immediately
resulting in

5 ,
Si:kEl [expAlyu  for A=(i7T—A)z— =Tz, (34)
= 7

whereu= (u;,u,,U3) is an arbitrary complex constant vec-
tor. Explicitly,
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25253/
7z sz >
= —-— = ) 35
S, ex;{ > ;)uz (39 03:2(0039)5353/ (21 Sksi‘). (37

o
cosh/Kz— Z\RS'”h\/RZ Note that this solution, combined with the symmetry trans-
formation in Eq.(14), represents a rich family of single pulse
whereK =7%/4— Q3. Finally, Rabi frequencies are given by solutions. For the vanishindX,=0), it becomes

1|{+ising,

( cosh/Kz+ —J_smh\/_z

Uy + \/_(smh\/_z)ug, c,=(cos)

3
E Sksﬁ) -
k=1

us,

iQ
S3=TKO(sinh\/Rz)ul+

1

0,=0Qy—2i n(cosd) 5133/ (2 sksk) leﬁ[—Zin(cos9)u1u’3‘exp(i7;zsin0)],

(36) (38)
3
Q,=—2ip(cosd)s,ss SkSk 1
2 n(cosd)s, 3/ (21 k k) QZ:N[—zin(cose)uzug
and probability amplitudes are obtained through Egsand s
(29, Xexr{ nz+ %?)sme— ;zcosﬁ ]

3
c1=2(cos9)s,Ss sSy |,
1=2( >12/(k21kk> and

1 . S
clzﬁ 2(coh)uuz exp | nz— —z cosﬁ—|7—725|n0

i

— |ug|?exd — nzcosh—i 6] ¢, (39
Z+ —z|sinf|,
e 22|

2s—
N=|u,|%exd nzcosd]+|u,|?exp nzcosh— 720089 + |us|2exd — pzcosA]. (40)

1
c2=N{—|u1|2exr[nz(cose>—ie]+|u2|2 xp[(nz—zg?)cosﬁw

1 S— .
C3= 2(cosﬁ)u3u2 ex ;zcosﬁ— i

where

This solution for u;#0, u,# 0, ncos¥>0 describes the to the 27-Stokes pulse moving with the velocity of light in
transfer of the Zr pump pulse in the limik— — o the limit x—oo;

Q,—0, Q,— —in(cosd)(seclt)e'*2, X
1—> 2= 1l ) ) O ,— —in(cox) sec+(cos9)77(t—5”
eEl+i0_e—21—i0
c1—0, co0—FF—

s -3 ' X
erite xex;{i(sinﬁ)n(t—gﬂ,
c;—cos¥e >z sechE, (41 i
Qz—>0, C1—>0, Cz—>_e_|0, C3_’01 (42)
2
Elz(cosﬂ)< nt— nc )x+ ¢1), where the arbitrary constants;, i =1,2 determine soliton
n

positions in time and space. In the cas&ef0, this transfer
of 27 pulse has been given [i4]. Foru;=0 oru,=0, the
solution remains as the steady-state gulse given in Egs.
(41) or (42), respectively, without causing any transfer of

(7%=s)
C

22=(sin9)( pt— X+ ¢,
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pulses. This steady pulse, in connection with the symmetry 7C

transform in Eq(14), is the simulton solutiofi10]. The free C1=— ——=seclk,, c,=— tanhy,
parametem® measures the amount of self-detuning of a pulse VAt C

from the carrier frequency. Them2Stokes pulse in Eq42)

is the same as the usuatrdulse @=0) but with the carrier iC

frequency shifted by the amoudw= sind. On the other CS:WSGCEI , (46)

hand, Eq.(41) shows that the 2 pump pulse receives a
time-independent phase factor gXgsind/cn)x] in addition 2
to the shift of carrier frequency. We emphasize that this de- 3, :23+(77 ZW‘R)
tuning has nothing to do with the frequency detuning of elec- 2nc
tromagnetic fields from the resonance line. In fact, our sys- L
tem is on resonance and thus the paramétereasures the where the velocity, is

self-generated detuning of each pulse. The effect ¢ a 229K

single 2 pulse is to broaden the pulse shape maintaining the V= 7 7 c (47)
21 area of the envelope, which is adjusted by the shift of the 2s+ n2—2pVK

carrier frequency. Recall that due to the symmetry in Eq.

(14), a more general expression for a single pulse arises asvehich is less than the light velocity. Comparison of electric
linear mixture of(}; and (), in Eq. (38), which possess a fields in Eq.(45) with initial populations in Eq(46) shows

(x=vt),

wide range of free parameters. that two laser pulses are arranged in the so-called counterin-

If Q1#0, the solution describes pulses more general thattlitive order[9]. In the x—c limit, the asymptotic form of
the hyperbolic-secant type. For the simplicity of analysis, wethe solution is
assume thav=0 and|»|=2|Q|. We also restrict to the

parametersi;=rq, U,=r,, Us=ir4 for realr; and rewrite _ s ~ 7C
Eq. (35) for the notational convenience as follows: Q=-QotanfBe+ 07, Qp= WSGCEF (48)
s,=Aexp(VKz) +Bexp( — VK2), and
nZ Sz B
s =\/A2+C2exp<———j, 43 Ci1=——=—=secl¥, c,=— taniS,
2 2 7 “3 T F
(49
s;=iCexp(\Kz)+iDexp — VKz), iD
C3:ﬁ SGCI'EF,
wherer, is chosen to bg/AZ+ C? by an appropriate choice VvB“+D
of the coordinate origin. The coefficients are defined by
where
1 n Qg 2
A=zl 1+ —|r— —2p,, C2st(PH2nVK)
217 2yk] T 2K 2p= e XTURD Ao,
1 7 Qy 7?2+ 2K
B E ——— r1+_r3, UF:— C,
2\/R 2\/R 2s+ 9+ 27]\/R
(50)
c Qo 1 7 ” A _1I B2+ D?
mrl 2|2k ra, (44) 0=5 N2 c2:
Q, 7 . Qo(r2+r3)—yrorg
:_—r1+— 1+ —— rs, Ql= 2 2\ A .
oK 2 2K (A2+C?)ebo costi2 K (t—x/c)—Ag]+AB+CD
1 In the far past, this solution represents a matched-solitary-
K= an—Qg, wave pair(MSP) moving with velocityv, whose invariant

shape is not the hyperbolic-secant type. Equatit8) shows

In the limit wherex— — o0, the solution takes an asymptotic

form: slower velocity ¢<v,) and a soliton pulse moving with

light velocity. Figure 2 shows explicitly this breakup behav-
ior with parameterss=1, r;=0.7,r;3=1, Q,=0.5, andy

secly, (45 15.

O=—0pt , Qo=—r—=s . . .
! otant®y, Qp JAZ+C2 By changing the sign of;, one could equally consider the

that this MSP in general breaks up into another MSP with

reverse process of fusing a MSP and a soliton into another

and MSP. In the specific case wheke= 7;2/4—(23 vanishes, this
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s+2032

s:m(x_ vgt), vs=20/(s+205). (53

Thus, our solution generalizes the result of Hioe and Grobe
and shows that the MSP propagates steadily only when the
velocity v 5 of the MSP is specifically given by the parameter
Qg as in Eq.(53). Otherwise, it breaks up as explained be-
fore. In other words, in the case of MSPs wh&re 0, the
hyperbolic-tangent puls@, induces a partial transfer of the
other soliton pulse}, into the light velocity one. This is
similar to the behavior of adiabaton moving with a slower
velocity which also generates a light velocity solitary pulse
during its formatior{ 11]. The most general expression of our
MSP solution arises when we incorporate the(3XU(1)
symmetry transform as in Eql14) as well as the self-
detuning effect §+0). This solution contains a large num-
ber of free parameters that account for the variety of pulse
shapes and initial conditions required for the atoms. The sta-
bility of this MSP solution against small perturbations is an
important issug15] that we plan to consider elsewhere.

V. BINARY SOLITONS AND BREATHERS

The nonlinear superposition rule given in E¢30)—(22)
allows the superposition of two MSP solutiogg and gy,
whenever they are obtained frogg with BT parametersy,
and »,, respectively. In generalj, and g, could possess
different set of free parameters and the superposition rule
requires only that they are obtained from the same
through BT. Ifg, and g, have the same set of parameters
except for BT parameters, we could analytically continue the
BT parameter in Eq(20) to the complex case in such a way
that

(b)

FIG. 2. Rabi frequenciegE;=Q, (a) and E;=Q, (b) of the . )
MSP. na=exfifg]l, mp,=exd —ibg] (54)

solution reduces to the steady state pulse, which agrees with
the MSP solution by Hioe and Grolh6], for a certain real paramet@g , and thag is still unitary and
becomes a non-Abelian breather solution. As an example, we
O=—Qgtanig, Q,=20,secttq (5D take the one-soliton to be the MSP in the previous section
with a set of parameters

and
1 i _
clzﬁseclis, c,=— taniEg, C3:$ seclt g, 00=0, u;=1, u,=1, ug=-—i. (55
52
62 Then, the non-Abelian breather solution has an asymptotic
where form for x— — oo,
leo,

(56)

_ (sin26g){exf (2x/c—t)cosd]sin( O+ tsindg) + exf (t—2x/c)cosfg]sin( 65— tsinds) }
— 1+ cog #gcoq 2tsindg) — cosh (4x/c— 2t)cosdg]sirf by

2
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and forx— oo,

(sin26)g{e?csin( 0 — Zs) + e~ %csin( g+ Zg)}
— 1+ cog 0gcog 2Z5) — cosh(2Z)sirt b

1

QZZO,

Zc=(t—xl/c)cosg, Zg=(t—x/c)sinbg. (57

This describes a breathingzOpulse{),(v <c), which trans-
fers to the non-breathin@, pulse moving with the velocity
of light. This is a typical motion of a non-Abelian breather.
Figure 3 shows a breathing motion wity=1.2. Different
values of parameters in general distort the shape of therO

pulse so that the time area of the pulse is nonzero, but they
lead to the essentially same type of transferring motion ex-

cept for the case;=0 oru,=0 where it becomes a steady
state breather.
For real BT parameterg, and 7, , the superposed solu-

tion g in general describes the scattering of two MSP solu-
tions. Here, we concentrate only on a particular case of two

soliton solutions that exhibit a binary behavior during the
scattering process. Consider one-solitggsndgy, given by

Q-HAN PARK AND H. J. SHIN

(a)

(b)

FIG. 3. Rabi frequencieg€;=Q; (@) and E,=Q, (b) of the
breather.

and

(b)

Q= —in, secipp(t—x/c)], QF=0, (6D

that is, they represent twor2pulses with different resonance
frequencies, one moving with light velocity and the other
moving with slower velocity.

The nonlinear superposition rule gives rise to the super-
posed Rabi frequencies and probabilities such that

2 2
75C0Sh,+ NaMp(1+Cosp,) + Mo

-1 0 0
g,=| O cosp, sing, |,
0 sing, —cosp,
77§+S
Ccosp,= tanh 7,t— X/, (58
a
2
. n;+S
sing, = secrii Nat— ——x|,
UL
and
cosp, O Singy,
gp= 0 -1 0 ,
sing, 0 —cosp,
cosp,= tanh n,(t—x/c)], (59
sing,= sech n,(t—x/c)].
In terms of Rabi frequencies, these correspond to
2
0@—0 Q@ _j _7a
1 =0, Q37=—1mn,sech 7.t X (60)
a
|
le_iﬂbSin(ﬁb 2 2
Nat Mh

+ Nam( 1+ COSp,+ COSPy— COSPACOSP)

(62

na+ namp(1+cospy) + 72C0Spy

Q,=—i7,Sing,
2, 2
Nat My

and

+ Mamp(1+ COSp,+ COSP,— COSP,COSPY,)
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(mat mp) npSiNg,Singy,
72+ M+ Namp(1+ COSpa+ COSP, — COSPH,COSH))

C]_:

_ —(93+ M)COSpa— a1+ COSP,— COSP,+ COSB,COSBY)

Cy=
7at M+ Mamp(1+COSp,+ COSpY — COSH,COSHY)
oo L7t mamy(1+cospy) + gicospylsing, 63
3_ .
75t M+ Marmp( 1+ COSpa+ COSp,— COSH,COSBY)
|
This solution describes the scattering of two solitons where Nat 7o 7;§+s
the fast moving solitorig passes through the slow moving Q,=0, Q,=—i7,sg p—— sech n,t— cn X+ 8|,
a b a

one |5. Before the collision, their asymptotic forms are

given by the following configurations: where sgn denotes the sign function and the phase shift pa-

soliton ¢ : rameters is

cospa=1, ’ Nat M 69

C1:O, C2:_1, C3:0, (64)
0y =—in, sechpy(t—x/c)], Q,=0

and solitonl :

cospp,=1,
2
natS
c,=0, cz=—tam{nat— ; x|,
UE (65)
75ts
c3=— sechn,t— x|,
Na
. 75+S
0,=0, Qy,=—lin, sech n,t— . X|.
a

After the collision, their asymptotic forms are as follows:

soliton | ¢:
cosp,=—1,
c,=0, c,=1, c3=0,
1 2 3 (66)
+
Q=i sgr(u) sectiyy(t—x/c) + o], &
Na™ b
92:0
and solitonl g:
cospp,=—1,
2
Nz S
c,=0, czz—tanr{ Nat— ———X+ 8/,
: (67) (b)
2
+s
C3=— Sg,-(m sec?{ nat— 7a x+ 8|, FIG. 4. Rabi frequencieE;=—i(; (@ andE,=—i€; (b) of
Na™ o C7a the soliton.
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FIG. 5. Energy transfer process between the binary solitons. The enefgyfifid (|E,|?) is shown by thick lines, while those &,
and matter E,|? and|c|?) are shown by dashed and dot-dashed lines. Time is-at7,—3,—1,0,1,3.

The appearance of the signum function is a feature of solitonp = ,|2+|Q,|?+ |cq|2+|c,|?=|Q4]%+ Q5|2+ 1—|c5)?,

scatterings in a three-leval system that does not arise in the

two-level atom case. A careful analysis of the above (70)

asymptotic solutions shows that the broader pulse changes its

sign after the collision while the sharper pulse remains the j=c(|Q4%+]|Q,?).

same. Also, the phase shift always arises in such a way that Figure 5 shows the energy transfer process between the

the slow soliton receives time retardation while the fast on&wo binary solitons. When the right end tail of the fast soli-

receives time advance. This implies that the fast soliton movton | - reaches the slow solitons, the energy is transferred

ing with light velocity moves faster than light through the fromI5to I - andl receives phase advance. After the center

scattering process. However, this does not violate causalitysf | - reached s, the energy of - is absorbed into thés,

In faCt, the fast soliton has |nf|n|te|y stretched tails that tI‘Ig-Wh|Ch results in a retarded phase shiftl Qf ThUS, no energy

ger the slow soliton to transfer its energy to the fast one. s really transferred faster than light. The scattering process
Figure 4 shows the scattering of the binary solitons withis indeed a nicely balanced exchange process where the scat-

parametersy,=0.5, 7,=0.9, ands=1. In order to see that tered solitons maintain their shapes invariant except for the

causality is not violated, we consider the energy conservatiophange of sign. The change of polarizations of simultons in

law given by the scattering process has been known eafliéf and the
scattering of two single-frequencym2pulses with different
9 __ J . (69) resonance frequencies is also considerefilf. However,

atP ax) the binary, sign changing behavior of solitons is an aspect

that did not receive attention in earlier works, and hopefully
where will find some applications in the future.
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VI. DISCUSSION excited statd3) at a ratey to states other thaji) and|2).
This obviously breaks the probability conservation law;
oo . |c1|?+]|c,|?+]|c5)?=1 so that our matrix potential formalism
three-level coupled Scldinger-Maxwell equation based on a : o

does not apply to this case. Nevertheless, it is important to

matpx potential 'varlable,_ and thron_Jgh thedkaund transfor -note that the S(2)x<U(1) group symmetry of the three-level
mation we obtained various solutions that generalize previ- : g : .

; d system with equal oscillator strengths persists even in the
ously known solutions. We found MSP solutions, more gen-

eral than the steady-state MSP found by Hioe and Grob c;a:lsc eaor: daguﬁzﬁgglngtlﬂieedslugnﬁ ;h;fcﬁzgwsultgst rricznta‘;"igﬁ'
which account for the generic breakup behavior of a MS P propag

into another MSP and a light velocity soliton. Two-soliton through absorhing medigl.7-21] can be extended to more

; . , eneral initial conditions. For instance, most studies assume
solutions and non-Abelian breathers are obtained through t T " . A

. . : . e standard initial condition of the population being in the
nonlinear superposition rule and scattering of solitons are

analyzed in detail. In this formalism, we have demonstrateéJround state. The S U(1) group symmetry as indicated

the SU2)xU(1) group symmetry of the three-level system in Eq.(14) maps the standard initial condition to a coherently

with equal oscillator strengths and using that we have foun&)repared one which linearly superpogds and|2). This

a general expression of solutions which mixes pulses witlfrljr?sfrg?ngsag’vi?] I;a(bl' zlgriguter}\g(tnﬁlea:)nbotlziilrfsvz;anggfe“n:r?;ral
different velocities. This group symmetry also accounts for q 9

the variety of the steady-state MSP solution by Hioe anqdescription of pulse propagatipn. Thus, for example, when a
Grobe which linearly superpose different Jacobi eIIipticmatChed pulse of equal amplitude is found, the above sym-

functions. Another feature of our formalism is the introduc—mEtry generates a set of new solutions with unequal ampli-

tion of a self-detuning parametérto the solutions. For each tudes. T.h's agrees with res_ults in the recent numen(_:al st_udy
o . [21], which showed the existence of stable, shape invariant
21 pulse, these values are conserved in time and survive

from the scattering process. That is, it is a conserved char rgatched pulses of unequal amplitudes depending on the co-

that can be used to label each pulse in addition to the area O]erent preparation of initial conditions.
pulses. We also emphasize that our formalism is not re-

stricted to.the three—levellcase but also can.be extended to ACKNOWLEDGEMENTS
other multilevel casef8] with the same analytic power.

Finally, we comment on matched pulse propagation This work was supported in part by the program of Basic
through absorbing media. In this case, the time rate equatioBcience Research, Ministry of Education BSRI-97-2442 and
for the probability amplitudecs in Eq. (1) is replaced by by Korea Science and Engineering Foundation through CTP/
dcgldt—dcgldt+ ycs, which implies the decaying of the SNU and 971-0201-004-2.

In this paper, we have introduced a formalism for the
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