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Field theory for coherent optical pulse propagation

Q-Han Park* and H. J. Shin†

Department of Physics, and Research Institute of Basic Sciences, Kyunghee University, Seoul, 130-701, Korea
~Received 7 May 1996; revised manuscript received 19 August 1997!

We introduce a notion of ‘‘matrix potential’’ to nonlinear optical systems. In terms of a matrix potentialg,
we present a gauge-field-theoretic formulation of the Maxwell-Bloch equation that provides a semiclassical
description of the propagation of optical pulses through resonant multilevel media. We show that the Bloch
part of the equation can be solved identically throughg and the remaining Maxwell equation becomes a
second-order differential equation with a reduced set of variables due to the gauge invariance of the system.
Our formulation clarifies the~non-Abelian! symmetry structure of the Maxwell-Bloch equations for various
multilevel media in association with symmetric spacesG/H. In particular, we associate the nondegenerate
two-level system for self-induced transparency withG/H5SU~2!/U~1! and three-levelL or V systems with
G/H5SU~3!/U~2!. We give a detailed analysis for the two-level case in the matrix potential formalism, and
address various properties of the system including soliton numbers, effective potential energy, gauge and
discrete symmetries, modified pulse area, conserved topological, and nontopological charges. The nontopo-
logical charge measures the amount of self-detuning of each pulse. Its conservation law leads to a different
type of pulse stability analysis that explains earlier numerical results.@S1050-2947~98!09506-7#

PACS number~s!: 42.50.Md, 42.65.Tg
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I. INTRODUCTION

Since the invention of the laser, much progress has b
made in understanding nonlinear interactions of radiat
with matter, which made nonlinear optics a fast develop
and independent field of science. Recently, the interactio
laser lights with a multilevel optical medium has attract
more attention in the context of lasing without inversi
@1,2# and electromagnetically induced transparency~EIT!
@3#. Laser light in general is expressed in terms of a mac
scopic, classical electric field that interacts with microscop
quantum mechanical matter. Unlike classical electrodyna
ics, the electric scalar potential and the magnetic vector
tential do not appear to replace electromagnetic fields in n
linear optics. Instead, the electric field itself, with appropria
restrictions to accommodate specific physical proble
plays the role of a fundamental variable that renders
problem lacking a field-theoretic Lagrangian formulation.
course, one could set up the problem in the most gen
QED Lagrangian framework with the conventional potent
variableAm , but the nonlinearity of interactions and variou
approximation schemes involved make the use of poten
Am meaningless. For instance, the Maxwell-Bloch equat
that governs the interaction between radiation and ma
takes a nonrelativistic, semiclassical limit of QED togeth
with slowly varying envelope approximation~SVEA! and/or
rotating-wave approximation~RWA!. Variables of the
Maxwell-Bloch equation are given by the envelope functio
of electric fields, and the components of the density matrix
the probability amplitudes for each atomic-level occupati
Thus, all previous works have focused on the study of
Maxwell-Bloch equation itself, without making any refe
ence to the Lagrangian and potential variables. Howe
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there exists one notable exception. In the case of nonde
erate two-level atoms, McCall and Hahn@4# have shown that
lossless propagation of light pulses, the phenomenon of s
induced transparency~SIT!, can be explained in terms of
potential-like variableu(x), the time area of a suitably cho
sen electric field, which obeys the area theorem. Under
tain circumstances, the system can be described by an e
tive potential variablew(x,t), which satisfies the well-known
sine-Gordon equation. In this case, the one-soliton of
sine-Gordon theory is identified with the 2p pulse of McCall
and Hahn. The cosine potential term becomes proportiona
the microscopic atomic energy, and the stability of the 2p
pulse is explained through the topological charge conse
tion law. Recently, the quantum sine-Gordon theory has b
also applied to the Maxwell-Bloch equation and quantu
optics with interesting results@5#. However, one serious
drawback of the sine-Gordon approach to the Maxwe
Bloch system is its oversimplification. In the sine-Gord
limit, frequency detuning and frequency modulation effe
are all ignored and microscopic atomic motions~inhomoge-
neous broadening! are not taken into account. Also, th
model is limited only to the nondegenerate two-level ca
while many recent interesting applications are based on
multilevel ~three-level and higher! and possibly degenerat
systems. In an earlier work@6#, we have shown that even th
nondegenerate two-level system should be described by
complex sine-Gordon equation. This generalizes the s
Gordon equation by including a phase degree of freedom
accounts for frequency modulation effects. We have a
shown that a more general framework can be given by
32 matrix potentialg and its Lagrangian formulation. Thi
allowed us to incorporate frequency detuning and exter
magnetic fields. Until now, the sine-Gordon theory was
only available field theory for the Maxwell-Bloch syste
and therefore all analytic works beyond the simplest tw
level case have resorted to the Maxwell-Bloch equati
finding soliton-type solutions through the inverse scatter
4621 © 1998 The American Physical Society
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4622 57Q-HAN PARK AND H. J. SHIN
method in integrable cases~for a review, see@7# and other
references therein!. Following the pioneering work of Lamb
@8#, Ablowitz, Kaup, and Newell have extended the inver
scattering formalism to include inhomogeneous broaden
and obtained exact solutions@9#. In accordance with the are
theorem, these solutions show that an arbitrary initial pu
with sufficient strength decomposes into a finite number
2p pulses and 0p pulses, plus radiation that decays exp
nentially. Extensions to the degenerate as well as the m
level cases have been also found resulting more complic
soliton solutions@7,10–12#.

In this paper, we introduce a matrix potential variableg to
nonlinear optical systems described by~integrable! Maxwell-
Bloch equations, and present a completely different type
analysis of the Maxwell-Bloch equation based a field the
formulation throughg. We show that the Bloch part of th
equation can be solved identically in terms ofg and the
remaining Maxwell part becomes a second-order differen
equation ing. This is compared with the linear case of ele
tromagnetism where the curl-free condition is solved
terms of a scalar potentialw and the remaining Gauss equ
tion changes into the second-order differential equation inw.
The field theory action for the second-order Maxwell equ
tion in g is provided by a sigma model-type action, whic
combines the so-called ‘‘~111!-dimensional G/H-gauged
Wess-Zumino-Novikov-Witten action’’ with an appropr
ately chosen potential energy term. This work, which gen
alizes the earlier work on the two-level case@6# to the mul-
tilevel cases, uncovers many features of the problem
particular, our formulation clarifies the hidden~non-Abelian!
group structure of the multilevel Maxwell-Bloch equation
association with symmetric spacesG/H. For instance, the
nondegenerate two-level system of self-induced transpare
is associated withG/H5SU~2!/U~1! while three-levelL or
V systems are associated withG/H5SU~3!/U~2!. These
non-Abelian group structures are shown to arise from
probability conservation law of a density matrix and al
from the selection rules in relevant dipole transitions. In g
eral, the number of degrees of freedom for the Maxw
equation~those of electric-field components! is smaller than
that of the matrix potentialg belonging to the groupG. We
show that these residual degrees can be removed by im
ing constraints ong through ‘‘gauging’’ the action so tha
the action possesses theH-vector gauge invariance. Th
gauge transformation, however, is shown to receive phys
meaning at the atomic level. That is, it accounts for the
fects of frequency detuning and external magnetic fields.
show that inhomogeneous broadening can be also inco
rated into the matrix potential formalism.

In order to demonstrate the power of our matrix poten
approach, we make a detailed analysis of optical pulses.
shows that the matrix potential not only leads to a dee
understanding of optical pulses, but it also provides new
lutions, new conserved charges, and symmetries. In par
lar, a stability analysis is made that generalizes the area t
rem to a certain extent. Specifically, we clarify th
topological nature of solitary pulses through the effect
potential energy term and its degenerate vacua. We de
the topological soliton number according to the group str
ture of the system and show that a solitary pulse for cer
multilevel cases, e.g., the degenerate three-level case,
e
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more than one soliton number. Also, we show that 2p pulses
can be nontopological, carrying a nontopological charge
nontopological soliton is interpreted as a ‘‘self-detuned’’ 2p
pulse and the nontopological charge is shown to measure
amount of frequency self-detuning. The conservation laws
the topological and the nontopological charges are show
prove the stability of pulses. In particular, we prove the s
bility of 2p pulses against small fluctuations. This explai
nicely the frequency pulling effect in the presence of fr
quency detuning which has been predicted earlier by a
merical work.

Our matrix potential formalism also allows a systema
understanding of various symmetry structures of
Maxwell-Bloch equation. We show that infinitely many co
served local integrals resulting from the integrability of t
equation can be obtained in a general group theoretic fra
work of symmetric spaceG/H. This enlarges previously
known results in the case of the two-level system and p
vides conserved charges in other multilevel cases. More
portantly, our field theory reveals the following types
symmetries:~i! global gauge symmetry,~ii ! global U~1! axial
vector symmetry,~iii ! chiral symmetry, and~iv! dual sym-
metry. We show that global gauge symmetry can be use
generate simultaneous solutions systematically. Global U~1!
axial vector symmetry gives rise to the nontopologic
charge via the Noether method. Chiral and dual symmet
are discrete symmetries and they generate new solut
from a known one. In particular, dual symmetry relates
‘‘bright’’ soliton with the ‘‘dark’’ soliton of SIT. Finally, we
show that the matrix potential is useful in understanding
inverse scattering method itself. The potential variableg re-
veals the group structure of the inverse scattering met
and we construct explicitly soliton solutions for variou
cases.

The plan of the paper is the following; in Sec. II, w
present a field theory formulation of the Maxwell-Bloc
equation. The area theorem and the sine-Gordon field the
limit are briefly reviewed and an extension to the comp
sine-Gordon field theory is made in Sec. II A. In Sec. II B,
matrix potential formalism is presented and a general ac
principle is found for the Maxwell-Bloch equation for arb
trary multilevel systems. In Sec. III C, inhomogeneo
broadening is also incorporated into the matrix potential f
malism. Section III deals with explicit examples of variou
multilevel systems. Specific group structures and gauge
ing for each system are identified. In Sec. IV, we expla
new features of optical pulses in our matrix potential form
ism. In Sec. IV A, topological properties of pulses are an
lyzed through the effective potential energy and its degen
ate vacua and also by defining topological soliton numbe
In Sec. IV B, nontopological solitons are introduced and
terpreted as self-detuned pulses. In Sec. IV C, an analys
pulse stability is made in terms of newly found nontopolo
cal charges. Section V deals with symmetries of the syst
Infinitely many conserved charges are constructed system
cally for the general multilevel systems in Sec. V A. Glob
gauge symmetries are explained in Sec. V B and the ch
and the dual symmetries are explained in Sec. V C. Fina
Sec. VI is a discussion.
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57 4623FIELD THEORY FOR COHERENT OPTICAL PULSE . . .
II. FIELD THEORY FOR THE MAXWELL-BLOCH
EQUATION

The multimode optical pulses propagating in a reson
medium along thex axis are described by the electric field
the form

E5(
l 51

m

El~x,t !expi ~klx2wlt !1c.c., ~2.1!

wherekl andwl denote the wave number and the frequen
of each mode and the amplitude vectorEl is in general a
complex vector function. The governing equation of prop
gation is the Maxwell equation

S ]2

]x2
2

n2

c2

]2

]t2D E5
4p

c2

]2

]t2E dvtrrd. ~2.2!

On the right-hand side, electric dipole transitions are trea
semiclassically.d is the atom’s dipole moment operator an
the density matrixr satisfies the quantum-mechanical optic
Bloch equation

i\S ]

]t
1v

]

]xD r5@~H02E•d!,r#. ~2.3!

H0 denotes the Hamiltonian of a free atom andv is the x
component of the velocity of the atoms. In general, we m
a slowly varying envelope approximation~SVEA! for the
Maxwell-Bloch system where the amplitudesEl vary slowly
compared to the space and time scales determined bykl and
wl . Under SVEA, the Maxwell-Bloch equation becomes
set of coupled first-order partial differential equations for t
amplitudesEl and the components of the density matr
Explicit expressions of the Maxwell-Bloch equation for se
eral multilevel cases are given in Sec. III. Thus, t
Maxwell-Bloch equation provides an effective, semiclassi
description of light-matter interaction using the amplitud
El as dynamical variables. Unlike the linear case, it is qu
difficult, if not impossible, to introduce a potential variab
instead ofEl due to the nonlinearity of the interaction an
the approximation involved. Lacking a potential variab
causes the physical system to be described only by the e
tion of motion, not by an action principle. Consequently
field-theoretic formulation is lacking in the problem of pul
propagation. However, when pulses propagate in a reson
nondegenerate two-level atomic medium with inhomo
neous broadening, McCall and Hahn have introduced an
fective potential-like variable, and in terms of which ha
shown that an arbitrary pulse evolves into a coherent m
of lossless pulses@4#. This phenomenon, known as se
induced transparency, is also observed in more general
generate and/or multilevel atomic media. Specifically, M
Call and Hahn have shown that when the dimension
pulse envelope functionE is assumed to be real and the tim
area of 2E,

u~x!52E
2`

`

dt E, ~2.4!
t
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is an integer multiple of 2p (2np pulse!, then the pulse
propagates without loss of energy. Otherwise, due to in
mogeneous broadening the pulse quickly reshapes in
2np pulse according to the area theorem,

du~x!

dx
52asinu~x! ~2.5!

for some constanta. The proof of the area theorem can b
done by making use of inhomogeneous broadening and
Maxwell-Bloch equation. In the absence of inhomogeneo
broadening, the system was shown to admit the sine-Gor
field theory formulation.

A. The sine-Gordon limit

The Maxwell-Bloch equation for the nondegenerate tw
level case can be written in a dimensionless form as

]̄E12b^P&50,

]D2E* P2EP* 50, ~2.6!

]P12i jP12ED50,

where b is a coupling constant andj5w2w0 , ]

[]/]z, ]̄[]/] z̄, z5t2x/c, z̄5x/c. The angular brackets
signify an average over the spectrum distributionf (j) as
given by

^•••&5E
2`

`

~••• ! f ~j!dj. ~2.7!

The dimensionless quantitiesE, P, andD correspond to the
electric field, the polarization, and the population inversi
through the relation,

E52 iE•et0d/A6\,

P52r12exp@2 i ~kx2vt !#/4kt0N0f ~j!, ~2.8!

D52~r222r11!/8kt0N0f ~j!,

wheree specifies the linear polarization direction,t0 is a time
constant, andN0 is related to the stationary populations
the levels.1 In order to understand the structure of 2np
pulses better, we impose further restrictions such that
system is on resonance (j50), frequency modulation is ig-
nored (E being real! and inhomogeneous broadening is a
sent@ f (j)5d(j)#. Under such restrictions, we could intro
duce an area functionw(x,t) defined by

w~x,t ![E
2`

t

Edt8, ~2.9!

which, in the limit t→`, agrees withu(x)/2 in Eq. ~2.4!. In
terms ofw, the SIT equation reduces to the well-known sin
Gordon equation,

1For the details of constants, we refer the reader to Ref.@7#.
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4624 57Q-HAN PARK AND H. J. SHIN
]̄]w22bsin2w50, ~2.10!

when we make consistent identifications:

E5E* 5]w, ^P&5P52sin2w,
~2.11!

^D&5D5cos2w.

This sine-Gordon equation arises from the action

S5
1

2pE ~]w]̄w22bcos2w!. ~2.12!

The periodic cosine potential term exhibits infinitely ma
degenerate vacua. It gives rise to soliton solutions that in
polate between two different vacua. This shows that the 2np
pulse can be identified with the topologicaln-soliton solution
of the sine-Gordon equation. The electric-field amplitudeE,
now identified with]w, receives an interpretation as a top
logical current. Note that the area functionw is different
from the conventional scalar or vector potentials of elect
magnetism. Nevertheless, it is remarkable that the pote
energy cos2w of the sine-Gordon Lagrangian can be iden
fied with the population inversionD, which represents the
atomic energy. Also the Lorentz invariance, which was b
ken by SVEA, reemerges in the sine-Gordon field the
after the redefinition of coordinates. The identification of t
atomic energy with the cosine potential term shows that 2np
pulses are stable against finite energy fluctuations due to
conservation of the topological numbern.

Though the sine-Gordon theory provides a nice fi
theory for the nondegenerate two-level system, it is too
strictive for real applications. The presence of frequen
modulation in pulses, for example, require thatE should be
complex. Therefore, in this caseE cannot be simply replace
by a real scalar fieldw and the sine-Gordon limit is no longe
valid. Also, inclusion of frequency modulation invalidate
the area theorem. However, through the inverse scatte
method, it has been found that solitons do exist even in
case of complexE @8#. This suggests that a more gene
field theory of SIT than the sine-Gordon theory could ex
that takes care of a complexE. Recently, we have shown tha
this is indeed true and the field theory that includes both
frequency detuning and the modulation effects is the
called ‘‘complex sine-Gordon theory’’@6#. This generalizes
the sine-Gordon theory as follows; assume thatE is complex
and the frequency distribution function of inhomogeneo
broadening is sharply peaked atj, i.e., f (j8)5d(j82j) for
some constantj. Introduce parametrizations ofE, P, and
D, which generalize parametrizations in Eq.~2.11!, in terms
of three scalar fieldsw, u, andh,

E5ei ~u22h!S 2]h
cosw

sinw
2 i ]w D ,

~2.13!

P5 iei ~u22h!sin2w, D5cos2w.

These parametrizations consistently reduce the two-le
Maxwell-Bloch equation~2.6! into a couple of second-orde
nonlinear differential equations known as the complex si
Gordon equation,
r-
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-

]̄]w14
cosw

sin3w
]h]̄h22bsin2w50,

~2.14!

]̄]h2
2

sin2w
~]̄h]w1]h]̄w!50

and a couple of first-order constraint equations,

2cos2w]h2sin2w]u22jsin2w50,
~2.15!

2cos2w]̄h1sin2w]̄u50.

Note that the complex sine-Gordon equation reduces to
sine-Gordon equation when frequency modulation is igno
so thath50, u5p/2 and the system is on resonancej
50). This reduction is consistent with the original equati
since solutions of the sine-Gordon equation consist of a s
space of the whole solution space. The complex sine-Gor
equation was first introduced by Lund and Regge in 1976
order to describe the motion of relativistic vortices in a s
perfluid @13#, and also independently by Pohlmeyer in a r
duction problem of the O~4! nonlinears model @14#. This
equation is known to be integrable and soliton solutions g
eralizing those of the sine-Gordon equation have been fou
These issues will be considered in later sections in a m
general context. The Lagrangian for the complex sin
Gordon equation in terms ofw andh is given by

S5
1

2pE ]w]̄w14cot2w]h]̄h22bcos2w. ~2.16!

This Lagrangian, however, is singular atw5np for integer
n, which causes difficulties in quantizing the theory. Als
besides the complex sine-Gordon equation, the two-le
Maxwell-Bloch equation comprises the constraint equat
~2.15!. Thus the Lagrangian~2.16! does not quite serve for a
field theory action of the two-level system. In fact, the s
gular behavior of the Lagrangian~2.16! is an artifact of ne-
glecting the constraint equation. This, as well as the ration
of the above parametrizations, can be seen most clearly i
reformulate the Lagrangian to include the constraint in
context of a matrix potential and a gauged nonlinear sig
model as explained in the next section.

B. Matrix potential formalism

In order to construct a field theory action of the Maxwe
Bloch equation in terms of potential variables and also fin
way to extend to more general multilevel and degener
cases, we first note that the optical Bloch equation admits
interpretation of a spinning top equation as in the case of
corresponding magnetic resonance equations@15#. Denote
real and imaginary parts ofE and P by E5ER1 iEI , P
5PR1 iPI . Then, the Bloch equation in Eq.~2.6! can be
expressed as

]SW 5VW 3SW , ~2.17!

where SW 5(PR , PI , D), VW 5(2EI , 22ER , 22j). This
describes a spinning top where the electric dipole ‘‘ps
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57 4625FIELD THEORY FOR COHERENT OPTICAL PULSE . . .
dospin’’ vector SW precesses about the ‘‘torque’’ vectorVW .
This clearly shows that the length of the vectorSW is pre-
served,

uSW u25PR
21PI

21D251. ~2.18!

The length equals unity due to the conservation of proba
ity. The remaining Maxwell equation in Eq.~2.6! determines
the strength of the torque vector. IfPI50, we may solve Eq.
~2.18! by taking PR52sin2w and D5cos2w and also Eq.
~2.17! by taking E5]w as given in Eq.~2.11!. Then, the
Maxwell equation becomes the sine-Gordon equation as
fore. This picture agrees with the conventional interpretat
of the sine-Gordon theory as describing a system of an
nite chain of pendulums. In order to generalize the si
Gordon limit to the complexE andP case, we make a cru
cial observation that the constraint in Eq.~2.18! can be
solved in general in terms of an SU~2! matrix potential vari-
ableg by

S D P

P* 2D D 5g21s3g, ~2.19!

wheres35diag(1,21) is the Pauli spin matrix. By taking
the determinant, one can check that Eq.~2.18! is automati-
cally satisfied. Also, note thatg21s3g is invariant under the
‘‘chiral U ~1! transformation,’’

g→ei f s3g ~2.20!

for any function f . Thus,g21s3g parametrizes SU~2!/U~1!
instead of SU~2!. Since Eq.~2.18! is automatically solved in
this SU~2! parametrization, the number of independent va
ables, which is dim„SU(2)…2dim„U(1)…532152, agrees
with that of the vector (SW ) parametrization. Moreover, w
have an identity

]~g21s3g!5@g21s3g, g21]g#, ~2.21!

where the bracket denotes a commutator. Note that this
comes precisely the Bloch equation if we make an iden
cation,

g21]g1R5S i j 2E

E* 2 i j D , ~2.22!

where R is an anti-Hermitian matrix commuting with
g21s3g, which will be determined later. Thus, we hav
solved the Bloch equation through the matrix potentialg up
to the identification in Eq.~2.22!. The identification is con-
sistent since both sides are anti-Hermitian matrices. The
diagonal part of the right-hand side~rhs! is simply renaming
the component variable byE whereas the constant diagon
part imposes a constraint on the variableg. This constraint,
however, can be satisfied by an appropriate chiral U~1! trans-
formation in Eq.~2.20!. Thus, the matrix potentialg is made
of two independent variables and one variable satisfying
constraint. In the following, we show that the Maxwell equ
tion can be expressed in terms of two independent varia
only, decoupling completely from the constraint variable.
this regard, our matrix potentialg resembles the scalar po
l-

e-
n
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-

-

e-
-

ff-

e
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tential w in electrostatics wherew solves the curl-free con
dition, ¹W 3EW 50W , identically and changes the Gauss equat
into the Poisson equation. In our case, the Schro¨dinger equa-
tion plays the role of the curl-free condition and the Maxw
equation, the counterpart of the Gauss equation, changes
a second-order nonlinear differential equation. In order to
this, observe that the Maxwell equation can be expres
also in terms ofg only,

]̄~g21]g1R!5S 0 2 ]̄E

]̄E* 0
D 5b@s3 , g21s3g#.

~2.23!

Thus, we have successfully expressed the SIT equatio
terms of the potential variableg up to an undetermined quan
tity R. As we will show, R is determined by requiring an
action principle for the Maxwell equation in terms ofg.
Sinceg is constrained, we need a Lagrange multiplier for t
constraint. In order to help understanding, we assume fo
moment thatR50 and the system is on resonance (j50).
Then, the equation of motion~2.23! arises from a variation
of the action

S5SWZNW~g!2Spot1Sconst ~2.24!

with the following variational behaviors:

dgSWZNW5
1

2pE dz dz̄Tr@ ]̄~g21]g!g21dg#,
~2.25!

dgSpot5
b

2pE dzdz̄Tr~@s3 , g21s3g#g21dg!.

The action SWZNW(g) is the well-known SU~2! Wess-
Zumino-Novikov-Witten functional,

SWZNW~g!52
1

4pES
dzdz̄Tr~g21]gg21]̄g!

2
1

12pEB
Tr~ g̃21dg̃`g̃21dg̃`g̃21dg̃!,

~2.26!

where the second term on the rhs, known as the We
Zumino term, is defined on a three-dimensional manifoldB

with boundaryS5]B and g̃ is an extension of a mapg:S
→SU~2! to B with g̃uS5g @16#. The potential termSpot can
be easily obtained by

Spot5
b

2pE dzdz̄Tr~gs3g21s3!. ~2.27!

Finally, the constraint requires vanishing of the diagonal p
of the matrix g21]g, which can be imposed by adding
Lagrange multiplier termSconst to the action

Sconst5
1

2pE dz dz̄Tr~ls3g21]g!. ~2.28!

The Lagrange multiplierl, however, induces a new term t
the equation of motion by
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dgSconst5
1

2pE dzdz̄

3Tr@~2]ls31@ls3 , g21]g# !g21dg#,

~2.29!

which seems to spoil our construction of a field theory. T
problem can be resolved beautifully if we introduce a gau
symmetry and make the action~2.24! to be ‘‘vector gauge
invariant.’’ This can be done by replacing the constraint te
with a ‘‘gauging’’ part of the Wess-Zumino-Novikov-Witten
action,

S5SWZW~g!2Spot1Sgauge, ~2.30!

Sgauge5
1

2pE Tr~2A]̄gg211Āg21]g1AgĀg212AĀ!,

~2.31!

where the connection fieldsA,Ā gauge the anomaly free sub
group U~1! of SU~2! generated by the Pauli matrixs3. They
introduce a U~1! vector gauge invariance of the action whe
the U~1! vector gauge transformation is defined by2

g→h21gh, A→h21Ah1h21]h,
~2.32!

Ā→h21Āh1h21]̄h,

whereh5exp(ifs3) for some scalar functionf . Owing to the
absence of kinetic terms,A,Ā act as Lagrange multiplier
that result in the constraint equations whenA and Ā are
integrated out. The action in Eq.~2.24! may be understood a
a gauge fixed action with the choice of gauge whereA

50, Ā5ls3. The main reason for introducing a gaug
transformation and a gauge invariant action is twofold.
first shows that the equation of motion resulting from t
variationdgS50,

]̄~g21]g1g21Ag!1@Ā, g21]g1g21Ag#2]Ā

5b@s3 , g21s3g#, ~2.33!

is also gauge invariant and gives rise to the gauge invar
expression of the Maxwell equation. Comparing Eq.~2.33!
with Eq. ~2.23!, we see thatR5g21Ag and the relevant
gauge choice isA5 i js3 , Ā50, due to the constraint in Eq
~2.43!.3 The U~1! vector gauge invariance of the Maxwe
equation implies that the Maxwell equation is independen
specific gauge choices. Thus, it decouples from the U~1! sca-
lar field that saturates the constraint condition and becom
couple of second order nonlinear differential equations
two local variables. In the next section, this is shown clea
by an explicit parametrization ofg and the resulting Maxwel
equation is shown to be equivalent to the complex si
Gordon equation given in Eq.~2.14!. The second reason i

2Note that here we are using the vector U~1! transformation in-
stead of the chiral one as in Eq.~2.20!. This causes the matrix
g21s3g to transform covariantly under the gauge transformatio

3One can always choose such a gauge due to the flatness ofA and

Ā as in Eq.~2.44!.
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that gauge transformation incorporates beautifully the f
quency detuning effect through specific gauge fixing. In S
III, external magnetic fields are also incorporated throu
gauge fixing.

Our field theory for the Maxwell-Bloch equation is no
restricted to the two-level case. In fact, the group theoret
formulation through the matrix potentialg allows an imme-
diate extension to the multilevel cases. We may simply
place the pair SU~2!.U~1! by G.H for any Lie groupsG
andH and obtain theG/H-gauged Wess-Zumino-Novikov
Witten action (SWZNW1Sgauge) where A and Ā gauge the
subgroupH of G.4 For a general pair ofG and H, the ex-
pression for the potential that preserves integrability can
given by @19,20#,

Spot5
b

2pE Tr~gTg21T̄!, ~2.34!

whereT and T̄ are constant matrices that commute with t
subgroupH, i.e., @T,h#5@ T̄,h#50, for hPH. This makes
the potential term vector gauge invariant.5 As we will see
later, physically interesting cases all correspond to a spe
type of symmetric spacesG/H, known as Hermitian sym-
metric spaces@22#, where the adjoint action ofT defines a
complex structure onG/H.

Now, we define the field theory action for the Maxwe
Bloch equation by

SMB5SWZNW~g!

1
1

2pE Tr~2A]̄gg211Āg21]g1AgĀg212AĀ!

2
b

2pE Tr~gTg21T̄!. ~2.36!

4This action is known to possess conformal symmetry and
been used for the generalG/H-coset conformal field theories@17#.
The potential energy term~2.27! breaks conformal symmetry. Nev
ertheless, it preserves the integrability of the model given by
~2.30! whereG/H5SU~2!/U~1!, and this model has been used
describing integrable perturbation of parafermionic coset confor
field theories@18,19#.

5In a more general context,Spot is specified algebraically by a
triplet of Lie groupsF.G.H for every symmetric spaceF/G,
where the Lie algebra decompositionf5g% k satisfies the commu-
tation relations,

@g, g#,g, @g, k#,k, @k, k#,g. ~2.35!

We takeT andT̄ as elements ofk and defineh as the simultaneous

centralizer of T and T̄, i.e., h5Cg(T,T̄)5$BPg:@B,T#50

5@B,T̄#% with H its associated Lie group. With these specific
tions, the action~2.30! becomes integrable and generalizes the si
Gordon model according to each symmetric space. For com
symmetric spaces of type II, e.g., symmetric spaces of the formG
3G/G, the model becomes equivalent to the type I case but witT

andT̄ belonging to the Lie algebrag. It has the coset structureG/H

whereH is the stability subgroup ofT, T̄Pg @21#.
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This action is of course restricted to the integrable cas
which require specific fine tuning of coupling constan
However, the concept of matrix potentialg is valid irrespec-
tive of the integrability of the model and the field theo
formulation can be extended to more general, nonintegra
cases too. In this paper, we will restrict only to the integra
cases. The equation of motion arising from the variation
the action~2.36! with respect tog gives rise to the Maxwell
equation in the matrix potential formalism,

Maxwell equation:

]̄~g21]g1g21Ag!1@Ā,g21]g1g21Ag#2]Ā

5b@T,g21T̄g#. ~2.37!

The Bloch equation again arises from the simple identity
Bloch equation:

]~g21T̄g!5@g21T̄g, g21]g1g21Ag#, ~2.38!

where we used the property@ T̄, A#50. This rather abstrac
form of the Maxwell-Bloch equation will become more e
plicit when specific identifications of physical variables a
made in Sec. III. Note that the Maxwell equation is invaria
under theH-vector gauge transformation as given in E
~2.32!, where the local functionh now belongs to the sub
group H, while the Bloch equation is not. The integrabili
of the Maxwell equation may be demonstrated by rewrit
Eq. ~2.37! in an equivalent zero curvature form in terms
the U-V pair,

@]2U, ]̄2V#50, ~2.39!

and

U[2g21]g2g21Ag2blT,
~2.40!

V[2Ā2
1

l
g21T̄g.

Here, l is an arbitrary spectral parameter. This shows t
the equation of motion becomes the integrability condition
the overdetermined linear equations:

~]2U !C5~]1g21]g1g21Ag1blT!C50,
~2.41!

~ ]̄2V!C5S ]̄1Ā1
1

l
g21T̄gDC50.

The constraint equations coming from the variation ofSMB

with respect toA,Ā are

dASMB5
1

2pE Tr@~2 ]̄gg211gĀg212Ā!dA#50,
~2.42!

d ĀSMB5
1

2pE Tr@~g21]g1g21Ag2A!dĀ#50.

Or
s,
.

le
e
f

t
.

t
f

~2 ]̄gg211gĀg212Ā!h50,
~2.43!

~g21]g1g21Ag2A!h50,

where the subscripth specifies the projection to the subalg
bra h. It can be readily checked that these constraint eq
tions, when combined with Eq.~2.37!, imply the flatness of
the connectionA and Ā, i.e.,

Fzz̄5@]1A,]̄1Ā#50. ~2.44!

In Sec. III, we show that various multilevel Maxwell-Bloc
equations indeed arise from Eqs.~2.37! and~2.43! when ap-
propriate choices are made for the groupsG and H, the
constant matricesT and T̄, and gauge fixing.

C. Inhomogeneous broadening

So far, we have obtained an action principle for t
Maxwell-Bloch equation without inhomogeneous broade
ing. Remarkably, even in the presence of inhomogene
broadening, the notion of matrix potential still persists. T
inhomogeneous broadening effect, i.e., Doppler shif
atomic motions, can be incorporated beautifully via the U~1!
vector gauge transformation. Due to the microscopic mot
of atoms, each atom in a resonant medium responds to
macroscopic incoming light with different Doppler shifts o
transition frequencies. Thus, microscopic variables, e.g.,
polarizationP and the population inversionD, are character-
ized by Doppler shifts and they couple to the macrosco
variableE through an average over the frequency spectr
as given in Eq.~2.7!. A remarkable property of our effective
field theory formulation is that it includes inhomogeneo
broadening naturally only with minor modifications. The n
tion of the potential variableg is again valid. In order to cope
with microscopic motions,g becomes a function of fre
quencyj, i.e.,g5g(z,z̄,j). However, the action principle in
Eq. ~2.36! is no longer valid despite the use of the potent
variable g. We also relax the constraint in Eq.~2.42! and
require only

~g21]g1g21Ag!h2A50. ~2.45!

Then, the linear equation is given by

LzC[~]1g21]g1g21Ag2jT1l̃T!C50,
~2.46!

Lz̄C[S ]̄1K g21T̄g

l̃2j8
L D C50,

where the constantl̃ is a modified spectral parameter an
becomesl1j in the absence of inhomogeneous broadeni
The angular brackets denote an average overj8 as in Eq.
~2.7!. As in the case without inhomogeneous broadening,
make the same identification of the matrixg21]g1g21Ag
2jT with various components of macroscopic elect
fields, which are independent of the microscopic quantityj.
This requires thej dependence ofg(z,z̄,j) to be determined
in such a way thatg21]g1g21Ag2jT is independent ofj.
It is easy to see that this requirement is indeed satisfied
various integrable Maxwell-Bloch systems considered
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Sec. III.6 Note thatC(l̃,z,z̄) is not a function ofj. The
integrability of the linear equation~2.46! becomes

05F ]1g21]g1g21Ag2jT1l̃T,]̄1K g21T̄g

l̃2j8
L G

52 ]̄~g21]g1g21Ag2jT!1^@T, g21T̄g#&, ~2.47!

where we used the fact thatg21]g1g21Ag2jT is indepen-
dent ofj and also the identity

]~g21T̄g!1@g21]g1g21Ag, g21T̄g#50. ~2.48!

Once again, identifyingg21T̄g with components of the den
sity matrix and Eq.~2.48! with the Bloch equation, we obtain
the Maxwell-Bloch equation with inhomogeneous broad
ing. For example, we may identifyE, P, andD as in Eq.
~3.4! so that Eqs.~2.47! and ~2.48! become the Maxwell-
Bloch equation with inhomogeneous broadening for the n
degenerate two-level case as given in Eq.~2.6!. Note that
each frequencyj corresponds to a specific gauge choice
the vector U~1! subgroup. Therefore, in some sense inhom
geneous broadening is equivalent to averaging over diffe
gauge fixings of U(1),H. This implies that inhomogeneou
broadening cannot be treated by a single field theory
therefore it lacks a Lagrangian formulation. It is remarkab
however, that the group theoretic parametrization of vari
physical variables in terms of the potentialg still survives.
In
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III. MULTILEVEL SYSTEMS

In this section, we work out in detail field-theory ident
fications of each multilevel Maxwell-Bloch equation throug
specifying the groupsG andH, the constant matricesT and
T̄, and the gauge choice. Briefly, the resulting associati
with symmetric spaces are the following@see Figs. 1~a!–
1~h!#;

FIG. 1. Multilevel systems and their associated symme
spaces.
SU(2)/U(1) ↔ nondegenerate two-level [Fig. 1(a)],

SU(3)/U(2) ↔ degenerate two-level [Figs. 1(b) and 1(c),

j b50→ j a51, j b51→ j a50, j b51→ j a51,

[SU(2)/U(1)]2 ↔ degenerate two-level;j b51/2→ j a51/2 [Fig. 1(d)],

SU(3)/U(2) ↔ nondegenerate three-level,L or V system [Figs. 1(e) and 1(f)],

SU(4)/S„U(2)3U(2)… ↔ degenerate three level;j a5 j c50, j b51 [Fig. 1(g)],

SU(5)/U(4) ↔ degenerate three level;j a5 j c51, j b50 [Fig. 1(h)]. ~3.1!
ory

red
lf-

ons

ous

n

All of them correspond to Hermitian symmetric spaces.
Appendix B, the characteristic properties of Hermitian sy
metric space is used to generate infinitely many conser
local integrals. Our examples in Eq.~3.1! suggest that to
each Hermitian symmetric space there may exist a spe
multilevel system with a proper adjustment of physical p
rameters. In particular, we could see that the multifreque
generalization in a configuration of the ‘‘bouquet’’ type@7#
corresponds to the Hermitian symmetric space SU(n)/U(n

6In the three-level system, we must takej52t0D152t0D2. It
means that in order to preserve the integrability in the presenc
inhomogeneous broadening, two detuning parameters of the th
level system must be equal.
-
d

fic
-
y

21) for an integern. However, for largen, it requires a fine
tuning of many coupling constants, which makes the the
unrealistic.

A. Nondegenerate two-level system

This is the simplest case, which was originally conside
by McCall and Hahn to explain the phenomenon of se
induced transparency. It also accounts for the transiti
1/2→1/2, 1↔0, 1→1, and 3/2↔1/2 for linearly polarized
waves and the transitions 1/2→1/2, 1↔0, and 1→1 for
circularly polarized waves. We assume that inhomogene
broadening is absent so that^P&5P. The Maxwell-Bloch
equation is given by Eq.~2.6!, which can be expressed in a
equivalent zero curvature form,

of
e-
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F ]1S ibl1 i j 2E

E* 2 ibl2 i j D , ]̄2
i

lS D P

P* 2D D G50.

~3.2!

In order to show that this equation arises from the fi
theory action in Eq.~2.36!, we takeH5U(1),SU(2)5G

andT52T̄5 is35diag(i ,2 i ). We fix the vector gauge in
variance by choosing

A5 i js3 , Ā50 ~3.3!

for a constantj. Such a gauge fixing is possible due to t
flatness ofA,Ā. Comparing Eq.~2.40! with Eq. ~3.2!, we
could identifyE, P andD in terms ofg such that

g21]g1 i jg21s3g2 i js35S 0 2E

E* 0 D ,

~3.4!

g21s3g5S D P

P* 2D D ,

which are consistent with the constraint equation~2.43!.
Note that the zero curvature equation~2.39! also agrees with
Eq. ~3.2!. If we parametrize the SU~2! matrix g by

g5eihs3eiw~cosus12sinus2!eihs35S e2ihcosw isinweiu

isinwe2 iu e22ihcosw D ,

~3.5!

we recover the parametrizations ofE, P, andD as given in
Eq. ~2.13! and the Maxwell equation becomes the comp
sine-Gordon equation in Eq.~2.14!. The potential term in Eq
~2.36! now changes into the population inversionD,

Spot5E b

p
cos2w5E b

p
D, ~3.6!

which for b.0 possesses degenerate vacua at

w5wn5~n1 1
2 !p,

~3.7!

nPZ and u5u0 for u0 constant.

The property of degenerate vacua and the correspon
soliton solutions will be considered in Sec. IV.

B. Degenerate two-level system

One of the deficiencies of the SIT model of McCall a
Hahn is the absence of level degeneracy. Since most ato
systems possess level degeneracy, the analysis of the no
generate two-level system does not apply to a more prac
system. Moreover, level degeneracy in general breaks
integrability and does not allow exact soliton configuratio
For example, propagation of pulses in a two-level medi
with the transitionj b52→ j a52 is effectively described by
the double sine-Gordon equation

]]̄w5c1sinw1c2sin2w, ~3.8!

which is not integrable. Nevertheless, there are a few exc
tional cases that are completely integrable even in the p
x

ng

ic
de-
al

he
.

p-
s-

ence of level degeneracy. It was shown that@10,11# the
Maxwell-Bloch equations for the transitionsj b50→ j a
51, j b51→ j a50, and j b51→ j a51 @see Figs. 1~b! and
1~c!# are integrable in the sense that they can be expresse
terms of U-V pairs. In the following, we show that thes
cases correspond to the effective theory withG5SU~3! and
H5U(2),G. Also, we show that the local vector gaug
structure incorporates naturally the effects of frequency
tuning and longitudinally applied magnetic field. Conside
monochromatic pulse propagating through a medium of
generate two-level atoms in the presence of a longitud
magnetic field. Then, the Maxwell-Bloch equation und
SVEA is given by

]̄«q5 i(
mm

^Rmm&Jmm
q ,

@]1 i ~2j1Vbm2Vam!#Rmm

5 i(
q

«qS (
m8

Jmm8
q Rm8m2(

m8
Rmm8Jm8m

q D ,

~3.9!

@]1 iVa~m2m8!#Rmm8

5 i(
qm

~«q* Jmm
q Rmm82«qJmm8

q Rmm!,

@]1 iVb~m2m8!#Rmm8

5 i(
qm

~«qJmm
q Rmm82«q* Jm8m

q Rmm!.

The dimensionless quantities«q and R are proportional to
the electric field amplitudeE and the density matrixr, where
q is the polarization index and the subscriptsm,m8, . . . and
m,m8, . . . denotes projections of the angular momentum
the quantization axis in two-level statesua& and ub&,
respectively.7 J denotes the Wigner’s 3j symbols

Jmm
q 5~21! j b2mA3S j a 1 j b

2m q m D , ~3.10!

and Va (Vb) is a dimensionless coupling constant of
external magnetic field. In general, Eq.~3.9! is not inte-
grable. However, with particular choicesj a and j b , Eq. ~3.9!
can be recasted into the zero curvature form, or theU-V pair
as in Eq.~2.39!. Specifically, for the transitionj b51/2→ j a
51/2 @Fig. 1~d!#, we have

U5S U1 0

0 U2
D , V5S V1 0

0 V2
D , ~3.11!

where

U65S 2 i ~x1l! 6 i«61

7 i«61* i ~x1l!
D ,

7For details of proportionality constants and their physical me
ings, we refer the reader to Ref.@7#.
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V652
1

2lS R
7

1
2 7

1
2

~b!
R

7
1
2 6

1
2

~ba!

R
7

1
2 6

1
2

~ba!* R
6

1
2 6

1
2

~a! D , ~3.12!

x5
1

4
~Va1Vb24j!.

In the context of field theory, we identify theU-V pair in
terms ofg by

U52g21]g2g21Ag2blT, V52
1

l
g21T̄g,

~3.13!

where the gauge choice is

A5S 2 ix 0 0 0

0 ix 0 0

0 0 2 ix 0

0 0 0 ix

D , Ā50, ~3.14!

and

T52T̄5 i S s3 0

0 s3
D ~3.15!

with the Pauli matrixs3. Here, we setb51 for convenience.
The resulting field theory is specified by the cosetG/H
ld
t
-

5@SU(2)3SU(2)#/@U(1)3U(1)# such thatg5(0
g1

g2

0 ) with

g1 ,g2,SU(2) and the two U~1! subgroups are generated b
(0

s3
0
0) and (0

0
s3

0 ). Note that the specific form of the identifi

cation in Eq.~3.14! requiresg1 andg2 to be SU~2! matrices
as in the case of the nondegenerate two-level system. T
this case is identical to two sets of the nondegenerate t
level system.

Another integrable case is for the transitionsj b51→ j a
50 or j b50→ j a51. In each case, theU-V pair is given by

U5S 2
4

3
il1 i ~x1y! 2 i«21 2 i«1

2 i«21*
2

3
il2 ix 0

2 i«1* 0
2

3
il2 iy

D ,

x52Va2
2

3
j, y5Va2

2

3
j for j b50→ j a51

~3.16!

x52Vb2
2

3
j, y5Vb2

2

3
j for j b51→ j a50,

and
V55
i

2lS R00
~b! R021

~ba! R01
~ba!

R021
~ba!* R2121

~a! R211
~a!

R01
~ba!* R121

~a! R11
~a!
D for j b50→ j a51

i

2lS 2R00
~a! R10

~ba! R210
~ba!

R10
~ba!* 2R11

~b! 2R211
~b!

R210
~ba!* 2R121

~b! 2R2121
~b!

D for j b51→ j a50.

~3.17!
-

d

th

the
re-
nte-
in-
The gauge choice is given by

A5S 2 i ~x1y! 0 0

0 ix 0

0 0 iy
D , Ā50. ~3.18!

Thus, the field theory is specified byG/H5SU~3!/U~2! with

T52T̄5
2i

3 S 2 0 0

0 21 0

0 0 21
D ~3.19!

and b51. It is interesting to observe that the electric-fie
components«1,«21 in Eq. ~3.16! parametrize the cose
SU~3!/U~2! and the vector («21* ,«1* )T transforms as a vec
tor under the U~2! action. In particular, since frequency de
tuning amounts to the global U~1! @,U~2!# action while lon-
gitudinal magnetic field amounts to the global U~1!
3U~1! @,U~2!# action, the effects of both detuning an
magnetic field to«1,«21 can be easily obtained.

C. Three-level system

The propagation of pulses in a multilevel medium wi
several carrier frequencies as given in Eq.~2.1! is a more
complex problem than the two-level case and in general
system is not exactly integrable. However, with certain
strictions on the parameters of the medium, it becomes i
grable again and reveals much richer structures. Typical
tegrable three-level systems are either ofL type orV type as
in Fig. 1~e! and Fig. 1~f!. The U-V pair for each system is
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essentially the same as that of the degenerate two-level
tem in Eq. ~3.16!. Instead of giving an explicitU-V pair
using a density matrix, we present an equivalent expres
of the Maxwell-Bloch equation for theL or V system and
the U-V pair in terms of probability components. It is give
by the Schro¨dinger equation

]c15 iV1c3 ,

]c25 iV2c3 , ~3.20!

]c35 i ~V1* c11V2* c2!,

and the Maxwell equation

i ]̄V15s1c1c3* ,
~3.21!

i ]̄V25s2c2c3* ,

where si52pNm i
2v i /\, i 51,2, and ck , k51,2,3, are

slowly varying probability amplitudes for the level occup
tions, V i5m iEi /2\ are the Rabi frequencies for the trans
tions i→3. E1 and E2 are the slowly varying electromag
netic field amplitudesm i is the dipole matrix element for th
relevant transition andv i is the corresponding laser fre
quency, andN is the density of resonant three-level atoms
the oscillator strengths are equal (s15s25s), these equa-
tions can be put in the SU~3!/U~2! context with the following
identifications:

g5S * * *

c1* c2* c3*

* * *
D ~3.22!

and

g21]g5S 0 0 2 iV1

0 0 2 iV2

2 iV1* 2 iV2* 0
D . ~3.23!

The gauge choice is thatA5Ā50 and T5diag(2 i /2,
2 i /2,i /2). The density matrixr, with componentsrmk

5cmck* , is given by

r52 ig21T̄g, T̄5S 0 0 0

0 i 0

0 0 0
D . ~3.24!

Finally, theU-V pair is given by

U52g21]g2slT, V52
1

l
g21T̄g. ~3.25!

This system of integrable equations exhibit many interes
exact solutions. Detailed studies of this case will appear
separate paper@23#. Recently, three-levelL and V systems
have received much attention in the context of quantum
herence effects, such as lasing without inversion and elec
magnetically induced transparency. In particular, there h
been extensive studies, both analytical and numerical, on
ys-

on

f

g
a

-
o-
e

he

propagation of matched pulses through absorbing me
@24–28#. Though our matrix potential formulation applie
only to the nonabsorbing medium case, the exact anal
solutions could provide a guideline for numerical studies
absorbing, nonintegrable cases. It is important to note
the group symmetry persists even in the absorbing c
which leads to interesting results@28,23#.

The degenerate three-level case and its integrability
been studied earlier in the context of the inverse scatte
method@12#. We suppress the general Maxwell-Bloch equ
tion formulation for the three-level case and refer the rea
to Ref. @12# for details. Here, we extend the Maxwell-Bloc
equation of Ref.@12# to include a longitudinal magnetic field
Then, the Maxwell-Bloch equation describing theL configu-
ration with j b51,j a5 j c50 @Fig. 1~g!# is given in a dimen-
sionless form by

]̄« j
q52 ip j

q , j 51,2, q561 ~3.26!

and

@]1 i t 0~k1v22D12Vbq!#p1
q

52 i S (
q8

«1
q8mq8q2«1

qn12«2
qr G ,

@]1 i t 0~k2v22D22Vbq!#p2
q

52 i S (
q8

«2
q8mq8q2«2

qn22«1
qr * D ,

@]2 i t 0~k2v2k1v22D212D1!#r

52 i(
q

~«1
qp2

q* 2«2
q* p1

q!, ~3.27!

]nj52 i(
q

~« j
qpj

q* 2« j
q* pj

q!,

@]1 i t 0Vb~q2q8!#mqq852 i (
j 51,2

~« j
q* pj

q82« j
q8pj

q* !,

where« j
q , j 51,2 is the amplitude of a double-frequenc

ultrashort pulse andq561 denote the right-~left-! handed
polarization. Other variables are proportional to the com
nents of the density matrix

p1
q5r2q0

~ba!exp@2 i ~k1x2w1t !#/Na ,

p2
q5r2q0

~bc! exp@2 i ~k2x2w2t !#/Na ,
~3.28!

n152r00
~a!/Na , n252r00

~c!/Na , mqq852r2q82q
~b! /Na,

r 52r00
~ca!exp@ i ~k12k2!x2 i ~w12w2!t#/Na

andt0 is a constant with the dimension of time andNa is the
population density of the levelua&. 2D1[w12wba , 2D2
[w22wbc measure the amount of detuning from the res
nance frequencies. The integrability of Eq.~3.27! comes
from its equivalent zero curvature form with the 434 matrix
U-V pair,
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U5S 2A12 il1232 2 iE

2 iE† 2A21 il1232
D ,

~3.29!

V5
i

2lS 2M P

P† 2ND ,

where

E5S «1
21 «2

21

«1
1 «2

1 D , P5S p1
21p2

21

p1
1p2

1 D , M5S m2121m121

m211m11
D ,

N5S n1r *

rn2
D , A15S a0

0bD , A25S x0

0yD ,

with

a5
i t 0

4
~k1v1k2v22D122D214Vb!,

b5
i t 0

4
~k1v1k2v22D122D224Vb!,

~3.30!

x5
i t 0

4
~23k1v1k2v16D122D2!,

y5
i t 0

4
~k1v23k2v22D116D2!.

Thus, in our field theory context, this corresponds to the c
whereG/H5SU(4)/S@U(2)3U(2)# and the gauge choice

A5S A1 0

0 A2
D , Ā50, ~3.31!

whereA1 ,A2 are as in Eq.~3.30! and

T52T̄5 i S 1232 0

0 21232
D . ~3.32!

Similarly, we may repeat an identification for the case@29#,
j a5 j c51,j b50 @Fig. 1~h!# and can easily verify that it cor
responds to the symmetric space SU~5!/U~4!.

IV. SOLITARY PULSES

The lossless propagation of optical pulses in multile
atomic media has been a subject of intensive study since
discovery of self-induced transparency. Most theoreti
works on this subject have resorted to the method of inve
scattering. The 2p pulse of self-induced transparency and
generalizations to multilevel cases, e.g., simultons, are id
tified with ‘‘solitons’’ in the context of inverse scattering
Though the inverse scattering method is powerful enoug
generate exact solutions and predict the evolution of a p
of arbitrary shape, it does not explain the topological nat
of solitary pulses. In the sine-Gordon limit, the 2p pulse has
been identified with the topological soliton of the sin
Gordon theory, which is stable due to the topological num
conservation. The topological number is protected since
change costs infinite energy. The cosine potential energ
e

l
he
l
e

n-

to
se
e

r
ts
in

the sine-Gordon theory indeed measures the atomic en
through the population inversion. However, except for t
sine-Gordon limit, such a topological treatment of optic
pulses was not possible since field theories for more gen
cases were absent. Therefore, our field theory formula
allows a topological treatment of multilevel optical pulses.
the following, we show in detail that the potential ener
term in Eq. ~2.34! possesses infinitely many degenera
vacua and leads to topological solitons. In certain case
topological soliton is characterized by more than one to
logical number, which is a new feature of multilevel pulse
On the other hand, we show that there exist also nonto
logical pulses that otherwise possess all the properties
solitons. A nontopological charge is introduced for su
pulses from the ‘‘global axial U~1! gauge symmetry’’ of the
field theory action in Eq.~2.36!. Explicit nontopological soli-
tons are constructed and identified with self-detuned solit
pulses. The nontopological charge measures the amoun
self-detuning and the charge conservation law proves the
bility of a nontopological soliton against small fluctuation

A. Potential energy and topological solitons

The potential energy term in Eq.~2.34! reveals a rich
structure of the vacuum of the theory. It is a ‘‘periodic
function in local variables. This periodicity gives rise to in
finitely many degenerate vacua, which are specified by a
of integer numbers. Thus, any finite energy solution sho
interpolate between two vacua. In the nondegenerate t
level case, the potential term in Eq.~2.27! becomes a peri-
odic cosine potential in Eq.~3.6! and each degenerat
vacuum is labeled by an integern as in Eq.~3.7!. A soliton
interpolating between two different vacua, labeled byna and
nb , asx varies from2` to ` is characterized by a soliton
number Dn5nb2na . In order to understand the vacuu
structure of the potential for other multilevel cases, we fi
note that the potential term Tr(gTg21T̄), characterized by a
cosetG/H, is invariant under the changeg→gh for hPH.
Consequently, we may express the potential term throug
coset elementmPG/H by Tr(mTm21T̄), where

m5expS 0 B

2B† 0
D

5S cosABB† BAB†B21sinAB†B

2sinAB†BAB†B21B† cosAB†B
D .

~4.1!

The matrixB parametrizes the tangent space ofG/H. This
manifests the periodicity of the potential through the cos
and the sine functions. For the specific cosets, SU~2!/
U~1!, SU~3!/U~2!, and SU~4!/S@U~2!3U~2!#, the relevant
matricesB are complex-valued matrices of size 131, 1
32, and 232 respectively. Owing to the relation,

BsinAB†BAB†B215sinABB†ABB†21B, ~4.2!

the potential term reduces to

Tr~ I 22sin2ABB†!1Tr~ I 22sin2AB†B! ~4.3!
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for the SU~2!/U~1! and the SU~4!/S@U~2!3U~2!# cases and

Tr~4I 26sin2ABB†!1Tr~ I 23sin2AB†B! ~4.4!

for the SU~3!/U~2! case. For a further reduction, we deno
the nonzero eigenvalues ofB†B by f i

2 ( i 51,..,r
[rank$B†B%), which are positive definite and coincide wit
those ofBB†. In terms of f i

2 , the potential term takes
particularly simple form,
m

b

ua

s-
e
tu
e

o

e
th

u-
o

o

a2b(
i

sin2f i , ~4.5!

where the positive constantsa and b can be read directly
from Eqs. ~4.3! and ~4.4!. In order to check, we take, fo
example, the SU~3!/U~2! case and choose theB matrix by

B5~2fsinhe2 ib2fcoshe2 ia!. ~4.6!

Then,
m5S cosf 2sinfsinhe2 ib 2sinfcoshe2 ia

sinfsinheib cos2h1cosfsin2h 2coshsinheib2 ia~12cosf!

sinfcosheia 2coshsinheia2 ib~12cosf! sin2h1cosfcos2h
D , ~4.7!
-

cat-

es
-

ef-
and the potential term becomes

Tr~gTg21T̄!5Tr~mTm21T̄!5629sin2f ~4.8!

which agrees precisely with Eq.~4.4!.
The potential term in Eq.~4.5! manifests the periodicity

of the potential and the infinite degeneracy of the vacuu
The minima of the potential occur atf i5(ni11/2)p for
integerni . Therefore, the degenerate vacua are specified
a set integers (n1 ,n2 , . . . ,nr).

8 The rankr of B†B is one for
the cases of SU~2!/U~1! and SU~3!/U~2! and two for the case
SU~4!/S@U~2!3U~2!#. Therefore, solitons for the SU~4!/
S@U~2!3U~2!# case, which interpolate between two vac
(n1a ,n2a) and (n1b ,n2b) with un1u>un2u andn1>0, are la-
beled by two soliton numbersDn15n1b2n1a and Dn2
5n2b2n2a . In the following, we present an explicit expre
sion for the 1-soliton carrying two soliton numbers. Consid
the degenerate three-level system with the group struc
SU~4!/S@U~2!3U~2!#. For simplicity, we assume that th
system is on resonance (D15D250, v50) without external
magnetic field and inhomogeneous broadening. This
equivalent to the case whereA5Ā50 in Eq. ~2.40! with
identifications in Eq.~3.30! in terms of a 434 matrix g. By
applying the Ba¨cklund transformation in Ref.@23#, we obtain
the 1-soliton solution in terms of variables as in Eq.~4.1!,

8In fact, in the case of multiply integer-labeled vacua, not all
them are topologically distinct. A similarity transformation ofB†B
that reshuffles the eigenvaluesf i

2 is a continuous symmetry of th
vacuum, i.e., under the continuous similarity transformation,
potential energy does not change. For example, two vacua (n1 ,n2)
and (n2 ,n1) are not topologically distinct but related by a contin
ous symmetry transformation. Also, there exists another continu
symmetry associated with the nontopological U~1! charge that pro-
vides an additional topological degeneracy by the identification
two vacua (n1 ,n2 , . . . ,nr) and (2n1 ,2n2 , . . . ,2nr). Thus, the
topological configuration of degenerate vacua is characterized
(Z) r /(Zr3Z2).
.

y

r
re

is

B522B0tan21exp@2hz1 ~2/h!z̄1const.#[fB0 ,
~4.9!

where h is a constant andB0 is a constant 232 matrix
satisfying

B0B0
†B05B0 . ~4.10!

If the matrixB0 is degenerate, i.e., detB050, it can be given
in general by

B05
i

A11uau2
S u1 u2

au1 au2
D ~4.11!

with complex constantsa andu1 ,u2 satisfyinguu1u21uu2u2

51. The eigenvalues ofB0B0
† are then zero and one. There

fore, up to a global SU~2! similarity transform ofB0B0
† , this

solution corresponds to the~1,0! soliton. This solution has
been known as a simulton in earlier literatures and its s
tering behavior has been analyzed in detail@7#. For the non-
degenerateB0, we can takeB0 as an arbitrary U~2! matrix so
thatB0B0

†51232 and the corresponding solution is the~1,1!-
soliton. This is energetically distinct from the~1,0!-soliton
and also it cannot be reached to the~1,0!-soliton via the
similarity transform since the similarity transform preserv
eigenvalues ofB0B0

† . Finally, physical quantities can be ob
tained fromg through the identification in Eq.~2.40!. Explic-
itly, we find E, P, andM in Eq. ~3.30! to be

E5 iB0]f522ihB0sechD,

P522B0sin2f524B0tanhDsechD,
~4.12!

M52N5221232cos2f5221232~122sech2D!,

D[2hz1
2

h
z̄1const,

respectively. Inclusion of detuning and external magnetic
fects can be done easily by a gauge transform

E→H1
21EH2 , M→H1

21MH1 ,
~4.13!
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P→H1
21PH2 , N→H2

21NH2 ,

whereH1 ,H2 are given byA15H1
21]H1 , A25H2

21]H2 for
A1 ,A2 in Eq. ~3.30!.

B. Nontopological solitons as self-detuned pulses

Here, we address the issue of topological versus nonto
logical solitons in optical systems. In order to facilitate t
problem, we first focus on the 2p pulse of the nondegenera
two-level system. Setb51 in Eq. ~2.6! without loss of gen-
erality. Then, by using the dressing method in Appendix
one can obtain the 2p pulse solution such that

cosw5
b

A~a2j!21b2
sech~2bz22bC1z̄!,

u52tan21Fa2j

b
coth~2bz22bC1z̄!G

~4.14!

22jz1@2~a2j!C122C2# z̄,

h5~a2j!z1~a2j!C1z̄,

wherea,b are arbitrary constants and

C15K 1

~a2j8!21b2L , C25K a2j8

~a2j8!21b2L ,

~4.15!

where the term in angular brackets is as in Eq.~2.7!. In terms
of E as defined in Eq.~2.13!, the 2p pulse is given by

E522ibsech~2bz22bC1z̄!e22i ~az1C2z̄!. ~4.16!

Note that E is explicitly independent ofj in Eq. ~4.16!,
despite thej dependence of potential variablesw,h, andu.
This exemplifies the macroscopic nature ofE as discussed in
Sec. II C. In the sharp line limit of the frequency distributio
f (j8)5d(j82j0), this solution retains the same form exce
for the change of constantsC1 andC2,

C15
1

~a2j0!21b2
, C25

a2j0

~a2j0!21b2
. ~4.17!

The solution in Eqs.~4.14! and ~4.16! is loosely identified
with the one-soliton in earlier works using the inverse sc
tering method. However, this does not necessarily mean
it is a topological one-soliton. We emphasize that the to
logical distinction is possible only in the sharp line limit an
even in that case not all solitons are topological solitons.
example, whena5j, the above solution describes a loca
ized pulse configuration that interpolates between two dif
ent vacua in Eq.~3.7! such that

w~x52`!5~n1 1
2 !p,

~4.18!

w~x5`!5S n1
1

2
2

b

ubu ~21!nDp.
o-

,

t

t-
at
-

r

r-

Thus, it carries a topological numberDn5(21)n11b/ubu
and becomes a topological soliton. WhenaÞj, the solution
reaches the same vacuum asx→6` since the peak of the
localized solution does not reach the point where cosw51.
That is, its topological number is zero. Nevertheless,
shares many important properties~e.g., localization, scatter
ing behavior, etc.! with the topological soliton so as to de
serve the name, ‘‘nontopological soliton.’’ Note that the e
velope functionE, and also the time area ofE, become
complex whenaÞj. But the time area of the absolute valu
of E in Eq. ~4.16! is still 2p. This suggests that we could ca
the solution in Eq.~4.14! as a 2p pulse in a broad sense
which comprises both the topological and the nontopolog
solitons as well as the inhomogeneously broadened solu
In order to see the physical meaning of a nontopologi
soliton, consider the resonant case wherej50. In this case,
Eq. ~4.16! shows that the nontopological soliton (aÞ0)
shifts the carrier frequency byDw52a. Thus, the nontopo-
logical soliton represents a self-detuned 2p pulse. It also
receives a spatial modulation given by a phase fac
exp(22iaz̄/Aa21b2). At the microscopic level, the maxi
mum population inversion,D5cos2w, does not reach 1 in
the nontopological case so that the shape ofw is not of the
kink-type @see Figs. 2~a!–2~d!#. Note that the field intensity
uEu in Fig. 2~d! is invariantly hyperbolic secant-type inde
pendent of the valuea.

Though a nontopological soliton cannot be specified b
topological integer number, it carries a continuous nonto
logical charge. In fact, as we will show in the next sectio
the nontopological charge conservation law gives rise to
stability of a nontopological soliton. In Sec. V, we show th
the symmetry leading to the nontopological charge is ‘‘t
global axial U~1!-vector gauge symmetry’’ of the action. I
the nondegenerate two-level case, this means the invari
of the action in Eq.~2.16! under the change

h→h1g for g constant. ~4.19!

The corresponding Noether current is given by

J5
cos2w

sin2w
]h, J̄5

cos2w

sin2w
]̄h, ~4.20!

which satisfies the conservation law

] J̄1 ]̄J5
]

]t
@cot2w~]1 ]̄ !h#1c

]

]x
@cot2w]h#50.

~4.21!

The corresponding conserved charges are conserved eith
time, dQT/dt50,

QT[E
2`

1`

@cot2w~]1 ]̄ !h#dx, ~4.22!

or in space,dQS/dx50,

QS[E
2`

1`

@ccot2w]h#dt. ~4.23!

In the case of the nontopological soliton given in Eq.~4.14!,
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FIG. 2. Plots off, u , D anduEu for ~bright! one-soliton withb52, j50 . The plot is w.r.t.x52bz22bC1z̄. Real (a50) and dashed
(a53) lines represent the topological and the nontopological solitons.
r

t
l’

i
e
a
it
it
n

l

b

i

on-

do
ble
ility
den-
on

f the
l

the
eral

n.
rem
the
ping
ex-
ge-

e-
ase
du-

the
cy-
f
ider
x

e
otic
QS5QT5ctan21
ubu

a2j
. ~4.24!

The physical meaning ofQS is clear. Consider a 2p pulse
with b fixed. Since]h5a2j5a1w02w expresses fre-
quency detuning and cot2w is peaked around the soliton,QS

measures precisely the amount of self-detuning of a non
pological soliton. Stability of nontopological solitons can b
proved either by using conservation laws in terms of cha
and energy as given in@30#, or by studying the behavior
against small fluctuations.

C. Stability

The physical relevance of a topological number is tha
accounts for the stability of solitons against ‘‘topologica
~soliton number changing! fluctuations. In fact, any finite
energy solution must approach one of the degenerate va
at x56` and therefore it carries a specific topological num
ber. Topological numbers cannot change during any phys
process due to the infinite potential energy barrier betw
any two finite energy solutions with different topologic
numbers. This infinite energy barrier results from the infin
length of thex axis despite the finite potential energy dens
per unit length. On the other hand, topological number is
useful in understanding the stability of pulses against non
pological ~finite energy! fluctuations. Also, the topologica
notion does not apply to the case with inhomogeneous bro
ening. In Sec. II C, we have argued that the potential varia
g is microscopic depending on the frequencyj while the
pulse amplitudeE is macroscopic being independent ofj.
This was apparent in the example of the one-soliton solut
given through Eqs.~4.14!–~4.16!. It shows that inhomoge-
neous broadening requiresE to be a function of ‘‘frequency
to-
e
ge

it
’

cua
-

cal
en
l
e
y
ot
to-

ad-
le

on

j averaged’’ coefficients, while the topological versus n
topological nature of the soliton critically depended onj as
in Eq. ~4.14!. Thus, inhomogeneously broadened pulses
not carry topological numbers. In this regard, it is remarka
that the McCall and Hahn’s area theorem provides a stab
statement even in the presence of inhomogeneous broa
ing. In fact, the proof of the area theorem relied crucially
the averaging over the frequencyj of detuning in inhomo-
geneous broadening. However, one serious drawback o
area theorem is that it applies only to the case of reaE,
which ignores frequency modulation, and it also assumes
symmetric frequency distribution. Presently, a more gen
area theorem including frequency modulation is not know

In this section, we attempt to generalize the area theo
to include frequency modulation. Though we do not have
general area theorem, we show that how pulse resha
with frequency modulation can be explained to a certain
tent. In the nondegenerate two-level case without inhomo
neous broadening, we prove the stability of a 2p pulse in
terms of a ‘‘modified area function’’ and show that the r
covery of soliton shape is slower in the off-resonant c
(a2jÞ0) than in the resonant case. When frequency mo
lation is taken into account, a numerical work testing
pulse stability has shown that there exists a frequen
pulling effect@31#. This effect is explained nicely in terms o
the nontopological charge and its conservation law. Cons
the one-soliton in Eq.~4.14!. Since the time area of comple
E is not meaningful, instead we regardw of the complex
sine-Gordon equation as a ‘‘modified area function.’’ W
also assume without loss of generality that the asympt
time behavior ofw is given by

w~ t52`,x!5H 2p/2, w~ t5`,x!5p/2 for a5j

w~ t5`,x!52p/2 for aÞj,
~4.25!
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Then, the modified area

A5E
2`

`

2]wdt ~4.26!

of the topological soliton (a2j50) is 2p while that of the
nontopological soliton is zero. Consider a pulse perturb
around the one-soliton with the boundary conditionw(t5
2`,x)52p/2, i.e., the it is initially in the vacuum state
Near the trailing edge of the pulse (t@1), the modified area
function is perturbed bydw5e for small e, i.e., w(t@1)
56p/21e. Then, the perturbed complex sine-Gordon eq
tion for t@1 around the one-soliton becomes

]̄]w14
b2

~a2j!21b2 e50. ~4.27!

The perturbation of theh part is neglected since its contr
bution is of the ordere2. This shows that if the modified are
is greater than 2p ~or zero! by the amounte.0, then]̄]w
,0. Therefore, the field]w at the trailing edge tends t
decrease along thez̄5x/c axis so as to recover the tota
modified area 2p ~or zero!. On the other hand, ife,0, then
]̄]w.0 and the field at the trailing edge increases. T
shows that the total modified area tends to remain 2p or
zero. Moreover, Eq.~4.27! shows that the recovery of area
faster in the resonant case (a5j) than in the off-resonan
case (aÞj). This agrees with the prediction made by a n
merical work@31#. In fact, the recovery of the modified are
can be accompanied by a stronger recovery of pulse sha
that of a soliton. Instead of proving this, we simply point o
that the stability of a soliton against modified area preserv
fluctuations could be demonstrated by modifying the Lam
proof in terms of the Liapunov function@32#, as well as by
proving the stability of higher-order conserved charges@9#.

In order to understand the frequency modulational sta
ity, we recall that the nontopological charge measures
amount of frequency self-detuning of pulses. In the follo
ing, we show that the stability of the nontopological char
accounts for the frequency-pulling effect. From Eq.~4.21!,
we have

dQS

dx
52cot2w~]1 ]̄ !hu t52`

t51` . ~4.28!

For a one-soliton solution, the boundary contribution is z
and QS is conserved in space. If the solution is perturb
around the soliton such that near the trailing edge of
pulse,

w~ t@1,x!56p/21e~x!,
~4.29!

h~ t@1,x!5~a2j!S t2
x

c
2

1

~a2j!21b2

x

cD1d~x!

for small parametric functionse(x) andd(x). To the leading
order, the variation ofQS then becomes

ddQS

dx
52~a2j!S 11

1

~a2j!21b2D e2. ~4.30!
d
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This shows that the detuning by a higher frequency, i.e.a
2j.0 reducesQS for increasingx while the lower fre-
quency detuning does exactly the opposite. Since the c
served chargeQS of the one-soliton isctan21@ ubu/(a2j)#, it
can be concluded that the absolute value ofQS(x) decreases
monotonically along thex axis. Eventually, it converges to
constant value of a soliton. Note that the monotonic decre
of the uQSu value of a pulse is slower than that of the mod
fied area since it is of the ordere2. The decreasing and con
verging behavior ofuQSu is in good agreement with the nu
merical work@31#, which showed that the frequency of th
optical pulse is pulled towards the transition frequency a
reaches a constant value along thex axis. Thus, the stability
of modified area and nontopological charge provides a g
eralization of the area theorem in the presence of freque
detuning in a restricted sense. A full-fledged generalizat
should include inhomogeneous broadening, in which c
the nontopological charge conservation law breaks down
introduces an anomaly termM in the current conservation
law, ] J̄1 ]̄J5M , for J,J̄ as in Eq.~4.20! and

M52cotw[cos~u22h!^sin~u22h!sin2w&

2sin~u22h!^cos~u22h!sin2w& ~4.31!

2~cot2w]̄h1 1
2 ]̄u !]w].

This anomaly vanishes in the sharp line limit due to t
constraint in Eq.~2.15!. It also vanishes for the one-solito
and the charge remains conserved in this case. This ma
compared with the conserved area of topological solitons
the presence of inhomogeneous broadening. The area t
rem of McCall and Hahn proves that inhomogeneous bro
ening changes the pulse area until it reaches those of 2np
pulses. This suggests that a generalized area theorem of
stability including frequency modulation may be proven
making use of the nontopological charge and the anom
But this has yet to be seen.

V. SYMMETRIES

One of the advantages of having a field formulation of t
Maxwell-Bloch equation is that the field theory action r
veals symmetries of the system. In this section, we show
our group theoretic formulation in particular reveals pre
ously unknown gauge-type symmetries that have defi
physical implications. Also, by using the group theory, w
construct systematically infinitely many conserved local
tegrals of the Maxwell-Bloch equation in association with
Hermitian symmetric spaceG/H. These conservation law
can be extended to the case with inhomogeneous broade
without difficulty. In addition to these continuous symm
tries, we show that the action in Eq.~2.36! uncovers two
types of discrete symmetries; the chiral and the dual sym
tries. These discrete symmetries relate two different so
tions. In particular, we show that the dual symmetry relate
‘‘bright’’ soliton with a ‘‘dark’’ soliton.

A. Conserved local integrals

In Appendix B, it is shown that the associated linear eq
tion ~2.41! in terms of aU-V pair yields exact soliton solu
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tions through the dressing procedure. The same linear e
tion can be employed to construct infinitely many conserv
local integrals. We first construct conserved integrals for
SU~2!/U~1! case with inhomogeneous broadening and la
generalize to the arbitraryG/H case. Recall that the linea
equation for the SU~2!/U~1! case is given by

F ]1S 0 2E

E* 0 D 2lTGC50,

~5.1!

S ]̄1K g21T̄g

l1j L DC50,

whereT52T̄5 is3. We introduce the notation

^g21T̄g& l[^g21T̄g~2j! l&

52 i S ^D~j!~2j! l& ^P~j!~2j! l&

^P* ~j!~2j! l& 2^D~j!~2j! l&
D

[2 i S Dl Pl

Pl* 2Dl
D , ~5.2!

and define

Cexp~2lTz![(
i 50

`
1

l i
F i , F i[S pi qi

r i si
D ~5.3!

so that the linear equation changes into

F ]1S 0 2E

E* 0 D GF i2@T, F i 11#50 ~5.4!

and

]̄F i1(
l 50

i 21

^g21T̄g& i 2 l 21F l50. ~5.5!

These equations can be solved iteratively in components

qi5
1

2i
~]qi 212Esi 21!, ~5.6!

r i52
1

2i
~]r i 211E* pi 21!, ~5.7!

pi5E Eridz1 i(
l 50

i 21 E ~Di 2 l 21pl1Pi 2 l 21r l !dz̄,

~5.8!

si52E E* qidz1 i(
l 50

i 21 E ~2Di 2 l 21sl1Pi 2 l 21* ql !dz̄,

~5.9!

together with the initial conditions:

p05s0522i , r 05q050. ~5.10!
a-
d
e
r

The consistency condition,]]̄pi2 ]̄]pi50, then leads to the
infinite current conservation laws,] J̄i1 ]̄Ji50 for J̄i5 ]̄pi
andJi52]pi . Or

i ](
l 50

i 21

~Di 2 l 21pl1Pi 2 l 21r l !2 ]̄~Eri !50. ~5.11!

Another consistency condition,]]̄si2 ]̄]si50, gives rise to
the complex conjugate pair of Eq.~5.13!. A few explicit
examples of conserved currents are

J̄1522D0 ,

J15EE* , ~5.12!

J̄254iD 122P0E* ,

J25E]E* , ~5.13!

J̄3522P0]E* 18D214iE* P1 ,

J35E]2E* 1~EE* !2, ~5.14!

J̄45216iD 318E* P214iP1]E*

22P0]2E* 22P0E* uEu2,

J45E]3E* 1uEu2]uEu212EuEu2]E* . ~5.15!

Half of the above integrals have appeared earlier in@32#. As
for the generalG/H case, we introduce the abbreviation

E[Ū5g21]g1g21Ag2jT,

^V̄& l[^g21T̄g& l5^g21T̄g~2j! l&

5Dl1Pl , ~5.16!

where in the last line, the decomposition is made accord
to the behavior under the adjoint action ofT such that
@T, Dl #50 and @T, Pl #Þ0. Now, define matricesXi and
Yi recursively by

Yi52@T,]Yi 21#2@T,E#Xi 21 ~5.17!

and

Xi52E EYidz2(
l 50

i 21 E ~Di 2 l 21Xl1Pi 2 l 21Yl !dz̄.

~5.18!

The matricesXi andYi can be determined completely wit
appropriate initial conditions. For example, if we choose
initial condition that is consistent with the recursion relati
for i<0,

X05I , Y050, ~5.19!

we find for the first few explicit cases in the series,

X15E E@T,E#dz2E D0dz̄, Y152@T,E# ~5.20!
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and

X25E ~E]E1E@T,E#X1!dz

1E ~2D12D0X11P0@T,E# !dz̄, ~5.21!

Y252]E2@T,E#X1 .

These matrices give rise to infinitely many conserved lo
currents,

Ji[]Xi52EYi ,
~5.22!

J̄i[]̄Xi52(
l 50

i 21

~Di 2 l 21Xl1Pi 2 l 21Yl !,

which satisfy] J̄i5 ]̄Ji . An explicit derivation of these cur
rents is given in Appendix B. A few examples of currents a

J15E@T,E#, J̄152D0, ~5.23!

J25E]E1E@T,E#X1 ,
~5.24!

J̄252D12D0X11P0@T,E#.

The first currentJ1 , J̄1 gives rise to the energy conservatio
law.

B. Global gauge symmetries

The action in Eq.~2.36! for the cosetG/H possesses vari
ous type of gauge symmetries. Since the Maxwell equa
arises from the action, it also possesses gauge symme
while the Bloch equation could change under the ga
transformation. For example, the localH-vector gauge sym-
metry, as given in Eq.~2.32! where the local functionh
belongs to the subgroupH, is a symmetry of the Maxwel
equation, while the Bloch equation changes under the tra
formation. In fact, it was shown that a particular local gau
fixing accounts for the effect of frequency detuning and
ternal magnetic fields. On the other hand, even after the l
gauge fixing, there remains global gauge symmetries.
example, assume the local gauge choiceA5Ā50. Then the
action in Eq.~2.36! possesses the property

SMB~LgR!5SMB~g! ~5.25!

for constant matricesR andL, which commute withT andT̄,
respectively. Thus,R is an element of the subgroupH. Un-
der the transformationg→LgR, electric-field components
and the density matrix components rotate among themse
via the similarity transform

g21]g→R21~g21]g!R, g21T̄g→R21~g21T̄g!R.
~5.26!

For example, in the case of three-levelL or V systems, the
Rabi frequencyV i and the probability amplitudeci are ro-
tated by
l

e

n
es,
e

s-
e
-
al
or

es

S V18

V28
D 5S h11* h21*

h12* h22*
D S V1

V2
D ,

~5.27!

S c18

c28

c38
D 5S h11* h21* 0

h12* h22* 0

0 0 h33*
D S c1

c2

c3

D ,

in which case

R5S h11 h12 0

h21 h22 0

0 0 h33

D . ~5.28!

Note that whenV150 andV2 is a 2p sech pulse, the ro-
tated Rabi frequencies are all proportional to the 2p sech
pulse, i.e., it becomes a simulton solution. Thus, our glo
symmetry provides a systematic way to generate simu
solutions. WhenL5R5exp(gT)PU(1), wehave the global
U~1! axial vector symmetry. The Noether charge of this U~1!
invariance is precisely the nontopological conserved cha
introduced in Sec. IV B. Even though a general express
for the nontopological charge should be possible, in prac
it requires an explicit~noncompact! parametrization of the
group variableg as in the case of Sec. IV D.

C. Discrete symmetries

Besides continuous symmetries, the action in Eq.~2.36!
also reveals discrete symmetries,the chiral symmetryandthe
dual symmetry. They are manifested most easily in the gau
whereA5Ā50. Extensions to different gauges, e.g., the o
resonant case that requires a different gauge fixing as in
~3.3!, can be made by the vector gauge transform in
~2.32!. One peculiar property of the action in Eq.~2.36! is its
asymmetry under the change of parity throughz↔ z̄. This is
because the Wess-Zumino-Witten action in Eq.~2.26! is a
sum of the parity even kinetic term and the parity odd We
Zumino term thereby breaking parity invariance. In the o
tics context, broken parity is due to the slowly varying e
velope approximation, which breaks the apparent pa
invariance of the Maxwell-Bloch equation. Nevertheless,
action in Eq.~2.36! is invariant under the chiral transform

z↔ z̄, g↔g21 ~or h↔2h,w↔2w!. ~5.29!

This may be compared with theCP invariance in particle
physics. Thus, parity invariance is in fact not lost but appe
in a different guise, namely, chiral invariance. This chir
symmetry relates two distinct solutions, or it generates a n
solution from a known one. For example, under the ch
transform in Eq.~5.29!, the one-soliton solution in Eq.~4.14!
in the resonant case (j50) becomes again a soliton but wit
the replacement of constantsa,b by

a→2
a

a21b2
, b→

b

a21b2
. ~5.30!
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This implies the change of pulse shape and the chang
pulse velocity byv→c2v ~see Fig. 3!. The current and the
charge also change by

J→2 J̄, J̄→2J, Q→2Q. ~5.31!

It is remarkable that the velocity changes fromv to c2v
unlike the usual parity changev→2v.

The other type of discrete symmetry of the action in E
~2.36! is the dual symmetry@30#:

b↔2b, g↔ isg, ~5.32!

wheres is a constant matrix with a property,sT1Ts50.
For example,s5s1 of Pauli matrices in the SU~2!/U~1!
case. This rather unconventional symmetry, as well as
name, stems from the ubiquitous nature of the action in
~2.36!; i.e., it also arises as a large level limit of parafermio
in statistical physics and the above transform is an in
change between the spin and the dual spin variables@19#. In
general, the change of the sign ofb makes the potentia
upside down so that the degenerate vacua become maxim
the potential and vice versa. Therefore, the dual transform
solutions are no longer stable solutions. This allows us
find a localized solution that approaches the maximum of
potential asymptotically~a so-called ‘‘dark’’ soliton!. In
practice, the dark soliton for positiveb can be obtained by

FIG. 3. cosw for ~a! one-soliton and~b! its chirally transformed
soliton.
of

.

e
q.
s
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of
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o
e

making the replacementsb→2b, z̄→2 z̄ in the ‘‘bright’’
soliton of the negativeb case. For example, we obtain th
dark 1-soliton for the SU~2!/U~1! case as follows:

coswe2ih52
b

A~a2j!21b2
tanh~2bz12bCz̄!

2 i
a2j

A~a2j!21b2
,

~5.33!

u522~a2j!~z2Cz̄!22jz.

Figure 4 shows profiles of a dark soliton. Note that fie
intensityuEu is the same as that of the bright soliton in Fig.
However, the population inversionD for the dark soliton
becomes inverted compared to that of the bright soliton.

VI. DISCUSSION

In this paper, we have introduced a potential concep
optical systems described by the Maxwell-Bloch equation
terms of the matrix potential, a field theory action for th
Maxwell equation was established where the Bloch equa
became a mere identity. Various identifications of multilev
systems have been made in association with specific s
metric spacesG/H and the resulting group theoretic prope
ties have been used in constructing conserved integrals.
field theory action uncovered several features of
Maxwell-Bloch system: gauge symmetry, topological a
nontopological charges, self-detuning, modified area th
rem, etc. In doing so, the introduction of a matrix potent
variableg was an essential step. One immediate questio
about the generality of such a potential variable in the
scription of nonlinear optics problems. Throughout the p
per, we have confined ourselves only to the integra
Maxwell-Bloch equations, which admit the inverse scatter
method. Also, we have concentrated only on the class
aspect of the field theory which gives a semiclassical
scription of light-matter interaction. In general, the Maxwe
Bloch equation is not integrable. Even the integrable ca
require specific physical settings. For example, in the thr
level system, integrability requires equal oscillator strengt
However, we emphasize that integrability is not a necess
condition for the matrix potential formalism. Even for non
integrable cases, one could still solve the Bloch equation
terms of a matrix potentialg, and express the Maxwell equa
tion in terms ofg @23#. One example is the 2→2 transition
in the degenerate two-level system, which is described by
double sine-Gordon equation when certain restrictions
made. A more general matrix potential treatment of nonin
grable cases will be considered elsewhere.

On the other hand, the group theoretic approach in te
of g is not restricted to the Maxwell-Bloch systems only. T
nonlinear Schro¨dinger equation, which is the governin
equation for optical soliton communication systems, can
generalized according to each Hermitian symmetric spa
@33#. In fact, both the Maxwell-Bloch and the nonlinea
Schrödinger equations share the same Hamiltonian struc
and they can be combined together. This case and its ph
cal applications will be considered in a separate paper.
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FIG. 4. Plots off, u , D and uEu for dark one-soliton withb52, j50 . The plot is w.r.t.x52bz12bC1z̄. Real (a50) and dashed
(a53) lines represent the topological and the nontopological solitons.
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nally, we point out that our field theory formulation provide
a vantage point to the quantum Maxwell-Bloch system
well as the quantum optics itself. A direct quantization of t
Maxwell-Bloch equation using the quantum inverse scat
ing has been made by Rupasov and a localized multipar
state has been found and compared with a quantum so
@34#. Our field theory formulation suggests an alternative,
more systematic means of quantization through the us
quantum field theory. The appearance of specific coset st
tures and their Hermitian properties suggests that a sys
atic quantization based on group theory is possible. O
again, this is not restricted to integrable cases and extens
to other quantum optical systems can be made. This wor
in progress and will be reported elsewhere.
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APPENDIX A: INVERSE SCATTERING METHOD
AND THE MATRIX POTENTIAL

In the following, we show that the matrix potential
intimately related to the dressing~inverse scattering! method
and explain how to obtain exact solutions. The dress
method is a systematic way to obtain nontrivial solutio
from a trivial one. In our case, we take a trivial solution b
g51 and C5C0[expF2~A2jT1l̃T!z2K T̄

l̃2j8
L z̄G . ~A1!

Let G be a closed contour or a contour extending to infinity on the complex plane of the parameterl̃ andG(l̃) be a matrix
function onG. Consider the Riemann problem ofC0G(l̃)(C0)21 on G, which consists of the factorization

C0G~ l̃ !~C0!215~F2!21F1 , ~A2!

where the matrix functionF1(z,z̄,l̃) is analytic withn simple polesm1 , . . . ,mn inside G and F2(z,z̄,l̃) analytic with n
simple zerosl1 , . . . ,ln outsideG. We assume that none of these poles and zeroes lie on the contourG and the factorization
is analytically continued to the region wherelÞm i ,l i ; i 51, . . . ,n. We normalizeF1 ,F2 by F1u l̃5`5F2u l̃5`51.
Differentiating Eq.~A2! with respect toz and z̄, one can easily show that

]F1F1
212F1~A2jT1l̃T!F1

215]F2F2
212F2~A2jT1l̃T!F2

21,
~A3!
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]̄F1F1
212K F1T̄F1

21

l̃2j8
L 5 ]̄F2F2

212K F2T̄F2
21

l̃2j8
L .
e
-

y
nd

m
of

ra

pe
uc

o

r-

tion
ct

s
y

f

SinceF1 (F2) is analytic inside~outside! G, we find that
the matrix functionsŪ and V̄, defined by

Ū[2]FF211F~A2jT1l̃T!F212l̃T,
~A4!

V̄[2~ l̃2j!]̄FF211FT̄F21,

where F5F1 or F2, depending on the region, becom
independent ofl̃. Then,C[FC0 satisfies the linear equa
tion

~]1Ū1l̃T!C50, S ]̄1K V̄

l̃2j8
L D C50. ~A5!

SinceŪ,V̄ are independent ofl̃, we may fix l̃ by taking l̃
5j. Define g by g[HF21u l̃5j where H is an arbitrary
constant matrix that commutes withT, T̄, andA. Then,Ū
and V̄ become

Ū5g21]g1g21Ag2jT, ~A6!

V̄5g21T̄g. ~A7!

If we further require the constraint condition~2.45! on
F21u l̃5j such that

~2]FF211FAF21!h2A50, ~A8!

we obtain a nontrivial solutiong andC from a trivial one.
The nontrivial solution in general describesn solitons
coupled with radiation mode. IfG(l̃)51 in Eq. ~A2!, we
obtain exactn-soliton solutions. This formal procedure ma
be carried out explicitly for each case of SIT in Sec. III a
a closed form ofn-soliton solutions can be obtained.

APPENDIX B: CONSERVED LOCAL INTEGRALS

We first review some basic facts about Hermitian sy
metric space@22# that are relevant for the construction
conserved integrals. A symmetric spaceG/H is a coset space
with the Lie algebra commutation relations among gene
tors of associated Lie algebras such that

@h,h#,h, @h,m#,m, @m,m#,h, ~B1!

whereg and h are Lie algebras ofG and H and m is the
vector space complement ofh in g, i.e.,

g5h% m. ~B2!

Hermitian symmetric space is a symmetric space equip
with a complex structure. In general, such a complex str
ture is given by the adjoint action ofT0 on m up to a scaling,
whereT0 is an element belonging to the Cartan subalgebra
-

-

d
-

f

g whose stability subgroup isH. In our case,T0 is precisely
the T matrix given in Sec. III. Namely, with a suitable no
malization ofT, we have

TPh,@T,h#50,
~B3!

†T,@T,a#‡52a for any aPm.

We decompose an algebra elementcPg according to Eq.
~B2!,

c5ch1cm . ~B4!

Such a decomposition could be extended to a representa
C of G5SU(n) if we substitute the commutator by a dire
matrix multiplication and add an identity elementh05I to
the subalgebrah, i.e.,

C5Ch1Cm , ChCh,Ch ,
~B5!

ChCm,Cm , CmCm,Ch .

In other words, any unitaryn3n matrix can be expressed a
a linear combination of SU(n) generators and the identit
elementh0 such that

C5Ch1Cm5 (
a50

dimh

Ch
aha1 (

b51

dimm

Cm
b mb . ~B6!

In order to solve the linear equation~2.46! recursively, we
expandC in terms of a power series inl,

Cexp~2lTz!5(
i 50

`
1

l i
F i , ~B7!

where

F i5 (
a50

dimh

Fhi
a ha1 (

b51

dimm

Fmi
b mb[Xi1Yi . ~B8!

With the notation in Eq.~5.18!, the linear equation is given
by

~]1E!F i2@T,F i 11#50 ~B9!

and

]̄F i1(
l 50

i 21

~Di 2 l 211Pi 2 l 21!F l50. ~B10!

Then, them component of Eq.~B9! is

]Yi 211EXi 212@T,Yi #50, ~B11!

which can be solved forYi by applying the adjoint action o
T,
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Yi52@T,]Yi 21#2@T,E#Xi 21 . ~B12!

Xi can be solved similarly from theh component of Eqs.
~B9! and ~B10! such that

Xi52E EYidz2(
l 50

i 21 E ~Di 2 l 21Xl1Pi 2 l 21Yl !dz̄.

~B13!

Finally, the conserved current follows from the consisten
condition]]̄Xi5 ]̄]Xi .

With the repetitive use of the properties of the Hermiti
symmetric space, it can be easily checked that these con
vation laws are indeed consistent with the equations of m
tion ~2.47! and~2.48!, which in the present convention take
particularly simple form:
or

tt.

in

.

s.

ys
.

y

er-
-

]̄E1@T,P0#50,

]Di1@E,Pi #50, ~B14!

]Pi1@E,Di #2@T,Pi 11#50.

In general, the conserved current contains nonlocal ter
These nonlocal terms may be dropped out by taking thT
component of the currents. For instance, theT component of
the ‘‘spin-2’’ current conservation is

]̄Tr~TE]E!5]Tr~TP0@T,E#2TD1! ~B15!

which obviously does not contain nonlocal terms.
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