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Field theory for coherent optical pulse propagation
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We introduce a notion of “matrix potential” to nonlinear optical systems. In terms of a matrix potential
we present a gauge-field-theoretic formulation of the Maxwell-Bloch equation that provides a semiclassical
description of the propagation of optical pulses through resonant multilevel media. We show that the Bloch
part of the equation can be solved identically througland the remaining Maxwell equation becomes a
second-order differential equation with a reduced set of variables due to the gauge invariance of the system.
Our formulation clarifies thénon-Abelia) symmetry structure of the Maxwell-Bloch equations for various
multilevel media in association with symmetric spad. In particular, we associate the nondegenerate
two-level system for self-induced transparency wahH = SU(2)/U(1) and three-levelA or V systems with
G/H=SU(3)/U(2). We give a detailed analysis for the two-level case in the matrix potential formalism, and
address various properties of the system including soliton numbers, effective potential energy, gauge and
discrete symmetries, modified pulse area, conserved topological, and nontopological charges. The nontopo-
logical charge measures the amount of self-detuning of each pulse. Its conservation law leads to a different
type of pulse stability analysis that explains earlier numerical re8i50-2947®8)09506-7

PACS numbdis): 42.50.Md, 42.65.Tg

[. INTRODUCTION there exists one notable exception. In the case of nondegen-
erate two-level atoms, McCall and Hap have shown that
Since the invention of the laser, much progress has beeossless propagation of light pulses, the phenomenon of self-
made in understanding nonlinear interactions of radiationnduced transparenc§SIT), can be explained in terms of a
with matter, which made nonlinear optics a fast developingpotential-like variablef(x), the time area of a suitably cho-
and independent field of science. Recently, the interaction afen electric field, which obeys the area theorem. Under cer-
laser lights with a multilevel optical medium has attractedtain circumstances, the system can be described by an effec-
more attention in the context of lasing without inversion tive potential variabler(x,t), which satisfies the well-known
[1,2] and electromagnetically induced transparer&yT) sine-Gordon equation. In this case, the one-soliton of the
[3]. Laser light in general is expressed in terms of a macrosine-Gordon theory is identified with ther2pulse of McCall
scopic, classical electric field that interacts with microscopicand Hahn. The cosine potential term becomes proportional to
quantum mechanical matter. Unlike classical electrodynamthe microscopic atomic energy, and the stability of the 2
ics, the electric scalar potential and the magnetic vector populse is explained through the topological charge conserva-
tential do not appear to replace electromagnetic fields in nontion law. Recently, the quantum sine-Gordon theory has been
linear optics. Instead, the electric field itself, with appropriatealso applied to the Maxwell-Bloch equation and quantum
restrictions to accommodate specific physical problemspptics with interesting result§5]. However, one serious
plays the role of a fundamental variable that renders thelrawback of the sine-Gordon approach to the Maxwell-
problem lacking a field-theoretic Lagrangian formulation. Of Bloch system is its oversimplification. In the sine-Gordon
course, one could set up the problem in the most generdimit, frequency detuning and frequency modulation effects
QED Lagrangian framework with the conventional potentialare all ignored and microscopic atomic motigintshomoge-
variableA ,, but the nonlinearity of interactions and various neous broadeningare not taken into account. Also, the
approximation schemes involved make the use of potentiahodel is limited only to the nondegenerate two-level case
A, meaningless. For instance, the Maxwell-Bloch equatiorwhile many recent interesting applications are based on the
that governs the interaction between radiation and mattemultilevel (three-level and highgrand possibly degenerate
takes a nonrelativistic, semiclassical limit of QED togethersystems. In an earlier woflé], we have shown that even the
with slowly varying envelope approximatid®VEA) and/or  nondegenerate two-level system should be described by the
rotating-wave approximation(RWA). Variables of the complex sine-Gordon equation. This generalizes the sine-
Maxwell-Bloch equation are given by the envelope functionsGordon equation by including a phase degree of freedom that
of electric fields, and the components of the density matrix oaccounts for frequency modulation effects. We have also
the probability amplitudes for each atomic-level occupationshown that a more general framework can be given by a 2
Thus, all previous works have focused on the study of thex2 matrix potentialg and its Lagrangian formulation. This
Maxwell-Bloch equation itself, without making any refer- allowed us to incorporate frequency detuning and external
ence to the Lagrangian and potential variables. Howevemagnetic fields. Until now, the sine-Gordon theory was the
only available field theory for the Maxwell-Bloch system
and therefore all analytic works beyond the simplest two-
*Electronic address: gpark@nms.kyunghee.ac.kr level case have resorted to the Maxwell-Bloch equation,
Electronic address: hjshin@nms.kyunghee.ac.kr finding soliton-type solutions through the inverse scattering
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method in integrable caséfor a review, sed7] and other more than one soliton number. Also, we show thatfulses
references thereinFollowing the pioneering work of Lamb can be nontopological, carrying a nontopological charge. A
[8], Ablowitz, Kaup, and Newell have extended the inversenontopological soliton is interpreted as a “self-detuneds 2
scattering formalism to include inhomogeneous broadeningulse and the nontopological charge is shown to measure the
and obtained exact solutiofig]. In accordance with the area amount of frequency self-detuning. The conservation laws of
theorem, these solutions show that an arbitrary initial pulsehe topological and the nontopological charges are shown to
with sufficient strength decomposes into a finite number ofrove the stability of pulses. In particular, we prove the sta-
27 pulses and @ pulses, plus radiation that decays expo-bility of 2 7 pulses against small fluctuations. This explains
nentially. Extensions to the degenerate as well as the multhjcely the frequency pulling effect in the presence of fre-
level cases have been also found resulting more complicatqﬂjency detuning which has been predicted earlier by a nu-
soliton solutiond7,10-13. merical work.

In this paper, we introduce a matrix potential variaplo Our matrix potential formalism also allows a systematic
nonlinear optical systems described(bytegrable Maxwell- |nqerstanding of various symmetry structures of the

Bloch equations, and present a completely different type ofaywell-Bloch equation. We show that infinitely many con-
analysis of the Maxwell-Bloch equation based a field theory,

. served local integrals resulting from the integrability of the
formu]anon throughg. We'shov.v that 'the Bloch part of the equation can be obtained in a general group theoretic frame-
equation can be solved identically in terms gfand the

remaining Maxwell part becomes a second-order differentiar ork of symmetric spacé/H. This enlarges previously

equation ing. This is compared with the linear case of elec- < OW" results in the case of the two-level system and pro-
tromagnetism where the curl-free condition is solved invides conserved charges in other multilevel cases. More im-

terms of a scalar potentigl and the remaining Gauss equa- portantly., our field theory reveals th.e following typ?s of
tion changes into the second-order differential equatiop.in SYMMmetries(i) global gauge symmetryii) global U1) axial

The field theory action for the second-order Maxwell equa-Yector symmetry(iii) chiral symmetry, andiv) dual sym-

tion in g is provided by a sigma model-type action, which Metry. We show that global gauge symmetry can be used to
combines the so-called (1+1)-dimensional G/H-gauged ~9enerate simultaneous solutions systematically. Glota) U
Wess-Zumino-Novikov-Witten action” with an appropri- axial vector symmetry gives rise to the nontopological
ate|y chosen potentia| energy term. This Work, which gener.Charge via the Noether method. Chiral and dual Symmetries
alizes the earlier work on the two-level cd$d to the mul-  are discrete symmetries and they generate new solutions
tilevel cases, uncovers many features of the problem. lfrom a known one. In particular, dual symmetry relates the
particular, our formulation clarifies the hiddémon-Abeliann ~ “bright” soliton with the “dark” soliton of SIT. Finally, we
group structure of the multilevel Maxwell-Bloch equation in show that the matrix potential is useful in understanding the
association with symmetric spac&H. For instance, the inverse scattering method itself. The potential variable-
nondegenerate two-level system of self-induced transparenaeals the group structure of the inverse scattering method
is associated witls/H=SU(2)/U(1) while three-levelA or  and we construct explicitly soliton solutions for various
V systems are associated with/H=SU(3)/U(2). These cases.

non-Abelian group structures are shown to arise from the The plan of the paper is the following; in Sec. II, we
probability conservation law of a density matrix and alsopresent a field theory formulation of the Maxwell-Bloch
from the selection rules in relevant dipole transitions. In genequation. The area theorem and the sine-Gordon field theory

eral, the number of degrees of freedom for the Maxwellimit are briefly reviewed and an extension to the complex
equation(those of electric-field components smaller than  gjne_Gordon field theory is made in Sec. Il A. In Sec. Il B, a

that of the matrix potentiay belonging to the grou. We  ayiy potential formalism is presented and a general action
show that these residual degrees can be removed by impo

. traint h h o« a” th " that 8Finciple is found for the Maxwell-Bloch equation for arbi-
Ing constraints org through "gauging: the action so tha trary multilevel systems. In Sec. Il C, inhomogeneous
the action possesses thé-vector gauge invariance. The

. . : ; t?roadening is also incorporated into the matrix potential for-
gauge transformation, however, is shown to receive physical

meaning at the atomic level. That is, it accounts for the ef_mallsm. Section Ill deals with explicit examples of various

fects of frequency detuning and external magnetic fields. Wénultllevel systems. Spemﬂc group structures and gauge ﬁx-
show that inhomogeneous broadening can be also incorpd?d for each system are identified. In Sec. 1V, we explain
rated into the matrix potential formalism. new features of optical pul_ses in our matrlx potential formal-

In order to demonstrate the power of our matrix potentiallSM- In Sec. IV A, topological properties of pulses are ana-
approach, we make a detailed analysis of optical pulses. Thi¥zed through the effective potential energy and its degener-
shows that the matrix potential not only leads to a deepefte vacua and also by defining topological soliton numbers.
understanding of optical pulses, but it also provides new soln Sec. IV B, nontopological solitons are introduced and in-
lutions, new conserved charges, and symmetries. In particierpreted as self-detuned pulses. In Sec. IV C, an analysis of
lar, a stability analysis is made that generalizes the area thepulse stability is made in terms of newly found nontopologi-
rem to a certain extent. Specifically, we clarify the cal charges. Section V deals with symmetries of the system.
topological nature of solitary pulses through the effectivelnfinitely many conserved charges are constructed systemati-
potential energy term and its degenerate vacua. We definglly for the general multilevel systems in Sec. V A. Global
the topological soliton number according to the group strucgauge symmetries are explained in Sec. V B and the chiral
ture of the system and show that a solitary pulse for certaimnd the dual symmetries are explained in Sec. V C. Finally,
multilevel cases, e.g., the degenerate three-level case, carBec. VI is a discussion.



57 FIELD THEORY FOR COHERENT OPTICAL PULS. .. 4623

Il. FIELD THEORY FOR THE MAXWELL-BLOCH is an integer multiple of 2 (2n# pulse, then the pulse
EQUATION propagates without loss of energy. Otherwise, due to inho-
ogeneous broadening the pulse quickly reshapes into a

The multimode optical pulses propagating in a resonan nr pulse according to the area theorem,

medium along th& axis are described by the electric field of

the form da(x)_ . ,
- ax asing(x) (2.5
E= t i (k;x—wt)+c.c. 2.1
21 alxex(kx—wit)+e.c. @1 for some constan&. The proof of the area theorem can be

done by making use of inhomogeneous broadening and the

wherek; andw, denote the wave number and the frequencyMaxwell-Bloch equation. In the absence of inhomogeneous
of each mode and the amp"tude Vecar is in genera' a broader“ng, the System was shown to admit the sine-Gordon

complex vector function. The governing equation of propa-field theory formulation.
gation is the Maxwell equation
A. The sine-Gordon limit

The Maxwell-Bloch equation for the nondegenerate two-

# n* P\ am P

E_ 2 at2] - o2 g2 dutrpd. (2.2 evel case can be written in a dimensionless form as
On the right-hand side, electric dipole transitions are treated IB+25(P)=0,
semiclassicallyd is the atom’s dipole moment operator and JD—E*P—_EP*=0 2.6

the density matriyp satisfies the quantum-mechanical optical

Bloch equation IP+2iEP+2ED=0,

if

J J i i —W—

E+v5)92[(Ho—E-d),P]- (2.3 vzvr:;(r?e ,8_=|s a cgupillng cE)_nstant andg=w-wo, J
=d/9z, d=dl9z, z=t—x/c, z=x/c. The angular brackets
signify an average over the spectrum distributifif¥) as

H, denotes the Hamiltonian of a free atom ands thex  given by

component of the velocity of the atoms. In general, we make

a slowly varying envelope approximatidiSVEA) for the %

Maxwell-Bloch system where the amplitudEgvary slowly ()= f_w(' )(6)de. 2.7

compared to the space and time scales determindg agd

w;. Under SVEA, the Maxwell-Bloch equation becomes aThe dimensionless quantiti& P, andD correspond to the

set of coupled first-order partial differential equations for theelectric field, the polarization, and the population inversion
amplitudesE, and the components of the density matrix. through the relation,

Explicit expressions of the Maxwell-Bloch equation for sev-

eral multilevel cases are given in Sec. lll. Thus, the E= _iE.etod/\/éﬁ,

Maxwell-Bloch equation provides an effective, semiclassical

description of light-matter interaction using the amplitudes P=—pyexd —i (kx— ot)]/4ktyNof (&), (2.9
E, as dynamical variables. Unlike the linear case, it is quite

difficult, if not impossible, to introduce a potential variable D= —(par— p11)/8ktoNof (&),

instead ofE, due to the nonlinearity of the interaction and

the approximation involved. Lacking a potential variable wheree specifies the linear polarization directidg,is a time
causes the physical system to be described only by the equgonstant, and\, is related to the stationary populations of
tion of motion, not by an action principle. Consequently, athe levelst In order to understand the structure ofi2
field-theoretic formulation is lacking in the problem of pulse pulses better, we impose further restrictions such that the
propagation. However, when pulses propagate in a resonarfystem is on resonancé0), frequency modulation is ig-
nondegenerate two-level atomic medium with inhomoge-nored E being rea] and inhomogeneous broadening is ab-

neOIUS broade_ning, MCCall and Hahn have intrOduped an e%ent[f(g)zé(g)] Under such restrictionsi we could intro-
fective potential-like variable, and in terms of which have qyce an area function(x,t) defined by

shown that an arbitrary pulse evolves into a coherent mode

of lossless pulse$4]. This phenomenon, known as self- t
induced transparency, is also observed in more general, de- @(X,t)ff
generate and/or multilevel atomic media. Specifically, Mc-
Call and Hahn have shown that when the dimensionles
pulse envelope functiol is assumed to be real and the time
area of E,

Edt’, (2.9

Which, in the limitt— o, agrees with9(x)/2 in Eqg.(2.4). In
terms ofp, the SIT equation reduces to the well-known sine-
Gordon equation,

0(x)=2f dt E, (2.4)

IFor the details of constants, we refer the reader to [R8f.
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9dp—2Bsin2p=0, (2.10

Do+ 4t gyam—2Bsin2e=0
ddg mé’?‘]é’n Bsin2¢=0,

when we make consistent identifications: (2.14
E=E*=0d¢p, (P)=P=-sin2¢p, 99n— 9 9o) =
e, (P) ¢ (2.1 101~ Ghzg (ImIet Inde)=0
(DY=D=cos2p. ] ) )
and a couple of first-order constraint equations,
This sine-Gordon equation arises from the action . .
2cogpdn—sifedd—2&sine=0, 2.19

1 _
S= ZJ' (dpdp—2[BCc0S2p). (2.12

2CO§¢31]+ Sinz(p;(9= 0.

The periodic cosine potential term exhibits infinitely many Note that the complex sine-Gordon equation reduces to the
degenerate vacua. It gives rise to soliton solutions that intersine-Gordon equation when frequency modulation is ignored
polate between two different vacua. This shows that the 2 so that =0, #=x/2 and the system is on resonancg (
pulse can be identified with the topologicakoliton solution  =0). This reduction is consistent with the original equation
of the sine-Gordon equation. The electric-field amplitéde since solutions of the sine-Gordon equation consist of a sub-
now identified withde, receives an interpretation as a topo- space of the whole solution space. The complex sine-Gordon
logical current. Note that the area functignis different  equation was first introduced by Lund and Regge in 1976 in
from the conventional scalar or vector potentials of electro-order to describe the motion of relativistic vortices in a su-
magnetism. Nevertheless, it is remarkable that the potentigderfluid [13], and also independently by Pohlmeyer in a re-
energy cos@ of the sine-Gordon Lagrangian can be identi- duction problem of the &) nonlinearc model[14]. This
fied with the population inversio®, which represents the equation is known to be integrable and soliton solutions gen-
atomic energy. Also the Lorentz invariance, which was bro-eralizing those of the sine-Gordon equation have been found.
ken by SVEA, reemerges in the sine-Gordon field theoryThese issues will be considered in later sections in a more
after the redefinition of coordinates. The identification of thegeneral context. The Lagrangian for the complex sine-
atomic energy with the cosine potential term shows thet2 Gordon equation in terms @f and » is given by
pulses are stable against finite energy fluctuations due to the
conservation of the topological number

Though the sine-Gordon theory provides a nice field
theory for the nondegenerate two-level system, it is too re-

strictive for real applications. The presence of frequencyrhis Lagrangian, however, is singular @t=n for integer
modulation in pulses, for example, require tashould be " \hich causes difficulties in quantizing the theory. Also,
complex. Therefore, in this cagecannot be simply replaced pesides the complex sine-Gordon equation, the two-level
by a real scalar fielg and the sine-Gordon limitis no longer paxwell-Bloch equation comprises the constraint equation
valid. Also, inclusion of frequency modulation invalidates (2 15. Thus the Lagrangia(®.16 does not quite serve for a
the area theorem. However, through the inverse scatteringgiq theory action of the two-level system. In fact, the sin-
method, it has been found that solitons do exist even in thgy|ar pehavior of the Lagrangia@.16 is an artifact of ne-
case of compleE [8]. This suggests that a more general glecting the constraint equation. This, as well as the rationale
field theory of SIT than the sine-Gordon theory could existof the above parametrizations, can be seen most clearly if we
that takes care of a complé& Recently, we have shown that reformulate the Lagrangian to include the constraint in the

this is indeed true and the field theory that includes both th@gntext of a matrix potential and a gauged nonlinear sigma
frequency detuning and the modulation effects is the somodel as explained in the next section.

called “complex sine-Gordon theory[6]. This generalizes
the sine-Gordon theory as follows; assume thas complex
and the frequency distribution function of inhomogeneous

1 . _
=, j d@dg+Aacolednan—2pcos2p. (2.16

B. Matrix potential formalism

broadening is sharply peaked &ti.e., f(&¢')= 6(&' — §) for
some constan€. Introduce parametrizations &, P, and
D, which generalize parametrizations in Eg.11), in terms
of three scalar fieldg, 6, and 7,

. CcOo
E=e'<"‘2’7)( 207 %—i&p),
(2.13

P=ie'(?"27sin2p, D=cos2p.

In order to construct a field theory action of the Maxwell-
Bloch equation in terms of potential variables and also find a
way to extend to more general multilevel and degenerate
cases, we first note that the optical Bloch equation admits an
interpretation of a spinning top equation as in the case of the
corresponding magnetic resonance equatidd. Denote
real and imaginary parts d& and P by E=Ex+iE,, P
=Pg+iP,. Then, the Bloch equation in Eq2.6) can be
expressed as

9S=0 xS, (2.17

These parametrizations consistently reduce the two-level
Maxwell-Bloch equation(2.6) into a couple of second-order . R
nonlinear differential equations known as the complex sinewhere S=(Pg, P, D), Q=(2E,, —2Eg, —2§). This

Gordon equation, describes a spinning top where the electric dipole “pseu-
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dospin” vector S precesses about the “torque” vectéy.  tential ¢ ineele»ctrostatics where solves the curl-free con-
This C|ear|y shows that the |ength of the Vecéris pre- dition, VX E=0, identically and Changes the Gauss equation
served, into the Poisson equation. In our case, the Sdimger equa-

tion plays the role of the curl-free condition and the Maxwell

|S|2=P2+P2+D?=1. (2.19  equation, the counterpart of the Gauss equation, changes into

a second-order nonlinear differential equation. In order to see
The length equals unity due to the conservation of probabilthis, observe that the Maxwell equation can be expressed
ity. The remaining Maxwell equation in E¢R.6) determines  also in terms ofy only,
the strength of the torque vector.Rf=0, we may solve Eq.

(2.18 by taking Pr=—sin2p and D=cos2p and also Eq. - _ 0 —GE _ -1
(2.17) by taking E=d¢ as given in Eq.2.11). Then, the (g 99+ R)= TE* 0 =Blos, g "o30]-
Maxwell equation becomes the sine-Gordon equation as be- (2.23

fore. This picture agrees with the conventional interpretation
of the sine-Gordon theory as describing a system of an infiThus, we have successfully expressed the SIT equation in
nite chain of pendulums. In order to generalize the sineterms of the potential variablg up to an undetermined quan-
Gordon limit to the comple’e andP case, we make a cru- tity R. As we will show, R is determined by requiring an
cial observation that the constraint in E(.18 can be action principle for the Maxwell equation in terms gf
solved in general in terms of an $2) matrix potential vari-  Sinceg is constrained, we need a Lagrange multiplier for the
ableg by constraint. In order to help understanding, we assume for a
moment thatR=0 and the system is on resonance=Q).

b Py 01 Then, the equation of motio2.23 arises from a variation
px —p) 9 939 (219 of the action
where o3=diag(1-1) is the Pauli spin matrix. By taking S= Swznw(9) — Sport Sconst (2.29

the determinant, one can check that E218 is automati-
cally satisfied. Also, note that 1o4g is invariant under the
“chiral U(1) transformation,”

with the following variational behaviors:

1 _
’ 5gS\NZNW:ﬁf dzdZ{a(g~*ag)g~ 8],
g eifrsg (2.20 (2.25

for any functionf. Thus,g ™ lo3g parametrizes S(2)/U(1) S :ﬁj 7T -1 -1
instead of S(R). Since Eq(2.18) is automatically solved in oSpot= 5 | dzdZTr([os, g oaglg™ ~00).

this SU2) parametrization, the number of independent vari- ] ]

ables, which is difSU(2))—dim(U(1))=3—1=2, agrees The action Syzy(9) is the well-known SW2) Wess-

with that of the vector §) parametrization. Moreover, we Zumino-Novikov-Witten functional,
have an identity

1 _ _
Swaw(9)=— — f dzdzTr(g Lagg 'ag)
loag, g~ tag], (2.21) 4m)s

: 1 ~ o~
where the b_racket denotes a commu_tator. Note that_ this _be- _ Tr(g dgAg ldg/A\gidg),
comes precisely the Bloch equation if we make an identifi- 127 g
cation,

(9 to30)=[g"

(2.2

i¢ -E (2.22 where the second term on the rhs, known as the Wess-
E* —ig)’ ' Zumino term, is defined on a three-dimensional manif8ld
with boundary3 =B andq is an extension of a mag:3

—SU(2) to B with §|2=g [16]. The potential terng,,; can
be easily obtained by

g '9g+R=

where R is an anti-Hermitian matrix commuting with
g 1039, which will be determined later. Thus, we have
solved the Bloch equation through the matrix potengialp

to the identification in Eq(2.22. The identification is con- B _
sistent since both sides are anti-Hermitian matrices. The off- SpotZZf dzdzTr(gosg tos). (2.27
diagonal part of the right-hand sidehs) is simply renaming

the component variable bz whereas the constant diagonal Finally, the constraint requires vanishing of the diagonal part
part imposes a constraint on the variagleThis constraint, of the matrixg~'dg, which can be imposed by adding a

however, can be satisfied by an appropriate chifd) ttans- | agrange multiplier tern®,,ng to the action
formation in Eq.(2.20. Thus, the matrix potenti@ is made

of two independent variables and one variable satisfying the 1 — B

: ; Seonsc==— | dzdZr(N o539~ tog). (2.28
constraint. In the following, we show that the Maxwell equa- const™ 5 3
tion can be expressed in terms of two independent variables
only, decoupling completely from the constraint variable. InThe Lagrange multipliek, however, induces a new term to
this regard, our matrix potentig resembles the scalar po- the equation of motion by
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1 _ that gauge transformation incorporates beautifully the fre-
5gsc0nst:EJ dzdz quency detuning effect through specific gauge fixing. In Sec.
lll, external magnetic fields are also incorporated through
XTI (—dNos+[Nos, g tag])g~tag], gauge fixing.
(2.29 Our field theory for the Maxwell-Bloch equation is not

restricted to the two-level case. In fact, the group theoretical
which seems to spoil our construction of a field theory. Thisformulation through the matrix potentigl allows an imme-
problem can be resolved beautifully if we introduce a gaugdliate extension to the multilevel cases. We may simply re-
symmetry and make the actiq.24) to be “vector gauge Place the pair SK2)DU(1) by GDH for any Lie groupsG
invariant.” This can be done by replacing the constraint termandH and obtain theG/H-gauged Wess-Zumino-Novikov-
with a “gauging” part of the Wess-Zumino-Novikov-Witten Witten action Syznw+ Sgaugd Where A and A gauge the
action, subgroupH of G.% For a general pair 06 andH, the ex-

pression for the potential that preserves integrability can be
S=Swzw(9) ~ Spott Sgauge (2.30 given by[19,20,

1 - - — JEN—
Sgaugezﬁf Tr(—Adgg *+Ag log+AgAg 1—AA), P .
(2.31) Spot=5 f Tr(gTg 'T), (2.34

where the connection fieldls,Kgauge the anomaly free sub- o
group U1) of SU(2) generated by the Pauli matrix;. They — whereT andT are constant matrices that commute with the
introduce a 1) vector gauge invariance of the action where g \hgroupH, i.e., [T,h]=[T,h]=0, forhe H. This makes

the U(1) vector gauge transformation is definedf by the potential term vector gauge invaridnAs we will see
g—h~lgh, A—h~!Ah+h~1gh, later, physically i_nteresting cases all corresponq_to a special
(2.32  type of symmetric space&/H, known as Hermitian sym-
A—h~1Ah+h-15h, metric space$22], where the adjoint action of defines a
complex structure oG/H.
whereh= exp(f o) for some scalar functioh. Owing to the Now, we define the field theory action for the Maxwell-

absence of kinetic terms),A act as Lagrange multipliers Bloch equation by

that result in the constraint equations whanand A are

integrated out. The action in E(R.24 may be understood as  Sy;5=Sznw(9)

a gauge fixed action with the choice of gauge whére

=0, A=\o3. The main reason for introducing a gauge +ij Tr(—Adgg~+Ag log+AgAg 1—-AA)
transformation and a gauge invariant action is twofold. It 2m

first shows that the equation of motion resulting from the

variation 8,S=0, —5—| TrgTg 7). (2.3
77
a(g~rag+g T Ag)+[A, g lag+gTrAg]-dA
=Blos, 9 'osgl, (2.33 “This action is known to possess conformal symmetry and has

is also gauge invariant and gives rise to the gauge invariarpteen used for the gener@l/H-coset conformal field theorid47].

expression of the Maxwell equation. Comparing E2,33 The potential energy terrf2.27) breaks conformal symmetry. Nev-
with Eq. (2.23, we see thaleg’lAg and the relevant ertheless, it preserves the integrability of the model given by Eg.

PR : s 2.30 where G/H=SU(2)/U(1), and this model has been used in
gauge choice id=iéo3, A=0, due to the constraint in Eq. (2:30 2V

. . describing integrable perturbation of parafermionic coset conformal
3
(2.43.° The U1) vector gauge invariance of the Maxwell Field theorie[18,19.

equation implies that the Maxwell equation is independent o 5in a more general contex8,, is specified algebraically by a

speplflc gauge choices. Thus, it dgcouple_s'from th® sca- triplet of Lie groupsFDOGDH for every symmetric space/G,
lar field that saturates the constraint condition and becomes g . .« e Lie algebra decompositiba gak satisfies the commu-

couple of se_cond order nonlinear _d|ffere_nt_|al equations in oo relations,
two local variables. In the next section, this is shown clearly
by an explicit parametrization @f and the resulting Maxwell [9. glcg. Lo, kIck, [k’_ klce _ (239
equation is shown to be equivalent to the complex sineWe takeT andT as eIemEntsd{ and deflndlas the simultaneous
Gordon equation given in Eq2.14. The second reason is centralizer of T and T, ie., h=Cy(T,T)={Beg:[B,T]=0
=[B,T]} with H its associated Lie group. With these specifica-
tions, the actior{2.30 becomes integrable and generalizes the sine-
Note that here we are using the vectoflJtransformation in-  Gordon model according to each symmetric space. For compact
stead of the chiral one as in E¢.20. This causes the matrix Symmetric spaces of type Il, e.g., symmetric spaces of the ®rm
g~ 'o4g to transform covariantly under the gauge transformation. X G/G, the model becomes equivalent to the type | case but With
30ne can always choose such a gauge due to the flatndsard ~ andT belonging to the Lie algebra It has the coset structu@/H
A as in Eq.(2.44). whereH is the stability subgroup of, Teg[21].
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This action is of course restricted to the integrable cases, (—ggg_1+gKg‘1—K)h=0
which require specific fine tuning of coupling constants. ' (2.43
However, the concept of matrix potentiglis valid irrespec- (g~ Yog+g 'Ag—A),=0,

tive of the integrability of the model and the field theory

formulation can be extended to more general, nonintegrablehere the subscrigt specifies the projection to the subalge-
cases too. In this paper, we will restrict only to the integrablebra h. It can be readily checked that these constraint equa-
cases. The equation of motion arising from the variation oftions, when combined with Eq2.37), imply the flatness of
the action(2.36) with respect tag gives rise to the Maxwell  the connectiorA andA, i.e.,

equation in the matrix potential formalism,

Maxwell equation: F,=[d+A,a+A]=0. (2.44
(g Yog+g tAg)+[A,g tag+g tAg]- oA In Sec. lll, we show that various multilevel Maxwell-Bloch

o equations indeed arise from Eq2.37) and(2.43 when ap-

=pB[T,g 'Tg]. (2.37  propriate choices are made for the groupsand H, the

constant matrice and T, and gauge fixing.
The Bloch equation again arises from the simple identity,

Bloch equation: C. Inhomogeneous broadening

(2.39 So far, we have obtained an action principle for the
Maxwell-Bloch equation without inhomogeneous broaden-
ing. Remarkably, even in the presence of inhomogeneous
broadening, the notion of matrix potential still persists. The
inhomogeneous broadening effect, i.e., Doppler shifted
atomic motions, can be incorporated beautifully via thé&)U
. . ) vector gauge transformation. Due to the microscopic motion
under theH-vector gauge transformation as given in EqQ. ¢ 510ms, each atom in a resonant medium responds to the
(2.32, where the local functiom now belongs to the sub- 5.165c0pic incoming light with different Doppler shifts of
groupH, while the Bloch equation is not. The integrability yansition frequencies. Thus, microscopic variables, e.g., the
of the Maxwell equation may be demonstrated by rewriting,|arizationP and the population inversidB, are character-

Eq. (2.37) in an equivalent zero curvature form in terms of by Doppler shifts and they couple to the macroscopic

(g~ 'Tg)=[g 'Tg, g tag+g'Ad],

where we used the properyf, A]=0. This rather abstract

form of the Maxwell-Bloch equation will become more ex-
plicit when specific identifications of physical variables are
made in Sec. Ill. Note that the Maxwell equation is invariant

the U-V pair, variableE through an average over the frequency spectrum
_ as given in Eq(2.7). A remarkable property of our effective
[¢-U, d-V]=0, (239 field theory formulation is that it includes inhomogeneous
broadening naturally only with minor modifications. The no-
and tion of the potential variablg is again valid. In order to cope

with microscopic motionsg becomes a function of fre-

(2.40  quencys, i.e.,g=9(z,z &). However, the action principle in
Eq. (2.36) is no longer valid despite the use of the potential

U=-g '9g—g 'Ag— BT,

— A Eg 1?9 variable g. We also relax the constraint in E¢R.42 and
A ' require only
Here, \ is an arbitrary spectral parameter. This shows that (g~ 9g+g'Ag)R—A=0. (2.49

the equation of motion becomes the integrability condition OfTh the li tion is ai b
the overdetermined linear equations: en, the linear equation Is given by

_ -1 “1p N _
(<9—U)\If:(a+g’1ag+g’1Ag+,B)\T)\I’=O,(2.4]) LV=(9+0 70g+g TAG=ETHADW =0, 1o

,1_
3+<% Tg>)\y=0,
N=¢&

where the constant is a modified spectral parameter and
becomes\ + ¢ in the absence of inhomogeneous broadening.
The angular brackets denote an average @Veas in Eq.
1 (2.7). As in the case without inhomogeneous broadening, we
5ASMB:_J TH (- dgg~+gAg~1—A)sA]=0, make the same identification of the matgx lag+g~*Ag
27 (2.42 —¢T with various components of macroscopic electric

fields, which are independent of the microscopic quargity

This requires thé dependence aj(z,z,£) to be determined

in such a way thag)~t9g+g~*Ag— £T is independent of.

It is easy to see that this requirement is indeed satisfied by
Or various integrable Maxwell-Bloch systems considered in

Lv=

(9—\V)¥ =

1
a+A+Xngg)\If=o.

The constraint equations coming from the variationSgf
with respect toA,A are

1 _
éXSMB=Ef Trl(g~*0g+g 'Ag—A)9A]=0.
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Sec. 111® Note thatW(X,z,z) is not a function of¢. The M0 mm =l =1,
integrability of the linear equatiof2.46) becomes E . . ) .

o g
0= a+g_1ﬁg+g_lAg—§T+)\T,(9+<§,\ 9

Ja=1 Jo=0,1m, =0

' (a) SU(2)/U(1) (b) SUB)/U(2) (c) SU(3)/U(2)

= —a(g~tag+g*Ag—£T)+([T, g 'Tgl), (247 r=s b
Qs 0
where we used the fact thgt *9g+ g~ *Ag— &T is indepen- € < 1
dent of ¢ and also the identity Me=—t m,= 072
o o () [SUE)/U(1)? (e) SUB)/U(2) (f) SU)/U(2)
-1 -1 -1 -1 —
(g~ Tg)+[g "9g+9g “Ag, g “Tg]=0. (2.48 _a 4
_ m, = —1 1
Once again, identifying~1Tg with components of the den-
sity matrix and Eq(2.48 with the Bloch equation, we obtain
the Maxwell-Bloch equation with inhomogeneous broaden-m:=-1 m=1"" " '
ing. For example, we may identifig, P, andD as in Eq. (2) SU(1)/S(U(2) x U(2)) (h) SU(5)/U(4)
(3.4 so thaF Eqs_.(2.47) and (2.48 become the Maxwell- FIG. 1. Multilevel systems and their associated symmetric
Bloch equation with inhomogeneous broadening for the nong,5ces.
degenerate two-level case as given in EZ6). Note that
each frequency corresponds to a specific gauge choice of . MULTILEVEL SYSTEMS
the vector W1) subgroup. Therefore, in some sense inhomo- ) ) ) o . )
geneous broadening is equivalent to averaging over different In this section, we work out in detail field-theory identi-
gauge fixings of U(lq: H. Th|s |mp||es that inhomogeneous f|Cat|0nS Of eaCh mult”evel MaXWe”-BlOCh equatlon through
broadening cannot be treated by a single field theory angPecifying the group& andH, the constant matrice and
therefore it lacks a Lagrangian formulation. It is remarkable, T, and the gauge choice. Briefly, the resulting associations
however, that the group theoretic parametrization of variousvith symmetric spaces are the followigee Figs. (a)—

€1 €2 €37€4

J=1 Jo=1

physical variables in terms of the potentgaktill survives. 1(h)];
SU(2)/U(1) < nondegenerate two-level [Fig. 1(a)],
SU(3)/U(2) — degenerate two-level [Figs. 1(b) and 1(c),
jp=0—ja=1,jp=1-]4=0, jp=1-]s=1,
[SU(2)/U(1)]? — degenerate two-levelj,=1/2—j,=1/2 [Fig. 1(d)],
SU(3)/U(2) < nondegenerate three-level, or V system [Figs. 1(e) and 1(f)],
SU(4)/U(2)xU(2)) <« degenerate three level,=j.=0, j,=1 [Fig. 1(9)].
SU(5)/U(4) < degenerate three level;=j.=1, j,=0 [Fig. 1(h)]. (3.1

All of them correspond to Hermitian symmetric spaces. In—1) for an integen. However, for largen, it requires a fine
Appendix B, the characteristic properties of Hermitian sym-tuning of many coupling constants, which makes the theory
metric space is used to generate infinitely many conservednrealistic.
local integrals. Our examples in E¢3.1) suggest that to
each Hermitian symmetric space there may exist a specific

multilevel system with a proper adjustment of physical pa- A. Nondegenerate two-level system
rameters. In particular, we could see that the multifrequency o _ ) o )

induced transparency. It also accounts for the transitions

1/2—1/2, 10, 1—1, and 3/2»1/2 for linearly polarized
waves and the transitions 21/2, 1—0, and -1 for
8In the three-level system, we must take —toA;=—toA,. It Circularly polarized waves. We assume that inhomogeneous
means that in order to preserve the integrability in the presence dfroadening is absent so thé®)=P. The Maxwell-Bloch
inhomogeneous broadening, two detuning parameters of the threequation is given by Eq2.6), which can be expressed in an
level system must be equal. equivalent zero curvature form,



57 FIELD THEORY FOR COHERENT OPTICAL PULS. .. 4629
iBN+iE —E _ i/D P ence of level degeneracy. It was shown th&0,11] the

J+ £ —ipn—ig)’ ﬁ_f P* _D =0. Maxwell-Bloch equations for the transitionf,=0—j,
B 3.2 =1, jb=1—j,=0, andj,=1—],=1 [see Figs. (b) and

1(c)] are integrable in the sense that they can be expressed in

In order to show that this equation arises from the fieldterms of U-V pairs. In the following, we show that these

theory action in Eq(2.36), we takeH=U(1)CSU(2)=G
andT=—-T=ioz=diag(,—i). We fix the vector gauge in-
variance by choosing

A=0

A=iéas, (3.3

cases correspond to the effective theory vt SU(3) and
H=U(2)CG. Also, we show that the local vector gauge
structure incorporates naturally the effects of frequency de-
tuning and longitudinally applied magnetic field. Consider a
monochromatic pulse propagating through a medium of de-
generate two-level atoms in the presence of a longitudinal

for a constang. Such a gauge fixing is possible due to themagnetic field. Then, the Maxwell-Bloch equation under

flatness ofA,A. Comparing Eq.(2.40 with Eq. (3.2, we
could identifyE, P andD in terms ofg such that

9 99 +iEg T oggifos=| e o |
(3.4

1

B D P
g ’

”3g:<P* -D

which are consistent with the constraint equati@a43.
Note that the zero curvature equati¢h39 also agrees with
Eq. (3.2. If we parametrize the S@) matrix g by

e?cosp  isingpe'’

g= ei 770'3ei ¢o(cohoq— Sinﬂaz)ei no3— (

isinpe '’ e ?7cosp

(3.5

we recover the parametrizations®Bf P, andD as given in

Eqg. (2.13 and the Maxwell equation becomes the complex

sine-Gordon equation in EQR.14). The potential term in Eq.
(2.36 now changes into the population inversibn

B B
Spot=j;COS2¢:J;D, (3.6
which for >0 possesses degenerate vacua at
= — n+ l ,
p=¢p=(n+3)m 3.7

neZ and =6, for 6, constant.

SVEA is given by
%q: I 2 <R/Lm>‘]/qu ’
um
[a+i(2§+QbM_Qam)]R;¢m

—i q q

_@ £ % J#m,Rm/m—g Ruu b |,
(3.9

[0+i1Qa(m=m") IRy

=i qZ (89 3% Ry =937 Rin,),
¥

[(?+ IQD(IM_IM,)]R;L,U,’
=iq2m (899 R =% 3%, Ryum).

The dimensionless guantities! and R are proportional to
the electric field amplitud& and the density matrig, where

g is the polarization index and the subscriptsu’, ... and
m,m’, ... denotes projections of the angular momentum on
the quantization axis in two-level statga) and |b),
respectively. J denotes the Wigner'sj3symbols

. ja 1]
Jilm=(—1>1b—m@(_m . :) (3.10

The property of degenerate vacua and the correspondir@d’d a ({1p) is a dimensionless coupling constant of an

soliton solutions will be considered in Sec. IV.

B. Degenerate two-level system

external magnetic field. In general, E.9 is not inte-
grable. However, with particular choicgsandj,, Eq.(3.9
can be recasted into the zero curvature form, oldh¥ pair
as in Eq.(2.39. Specifically, for the transitiof,=1/2—],

One of the deficiencies of the SIT model of McCall and — 12 [Fig. 1(d)], we have
Hahn is the absence of level degeneracy. Since most atomic
systems possess level degeneracy, the analysis of the nonde- U, 0
generate two-level system does not apply to a more practical ) =( 0 U ) '
system. Moreover, level degeneracy in general breaks the -
integrability and does not allow exact soliton configurations.Where
For example, propagation of pulses in a two-level medium
with the transitionj,=2—j,=2 is effectively described by
the double sine-Gordon equation

V, 0
1o Vv_

| o

— .+
+|8*1*

_(—i(x+7\) *ig*t )
Us= ix+xn) )

93¢ =C,Sing + C,Sin2¢p, (3.9

which is not integrable. Nevertheless, there are a few excep-’For details of proportionality constants and their physical mean-
tional cases that are completely integrable even in the presags, we refer the reader to R¢T].
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b
R

1 11 R_1+1

t2%2 272
Vi:__ b ’ (312

2\ R(_f)jl R(ai 1

*3rz T2Fp

1
X= 7 (Qa+ Qy—48).

In the context of field theory, we identify thg-V pair in
terms ofg by

1

U=-g 'dg—g 'Ag— AT, V=—Xg‘1?g,
(3.13
where the gauge choice is
—-ix 0 0 O
0 ix O 0 _
A= 0 0 —ix ol A=0, (3.19
0 0 0 ix
and
P g3 O
T=-T=i (3.15
0 g3

with the Pauli matrixo3. Here, we se3=1 for convenience.

The resulting field theory is specified by the cos&gtH

b b
( i Rio R
b
| oL R
ROl Rl—l
V=
[ RE R
s
*
\ R0 —Ri%y
The gauge choice is given by
—i(x+y) 0 O
A= 0 ix 0], A=o0. (3.18
0 0 iy

Thus, the field theory is specified I8/H = SU(3)/U(2) with

R

— |

T=-T=30 -1 0 (3.19
0 0 -1

=[SU(2)x SU(2)J/[U(1) X U(1)] such thaig=($" 3 ) with

d1,9,CSU(2) and the two (1) subgroups are generated by

5% 0) and (o). Note that the specific form of the identifi-

cation in Eq.(3.14 requiresg; andg, to be SU2) matrices
as in the case of the nondegenerate two-level system. Thus,

this case is identical to two sets of the nondegenerate two-
level system.

Another integrable case is for the transitions=1—j,
=0 orj,=0—j,=1.In each case, thd-V pair is given by

4 . .
—ginti(xty) e S P
2
U= —jg ¥ gin—ix 0 ,
. 2
—jgl* 0 §i)\—iy

2 2 , .
X=—Qa—§§, y:Qa_§§ for jp,=0—j,=1
(3.1

2 2 . .
x=—Qp=3& y=Qp=3¢& for jp=1—],=0,

and

e
R | for j,=0—j,=1
R
(3.17
R®2)
—R®} | for jp=1—j,=0.
-RY,

tor under the 2) action. In particular, since frequency de-
tuning amounts to the global(l) [CU(2)] action while lon-
gitudinal magnetic field amounts to the global(1)
XU(1) [CU(2)] action, the effects of both detuning and
magnetic field tee',e " can be easily obtained.

C. Three-level system

The propagation of pulses in a multilevel medium with
several carrier frequencies as given in E2.1) is a more
complex problem than the two-level case and in general the
system is not exactly integrable. However, with certain re-
strictions on the parameters of the medium, it becomes inte-

and 8=1. It is interesting to observe that the electric-field grable again and reveals much richer structures. Typical in-
componentsel,e ! in Eq. (3.16 parametrize the coset tegrable three-level systems are eithenofype orV type as
SU(3)/U(2) and the vectorg 1* ,£*)T transforms as a vec- in Fig. 1(e) and Fig. 1f). The U-V pair for each system is



57

FIELD THEORY FOR COHERENT OPTICAL PULS. .. 4631

essentially the same as that of the degenerate two-level sypropagation of matched pulses through absorbing media

tem in Eq.(3.16. Instead of giving an explicitJ-V pair  [24-2§. Though our matrix potential formulation applies

using a density matrix, we present an equivalent expressioonly to the nonabsorbing medium case, the exact analytic

of the Maxwell-Bloch equation for thd or V system and solutions could provide a guideline for numerical studies in

the U-V pair in terms of probability components. It is given absorbing, nonintegrable cases. It is important to note that

by the Schrdinger equation the group symmetry persists even in the absorbing case,
which leads to interesting resuli28,23.

dc; =13, The degenerate three-level case and its integrability has
) been studied earlier in the context of the inverse scattering
9C,=1QC3, (3.20 method[12]. We suppress the general Maxwell-Bloch equa-
- . tion formulation for the three-level case and refer the reader
dcz=i(Q7c;+Q3¢)), to Ref.[12] for details. Here, we extend the Maxwell-Bloch
. equation of Ref[12] to include a longitudinal magnetic field.
and the Maxwell equation Then, the Maxwell-Bloch equation describing theconfigu-
70 — s ¢ c* ration with j,=1,j,=j.=0 [Fig. 1(g)] is given in a dimen-
1721183 (3.21)  sionless form by
1005=5,C5C3 gel=—ip?, j=12, q==x1  (3.26
where s,=27Nulw;/, i=1,2, and ¢, k=1,2,3, are and
slowly varying probability amplitudes for the level occupa-
tions, ;= u;E;/24 are the Rabi frequencies for the transi- [9+ito(kw —2A1—04q)]p]
tionsi—3. E; and E, are the slowly varying electromag-
netic field amplitudeg; is the dipole matrix element for the =_j ( > 8T’mq/q—8ﬁn1—sgr},
relevant transition ando; is the corresponding laser fre- q’
guency, andN is the density of resonant three-level atoms. If
the oscillator strengths are equa, €s,=s), these equa- [d+ito(kov —2A,—Q,q)1pT
tions can be put in the SB)/U(2) context with the following
identifications: :—i<2 sg’mq,q—sgnz—sgr*),
* * * q,
g=|ci ¢ c3 (3.22 [d—ito(kov — kv —2A5+2A)]r
* * *
=—i2 (efpd* —3*pd), (327
and q
0 0 ik anj=—i2 (efpf* — e pf),
g tog=| O 0 -iQ, (3.23 q
—-iQ7 —i03 0

B [+itop(a=a")Imgq =—1 > _(ef*pf =& pf"),
The gauge choice is thaA=A=0 and T=diag(—i/2, =

—i/2i[2). The density matrixp, with componentSpmc  wheree?, j=1,2 is the amplitude of a double-frequency

=cmCy , IS given by

0 0O
p=—ig Tg, T=|0 i O (3.29
0 0O
Finally, theU-V pair is given by
1 _
U=—g t9g—s\T, V=- Xg‘ng. (3.25

ultrashort pulse and= *1 denote the right{left-) handed
polarization. Other variables are proportional to the compo-
nents of the density matrix

p'i:p(_b:())exq—i(klx_Wlt)]/Na'
9= pPY exd —i(koX—Wot)]/Ng,
P3=p goexi —i(kx—w,1) 1IN, (3.29
b
N1=—p3/Na,  Np=—pG3/Na, Meg=—p"% /N,
r=—poo"exili (ky—ka)x—i(w;—w)t]/N,

This system of integrable equations exhibit many interesting
exact solutions. Detailed studies of this case will appear in andty is a constant with the dimension of time aNg is the

separate papd23]. Recently, three-leveh andV systems

population density of the levéh). 2A,=w;—wp,, 2A,

have received much attention in the context of quantum co=w,—w,. measure the amount of detuning from the reso-
herence effects, such as lasing without inversion and electrarance frequencies. The integrability of E(.27) comes
magnetically induced transparency. In particular, there havéom its equivalent zero curvature form with thex4 matrix
been extensive studies, both analytical and numerical, on thg-V pair,
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—A;— Ny, —iE the sine-Gordon theory indeed measures the atomic energy
U= et AN , through the population inversion. However, except for the
' 2T 1M 22 (3.29  sine-Gordon limit, such a topological treatment of optical

i -M P pulses was not possible since field theories for more general
V= _( ) cases were absent. Therefore, our field theory formulation
2a Pt =N/ allows a topological treatment of multilevel optical pulses. In
the following, we show in detail that the potential energy

where term in Eq. (2.34 possesses infinitely many degenerate
81—1 82—1 pl—lpz—l m_, m; . vacua gnd Iea_ds to topologica_l solitons. In certain cases, a
E:( L L ) p:( Y :( ) topploglcal soliton is characterlzed by more than one topo-
€1 & P1P2 m_ 1My logical number, which is a new feature of multilevel pulses.
On the other hand, we show that there exist also nontopo-
nyr* ao x0 logical pulses that otherwise possess all the properties of
N= m, |’ A= Ob/’ A= oy’ solitons. A nontopological charge is introduced for such

pulses from the “global axial (1) gauge symmetry” of the
with field theory action in Eq(2.36). Explicit nontopological soli-
tons are constructed and identified with self-detuned solitary
pulses. The nontopological charge measures the amount of
self-detuning and the charge conservation law proves the sta-
bility of a nontopological soliton against small fluctuations.

it
a= T"(klv +Kov — 20, — 20,4 4Q),

b= T(klv tkov =24, 7 24,=40y), A. Potential energy and topological solitons
i (3-30 The potential energy term in Ed2.34 reveals a rich
_ 0, _ structure of the vacuum of the theory. It is a “periodic”
X~ (=3ky +hkov+64,-24,), function in local variables. This periodicity gives rise to in-
finitely many degenerate vacua, which are specified by a set
of integer numbers. Thus, any finite energy solution should
interpolate between two vacua. In the nondegenerate two-
level case, the potential term in E@.27) becomes a peri-
Thus, in our field theory context, this corresponds to the casedic cosine potential in Eq(3.6) and each degenerate
whereG/H=SU(4)/§U(2)xU(2)] and the gauge choice, vacuum is labeled by an integeras in Eq.(3.7). A soliton
interpolating between two different vacua, labeledngyand

it
y= Zo(klv—Bkzv—ZAl-l— 6A,).

(AL O A0 (33) Mo X varies from— to = is characterized by a soliton
o AT ' number An=ny—n,. In order to understand the vacuum
structure of the potential for other multilevel cases, we first
whereA;,A; are as in Eq(3.30 and note that the potential term TaT g™ 1T), characterized by a
1 0 cosetG/H, is invariant under the changge—~gh for he H.
T= —?:i( 2x2 ) (3.32 Consequently, we may express the_potential term through a
00—l coset elementne G/H by Tr(mTm 1T), where
Similarly, we may repeat an identification for the c426], 0 B
ja=i<=1Jj,=0 [Fig. 1(h)] and can easily verify that it cor- m= ex
responds to the symmetric space (S)J(4). -B" o0
IV. SOLITARY PULSES cosyBB BVB'B 'sinyB'B
The lossless propagation of optical pulses in multilevel - —sinyBT/BYB™B BT cos\/§’f§

atomic media has been a subject of intensive study since the
discovery of self-induced transparency. Most theoretical (4.7

works on this subject have resorted to the method of inverss1=.he matrixB parametrizes the tangent spaceGfH. This

scattering. The z pulse_ of self-induced transparency and_ ItSmanifests the periodicity of the potential through the cosine
generalizations to multilevel cases, e.g., simultons, are iden- d the sine f . £ h ii
tified with “solitons” in the context of inverse scattering and the sine functions. For the specific cosets,(ZU

; : . © U(1), SUB)U?2), and SU4/JU(2xU(2)], the relevant
Though the inverse scattering method is powerful enough t?natricesB are comolex-valued matrices of sizex1. 1
generate exact solutions and predict the evolution of a puls<>a<2 and 242 res ecﬁivel owina to the relation '
of arbitrary shape, it does not explain the topological nature =’ P y: 9 '

of solitary pulses. In the sine-Gordon limit, therulse has BsinyB™BVBTB~!=sinyBBTVBB !B, 4.2)
been identified with the topological soliton of the sine-

Gordon theory, which is stable due to the topological numbethe potential term reduces to

conservation. The topological number is protected since its

change costs infinite energy. The cosine potential energy in Tr(1 —2sirfyBB") + Tr(1 — 2sirfyB'B) (4.3



57 FIELD THEORY FOR COHERENT OPTICAL PULS. .. 4633

for the SU2)/U(1) and the S)/JU(2)xU(2)] cases and
a—bY, sirf¢;, (4.5
Tr(4l —6sirVBB) + Tr(1 —3si?VBTB) (4.9 '
where the positive constants and b can be read directly
for the SU3)/U(2) case. For a further reduction, we denotefrom Egs.(4.3) and (4.4). In order to check, we take, for
the nonzero eigenvalues oB'B by ¢2 (i=1,.y example, the SIB)/U(2) case and choose tli matrix by
=rankBB}), which are positive definite and coincide with

B=(— ¢singe '#— ¢pcospe'?). 4.6
those of BB'. In terms of ¢i2, the potential term takes a (= gsiny deosy ) 49
particularly simple form, Then,
|
cosp —singsinye ™A —singcospe ™'
m=| singsinye'? cog 7+ cospsirty — cosysinye'#~1%(1—cosp) |, (4.7)
singcospe'®  —cospsinye' *~'A(1—cosp) sirfz+ cospcos 7
|
and the potential term becomes B=—2Btan ‘exy 25z+ (2/7)z+ const]= $B,
(4.9

Tr(gTg M) =Tr(mTm T)=6—-9sirf¢ (4.8 whtgrgy is a constant and, is a constant X2 matrix
satisfying

T =
which agrees precisely with E¢4.4). BoBoBo=Bo- (4.10

The potential term in Eq4.5) manifests the periodicity | ihe matrix B, is degenerate, i.e., &j=0, it can be given
of the potential and the infinite degeneracy of the vacuumiy general by
The minima of the potential occur ab;=(n;+ 1/2)m for
integern; . Therefore, the desgenerate vacuaTare specified by i
a set integersm(; ,n,, . .. ,n,).° The rankr of B'B is one for By=——
the cases of S(2)/U(1) and SU3)/U(2) and two for the case V1+]al?
SU4)/JU(2)xU(2)]. Therefore, solitons for the SW)/
JU(2)xU(2)] case, which interpolate between two vacua
(N1a,N2a) and (y,,Nyp) With [ny|=|n,| andn,=0, are la-
beled by two soliton numberan;=n;,—ny, and An,
=n,,— Ny . In the following, we present an explicit expres-
sion for the 1-soliton carrying two soliton numbers. Conside
the degenerate three-level system with the group structu egenerat,, we can takd, as an arbitrary (2) matrix so
SU4)/S[U(2)xU(2)]. For simplicity, we assume that the %9 oo 0 ) yn
system is on resonanca (=A,=0, v=0) without external NatBoBo= 1o+ and the corresponding solution is t(i1)-
magnetic field and inhomogeneous broadening. This i§°|('jt°nl' This is energetlcallyhdljstlnct from trl(_&,O)—splltc;]n

ivalent to the case where—A=0 in Eq. (2.40 with and also it cannot be reached to t_hEO)-so iton via the

equivalent X . i similarity transform since the similarity transform preserves
|dent|f|cat|ons"|n Eq(3.30 in terms of.a 44 matrixg. By eigenvalues oBOBg. Finally, physical quantities can be ob-
applying the Baklund transformation in Ref23], we obtain

the 1-soliton solution in terms of variables as in E4.1), }ﬁ;nitljefrf?r:ggéhg)ugg dt f|\1/|e ilgegélfl(%ag%nt:)n bE 6012-40- Explic-

(4.11

b1 6, )
a’@l a/92

with complex constants and 6, , 6, satisfying| 6|2+ |6,|?

=1. The eigenvalues cBOBg are then zero and one. There-
fore, up to a global S(2) similarity transform ofBOB(JQ, this
solution corresponds to th@,0) soliton. This solution has
rbeen known as a simulton in earlier literatures and its scat-
r?ring behavior has been analyzed in ddtd]l For the non-

E=iBgdd= —2i nBysech,

8In fact, in the case of multiply integer-labeled vacua, not all of
them are topologically distinct. A similarity transformation BB P=—2Bgsin2¢= —4Bytanm sechh,
that reshuffles the eigenvalueg is a continuous symmetry of the (4.12
vacuum, i.e., under the continuous similarity transformation, the ~ M= —N= —21,,,0052p= —21,,,(1—2seckA),
potential energy does not change. For example, two vacyag)
and (n,,n,) are not topologically distinct but related by a continu-
ous symmetry transformation. Also, there exists another continuous
symmetry associated with the nontopologicdllJucharge that pro-
vides an additional topological degeneracy by the identification ofrespectively. Inclusion of detuning and external magnetic ef-

2
A=27nz+ ;z+ const,

two vacua (,,n,,...,n,) and (-ny,—n,,...,—n,). Thus, the fects can be done easily by a gauge transform
topological configuration of degenerate vacua is characterized by _ 4
(2)'1(Z,XZ,). E—H; "EH;, M—H,; "MH,,

(4.13
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P—H;'PH,, N—H,NH,, Thus, it carries a topological numbern=(—1)""1b/|b|
and becomes a topological soliton. Whe# ¢, the solution
whereH ,H, are given byA, = HflﬂHl, A,= |-|2*1(9|-|2 for  reaches the same vacuum»as *=« since the peak of the
A;,A, in Eq. (3.30. localized solution does not reach the point wheregcos.
That is, its topological number is zero. Nevertheless, it
shares many important propertiésg., localization, scatter-
ing behavior, etg.with the topological soliton so as to de-
Here, we address the issue of topological versus nontopaserve the name, “nontopological soliton.” Note that the en-
logical solitons in optical systems. In order to facilitate thevelope functionE, and also the time area @&, become
problem, we first focus on thez2pulse of the nondegenerate complex whera+ £. But the time area of the absolute value
two-level system. Se¢8=1 in Eq.(2.6) without loss of gen-  of E in Eq. (4.16) is still 24r. This suggests that we could call
erality. Then,.by using the dress.ing method in Appendix Aithe solution in Eq.(4.14 as a 27 pulse in a broad sense,
one can obtain the2 pulse solution such that which comprises both the topological and the nontopological
b solitons as well as the inhomogeneously broadened solution.
_ _ = In order to see the physical meaning of a nontopological
cosp J(a—¢&)%+ szecNsz 2bCy2), soliton, consider the resonant case whére0. In this case,
Eq. (4.16 shows that the nontopological solitora#0)
a—¢ _ shifts the carrier frequency byw=2a. Thus, the nontopo-
o=—tan ' —pcoth2bz—2bCy2) logical soliton represents a self-detuned pulse. It also
(4.149 receives a spatial modulation given by a phase factor

exp(—2iaz/Ja?+b?). At the microscopic level, the maxi-
mum population inversionD =cos2p, does not reach 1 in
— the nontopological case so that the shape a$ not of the
n=(a=§z+(a=¢)Cyz, kink-type [see Figs. @)—2(d)]. Note that the field intensity
|[E| in Fig. 2(d) is invariantly hyperbolic secant-type inde-
pendent of the valua.
, Though a nontopological soliton cannot be specified by a
_ 1 _ a-¢ topological integer number, it carries a continuous nontopo-
! (a—¢&')%+b?)’ ? (a—&)2+b2/]’ logical charge. In fact, as we will show in the next section,
the nontopological charge conservation law gives rise to the
stability of a nontopological soliton. In Sec. V, we show that
where the term in angular brackets is as in &47). Interms  the symmetry leading to the nontopological charge is “the
of E as defined in Eq(2.13, the 27 pulse is given by global axial U1)-vector gauge symmetry” of the action. In
o _ the nondegenerate two-level case, this means the invariance
E=—2ibsecli2bz—2bC,z)e 2327C22) (4.1  of the action in Eq(2.16 under the change

B. Nontopological solitons as self-detuned pulses

—2¢£z+[2(a— §)C,—2C,]z,

wherea,b are arbitrary constants and

Note thatE is explicitly independent of in Eq. (4.16), n—n+y for y constant. (4.19
despite thet dependence of potential variables», and 6. . o

This exemplifies the macroscopic natureoés discussed in  1he corresponding Noether current is given by

Sec. Il C. In the sharp line limit of the frequency distribution

f(&€')=68(¢&' — &), this solution retains the same form except J= coso P = CO§@D§ (4.20
for the change of constan, andC,, sirfe K& sirfe G )
1 a—¢ which satisfies the conservation law
Ci=—————, Co=———F+—. (419
(a—&g)?+b? (a—&y)*+b?

— — 0 — J

3J+ 9= —[cofe(d+d)n]+c—[cofedn]=0.
The solution in Eqs(4.14) and (4.16 is loosely identified at IX
with the one-soliton in earlier works using the inverse scat- (4.2

tering method: However, Fh's does not nec_essarlly mean thaIthe corresponding conserved charges are conserved either in
it is a topological one-soliton. We emphasize that the t0PO3ime dQ'/dt=0

logical distinction is possible only in the sharp line limit and t
even in that case not all solitons are topological solitons. For
example, whera=¢, the above solution describes a local- QTEf
ized pulse configuration that interpolates between two differ-

ent vacua in Eq(3.7) such that

+oc[co'(zgo(a%—;) n]dx, (4.22

or in spacedQ%dx=0,

o(x=—0)=(n+ 3)m, +o0
’ (4.18 QSEJ [ccofpdn]dt. (4.23

— — 1 b n -
px==)=|nt 5 H(_l) - In the case of the nontopological soliton given in E4;14),
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FIG. 2. Plots of¢, # , D and|E]| for (bright) one-soliton withb=2, ¢=0 . The plot is w.r.tx=2b272bclz Real @=0) and dashed
(a=3) lines represent the topological and the nontopological solitons.

b| & averaged” coefficients, while the topological versus non-
Q5= QT=ctan‘1aT§. (4.24  topological nature of the soliton critically depended &as
in Eq. (4.14. Thus, inhomogeneously broadened pulses do
The physical meaning d®S is clear. Consider a2 pulse not carry topological numbers. In this regard, it.is remarka.b'le
with b fixed. Sincedn=a—é=a+w,—w expresses fre- that the McCall and Hahn's area theorem provides a stability

quency detuning and cat is peaked around the solito@S statement even in the presence of inhomogeneous broaden-

measures precisely the amount of self-detuning of a nontang- In fact, the proof of the area theorem relied crucially on

ological soliton. Stability of nontopological solitons can bethe averaging over the frequengyof detuning in inhomo-
pological C y 0pologica eneous broadening. However, one serious drawback of the
proved either by using conservation laws in terms of charg

; . ; . rea theorem is that it applies only to the case of Eal
and energy as given if80], or by studying the behavior icp, ignores frequency modulation, and it also assumes the
against small fluctuations.

symmetric frequency distribution. Presently, a more general
area theorem including frequency modulation is not known.
C. Stability In this section, we attempt to generalize the area theorem
The physical relevance of a topological number is that iti© include frequency modulation. Though we do not have the
accounts for the stability of solitons against “topological” g(_errl]efral area theocrjerl’n,.we shot\)/v thatl hOV\éj pulse reshaplng
(soliton number changingfluctuations. In fact, any finite W't Ireqrtljency (rjno ulation can Ie elxp aine _tho a qe{]taln ex-
energy solution must approach one of the degenerate vacd@ - I Ihe nondegenerate two-level case without inhomoge-
atx= = and therefore it carries a specific topological num-couS broadenm'g', we prove th.e stability of & pulse in
- X ! . terms of a “modified area function” and show that the re-
ber. Topological numbers cannot change during any physic

P X i overy of soliton shape is slower in the off-resonant case
process due to the infinite potential energy barrier betwee@a_&t 0) than in the resonant case. When frequency modu-

any two finite energy solutions with different topological |aton is taken into account, a numerical work testing the
numbers. This infinite energy barrier results from the infinitepu|Se stability has shown that there exists a frequency-
length of thex axis despite the finite potential energy density py|ling effect[31]. This effect is explained nicely in terms of
per unit length. On the other hand, topological number is nothe nontopological charge and its conservation law. Consider
useful in understanding the stability of pulses against nontothe one-soliton in Eqi4.14). Since the time area of complex
pological (finite energy fluctuations. Also, the topological E is not meaningful, instead we regagg of the complex
notion does not apply to the case with inhomogeneous broadgine-Gordon equation as a “modified area function.” We
ening. In Sec. Il C, we have argued that the potential variablalso assume without loss of generality that the asymptotic
g is microscopic depending on the frequengywhile the  time behavior ofp is given by

pulse amplitudeE is macroscopic being independent &f

This was apparent in the example of the one-soliton solution o(t= o x) = —ml2,  ¢(t=»x)=m/2 for a=¢

given through Eqgs(4.14—(4.16). It shows that inhomoge- ' p(t=o0,x)=—7/2 for a#¢,

neous broadening requir&sto be a function of “frequency (4.2
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Then, the modified area This shows that the detuning by a higher frequency, ae.,
—&>0 reducesQS for increasingx while the lower fre-
" quency detuning does exactly the opposite. Since the con-
A= f,mzwdt (426 Served charg®® of the one-soliton istan [ |b|/(a—&)], it
can be concluded that the absolute valu€dfx) decreases
of the topological solitong— £=0) is 27 while that of the = monotonically along the axis. Eventually, it converges to a
nontopological soliton is zero. Consider a pulse perturbegonstant value of a soliton. Note that the monotonic decrease
around the one-soliton with the boundary conditip(t= of the|QS| value of a pulse is slower than that of the modi-
—o,X)=—m/2, i.e., the it is initially in the vacuum state. fied area since it is of the ordef. The decreasing and con-
Near the trailing edge of the pulsext1), the modified area verging behavior ofQ9 is in good agreement with the nu-
function is perturbed by =€ for small ¢, i.e., ¢(t>1) merical work[31], which showed that the frequency of the
=+ 7/2+ €. Then, the perturbed complex sine-Gordon equaoptical pulse is pulled towards the transition frequency and
tion for t>1 around the one-soliton becomes reaches a constant value along #haxis. Thus, the stability
of modified area and nontopological charge provides a gen-
— eralization of the area theorem in the presence of frequency
aa¢+4mfzo- (4.27) detuning in a restricted sense. A full-fledged generalization
should include inhomogeneous broadening, in which case
The perturbation of they part is neglected since its contri- the nontopological charge conservation law breaks down. It
bution is of the ordee?. This shows that if the modified area introduces an anomaly terfd in the current conservation

is greater than 2 (or zerd by the amount>0, thenade  law, 3J+aJ=M, for J,J as in Eq.(4.20 and
<0. Therefore, thifleldﬂp gt the trailing edge tends to M = 2cotp[cos 6 2 )(sin( 6— 277)sin2e)
decrease along the=x/c axis so as to recover the total

b2

modified area zr (or zerg. On the other hand, <0, then —sin(6—27){(cog §—27)sin2¢) (4.31)
dde>0 and the field at the trailing edge increases. This
shows that the total modified area tends to remain & —(colpdn+ 136)de].

zero. Moreover, Eq4.27) shows that the recovery of area is
faster in the resonant casa=¢) than in the off-resonant This anomaly vanishes in the sharp line limit due to the
case @+ ¢). This agrees with the prediction made by a nu-constraint in Eq(2.15. It also vanishes for the one-soliton
merical work[31]. In fact, the recovery of the modified area and the charge remains conserved in this case. This may be
can be accompanied by a stronger recovery of pulse shape tompared with the conserved area of topological solitons in
that of a soliton. Instead of proving this, we simply point outthe presence of inhomogeneous broadening. The area theo-
that the stability of a soliton against modified area preservingem of McCall and Hahn proves that inhomogeneous broad-
fluctuations could be demonstrated by modifying the Lamb’sening changes the pulse area until it reaches thosenaf 2
proof in terms of the Liapunov functiof82], as well as by pulses. This suggests that a generalized area theorem of pulse
proving the stability of higher-order conserved charff#s stability including frequency modulation may be proven by
In order to understand the frequency modulational stabilimaking use of the nontopological charge and the anomaly.
ity, we recall that the nontopological charge measures th8ut this has yet to be seen.
amount of frequency self-detuning of pulses. In the follow-

ing, we show that the stability of the nontopological charge V. SYMMETRIES
accounts for the frequency-pulling effect. From E4.21), ) i .
we have One of the advantages of having a field formulation of the

Maxwell-Bloch equation is that the field theory action re-
dos — ee veals symmetries of the system. In this section, we show that
WZ—CO&P(%L L] (4.28 our group theoretic formulation in particular reveals previ-

ously unknown gauge-type symmetries that have definite

For a one-soliton solution, the boundary contribution is zerd®ysical implications. Also, by using the group theory, we
and QS is conserved in space. If the solution is perturbedconStrUCt systematically infinitely many conserved local in-

around the soliton such that near the trailing edge of thdegrals of the Maxwell-Bloch equation in association with a
pulse Hermitian symmetric spac&/H. These conservation laws

can be extended to the case with inhomogeneous broadening
P(t>1x) =+ 7/2+ €(X), without difficulty. In addition to these continuous symme-
(4.29  tries, we show that the action in E¢2.36) uncovers two
types of discrete symmetries; the chiral and the dual symme-
+8(X) tries. These discrete symmetries relate two different solu-
tions. In particular, we show that the dual symmetry relates a
“bright” soliton with a “dark” soliton.

nﬂ>1x%4a—g%t—§—_fji____

for small parametric functions(x) and §(x). To the leading

order, the variation of)® then becomes
A. Conserved local integrals

dsQs (1+ 1
ax @O\ It G

In Appendix B, it is shown that the associated linear equa-

2
€ (4.39 tion (2.4)) in terms of aU-V pair yields exact soliton solu-
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tions through the dressing procedure. The same linear equhe consistency conditio@dp; — dap; =0, then leads to the

tion can be employed to construct infinitely many conserveqnfinite current conservation law

SU(2)/U(1) case with inhomogeneous broadening and Iatee?nd‘]i:_api' or

local integrals. We first construct conserved integrals for th

generalize to the arbitrar¢s/H case. Recall that the linear
equation for the S(2)/U(1) case is given by

0 -E
It e o |TAT[Y=0,
(5.7
— g tTg\ |
8+<)\T§> ¥ =0,
whereT=—T=io;. We introduce the notation
(97 Tgh=(g 'Tg(-&)")
=—i( (D@9 (PO-9") )
(P*O(=8") —(DO(-8"
_ [Di Py
=—j Pr -D,)’ (5.2
and define
Vexp-AT2)=Y, ~a,, cpiz(pi qi) (5.3
i=0 A ri S
so that the linear equation changes into
0 -E
J+ E* 0 ) qu_[T, <I>i+1]=0 (54)
and
3q’i+|§) (97'Tg)i- -1 P=0. (5.9

These equations can be solved iteratively in components,

1
Qi:§(3Qi—1_ESi—1)a (5.6
ri:_z(ari—lJrE*pi—l)a (5.7)
i—1
piZJEridZJrilZO (Di_j_1py+Pi__1r)dz,
(5.8

i—1
S =— f E*qidz+i|20 f (=Dij—18+PF_4a)dz,
(5.9
together with the initial conditions:
(5.10

pO:SOZ_Zi, r0=q0=0.

$J,+ 33, =0 for J;=ap,

i-1
ialgo (Di_1_1p1+Pi__1r)—d(Er)=0. (5.11

Another consistency conditiodgds;, — dds; =0, gives rise to
the complex conjugate pair of E¢5.13. A few explicit
examples of conserved currents are

‘]_l: _2D01
J,=EE*, (5.12
J,=4iD,— 2P,E*,

J,=EJE*, (5.13

J3=—2PodE* +8D,+4E* Py,

J3=Ed°E* + (EE*)?, (5.19

J,=—16iD 3+ 8E*P,+4iP,JE*
—2Pod’E* —2PyE* |E|?,
J,=EJ%E* +|E|?9|E|?+ 2E|E|?0E*. (5.19

Half of the above integrals have appeared earlidB2]. As
for the generalG/H case, we introduce the abbreviation

£=U=g 'ag+g *Ag—¢T,

(V)=(g~'Tg)y=(g Ta(—&)")
—D+ P, (5.16

where in the last line, the decomposition is made according
to the behavior under the adjoint action ®&f such that
[T, D;J=0 and[T, P,]#0. Now, define matricegt; and
YV recursively by

Yi= =T, 0% -1]-[T.E1X 1 (5.17

and

i—1 .
/ﬂz—fgjﬁdz—lzoI(Diflflxl"'Piflflyl)dZ-
(5.18

The matricesY; and); can be determined completely with
appropriate initial conditions. For example, if we choose an
initial condition that is consistent with the recursion relation
for i<0,

XOZI ’ yozo, (519)

we find for the first few explicit cases in the series,

X1=J 6{T,5]dz—f Dodz, Y,=—[T,&] (5.20
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and (n) ( n )(n)
Qr - * * QZ ’
X2=f (E9E+ £ T,E)X)dz 2 12 Tz (5.27
_ c hi; h3 O Cy
+f (_Dl_D0X1+ Po[T,g])dZ, (52]) Cé — 3:]\:2 -52 0 CZ ,
s 0 0 hi/ \c3

y2= —85—[T,€]X1

These matrices give rise to infinitely many conserved locai Which case

currents,
J=oX=—& hiy hi, O
’ (5.22 R=|[ hy hyp O |. (5.28
o 0 0 hg

i—1
J=0i== 2 (D1 X+ Py 1)),
Note that when(2,=0 and(), is a 27 sech pulse, the ro-
which satisfyad; = aJ; . An explicit derivation of these cur- tated Rabi frequencies are all proportional to the 2ech

rents is given in Appendix B. A few examples of currents arepUIse' e, it bejcomes a S|multqn solution. Thus, our global
symmetry provides a systematic way to generate simulton

solutions. WherL =R=exp(yT) e U(1), we have the global
U(1) axial vector symmetry. The Noether charge of thid)U
invariance is precisely the nontopological conserved charge
(5.24 introduced in Sec. IV B. Even though a general expression
_ for the nontopological charge should be possible, in practice

J2=—D1—=Do&1+Pg[T,£]. it requires an explicitnoncompadt parametrization of the

_ group variableg as in the case of Sec. IV D.

The first currentl;, J, gives rise to the energy conservation
law.

3,=&T.El, J;=—Dy, (5.23

Jo=E9E+ET,E1 X,

C. Discrete symmetries

B. Global gauge symmetries Besides continuous symmetries, the action in €936
also reveals discrete symmetriéfe chiral symmetrandthe

The action in Eq(2.36 for the coseG/H possesses vari- ;5 symmetryThey are manifested most easily in the gauge
ous type of gauge symmetries. Since the Maxwell equation hereA—A— 0. Extensions to different gauges, e.g., the off-

arises from the action, it also possesses gauge symmetri€es, . ) . :
while the Bloch equation could change under the gaug esonant case that requires a different gauge fixing asin Eq.
3.3, can be made by the vector gauge transform in Eq.

transformation. For example, the loddlvector gauge sym- : 9T .
metry, as given in Eq(2.32 where the local functiorh (2.32. One peculiar property of the action in E3.36) is its

belongs to the subgroul, is a symmetry of the Maxwell @symmetry under the change of parity throughz. This is
equation, while the Bloch equation changes under the trang€cause the Wess-Zumino-Witten action in E226 is a
formation. In fact, it was shown that a particular local gaugeSUm of the parity even kinetic term and the parity odd Wess-
fixing accounts for the effect of frequency detuning and ex-ZuUmino term thereby breaking parity invariance. In the op-
ternal magnetic fields. On the other hand, even after the locdiCS context, broken parity is due to the slowly varying en-
gauge fixing, there remains global gauge symmetries. Fofelope approximation, which breaks the apparent parity
example, assume the local gauge chdiceA=0. Then the Invariance of the I\/I_ax_well-_BIoch equation. l\_levertheless, the
action in’Eq.(2.36) possesses the property action in Eq.(2.36 is invariant under the chiral transform

Swe(LgR)=Sus(9) (5.25 72, gg~ ! (of po—neo—¢). (529

for constant matriceR andL, which commute witil andT,  This may be compared with th€ P invariance in particle
respectively. ThusR is an element of the subgroup. Un- physics. Thus, parity invariance is in fact not lost but appears
der the transformatiomy— LgR, electric-field components in a different guise, namely, chiral invariance. This chiral
and the density matrix components rotate among themselveymmetry relates two distinct solutions, or it generates a new

via the similarity transform solution from a known one. For example, under the chiral
transform in Eq(5.29), the one-soliton solution in E¢4.14)
g tag—R (g tig)R, g—l?gHR—l(g—l?g)R_ in the resonant cas& € 0) becomes again a soliton but with

(5.2  the replacement of constardsb by

For example, in the case of three-levelor V systems, the a b
Rabi frequency(); and the probability amplitude; are ro- as——, bo—.
tated by a?+b? a+b?

(5.30
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(a) a=3, b=l making the replacemeni8— — 8, z— —z in the “bright”
soliton of the negatives case. For example, we obtain the
dark 1-soliton for the S(2)/U(1) case as follows:

ﬁtank&bﬁ 2bC?)
a—
a—¢
B . —
2 2 J(a—§)*+b?

0 0 0=—-2(a—§&)(z—Cz)—2¢z.

cospe? 7= —

A

=
NAANANAVAVAN

NNNANN

(5.33

Figure 4 shows profiles of a dark soliton. Note that field
intensity| E| is the same as that of the bright soliton in Fig. 2.
However, the population inversioD for the dark soliton
becomes inverted compared to that of the bright soliton.

VI. DISCUSSION

In this paper, we have introduced a potential concept to
optical systems described by the Maxwell-Bloch equation. In
terms of the matrix potential, a field theory action for the
Maxwell equation was established where the Bloch equation
became a mere identity. Various identifications of multilevel
systems have been made in association with specific sym-
metric space$/H and the resulting group theoretic proper-
ties have been used in constructing conserved integrals. The
field theory action uncovered several features of the
Maxwell-Bloch system: gauge symmetry, topological and
nontopological charges, self-detuning, modified area theo-

FIG. 3. cos for (a) one-soliton andb) its chirally transformed ~ rem, etc. In doing so, the introduction of a matrix potential
soliton. variableg was an essential step. One immediate question is

about the generality of such a potential variable in the de-
This implies the change of pulse shape and the change skription of nonlinear optics problems. Throughout the pa-
pulse velocity byv—c—v (see Fig. 3. The current and the per, we have confined ourselves only to the integrable

charge also change by Maxwell-Bloch equations, which admit the inverse scattering
method. Also, we have concentrated only on the classical
J-—J, J—-17, Q——0Q. (5.30) aspect of the field theory which gives a semiclassical de-

scription of light-matter interaction. In general, the Maxwell-
It is remarkable that the velocity changes framto c—v Bloch equation is not integrable. Even the integrable cases

unlike the usual parity change— —v. require specific physical settings. For example, in the three-

The other type of discrete symmetry of the action in Eq.level system, integrability requires equal oscillator strengths.

(2.36) is the dual symmetry30]: However, we emphasize that integrability is not a necessary
condition for the matrix potential formalism. Even for non-

B——pB, g<iog, (5.32 integrable cases, one could still solve the Bloch equation in

terms of a matrix potentiaj, and express the Maxwell equa-
whereo is a constant matrix with a propertg;T+To=0.  tion in terms ofg [23]. One example is the-2 2 transition
For example,oc= o4 of Pauli matrices in the S@)/U(1) in the degenerate two-level system, which is described by the
case. This rather unconventional symmetry, as well as thdouble sine-Gordon equation when certain restrictions are
name, stems from the ubiquitous nature of the action in Egmade. A more general matrix potential treatment of noninte-
(2.36; i.e., it also arises as a large level limit of parafermionsgrable cases will be considered elsewhere.
in statistical physics and the above transform is an inter- On the other hand, the group theoretic approach in terms
change between the spin and the dual spin varigdi@s In  of g is not restricted to the Maxwell-Bloch systems only. The
general, the change of the sign Bf makes the potential nonlinear Schrdinger equation, which is the governing
upside down so that the degenerate vacua become maximaeduation for optical soliton communication systems, can be
the potential and vice versa. Therefore, the dual transformegeneralized according to each Hermitian symmetric spaces
solutions are no longer stable solutions. This allows us t$33]. In fact, both the Maxwell-Bloch and the nonlinear
find a localized solution that approaches the maximum of thé&chralinger equations share the same Hamiltonian structure
potential asymptotically(a so-called “dark” soliton. In  and they can be combined together. This case and its physi-
practice, the dark soliton for positivé can be obtained by cal applications will be considered in a separate paper. Fi-
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FIG. 4. Plots of¢, 6 , D and|E| for dark one-soliton witth=2, ¢=0 . The plot is w.r.tx=2bz+ 2bc12 Real @=0) and dashed
(a=3) lines represent the topological and the nontopological solitons.

nally, we point out that our field theory formulation provides ACKNOWLEDGMENTS

a vantage point to the quantum Maxwell-Bloch system as . . .

well as the quantum optics itself. A direct quantization of theEnTihnlzevr\?rzrk I\:'\(l) isng’;fi)g&tggé% pg;tlf)gzgf_rg&_szuinutehznd
Maxwell-Bloch equation using the quantum inverse scatter- 9 ?B ic Sci R h. Minist f' Edy i
ing has been made by Rupasov and a localized multiparticl rgg:agrr; 2442‘513'(; d gerlfgSEerer?rc ’h (':n_l'_sp%l\? ucation
state has been found and compared with a quantum soliton~ " ="~ » and by throug u.
[34]. Our field theory formulation suggests an alternative, yet APPENDIX A: INVERSE SCATTERING METHOD

more systematic means of quantization through the use of AND THE MATRIX POTENTIAL

guantum field theory. The appearance of specific coset struc-

tures and their Hermitian properties suggests that a system- In the following, we show that the matrix potential is
atic quantization based on group theory is possible. Oncetimately related to the dressirijiverse scatteringnethod
again, this is not restricted to integrable cases and extensio@sid explain how to obtain exact solutions. The dressing
to other quantum optical systems can be made. This work imethod is a systematic way to obtain nontrivial solutions
in progress and will be reported elsewhere. from a trivial one. In our case, we take a trivial solution by

- T
g=1 and \I’z\POEexp{ —(A—§T+)\T)z—<x—§,>4. (A1)
Let T be a closed contour or a contour extending to infinity on the complex plane of the parameetdG(X) be a matrix
function onI'. Consider the Riemann problem ¥°G(X)(¥° ! on T, which consists of the factorization

VOGN (PO r=(@ ) O, (A2)

where the matrix functiomI>+(z,ZX) is analytic withn simple polesuq, . .. ,u, insidel’ and(b_(z,ZX) analytic withn
simple zeros\4, . .. A, outsidel". We assume that none of these poles and zeroes lie on the cbhso the factorization
is analytically continued to the region wheke# u; ,\;; i=1,... . We normalized, ,®_ by &, [5_.=P |5-.=1.
Differentiating Eq.(A2) with respect taz andz, one can easily show that

0D, DD (A—ETHAT)O =00 _ O 1 —d_(A—£T+AT)D L, A3)
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_ o, . TOH\ O _Th!
a¢+¢+1—<;> =a<1>c1>1—<~—> .

! A_g/

Since® . (®_) is analytic inside(outside I', we find that g whose stability subgroup id. In our case], is precisely
the matrix functiondJ andV, defined by the T matrix given in Sec. Ill. Namely, with a suitable nor-
malization of T, we have

— 90D L+ D(A—ET+XT)D 1-XT,
Ve — (5 — 59D -4 dTdh -1
=-(A=§iPd "+ TP 7, [T,[T,a]]=—a for any acm.

Where®=¢+~or ®_, depending o.n .the regi?”' become We decompose an algebra element g according to Eq.
independent oh. Then, ¥=dW¥° satisfies the linear equa- (B2),

tion

b=t Y- (B4)

— \%

c9+<~ ,> )‘1'=0- (A5)  Such a decomposition could be extended to a representation
¥ of G=SU(n) if we substitute the commutator by a direct

matrix multiplication and add an identity elemem§=1 to

the subalgebra, i.e.,

(9+U+NT)¥ =0,

SinceU,V are independent df, we may fix\ by takingx
=¢. Defineg by gEH<I>*1|;:§ Where_H is an arbitra_ry
constant matrix that commutes wilh T, andA. Then,U v=v,+¥,, Y.Ww,Cv,,

— B5
andV become B9

v,.CV,, V., ¥, CV,.

1T—n—1 -1 _
U=g "dg+g "Ag—¢T, (AG) In other words, any unitarg X n matrix can be expressed as
= = a linear combination of SUY) generators and the identity
V=g "Tg. (A7) elementh, such that
If we further require the constraint conditiof2.45 on dimh dimm
@~ Y5, such that V=9, +¥ => ¥h,+ > ¥m,.  (B6)
a=0 b=1
(—9dd 1+ DADP 1), —A=0, (A8)

In order to solve the linear equatid@.46 recursively, we
we obtain a nontrivial solutioy and ¥ from a trivial one.  expand¥ in terms of a power series i,
The nontrivial solution in general describes solitons "
coupled with radiation mode. I6(X)=1 in Eq. (A2), we Vexg —\T2)=, iq)_ (B7)
obtain exaci-soliton solutions. This formal procedure may Son
be carried out explicitly for each case of SIT in Sec. Ill and
a closed form oh-soliton solutions can be obtained. where

dimh dimm

APPENDIX B: CONSERVED LOCAL INTEGRALS o = 2 (I)ﬁ-h + 2 P my=X,+ ), (B8)
i itla mi i it
a=0 b=1

We first review some basic facts about Hermitian sym-
metric spacg22] that are relevant for the construction of \ith the notation in Eq(5.18), the linear equation is given
conserved integrals. A symmetric sp&8&H is a coset space py
with the Lie algebra commutation relations among genera-

tors of associated Lie algebras such that (0+&EP;—[T,P;,,1]=0 (B9)
[h,h]Ch, [h,m]Cm, [m,m]Ch, (B1) and
whereg and h are Lie algebras o6 andH andm is the 4
vector space complement bfin g, i.e., ’9q)i+|20 (Di—-1+Pio-)®=0. (B10)
g=hem. (B2)  Then, them component of Eq(B9) is
Hermitian symmetric space is a symmetric space equipped AVi_1+EX_1—[T,Y]=0, (B11)

with a complex structure. In general, such a complex struc-
ture is given by the adjoint action @f onm up to a scaling, which can be solved fay, by applying the adjoint action of
whereTg is an element belonging to the Cartan subalgebra of,
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Yi==[T.0Y-1]-[T.E1X 1. (B12) GE+[T,Po]=0,
AX; can be solved similarly from thb component of Egs.
(B9) and(B10) such that dD;+[€&,Pi]=0, (B14)

i-1

x=- [ evdz=3 [ (0 1+ dz PP L&D Pl =0

(B13)  In general, the conserved current contains nonlocal terms.

Finally, the conserved current follows from the consistencyThese nonlocal terms may be dropped out by takingThe
— component of the currents. For instance, Theomponent of

condition 99.X; = 9o.%; . _ _the “spin-2” current conservation is
With the repetitive use of the properties of the Hermitian

symmetric space, it can be easily checked that these conser-

vation laws are indeed consistent with the equations of mo- ITHTEIE)=dTr(TP[T,E]—TDy) (B15
tion (2.47) and(2.48), which in the present convention take a
particularly simple form: which obviously does not contain nonlocal terms.
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