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Geometric potentials for subrecoil dynamics
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Quantum motion of atoms in light fields is described on the basis of adiabatic internal states. Forces arise
due to the spatial variation of these states, which is determined by the electric field polarization. In a dark state,
these are the only forces present. They are described by a geometric vector and a scalar potential. We give
analytical expressions for the geometric potentials in the dark states of a @riven 1 transition and the dark
state in the &1 system, for arbitrary electromagnetic fields. For systems with velocity selective trapping
states, the scalar geometric potential is inversely proportional to the field intensity squared. When the field has
nodes the potential diverges. In one dimension, this constitutes an exact realization of the Kronig-Penney
model.[S1050-294798)01806-X

PACS numbgs): 32.80.Pj, 03.65.Ge, 42.50.Vk

I. INTRODUCTION 1 .
H=%p2+v. (2.1
In laser cooling situations, the random photon recoil of an
atom at spontaneous emission increases the temperature.slgn P S .
order to cool below the recoil limit, spontaneous emission or a monochromatic fieléi(x) driving a transition between

must be avoided. This can be achieved when stationar Statasdegenerate ground and excited level, the interaction Hamil-
o y . Y fhianV consists of the internal electronic energy levels and
within the ground level exist. These dark states form the ke

. . ) . . ¥he dipole interaction energy. In the rotating-wave approxi-
mgredlents for veloc_lty-selectlve coherent_ population trai‘p'mation, the time dependence is transformed away. Then the
ping (VSCPT) [1]. This method allows cooling below recoil interaction can be diagonalized at each position as
temperatures and spatial coherences larger than an optical
wavelength. Another advantage of trapping atoms in dark
states is that the long-range dipole-dipole interaction van-
ishes. This becomes important at high densities, where ) - -
quantum-statistical effects can be studied. where the internal statega;)=|a;(x)) are position-

In general, atoms moving in a light-shift potential are alsodependent linear combinations of the atomic energy levels.

subject to gauge forces, which arise from the adiabatic moAs a function of position, the eigenvalu¥s(x) form effec-

tion in light fields with polarization gradienfg]. The corre-  tive energy potentials for a moving atom, which are known
sponding potentials are of the order of the recoil energy an@S light-shift potentials. This has become the foundation of
in most cases they can safely be ignored compared with thif!® interpretation of sub-Doppler laser cooling in terms of
light shifts. In dark states, however, the light shift vanishesn® SiSyphus mechanism. Often it is assumed that the atom

and the gauge potentials become important. They depedaasawell—localized wave packet and the motion is described
only on the field pattern, not on the overall intensity or thesemchaSS|caIIy. We are interested in the quantum motion of

atom-light detuning. In this sense, the potentials have a geog_glgatztoms, where the semiclassical description s inad-
metric nature. The spatial variation of the adiabatic states can be trans-

Th'e forge arising from the;sg potent@lls determines th%rmed away by the local transformation operafodefined
atomic motion below the recoil limit. In this paper we study by

the general structure of the geometric potentials. We demon-
strate that they can be used to confine atoms. More generally,
the geometric potentials are the main ingredients for subre-

coil dynamics, which determines the final stage of VSCPT. .
Here the seti) is a fixedx-independent basis of the internal

state space. A natural choice would be to thkeas the state

V]a; x)=|a; X)Vi(X), 2.2

Tla; %) =[i)[%).

Il. QUANTUM MOTION AND SEMICLASSICAL FORCE corresponding tde;) in the limit of zero field at a fixed
position. This operator relates the new transformed state to
A. Transformation to adiabatic states the original state according to

We consider an atom in a classical monochromatic radia-
tion field, which drives the transition between a degenerate [ )=T[).
ground and excited level. In the absence of dissipation, the
system is described by a fully quantum-mechanical Hamil-The original statel¢) and the transformed state/’) are
tonian consisting of the center-of-mass kinetic energy and aexplicitly given in terms of the wave functions in the adia-
effective interaction term batic component by
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. N R The transformationT to the adiabatic basis is a local
=2 J dx |, X)¢i(X), transformation on the internal states. Therefore, the expecta-
' tion value of the position, velocity, and acceleration is invari-
ant under this transformation. Due to the appearance of the
W= |i>f dx [x)i(X). (2.3  vector potential, the velocity and acceleration operators,
! however, have a different form. In the primed frame, the

. . velocity operator follows from the Heisenberg equation
The evolution of the transformed state is governed by the y op ged

transformed Hamiltonian

1 . .
H'=THT = (p+A)?+V". (2.4
The force operator is proportional to the acceleration
Here the scalar and vector potentials are position-dependent
operators on the internal states, as described by - d2x’ . 1dx’ . 1, dx
'=m——=-VV'— = — XB+ =BX—.
F mdt2 \AY T B 2B T
V':Z Vi(x)[i)(il, AIZ > A )L
J Here the vector field operaté= VXA, just as in the case of

with a charged particle in a magnetic field. The vector oper‘étor
o . . depends on position and acts on the atomic internal states.
Aij(x)=—i{a;|V]a))=i(V(ai])|a;). (2.5  The gradient of the potential operatef does not couple

different internal states since

The scalar potential’ is diagonal on the basis sg, but

the vector potentiaA has both diagonal and off-diagonal —ﬁV’|i>|§):—|i>|§)§Vi.

contributions. Notice that all these matrix elements serve as

operators for the translational degrees of freedom. The off-

diagonal terms oA describe the nonadiabatic coupling be- o o _ _
tween different adiabatic states. For sufficiently low atomic In an electric field of high intensity, atoms experience
velocities, this coupling is small compared to the energy dif-strong light shifts and the potential§ are separated. When

ference between the light-shift potentislgx) and can often the potential curves are sufficiently different, the atoms can
be neglected. The diagonal contributions, however, have t§€ confined within a single adiabatic statg) with potential

: L : - V;, as long as their velocity is not so fast that tunneling to
be compared with the variations of a single potertigk). other potentials becomes possible. Near a crossing, the adia-

The internal states are determineq uptoa position-de_pendeB tic approximation breaks down. When a single adiabatic
phase factor. This phase factor fixes the gauge, which 0”'¥tate|ai) is populated, the state is determined by a single

affects the diagonal elements of the vector poterkiaFor  \yave function. Then the internal state is not a dynamical
this reason the vector potential is also called a gauge poteRpriaple anymore, but a fixed quantity. The total stag

tial [2]. and the transformed state/’) are explicitly given by this
single component in the sta(2.3)

C. Adiabatic approximation

B. Lorentz force and light-shift potentials

Generally, the force on an atom is described by the force |¢/;)=f dx |a; ,X)(x), |W>=|i>f dx [X)i(X).
operator. In the Heisenberg picture, where the operators 2.6
rather than the state vector evolve in time, the force operator '

IS The guantum-mechanical motion of atoms is then governed

d2x by an approximate HamiltoniaH,;, which is basically the
v projection ofH’ on the statei). This effective Hamiltonian

E=m— =—VV s
is defined by its action on the wave functigix) in terms of

dt
The effect of the force operator is determined by its action or;[he full and the transformed Hamiltoniat& 1) and (2.4 by

the adiabatic internal states, which is given by H. 9 ( 9|H|¢//> Gl 9|H,|w,> 2.7
ip(X)=(«a;,X =(I[(X . .

Flai X)=—la; x)VVi+i X [a; X)(V;—V)A; . Thus the effective Hamiltonian is written explicitly in the
) position representation as
The diagonal elements are the gradients of the light-shift 1
potentials. Since the_ ol‘f-dlagonal elements are proportional Hizﬁ[—iﬁ+ﬁi(§)]2+Ui(§)+vi(§),
to the vector potentiaA, they are only present when the
internal states depend on position. They will contribute to the

force if there exist coherences between different adiabatiwhere the momentum operator is represented-&§. The
components. vector and scalar potentials are
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I 1 . a)
A=A, U E|Aij|2- (2.8 —_—

_ﬁj#i —_—
The vector potentiaﬁi is the diagonal matrix element of the é

vector operator. The scalar potentid] arises from the off-

diagonal terms inA that contribute to the diagonal part of e —
H’. They describe the kinetic energy that can be associated
with the variation of the internal state. At positions where the
couplings from|i) to all the other internal states is zero the
potentialU; vanishes. When the light-shift potentials are
degenerate, the effective Hamiltoni&h acts on the corre-
sponding subspace of state€swith the same potential. Then

U, and,&i should be replaced by operators on this subspace. — =— =—— =—— —
Within this subspace, these operators are not necessarily di-

b)

agonal. <)
Spontaneous emissions can put an atom into a superposi- N NN
tion of different internal adiabatic stat€®.3) instead of a
single adiabatic state as in E(.6). Then the evolution in
the adiabatic approximation is governed by an effective
Hamiltonian, which is simply the sum of Hamiltoniaf&7) — — —_— —

acting on the different components. For instance, the scalar

otentials are described by the operdtb =;U;|i)(i|.
P y P Uil A | scheme when the orientation of the quantization axis is orthogonal

The maQ”et'C field and the spalar potential are local to the plane of the polarization ellips@n) and(c) Situations where
operators, i.e., they act on the internal states and are fungre axis is determined by the cylinders on the polarization ellipse.
tions of the position operator, not of the momentum operator.

This implies that it is possible to make a semiclassical depumped into such a dark state. Insensitive to the light field
SCI'iptiOl’] of the average force on the atom, which is Va“dand with no possible escape by spontaneous decay, an atom
when the wave functions are sufficiently localized. This is awill stay in the dark state until it moves nonadiabatically to
bit Surpl’ising since these effects Originate from the moMmenpther states. Very SIOle moving atoms can be confined in
tum operator in the Hamiltonian and thus can be considereghe dark state for times long compared to the optical pump-
as pure quantum forces. In the adiabatic approximation, thiyg time. This means that the adiabatic approximation is
semiclassical force on the atom is valid. In a dark state, the light-shift potential vanishes. The

. translational dynamics of the atom in a dark state is entirely

d_X <B determined by the potentialio andU,. We shall denote the
dt ' dark state with the indek=0.
Since no light shifts occur, the adiabatic potential of a

HereV, U, andB are the local expectation values'¥8f U,  dark state is flatVo(X)=0. Therefore, periodic optical lat-

and B with respect to the internal-state density operatorfices, trapping, and Sisyphus cooling in a dark state are
When the rate of optical pumping is high compared to thethought not to be possible. So-called gray lattices have been
field variation that the moving atom experiences, the internaproposed[7] to create a periodic adiabatic potential by
state will follow the local steady state. When the field variesmeans of adding a small magnetic field. Unfortunately, then
appreciably over a wavelength, this requires that the pumpsmall excited state amplitudes are added and dark states dis-
ing rate exceeds the Doppler width. Below the recoil limit, appear. However, it follows from the previous discussion
where the semiclassical description breaks down, the stead{hat position-dependent forcesan arise in dark adiabatic
state assumption is well justified. Simple analytical expresstates, due to the position dependence of the dark state
sions for the internal steady state can be fouri@id]. Inthe | aq(x)). Since the dark state is determined only by the field
subsequent sections, we consider delocalized wave fungolarization and not by the field intensity or atom-light de-
tions. tuning, we call the vector and the scalar potentials for dark
states geometric potentials.

D. Internal dark states The simplest model of a dark internal state is\acon-

figuration. For particular values of the two ground-state am-

qu in_tensitri]es ff;igh efn(;]uglh LO jl;]_sftify the .adigbatic aP-plitudes the coupling to the excited state is canceled by de-
proximation, the effect of the light-s ift potentigh is USU" " structive interferencé5]. In terms of an arbitrary elliptical
ally considerably stronger than that of the geometric poten- A S, .
ials A 40 bviouslv. this i h _ polarization&, the dark states in §—j' transition can be
tials A; and U; . Obviously, this is not true wheW; IS ¢5,nq by choosing the atomic quantization axis orthogonal to

independent ok, which is the case for a dark state. Dark the polarization plane. This implies that arrows coupling the
internal states are eigenstafeg,(x)) of V that are linear ground statdj,m,g) to the statdj’,m,e) with the samem
combinations of substates of the ground level. If one or mordy linearly polarized light disappedsee Fig. 18)]. The re-
dark states are present, a localized atom will eventually benaining multiple A structure contains dark states provided

FIG. 1. Two dark states in thg—j—1 transition.(a) Level

F=-VV-VU-
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a) c) ber of specific cases of physical relevance in this and the
-~ I~ 7 ~ following sections. We notice that on jg=1 level, there
exists a basis that transforms under rotations like a Cartesian

basis|X),|y),|z). This implies that each internal state can be
represented as a vector, which we denote as

b) d) |a)=a,/x)+ayly)+a,|z).

We consider a £+ 1 transition. In this case an exact black
state is known to exisfi8]. The two polarization vectora
andb of the ground and excited state are coupled by the field
E. The interaction operator acting on an arbitrary ground
FIG. 2. Black states in one-dimensional systems. Multifle  state|a,g) is then determined by the vector product of the
structures contain a dark internal state. In a singléplotted with  fie|ds and atomic polarization vectors
bold arrows a full black state is found(a) The 1—1 transition
contains one dark internal state and one black sthjeThe 1—0
transition contains two dark states: TAehas one black state, the

isolated state is completely blackc) In 3/2—1/2 two A’s are . L. . .
present; hence there are two dark states with a black state (éach. since this is the only _Imear opgratlon that forms _a veCtolr out
In 2—1 there are two dark states, one with a black state. of two vectors. Here is a coupling constant. The interaction

with the light field vanishes witta=&, where is the nor-

that the ends of the wiggle are in the ground level. malized polarization vector arflis the real amplitude of the
When an atomic transition between levels with angular PN .
momentumj and|’ is driven by light with an arbitrary po- electric fieldE=ECE. This shows that dark states are charac-

(B,e,3|V|3,g,%) = kB* - (EX )

larization, two dark states exist whghi=j—1. Whenj’ terized by the internal stafer)=|£,9).
=j, there is a single dark state for integervalues. For
half-integer values of, a single dark state only exists when A. Wave function of the black state

the polarization is circulaf6]. A ¢ black stat
n exact black state

E. Black states

A full quantum-mechanical dark state is denoted as in Eq. |‘/’0>:I dx [€,9,%) tho(X)
(2.6) with i=0 for an arbitrary wave functiony(x). Al-

though such dark states are eigenstates of the interactiqg obtained wheny,(x) is chosen such that) is an eigen-

Hamiltonian, they are stationary states only when they arg .. ot the kinetic energg?2m. An obvious choice that
also eigenstates of the kinetic energy and the full Hamil- '

tonian(2.1). Time evolution will dephase the components of realizes this isjy(x) =E(x), the electric field amplitudgg].
the state with different kinetic energy or, equivalently, the This can be shown when one notices that the electric field is
wave packet will be deformed. As a result, bright states willa solution of the Helmholtz equation
become occupied. Hence atomic states in the dark internal
state can still decay. In the transformed basis, this process is —V2E=K’E.
described by the operatoﬁso, which couple the dark state to
bright states. Only in exceptional cases can a dark state BEhen it follows that
stationary. These eigenstates of the complete Hamiltonian in
the ground state will be called black states. 1 .

An exact black statéy,) is found for an arbitrary field in Hlyo)= 5 P[0 = Eol o),
the transition between two levels wifh=1 and two black
states are present in the—0 transition. In the one-
dimensional case, a black state occurs in the transition
—1, since it contains a singl&, and two black states occur
in the transition 3/2-1/2, since it contains twd.'s (see Fig.
2). These are the famous velocity-selective trapping states . - -
[1,8,9. The recoil kick of a spontaneous emission can put Hoto(x) =(ag,X|H| o) =Eqiho(x),
the atom in the black state, where it is trapped. Hence the
population in| ) can only increase with time. The widths Where we used the definitiof2.6). The wave functiony,
of the momentum distribution can become smaller than & E is equal to the electric field amplitude. If the electric

%\/ith energy eigenvalu&,=k?/2m. It follows that the wave
u

nction %()Z) is an exact eigenfunction of the effective
Hamiltonian(2.7) for the dark state

single recoil, resulting in very low temperatures. field has no nodesj, has no zeros and then this wave func-
tion must be the lowest-energy eigenstateHgf Unlike the
Il. A SINGLE DARK STATE total statd i), the corresponding wave functiaf=E does

) “not have a well-defined kinetic energy. This explains the
In order to demonstrate the importance of the geometrigresence of the geometric potential for the dark state in the
potentialsA, andU,, we give explicit expressions in a num- driven 1—1 transition.
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B. Geometric potential in terms of the electric field nature of the scalar potential suggests that its strength is of

The vector and scalar potentid8) in the adiabatic ap- th.e order of a singlel recoil energy. In optical lattices, the
proximation as defined by E¢2.5) for the 11 transition widths of the potential vyells is normally smaller t.han a
can be expressed in the field polarization vectors. The vectd@velength and the question arises whether strong binding in
potential is the scalar potential is possible. We show that in special con-

figurations it can become sufficiently strong to support

R o 1 R bound states in the potential minima.
Ag=—iEVE=I(VE)E= —Im E*VE (3.1

E C. The electric field

and the scalar potential is In order to see how the geometric potential depends on
the polarization of the electric field, we expand a general
UO:%qﬁaz_'&Z): % 1EX VA2, (32 field E=ECE in terms of real basis vectors, and U, by
&= (U cose+il,sine) €. (3.9

The notation needs some comment. Note that it follows from
the definition(2.5) that the gradient operators always com- The real amplitudee, the complex amplitud€, the phase
bine with gradient operators in inner or outer products andp, and the ellipticitys are determined by

field vectorsE or & combine with field vectors. From the s 2y = o @ 2 oo

second expression it can be seen that the component orthogo- E°=E*-E, F°=E-E=E%"fcosz. (3.9

nal to the field is picked out. . . o . . '
A monochromart)ic radiation field consists of a finite num—The orientation of the polar|;atLon ellipse is defined by the

ber of plane traveling waves with wave vectéysand polar- ~ @X€SU; andu,. The vectorsu,,u, are given explicitly in

izationsE; terms of the field vectoE by

. E*F+F*E . IiE*F-iF*E

Y17 2EFlcose © Y27 2E[F[sine 3.6

E(x)=> Eelki
I

The scalar potential can now be expressed in terms of the N experimental si:[[uations, tr][_e fietld ca||_1 be generatledtﬁy
o > = superimposing counterpropagating traveling waves. In the
L(;tal electric field vectoE or in terms of the amplitude; case of two traveling waves in ttedirection, the field de-

pends only on the coordinate. The general form is

L2 - - .
Uozzi%“ng*élzziiz E Ejéjei(kiJrkj)-x E(z)=(E,e""+E_e |kz)/\/§. 3.7
mE i
(3.3 TheApoIaArization ellipse now lies in they plane everywhere
L andu,=z. The polarization vector is entirely determined by
in terms of the antisymmetric matri®; =E; X E;. The first  the ellipticity ¢ and the phase as defined in E§.5) and the
equality of Eq. (3.3 can be verified after substituting orientation anglet. The gradient of this angle is determined

E=EE, which produces Eq3.2). Two different beams give by
a contribution to the potential only if their polarizations are ~ A
different. This is understandable since the potential arises Vu=u,Vé. (3.8
from polarization gradients. When more than two beams are o ] L ) .
present, the plane wave factors in the summation can inter- A Shiftin the relative phases &.. is equivalent to a shift
fere. One verifies that wheré, has minima, indeed high of the spatial coordinate. Thus,wlthogt loss of generality, we
values of the potentidll, can be expected. In the dark state can assume that the inner prodéct - E _ is real and nega-
optical lattices can be created wheg is periodic. tive, which will be advantageous in later use. The choice of
The vector operatof3.1) determines an effective mag- phase ensures that the positions of minimal intensity are lo-
netic field. After some algebra one obtains in analogy to Eqcated akz=n. The field intensity pattern has the universal
(3.3 form

E2(z)=(1-cos 2 cos X2)l (3.9

in terms of the average intensity=(Ei+E2_)/2. The pa-
) _ ~ rametersa and B are defined by the overlap and the cross
Whereas the gradient operators have an inner product in ”}ﬂoduct of the two polarizations as
expressions fod, in the expression fdﬁo, the vector prod- L . R
uct between gradient operators is taken. | cosw=|EX-E_|, |sin28=|E.XE_|.
According to Heisenberg’s uncertainty relations, an atom
with a wave packet localized within a wavelength must haveence cos @=0 when the two polarizations are normal to
a momentum spread of more than one photon recoil. Hencene another and cosx2=1 whenE,=—E_. The two pa-
its energy is higher than one recoil energy. The geometricameters are related according to
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co2a+sirf2B=E2E2/I2. The potentialsA,U and A’,U’ respectively correspond to
the polarizations and &’ .
D. The atomic system In a one-dimensional system the vector potential can al-

When the field consists of two counterpropagating travel-W ays be transformed away by choosing the proper gauge.

P . . i
ing waves, only two ground states and one excited state p [he gaugeA’=0 is a natural choice since then the Hamil

afs oo . .
LS ) 4 i : : onian is real. It only contains the scalar potentialHence
ticipate in the dynamics. The light-shift potentidls2) are with Eq. (3.13, the equation for the phase is

Vo=0, Vi=—3$8+58%+ PE2, - sin 2a ) (ELE
V,=— 15— 1/6%F k2E2, (3.10 ¢=ATP T cosmcosxz " P N Tsin2a

For large detuning, the excited-state population can be netn€ solution can be expressed as

glected and one has two ground states: the dark ktafe
and the bright statéa;). The scalar potentials of the two- tan
dimensional space with basis sta{€$ and|1) are equal. P
With Egs.(3.2) and(3.8) they are expressed in the position-
dependent angles and ¢ that determine the field polariza-
tion (3.4) by

1 Po(2)=E(z) €'¢?= \/M ex (ijA(z)dz)
Up=U1=U=2_[(Vé)? cod2e+(Ve)2]. (3.1D 0 Az) P '
m (3.15

By substitution of Eq(3.7) in Eq. (3.3 and using Eq(3.9), |t follows from the solution(3.14 that the phase shift over
we obtain an explicit expression in terms of the constant fielgy5if an optical wavelength is(a)— ¢(0)=pa. Hence the
parametersy, 8, state(3.15 satisfies Bloch’s theorem

ke(2) _tan kz
Ctana

(3.19

In the primed gauge, the wave function of the black state is
explicitly written in terms of the vector potenti&l by

_KE_ sinzg  \° W(zta)=y (2) eP
U(@=7m 1—cos 2 cos Xz (312

for eigenstates of the real Hamiltonian with a periodic poten-
With the proper choice of the phase of the bright state, thdial U, with the quasimomentump. The wave function lies in
diagonal matrix elements of the vector potenfigh andA;;  the lowest Bloch band since it does not have zeros. We stress
are equal. They can be evaluated from the last identity in Ecthat the wave functiorf3.15 of the black state is an exact
(3.2), with the field (3.7). With Eqg. (2.8) it follows that the  solution of the effective HamiltoniarH, with potential
off-diagonal element®\,;, and A, are determined by the (3.12, as can be verified explicitly. This is remarkable since
scalar potential up to a constant phase factor. Therefordhe geometric potentiadl is only present in the adiabatic
these matrix elements can be chosen positive. With Ecgpproximation.

(3.12 the result is The phase factor in the Bloch stat&15 can be consid-
ered as a Berry phase corresponding to the vector potential

E% —E2 | sin 28 A. Thus, in the periodic geometric potentidl, the Berry
Aoo=An=A=k T Ao1=A10=k = phase describing the adiabatic following of the internal state
(3.13 is precisely the quasimomentum times the period. When the

potential is adiabatically translated over a periad the
The periodic potential¥;, V,, U, andA,A,; have the lattice Bloch state(3.15) also_ obtains a Berry phase factor. That
constanta=m/k. The vector potentialA is only present Berry phase is determined by the gradient of the translational

when the running waves have different strengths. state, which turns out to be the expectation valpeof the
momentum operator. The quasimomentpmand the real

momentum(or group velocity (p) of a Bloch state of the

E. Gauge transformations . . .
g general form(3.15 are given by the simple relations

When we do not require that the amplituBeis real, the

separation betweels and& is defined apart from a position- pa— faA dz a fad_z
dependent phase factor. This implies that the dark internal 0 (p) Jo A’
state and the corresponding wave function also obtain the
same phase factor. The transformations for the field and thkn the Bloch state(3.15 where A is determined by Eq.
wave function are (3.13, the true momentum is
= e_pErer ioor r_ i E2—E2
E=EE=E'E'=EE?E, ¢'=ye'?. (B)=p sin 2v=k +| -
The vector and scalar potentials in the ngwimed repre-
sentation are related to the original potentials by which is equal to the expectation value of the momentum
operator in the original black stafes,) and to the average
A'=A-Vg¢, U’'=U. momentum of a photon in the field mode



57 GEOMETRIC POTENTIALS FOR SUBRECOIL DYNAMICS 4587

For small ellipticitiesa, the field is linearly polarized near
they direction almost everywhere. Then the polarization ro-
tates rapidly fromx to §/—§< and tox at the intensity mini-
mum and then tx+y and back toy.

IV. TWO DEGENERATE DARK STATES

In a transition between a ground state with angular mo-
mentumj and an excited state with angular momentym
=j—1 two dark states exist. When the atomic quantization
axis is alongus, orthogonal to the local field polarization

—a 0 2 a (3.4), the couplings between the states in the ground and

FIG. 3. Geometric potentid) and the ground-state wave func- excngd levf6| with thle. SI:/{r?m dlsarﬁ)p(?ar.h'_l'hhe level .SCheme
tion ¢ for the configuration(3.18 with «=x/10. The dashed consists of two multipleA’s, each of which contains one

dark state.

By choosing a different quantization axis, it is also pos-

When the counterpropagating beams have equal intensfible to eliminate the couplings from to m+1 or fromm
ties, the field and the black state have zero average momek2 M—1 in the level scheme. The electric field can be ex-
tum density. Then the angles= 3 coincide. In the gauge Pressed as a superposition of an orthogonal pair of a linear
where the amplitudé& is real, the vector potentigh van- ~ and a circular polarization. The couplings of the thficitcu-
ishes. The ground state of the gauge potetfids the Bloch  1ar) polarization disappear when the quantization axis is cho-
state withp=0 in the lowest-energy band. This is precisely S€N in the Q|rect|0n of the linear polarizati¢@]. The two
the black state. The potentidl and the wave functiog, are ~ "€Presentations

lotted in Fig. 3 in the case that=0. A - “
P 9 at 5=(v1+iu2)8in 8+U3\/COSZ—I

=(W;+iU,)sin & +Wsy\/cos Z,
As an example we take the field generated by two travel-
ing waves of equal intensity with linear polarizations undercorrespond to the possibilities to use a left circular or a right

angles+ a with respect to the axis. Then the field is ellip- circular component. This second coordinate frame is ob-

curves are the two standing-wave components.

F. Examples

tically polarized with a fixed orientatiog=0. It is tained by rotating the system about the axjsy an angles.
R A A When 0<e< /4, this angle is determined by céstane.
E(z)=(X sin a coskz+iy cosa sinkz)y2I Generally, for arbitrary values o,
=[(x+iy)sin(a+kz)+ (x—iy)sin(a—kz)]\1/2. cos #=min(|tane|,|cot &|).
(3.1

Geometrically, the cylinder that encloses the polarization el-
The ellipticity and its gradient are given by lipse determines the orientation of this basis as is depicted in

Figs. b) and Xc). In the basis of the quantization axis,
e= _ the right circular polarization is eliminated. For the- |

1-cos 2 cos kz —1 transition, this implies that the stdfgm= +j,g) is iso-
(317  Jated. Hence it is a dark state.

This field is linearly polarized when the intensity is minimal Ve introduce statej) defined as the staig, +j) in the
or maximal, which is at the location whetez=n= and basis where the quantization axis is in the directionaof
nw+ m/2. The field is purely circular whekz=nw+a and  These states are called Bloch states since they maximize the

tankz sin 2«
tan o

tane(z)=

nm— . length of the Bloch vector, which is the expectation value of
A field that is linearly polarized everywhere is the angular momentum operatﬁr (They have no relation
N R R with the stationary states of a periodic potential, which are
E(z)=(x sin a coskz+Yy cosa sinkz)y2I also called Bloch states.

The Bloch state$vs) and|ws) are dark. In terms of the

=[(x+y)sin(a+ kZ)+(§<—§')Sir‘(a_kZ)]\/72(-3 vectorst, andUs, these states are

18

. . . - L SN 63U ~ O\ 63Uy
It is generated by traveling waves with elliptic polarizations lvg)=e""""2lug),  |wa)=e"'™ 12 ug).
with ellipticities = o with the same orientation. The position-

dependent polarization angiéz) is determined by These two dark states are linearly independent, but not or-

thogonal. The inner product of the Bloch stategdg|ws)
tankz sin 2o =c?l with c=cosé. Note that the inner product of the two

ana’ V¢ K1 cosmcoskz' vectors isvs-W3=Cc0s .
(3.19 The linear combinations

tan é(z)=
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|v3)+|Ws) [v3)—|ws)

a)= —F/——, |0y
W= o 97 g

are orthogonal. In the basis where the atomic quantization

axis is Us, the statela;) is a superposition of the Zeeman
substatesj),|j —2),/j—4), ... and the stat¢a,) consists
of the stategj —1),/j—3),/j—5), .. ..

4.1)

Ul 2

One-dimensional case

When the field consists of two counterpropagating plane
waves, the field is always polarized in thg plane and the a
system is essentially one dimensional. The atomic quantiza- =
tion axis Us=2z in which the linear couplings disappear is
constant. In this frame, the two orthonormal dark stéfed
are given in terms of the dark Bloch states

logy=e""e 1], +]),  |wa)=e eI Mj,+j).

Since the spacéj),|j—2),/j—4), ... that containda;)
and excludesa,) now is fixed,A;,=0 and there is no cou-
pling between the two dark states. The operatds diagonal
on the basis of the fixed internal sta{d$ and|2) with the
potentialsU; andU, as diagonal elements.

The vector potential$\; and A, are found by using the
relations

FIG. 4. The geometric potentiald; (solid) andU, (dashedlin
the field with a fixed orientation and a uniformly varying ellipticity.
The potential minima increase linearly with Top picture: integer
oA N A igliny valuesj=1,2,3. Forj=1, U;=0; for j=1,2, U, equalsk?/2m.
i(v3V]vg)=(z|€' WV (£3,+ 6dy)e IHJy|Z>:JCV§' Bottom picture: half-integer valugs=3/2,5/2.

i(03] V|Wa)=(z|€' "WV (£, + 0y et ?|z)=jc2 1V - . _
< 3| | 3> < | (g z y) | > J (f <Z|e'0JYJzze_'0‘]V|Z>=12C2+%jSZ,

—ic)
Sl @i 03y124—103y|5\ — 1;
in the definition(4.1). The result is (zle'™Vje'™z)=3],
o4l oo 21 Next to the cosine=cosé#=min(|tan ¢|,|cote[), we abbre-
Aj=—]———VE Ay=—j———VE viated the sines=sin 6. The two potentialdJ; andU, are
1+c? 1—-c? evaluated in terms of the field parametérandc by using

Eq. (4.4) in Eq. (4.3 and substituting the result in E¢.2).
In turn, the field parameters are given by the expressions
2 (3.9, (3.6), and(3.5) for an arbitrary field.
Now we turn to special fields that we choose as an ex-
ample in Sec. lll F. For a field with a fixed orientation like
4.2 Eqg. (3.16, £=0. Then

The scalar potentials of the two dark states are

- 2m 1+ g2l 2m  8m| 14 ¢2i

1 (Vs V(o) +Iwa)) AT 1 ( v
1_

1 (V(s)V(log-lwe) A3 1 [ ved | YT N ki PR
27 om 1— g2 2m 8m\q1_¢2 am| 1+c¢¥ T (1+c)? '
The last term in the two expressions accounts for the change j [1+c?72 2js?c?i2
in the normalization constant. The first termUn andU, is U2=4— YR L )2
determined by M 1-c¢”  (1-¢)
V(D) (V]D:)) = (2| N (V£D)2+ (V 0I,) 2 P%|Z), We can use the explicit expressiof®17) for the ellipticity.
(Vo3 (VIva)) =(2le (V) "+ (V6dy) 12 From the results we found that also these potentials have
(4.3 peaks at the intensity minima. The strengths of the peaks
(V<53|)(V|\7v3))=(§<|e‘ O[(VEI,)2—(V gJy)Z]e+i0Jy|§>_ increase linearly with). Whenj>1, extra peaks appear near
the points where the field is circularly polarized. The poten-
The expectation values of the squares are tials U, andU, are plotted in Fig. 4 for different values at
21 ai 0y 1240 03,15 T a= /4 when the two linear polarizations of the light beams
(7]€'v3; ' z)=(j*—3js%)c? %, are orthogonal. Then the field intensity is homogeneous and

o o _ e(z)=kz so that the gradier¥ ¢ =k is constant. For integer
(€37 z)= (3] —j?s)c? 2, (4.4  vales of], the potentials have a periodicity af2, a quarter
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of an optical wavelength. For half-integevalues, the two sin 2o
potentialsU; andU, have the periodicitya, and are identi-
cal apart from a spatial shift af/2.

According to Eq.(2.8), the geometric potentials are pro-
portional to the sum of the absolute squares of the nonadia- = e?inkzg=2Inly,
batic coupling constantg\;;. Hence optical pumping is n

maximal at the potential maxima. In the case that the two ith the parameter tanhy2=sin 2. The summations of
geometric potentials of the two dark states are different, th P ; ’ - .
fxtend over all integers. The scalar potential is proportional

¥
¥+ (kz+ 7rn)?

Il
oM

1—cos 2v cos Xz

Sisyphus effect may be at work. When the atom is pumpe 0 the square of this function. Hence the vector potential is

from one dark state to the other dark state, most of the timr resented as a series of displaced Lorentz-tvoe profiles in
the kinetic energy decreases until the steady state is reached’ dispiacs ype pr
pace. For smalk<<y<1, this function becomes a series of

\é\]{ljt.hti?nagg t?glf: (|: é)”ug]npelrrlgycycle this net loss is of the orderrs1arrow peaks and the Fourier components exit|y) go to

g : the constant value 1. The peaks are located at the intensity
ollgritzheedsire](iao;ccim e);?rwpﬁéi’;ieoﬂzgéﬁ apl]fir;g ilsmc?fat?(/a minima of the field. The rapid variation of the polarization
fporm (3.18, so thzgt thé polarization' angl&(z) is given in causes large values of the geometric potential at these points.

Eqg. (3.19. The potentialg4.2) now reduce to ) ) )
Dispersion relation
j o For small angles the light-shift potential in the bright state
U1=U2=H(V§)2 if  j>1. (3.10 and the geometric potentia{8.12 are approximated
by
2 2

For an arbitrary field in one dimension, when Kl k
Vz(z)zﬁsmzkz, U(z)=ﬁ32 S(kz+nr).
n

j=2,j'=1, the potentialU, equals Eq.3.1]), so that is
explicitly given by Eq.(3.12 in terms of the field param-
eters. In the cas¢=1, j'=0, the potentiall, equals Eq. This potential defines the well-known Kronig-Penney model.
(3.11) and U, vanishes because the state) is constant. It is the only known model for a periodic potential that can
This implies that the coupling to the other internal states ise solved analytically. This may be a mere toy model when
absent. A full quantum state with an arbitrary wave functionapplied to describe electronic waves in the solid state; the
¥(z) in a dark state with a vanishing geometric potential ispresent case of cold atoms in a dark state constitutes a physi-
black. There is no velocity selection so that cooling will not cal realization of this model. The strength of equalsS
occur. When the geometric potential of a dark state is con=j 7/2« for the j—j — 1 transition in purely linear polarized
stant but nonzero, there are no forces, but there still is velodight and j>1 andS= 7%/ a® for the 1—1, 1—0, and 2

ity selection in the nonadiabatic coupling to the excited state.~1 systems. The geometric potential diverges when the
In situations where finite families of states arf$é®], both  fie|q has nodes. This occurs whéh, =—E_ and a=0.

the light-shift potentials and the geometric potentials are flatyq\yever, wherv=0, the field polarization is fixed and only
Like the driven 1-1 transition, the systems-20 and 2 = ¢hanges sign at the nodes. Then there is no geometric poten-
—1 in one dimension contain a black state that is an eigeng| a1 all. The paradox is resolved by noting that when

state of the geometric potential. approaches zero, the light-shift potential of the bright state
V; and of the dark stat¥/;=0 at the intensity minima be-
V. KRONIG-PENNEY MODEL come degenerate. Landau-Zener coupling can occur and the

atomic internal state is no longer restricted to the dark state.

In a dark state, the geometric potentidldepends on the However, as long as the Doppler shifk/m is small com-
polarization pattern and not on any other experimental papared to the minimal energy splittingx?E2(0)/8
rameter such as the detuning or field intensity. Although the=242?| «?/ 5, the adiabatic approximation still holds. Even
expression(3.3) is given in terms of the electric field, the for small values ofx, the Rabi frequency?!/s can still be
overall strength of the light field intensitydrops out. Apart made sufficiently large to fulfill this condition.
from the recoil factok?/2m that givesU the physical dimen- If we consider a plane atomic wave incident on a singjle
sion of energy, it contains only geometrical variables of thepeak of the periodic potential, the wave is partly transmitted
electric field. This justifies the name geometric potential forand partly reflected. When the wave has the wave vepsar
U. Because the kinetic energy of a localized atom alwayshat the energy i€ = q?/2m, the transmission and reflection
exceeds the recoil energy, the effects of the geometric poterpefficientst andr are determined by
tial on the atomic motion are expected to be small. However,
the geometric potential varies withproportional to the in- 1 1 ikS
verse square of the local field intensB. Hence still large T 1+r 1+ 2q
values can be expected at the intensity minima.

In order to demonstrate this, we consider the dark state ifhe reflection coefficient is close to unity ifqg<<kS, which
the A’s of the 1—1, the 1—0, and the 2»1 transitions in is the case in the present approximatier&1 for moderate
an arbitrary field in one dimension. Then, and for the case ofalues ofgq. Atoms are reflected at the points where the field
j—]—1 in purely linearly polarized light, the vector poten- almost has a node. Hence atoms can be confined between the
tial is proportional to the function nodal planes of the field. The potentitl has discrete
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maxima at the intensity minima. Periodic electric fields inlar physical effects to an external magnetic field on a charged
more dimensions have nodal lines and points instead gparticle. In particular, it gives rise to a Lorentz-type force
nodal planes. Therefore, bound states do not seem to occur énd, for a quantum mechanical wave packet, to Berry’'s to-
optical lattices in more dimensions. Fields with curved nodalological phase. For a periodic potential in one dimension,
planes are needed to trap in three dimensions. Possible cagtis Berry phase determines the quasimomentum of the
didates of such fields are Gaussian standing waves argloch states.
spherical waves. This could be of interest for the study of | the adiabatic approximation, the internal state follows
collective effects. In order to confine atoms in the dark Statethe atomic position_ Then the Square term in the genera' vec-
a binding potential is needed to contain an atomic sample ofr operator gives rise to the scalar potential. This potential
high density. When the atoms interact, the gauge potentiadnergy can be interpreted as the kinetic energy contained in
may be used for evaporative cooling. Also this coolingthe spatial variation of the internal state.
mechanism is Compatible with VSCPT since the ground State Quantum motion becomes important When spatia' Coher_
is black. ences are of the order of an optical wavelength. In a dark
In the limit of small angles, the peaks are very narrow andnternal state, coherences are preserved longer since sponta-
strong. Periodic potentials, however, also give rise to a spegieous emission rates are small. Moreover, the subrecoil cool-
trum with energy bands. The dispersion relation between enng mechanism VSCPT creates large spatial coherences in
ergy E=g%2m and the quasimomentup for the Kronig-  the dark state. In a dark state, where the light-shift potential
Penney model12] is vanishes, the geometric potential will be the dominant term.
This implies that optical lattices will form naturally in a dark
state. For configurations with a dark state, an external mag-
netic field can create gray lattices based on the magneto-
optical potential. Whereas in gray lattices there is still a
small coupling to the excited state, in a dark lattice, the ex-
cited state is decoupled.

cospa=cosqa—3wS sincqa.

Real values fop can only be found wherga= N+ ¢ and
e of ordera. Then the energy bands are given explicitly by

k? , 4N N In the transition between two levels wij=1, a single
En(p)= om N®+ W_S(_) cospa. dark state exists for arbitrary polarization. We evaluate the
dark geometric potentials for an arbitrary field in three di-
Herep is the quasimomentum arld=1,2, ... is theband mensions. In one dimension, the geometric potential has a

number. The half-bandwidth is the rate at which localizeduniversal shape, which is inversely proportional to the square
Wannier states tunnel to the neighboring wéllg] and is  Of the field intensity pattern. It has peaks at the intensity
inverse|y proportiona| to the potentia| Stren@h minima. The black state, which is a dark eigenstate of the
When the black state lies in a continuum of energy stategotal Hamiltonian, is also an exact eigenstate of the adiabatic
as is the case wheb is periodic, then VSCPT cooling is Hamiltonian.
governed by [ey statistics[13]. The trapping process is  For a transitionj—j—1, two dark internal states exist.
characterized by the very slow growth of populatight in ~ We evaluatg the_two dark geometric potentials in one _d|men-
the black state, wherE is an effective escape rate. This is Sion for arbitraryj values. Apart from the peaks at the inten-
caused by the fact that, after a spontaneous emission, tify minima, extra peaks appear at the points where the field
overlap of the atomic wave function with the black state isiS Purely circularly polarized. The peak heights are propor-
infinitesimal. In the presence of a binding potential, the lo-tional toj. In general, there will be a small velocity selective
calized bound states have a discrete spectrum. Then the ovéRupling to the excited level in the dark state. Transitions
lap with the black state after a photon emission is finite and®&tween the geometric potentials of two dark states can lead
the trapped population is expected to increase exponentiall Sisyphus cooling, thereby puttlng th'e atoms in the lowest-
to unity. energy states of the geometric potential. o
In the regime wherer is small, the bound Wannier states  Systems withi"=] have a single dark state for integer
are approximate eigenstates. We expect that trapping in th&/€ have considered only the cage 1, but we expect a
first Wannier state occurs exponentially fast. This is followednontrivial potential for large values gf =], just as for the
by a process of tunneling and localization by spontaneousituationj’=j—1 andj’=j=1. Also a single dark state

emissions. This dynamics in the first energy band is modeleg@y leéad to cooling. If the detuning is negative, all the
in [14]. light-shift potentials are positive. Atoms can only leave the

dark state by moving nonadiabatically to the bright states
[11]. When the Doppler shifkp/m is small compared to the
bright potentialV,, this effect is a first-order correction to
When differences between light-shift potentials exceedhe adiabatic approximation. Optical pumping from the
the Doppler shift of a moving atom, the atomic state will bright state with a large positive potential enelgy+ U, to
remain confined in a single position-dependent adiabatic inthe dark state with a small potential enefdy will result in
ternal state. Radiative forces do not arise only from the spaa net loss of energy. This process can be seen as a kind of
tially varying light shifts, but also from spatial gradients in Sisyphus cooling via a Landau-Zener transition from the
the internal state. As shown j&], this effect is described by dark to the bright state.
a geometric scalar and vector potential in the adiabatic ap- The geometric potential does not destroy the VSCPT
proximation. We show that this can generally be describeadooling mechanism. In fact, we show that when a full black
by a vector potential operator. This vector operator has simistate exists, it lies in the lowest-energy band of the periodic

VI. CONCLUSIONS
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geometric potential. Therefore, Sisyphus cooling can be efization of the Kronig-Penney model witBpeaked potential
fective in the subrecoil domain, which would increase thebarriers. The band structure is expressed in terms of the field
trapping in the black state. In one dimension, isolated blackarameters.

states are _found in the—il, 3/_2—> 1/2, and 2-»1 systems. ACKNOWLEDGMENTS
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