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Photoionization by pulses with a modulated frequency
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The dynamics of the bound-state populations and the photoelectron spectra are calculated for model atomic
systems irradiated by a pulse with a harmonically modulated frequency. For a system including a single bound
state a model is adopted, which takes into account the threshold behavior typical of negative ions and admits
continuum-continuum transitions. For a model one-dimensional atom the results are obtained through a nu-
merical integration of the Schdinger equation. The case of a resonant ionization is also considered. The
modulation of the frequency results in changing the instantaneous rate of decay of the initial state, in inducing
additional population oscillations for multilevel systems, and in additional peaks in the photoelectron spectra.
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[. INTRODUCTION enable one to study the effects of short pulses of arbitrary
shapes on model atomic systems, with the continuum-
This work belongs to a large group of papers devoted ta@ontinuum transitions taken into account. This is possible
the studies of peculiar aspects of an interaction of atomiclue to treating the electron continuum states as free-particle
systems with a strong laser field. Such studies are still of @nes and to adopting a special form of the bound-continuum
vivid interest because one cannot yet say that all the detailsoupling, which, however, reflects salient features of a cou-
of the dynamics of such processes are completely undepling typical of negative ions. In consequence we are able to
stood. An interaction of model atomic systems with laserperform analytically a large part of the calculations and we
pulses of various shapes and, in particular, photoionizatioare left with an integro-differential equati¢im the time vari-
as its important result have been the subject of numerouable only for the nondecay probability amplitude. The struc-
papers, in which the dynamics of the decay, i.e., the evoluture of this equation is independent of the pulse shape and
tion of populations of the particular states, and the photoeleche same relatively simple computer code can be used to
tron spectra are investigated. Exhaustive surveys of thebtain the initial-state decay curves and the photoelectron
works in this domain have been presented in recent reviewspectra for any pulses.
[1-5]. The above-mentioned approximation, the essence of
Among the nonperturbative approaches to multiphotorwhich is treating the electron after ionization as a particle
ionization one can distinguish an important class of modefree of the influence of the binding potential, is well known
studies, in which due to some simplifications one is able tdn the theory of multiphoton processes; in particular, it con-
obtain analytical results at least up to some stage of calculsstitutes the basis of the Keldysh-Faisal-Reiss approach
tions, e.g., essential states’ approach, Keldysh-Faisal-Rei$5,21]. That approach has been originally formulated to ob-
(KFR) methods, or approaches based on approximating th&in the on-shelb matrix and the photoionization rates in the
binding potential by contact or separable terms; a completease of pulses of an infinite duration. The physical conse-
list of references would be very long and we refer the readequences of the KFR method have been discussed in numer-
to particular portions of the revieWd—5]. The present work ous papers and, though it seems that there is still no common
also belongs to this class. agreement on its fundamental sense, it is widely used in
Recently, in connection with advances in experimentalpractical calculations. It is important to stress that the
technigues, a growing interest is observed in studying effectethod presented here allows us to obtain the population of
of more sophisticated pulses, not only those with a smootihe initial state and the bound-continuum transition ampli-
envelope but also two-col$6,7], repeated8-10], or modu- tudes essentially at any time, though long times would re-
lated frequency11-13 ones. Such situations may be inter- quire more numerical effort, and also for a significant and
esting because of the presence of a larger number of contraduick depopulation of the initial state. Apart from the prac-
lable parameters. This gives new chances of a moréical aspect, i.e., the possibility of foreseeing the properties
comprehensive external control of the process and in consef the initial-state depopulation process and of the photoelec-
guence chances of a deeper insight into the details of th&on spectra, our work also has a methodological value, as it
dynamics. The technical difficulties in solving the problemformulates a time-dependent approach within the philosophy
theoretically are then essentially increased and one is forceghcountered in the KFR family of methods.
to resort either to a numerical integration of the Sclimger In the final part of Sec. Il we describe the pulses with a
equation[14-16 (most often for one-dimensional systems, modulated frequency and we briefly discuss the results of
see, e.g., Refl17]) or to models including even further sim- earlier works. Photodetachment by such pulses is a very
plifications concerning the couplin(see, e.g., Refd.18—  complicated dynamical process, the studies of which may be
20])). important because such pulses can be used to study subtle
In Sec. Il we propose a model and an approach whicteffects in the neighborhood of resonances or thresholds: one
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may control the degree of detuning which varies in time. By k2
changing the depth of the modulation one can regulate the &=5 -
effect of restoring the resonance. This has been demonstrated
by Agarwal and Harshawardh4@2,23 for two- and three- . . . .
level atomic systems. Radmoes al. [12] have considered Such a formulation, sometimes call_ed a mixed gauge, is
photoionization from a single discrete state to a single Strucgommonly used. Note, however, t.h‘.'jlt it would be more or-
tureless continuumwithout the lower bound and have thodox, though technically more dlffIC.u|t, to look for transi-
shown that the photoelectron spectra are multipeak, with thidon .:mplltuﬁes h_bﬁt\{veen . qualA(O)'r](Ll.) and .
heights determined by the values of the Bessel functions, th‘fexq_I (t)-r][k), whic IS equiva ent tq st ying tra}n3|—
argument of which is the modulation depth. Racdsinand ~ Lions between1) and|k) induced by the interactiok.r in
Zarembd 13] have demonstrated how the results of Radmordn€ 1ength gaugé24]. The mixed gauge means asking, e.g.,
et al. are modified due to the presence of the threshold. In th@‘bo.Ut the transition am_phtgdes to the.states of agiven ca-
present work we show how the previous results are genera 1onical momentum, which in the yelouty gauge is different
ized when the threshold is treated properly, continuum©M the kinetic momentum. This means that the energy

continuum transitions are admitted, and no rotating-wave apgpectra calculated in this section do not move in an oscilla-

proximation is made. The results for the dynamics of thel®"Y Manner during the cycle, as would the spectra obtained

decay and the photoelectron spectra, obtained using ﬂﬁy projecting onto the states with a given kinetic momentum.

methods of Sec. I, are presented and discussed in Sec. 1IN e simplest case of a one-color rectangular pulse the

In Secs. IV and V we show some model and numericaf€@n kinetic energies differ from the energigs by the
results for the photoionization of multilevel systems by Value of the ponderomotive shift. If the pulse is switched on
pulses with a modulated frequency. The results are obtaine@d Off in @ smooth way, i.e., A(t)=0 both at the beginning
either by integrating systems of a few differential equationsand at the end of th? pulse,_an(_:i Its enyelope cha}nges slowly
(for atomic systems with a few discrete essential sfaeby ~ comPared with the field oscillations, using the mixed gauge
integrating the one-dimensional time-dependent Stihger yields the exact resul_ts for the transition amplitudes a_n‘ter the
equation on a grid. In particular, we observe how the presPulSe has been switched ofthough not for the time-
ence of the modulation can influence the resonant ionizatiof€Pendent populations or spegira ,
and the threshold effects. Th_e atomic state vectdiy(t)) can be written as an ex-

It is important to stress that, though the adopted paramPans!on
eters which characterize our pulses are now beyond the ex-
perimental range, most of our observations concerning the
dynamics will remain valid in general. We have chosen such
parameters to avoid extensive computations and for demon-
strative reasons. Throughout the paper atomic units are usegihd the Schidinger equation leads to the following set of

equations for the amplitudes:

|¢(t)>=a(t)|1>+f d*kBi(1)[k) (4)

Il. MODEL PHOTODETACHMENT: THEORY

In this section we present a formalism which enables usto j,= Eja(t)+ f d3kF(t)(e-p) 1 Bi(t) +}F(t)2a(t),
obtain the nondecay probability and the photoelectron spec- 2
tra for arbitrary pulse shapes, taking into account the exis- ®)
tence of the threshold as well as the continuum-continuum
transitions. . 1 )

We consider a model one-electron atorfiimic) system | Bk=exBi(t) T F(D)(e-p)iaa(t) + 5F()Bi(t)
interacting with a short pulse of a linearly polarized, spatially
uniform, classical laser field. The Hamiltonian of the system

IS +f d*k’F(t) (&P Bir (1). (6)
A2
H=Ho+V=T+U+V, V=A-p+—, () The initial conditions arex(0)=1 andB,(0)=0.

We make now the essential approximation in the spirit of
whereT is the kinetic energylJ the binding potential which a large class of works on atom-strong-field interactions, in
supports a single bound state), and the vector potenti®d  particular of the family of Keldysh-Faisal-Reiss approaches
is given by [5,21. In the context of our approach it consists in replacing

the continuumU-distorted wavegk) by the plane waves.
A(t)=F(t)e, (2 The continuum-continuum coupling, present in the last term
) o ] ) . of Eq. (6), now becomes diagonal ik, i.e., (€p)u
e=g, is the polarization, andr(t) is an arbitrary function  — .k 5(k—k’).
describing the time dependence of the field. We introduce the modified amplitudegt) and y,(t) by
Our aim is to calculate the amplitudes of the transitionsine relations
induced byV between the free atomic statgk) and |k),
which satisfy the relations
a(t)= exr{ —i

a(t), )

t1
Elt—l—f =F(t)2dt
02

Hol1)=E4[1), Holk)=eylk), ©)



57 PHOTOIONIZATION BY PULSES WITH A MODULATED ... 4563

The integral in Eq(12) can now be calculated,

Bk(t)=e><ﬁ{—i ekt+f0t SRt fot F(t)
Jd3k|(e'p)1k|29XF[—i(ekr—l—e-kG)]

X(e-k)dt) Y(t). (8)

= 3c? i, 1
:ZWJ k4dk4—ex —Ek T_Eyk
They satisfy the equations 0 m

ié(t)zf d3k(e-p)1kF(t)exp{ —i[ et+e-kg(t) xfo cos exp( —ikGeosd)singd o
—Eqt ), 9
1t v(t) 9 :3cz@(p5,2_3p7,2> exp( ~ i) 14
. . 5 2 4p)’
(0= (e-p)aF (Dexpil et +e-kg(H) ~Eqtlia(t), 8|G| P
wherer=t—t’ andp=(y+ir)/2G2.
where we have saj(t)= [ F(t)dt. Finally the kerneK has the closed analytical form

When we integrate Eq10) overt and insert the result
into Eq.(9) we obtain an integro-differential equation for the
amplitudea(t),

K(t,t')= 302\/W/ZF(t)F(t’)eiEl(tft’)

" 1 G? p( G? )
- exg —55———|-
: t (y+in)®  (y+in™ 2(y+iT)
a(t)=—f K(t,t")a(t")dt’, (17
0 (15
with the kernelK(t,t’) given by The bound-continuum transition amplitude can be ex-
pressed in terms of a single time integral
Kt,t’=FtFt’fd3ke- 2 1(t
(LE)=FOF) (&Pud By=—i ex;{—i ekt+§J F(t’)zdt’+e.kg(t)) oM
0
Xexp{—i[ e(t—t")+ekG(t,t")—E(t—t")]},
t
(12 ><fOF(t’)exp[i[ekt’+e-kg(t’)—Elt’]}a(t’)dt’.
whereG(t,t’')=g(t) —g(t’). (16)

As to the bound-continuum coupling, it is known that for

the bound stat¢l) of angular momentunh=0 the matrix By the partial wave expansion the ionization amplitude
element fork—0 behaves likek; thus |(e-p)1|*k*dk/de, g, can be expressed as a superposition of amplitudes corre-
~k3~ €l (Wigner power law[25]). For large energies the sponding to transitions to the particular continua numerated
coupling tends to zero, for example, in the case of the hypy the angular momenturn Using the formula for the ex-
drogen negative iorj(e-r)y|*k*dk/de, vanishes ase ™ pansion of exge-kG) into Y, (K) and the addition proper-
[26], which means that the corresponding square matrix elegeg of the spherical harmonics we get

ment ofe-p vanishes ag, “. In the present work, in order

to analytically obtain the integral in Eq12) we have as- ) e «
sumed an exponential cutoff and taken Bi(t)=—i3Cke ™ /420 BiY10(k)
2.3 o2 012 1t
|(e-Ppw)| =1, Ckexp— ye)(e-k)”. (13 X exp —i ekt+§f F(t)2dt] |, (17
0

We have taken the values of the parame®%s-9.184 a.u., with
vy=18.14 a.u., which yield the position and maximum of the

coupling (13) equal to that of the H ion with E;= Bi=pik,t)

—0.027 57 a.u., imitated by model with a contact potential (=)L [t

[27]. We have checked that in the neighborhood of the cou- - F(t)exdi(et’ —Ejt')]

pling maximum, which occurs fog,=0.083 a.u., our for- v2l+1Jo

mula reproduces the proper value of the coupling. For , ,

smaller energie¢of order of 0.01 a.).our formula underes- X[1j-1(kg(t) —kg(t"))

timates the coupling two to three times, while we do not —(1+1)ji+1(kg(t) —kg(t")]a(t"), (18)

reach the range of larger energies for which the exponential

model reduces the coupling more rapidly than the powekvherej, are the Bessel functions of half-integer order. The
function. Our qualitative results will thus be reliable, perhapsphotoelectron energetic spectrum after integrating over
except for the overall shift of the whole spectrum due also taangles and including the factok€dk/de, stemming from
highly nonresonant virtual transitions. the density of states is given by
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1 2
S(ek,t)=362k3exp(—§7k2)§ll |Bi(kD% (19 K(t,t’)z%f d3k|(e-p) 1/ %exd —i(ex— E1— w)(t—t")
w

It is understood that the time dependence of the spectrum in — &(sinwt—sinw,t’)]. (22)
Eqg. (19) means simply that such a spectrum would be ob-
tained if the pulsé=(t) were cut just at the instant The most important contribution t§(t,t’) comes from the

The structure of Eg(18) is quite complicated; note, how- region oft’~t. If we leave only the two lowest terms of the
ever, that some general conclusions concerning the qualit@xpansion of sim;t’ att’=t, we will obtain
tive behavior of the amplitude8 can be drawn. If the pulse

. . . . 2

is rectangular, i.e.F(t)=(ep/w)coswt, €, being the field €0 3 2 :

amplitude, therg(t) is proportional to simt. If the Bessel K(t.t )Nm d°k|(e-p)rl “exl —i(ex—E1—w
functions are expanded into power series inusirand, fur-

ther, if the amplitudea(t’) is assumed to decay exponen- —&w.Coswqt)(t—1t")]. (23

tially, which is a reasonable approximation in the case of a ) . . )
cw field, then for large we get; as a sum of Lorentz-like Therefore it appears useful to introduce the notion of an in-

terms and the typical above threshold detachm@fD)  Stantaneous frequencyd/dt)(wt+ £sinwit)=w+ w CoSmt

spectrum is reproducda series of peaks of the same width (€€ also Refs|22,23, where the transitions between the
determined by the imaginary part of the coefficient in thediscrete states were effective at those time instants in which

exponent ofa(t), separated by the photon enefgy the instantaneous frequency suited the resonaticis now

In this paper we concentrate on effects of the pulse frePOSSible to repeat the standard steps leading to the pole ap-
quency modulation, i.e., we take proximation[8,24], except that here the frequency is time

dependent. The instantaneous ionization rate depends on the
value of the bound-continuum coupling for the continuum

€
F(t)=;°cos{wt+§sinwlt], (200 energy reached by the photon with the instantaneous fre-
quency, i.e.,
which can in fact be considered as a superposition of pulses 2
of frequenciesw,w* w,,w*2w; . . ., with the components P=L()=27Vyic=g,+ 0+ toycomt (24)

iven by the B | functi rding to the relation
given by the Bessel functior(£) according to the relatio where |V, |?=keZ/ (40?) [dk|(e-py) |2 In particular,T'(t)
_ =0 if E;+ o+ éw,coawt<0, while in Ref.[13] we have
coq wt+ ¢sinw,t) = Z_m Jn(§)codwtnwy)t. (21 approximated it by conste? above the threshold, in agree-
" ment with the Wigner power laW25]. The decay curve for

As shown by Agarwal and HarshawardH&2,23, such a the initial-state population was then composed of pieces of a
pulse can cause a temporary population trapping in a discreféecreasing curve and of horizontal sections, interchanging
state at such times at which the instantaneous frequeseey  twice each modulation period. The spectrum was similar to
below) does not fit to the resonance between the energy levthat of Radmoreet al, but Lorentzians were replaced by
els. The excitation may be controlled by changing the modusome higher and narrower lines.
lation depth¢: as follows from Eq.(21), it is, in particular,
possible to choosé so thatl,,(£) =0 for w + mw, being the lll. MODEL PHOTODETACHMENT: RESULTS AND
resonant frequency. DISCUSSION

Radmoreet al.[12] have studied photoionization by such
a pulse of a simple model system including a single bound We have performed calculations of the initial-state popu-
state and a single structureless continuum. The usual polation and the photoelectron spectra for a few sets of data.
approximation together with the rotating-wave approxima-We have numerically integrated E(L1) for all values oft,
tion has led them to an exponential decay of the initial-statéhen we have calculated the particular spe¢toa different
population. The spectrum is then a sum of Lorentzian terms) by performing the integral in Eq18) and the total spec-
separated by multiples ab,, the amplitudes of which are trum according to Eq(19). Below all the decay curves
J,(£); this can be seen from E{L6) of this paper, in which present the nondecay probability as a function of time in
g(t)=0 and the expansiof21) has been used. By changing atomic units(to obtain time in seconds one has to multiply
the value of¢ Radmoreet al. could regulate the heights of the abscissas by 2.418 840 ). The spectra are probabil-
the peaks, and, in particular, quench symmetrically a pair oty densities(in atomic units of inverse energws functions
the peaks. of energy(in atomic units of energy to obtain the results in

In our previous papdr3] we have generalized the results eV the abscissas are to be multiplied and the ordinates di-
of Radmoreet al. by admitting the presence of the ionization vided by 27.2116. The field intensities are in atomic units,
threshold. We have shown that it is possible to analyze théhe power density in W cm? is obtained by multiplyingsé
process again in the spirit of the pole approximation but withby 3.51x 10,
an oscillating pole. To briefly present that idea let us, for a Typical decay curves are shown in Fig. 1 feg=3
moment, make the rotating-wave approximation with respeck10 2 a.u., ¥=3.2X10 2 a.u., ;=4x10" 3% a.u., é=2
to the main frequencyw and neglect the continuum- (upper curvg &=3.5 (lower curve. As expected from the
continuum transitions. The kern&l(t,t’) of Eqg. (12) can  crude model considerations of our previous pads], we
then be written as indeed observe flat parts when the instantaneous frequency is

]
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FIG. 1. The population of the initial state feg=3x10"2 a.u., FIG. 3. The population of the initial state fep=2x10"2 a.u.,
0=3.2x10"% a.u,w;=4x10"% a.u., =2, upper curveg=3.5  ©=3.2x10 2 a.u.,w;=4x10 3 a.u., £=2, upper curveie,=3
lower curve. X102, middle curve;eo=4x10"3, lower curve.

too small to reach the threshold and steep parts when ﬂ}'ﬁe maximum of the coupling

detu_nmg above t_he t_hreshold is maximum — then the boun_ " The effect of inhibiting the decay due to the instantaneous
continuum coupling is strongest. The flat parts are better vis-

ible for the lower curve for which the fraction of the modu- tunlr;_g lgf thehlas?rr] b?'OW t?e threshold is redtuce:j lfordstrotn-
lation period, in which the laser is effectively tuned below ger Tielos when the lonization may occur not Solely due 1o

the threshold, is longer. Effectively the decay is quicker inmt”"n""tIIy ofnter;phdoton processf. '”_F'Zgﬁgﬁ can Sei gozw the
the latter case: the effectiveness of the decay at time intervafga1 OQaZr S0 e_ 4e>(<:a1)6icgurve (HO__Z b a'llj" 0= f
of an instantaneous tuning above the threshold increases du au., o= au., £=2, become leaning for

] — —3 — —3
to reaching the parts of the continuum the coupling With_srtrr]ongﬁr f|(feflds Qfe_oa3>;1§ a.u. ande,=4x10"" a.u.
which is stronger, in spite of an extension of the time inter-' "at this effect is indeed due to continuum-continuum tran-

vals in which the detuning is below the threshold sitions can be seen from Fig. 4 in which the lower curve is
If the modulation depth is reduced so tHag+ w— éw; again the lower curve of Fig. 3 and the upper curve corre-

>0, i.e., the instantaneous frequency is all the time Iargt—?’pondS to the same field, hpwever, with the continuum-
continuum transitions now being neglected.

enough to ionize, we do not observe quenching of the pro- .
cess, which means that there are no flat parts of the deca We should realize that, due to the expans2l) we have

curve (apart from the oscillations due to counter-rotatingI 'tfha(;thtofdo with I|on|zj:';1t|on du_eotif COHeCt'_I(_)r? ofhrr:odes
terms of the interaction We can, however, distinguish the wi € fréquenciesw ~nw, ,n=4,= L, ... . Thephoto-

intervals of a quicker and slower decay depending orflectron spectrum will thusdiffer frqm fche usual above
whether the instantaneous frequency allows reaching parts gfreshold ionizatioATI) spectrum, which is a set of peaks

the continuum that are more strongly or weakly coupled toseparated by: each peak_will be split_into subpeaks sepa-
the initial state (see Fig. 2,e,=2.5x10"3 a.u., w,=2 rated byw;, unless the width of the lines becomes of the

X103 a.u., £=1.916). We have also checked that if the order of w;, when the substructure of the peaks becomes

freauencve is chosen so tha. + e occurs at eneray for smegred out. In Fig. 5 we can observe the substructures of
quencyw 1@ gy the first and second ATl peaks fep=2.5x10"° a.u., »

which the bound-continuum coupling takes maximum, the™ ) - “ B
frequency of the oscillations of the decay curve becomes_ 3210 © au., 0, =2x10 = a.u, £=1.916. For a very
twice the modulation frequency — the quickest decay occurStrong modulation deptl, being of the order ofv/w,, the

now twice in each modulation period, i.e., at those time in-

stants in which the instantaneous frequency allows reachin¢ 1.0 . T " T : T
10 T T T 08 r T
0.8 - . o 06F .
L \: L
o 06F : Soatl 1
Soat : 02 :
02 - - 0.0 L 1 L 1 L 1 L
L | 0 1000 2000 3000 4000
0.0 . ' : L ; I - t (a.u.)
0 5000 10000 15000 20000 _ o
t (a.u) FIG. 4. The population of the initial state fep=4x10"2 a.u.,

0=32X10"2 a.u.,0;=4x10"% a.u.,£=2, lower curve; the same
FIG. 2. The population of the initial state far,=2.5x103 but with the continuum-continuum transitions neglected, upper
au,w=32x102a.u.,0,;=2x102 a.u.,£=1.916. curve.
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families of subpeaks due to neighboring peaks may overlay ' ' ' '
in a coherent way. 600 - -
The formulas for the spectrum do not allow us to foresee
the heights of the subpeaks in the general case. Some cor>
clusions can, however, be drawn in the case of not too strongc::,E 400 [ .
fields, i.e., when a power expansion with resped(tid) can g
be made in the formul&l6). Then in the lowest order &
& 200 F -
o) D= i 0 e M \ ’\ ‘\ J\ \ '
Bi() 55 P)k1 . JN o Lk
- r 0.0 0.01 0.02 0.03 0.04 0.05
X fo exp[i(ek— Ei—w)t—igsint— - t|dt e(a.u.)

" FIG. 5. The substructures of the first and second ATI peaks in
€ S the photoelectron spectra far=2.5x10"% a.u., 0=3.2x10"2
=20 &P 2 IO TTE T I TS au,w=2x10 % au, £=1.916.

(25 If the modulation frequencw, is much smaller than the

fundamental frequency, then the above height can be writ-

where we have made the rotating-wave approximation ag; . ; -
: A ~ ' “Jen, due to the identity satisfied by the Bessel functi@,
sumed an exponential decay of the initial state, applied th s y y (

expansion21), and skipped the phase factor. The above re-

sult implies that the spectrum is a coherent superposition of - 11

Lorentzian contributions shifted by multiples of the modula- L+

tion frequency. A result of this kind has been obtained by n;w In(£)Im-—n(€) ) —me(zg). (28)
Radmoreet al.[12], who have also stressed that by a special

choice of the modulation depthsuch thatl,(£)=0 a pair Due to the destructive interference of the amplitudes the

of subpeaks £ mth) can be removed. In our previous paper subpeak of the second ATl peak may be removed by
[13] we have shown that the Lorentzians are raised and ”aE‘hoosing the modulation depth so thatJ, (2£)=0. This

_rovyed _if, d_ue to os_cillations of_the instantaneous freq“e_ncyapproximation is even better than one might expect because
ionization is effective only during a part of the modulation yq first correction with respect @,/ then also vanishes

period. 28]

The above considerations may be generalized for highel[— ’
order terms ing(t), i.e., for the following ATI peaks. For w ( )

le, th d-ord tribution i M—N)w; ©; M
example, the second-order contribution is n;m 3,(6)dm(E) - :ZEJm(Zg)' 29
2
6 oo
() ()= 2 (@, . i(e—E.—
B (=)= 4w2(e Pa€ kfo dtexi(ex—Ey— o)t The modulation depth in the case presented in Fig. 5 was

chosen so that;(2¢) =0 and indeed the subpeaks numbered
1 and —1 in the second ATI peak are suppressed. The
heights of other subpeaks in the figure are approximately
equal to those which follow from the above relations.

t
—i gsinwlt]J' dt'exd —iwt’ —ié&sinw t’]
0

eé * -1 Note also that a similar argumentation can be repeated
~—(e-p)ae-k > Jn(%)Js(S)m mutatis mutandigor more-than-two-photon transitions, i.e.,
4o ns==e @S0 for higher ATI peaks. For example, the amplitude of thi
1 subpeak of the third ATl peak fap;<w would be propor-
X (26) tional to

e~ Ei—20—(n+s)w,+il'/2’

where a term, which does not contribute to peaks in the - _
neighborhood of the second ATI peak, has been skipped. The S,j:E_x Is(6)3j(6)Im—s-§(£) = Im(34). (30
height of themth subpeak is thus proportional to

o This result can be further generalized by induction, which
IO (e — 2 means that quenching tmeth subpeak in thaeith ATI peak
n:E—oo (&) Jm ”(§)w+(m—n)w1 @) requires choosing the modulation depth so thatn¢) =0.

From the properties of the Bessel functions it also follows
The two-photon transition to this part of the continuum, that the number of nonnegligible subpeaks of tie ATI
where themth peak is located, is thus due to an absorption ofpeak is of the order of the entire part oig
two photons of frequencie® +nw; and w+(M—n)w;, M This analysis of the peaks’ heights has been confirmed by
=0,£1,+2,..., and thecorresponding amplitudes are our numerical calculations of the spectra; those results are
added in a coherent way. not shown here.
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IV. RESONANT IONIZATION OF TWO-LEVEL SYSTEMS 1.0 g T g T g T

In the process of the resonant ionization of multilevel sys-
tems by a pulse with a modulated frequency not only the fact
of reaching the continuum but also the resonance conditions .

.............

ty

S . : . . = 06 S .
can change in time. Consider a simple atomic system includ- = -
ing two discrete stateld) and|2) and a singlgenergy nor- S 04 f |
malized continuum|e). It is in principle possible to gener- &
alize the approach of Sec. lin which the continuum- 02 b |

continuum transitions are taken into accouot the systems

with two (or more discrete states. However, since we are 0.0 L e Lt

here interested mainly in the role of the resonant state, we ) 5000 10000 15000

will limit ourselves to the case of a single continuum; the t(au.)

latter will be coupled only to the upper state. ] ] o
The probability amplitudes of finding the system in the FIG. 6. The populations of the two discrete statescillating

particular states are, respectivedy,b, andc, . They satisfy curves and the total ionization probability fat; = w;=0.004 a.u.,

the equations in the interaction picture and in the rotating? - 9-001 a.u..£=2.405, andI'(t)=0.0002=const (no threshold
wave approximation effecty. At t=0 the population was in the lower state.

cause no photons necessary for the resonant transition are
present. In Fig. 7 we show the populations and the ionization
probability for £é=3.83 (first zero ofJ,).

ia=exdi(E;—E,+ o)t+iésinwt]ub,

ib=exdi(E;—E;—w)t—i& sinw;tjva When the instantaneous frequency causes crossing the
ionization threshold, the results can be further modified: ion-
+f deexdi(E,— e+ w)t+iésinm t]V,.C,, ization is possible only in those time intervals in whidh

+gw,Coaw,t>0, whered,=E,+ w. On the other hand, ion-
(31 ization is more probable in those time intervals in which the
population of the upper state is largest. It is possible to com-
iéfz exdi(e—Ey;— w)t—iésinwt]V b, bine the parameters so that just in those intervals the instan-
taneous frequency is too small to allow ionization. To ac-
where v=(ey/2w)(e-p)12, and V,.=(ex/2w)(e-p)1.. If  count for the proper threshold behavior we have assumed
again the coupling of the upper state with the continuum ighat the bound-continuum couplify,|? in the case of as
treated in the pole approximation with a moving pole, thecontinuum is proportional ta&*? according to the Wigner

second of the above equations becomes power law. In consequencB(t) = 7Rd d,+ éw;cosm t]*2
T n being a constant which gives account of the coupling
o R Y | strength. The results are shown in Fig. 8 and Fig. 9 where we
Ib=exli(B,~ By~ )t=igsine,tjva 2 b, present the population of the upper state and the ionization

(32)  probability for v=0.004 a.u.,d;=0.004 a.u.,w;=0.004
a.u.,£=2.405,7=0.003 a.u., and additionally,=0.02 a.u.
with T(t) =27 |Voelfe £+ s g0 comt - (no threshold crossingor Fig. 8 andd,=—0.004 a.u. for
As pointed out by Agarwal and HarshawardH&2,23, Fig. 9. Indeed, ionization is strongly suppressed in the latter
who, however, did not discuss ionization, the character andase because the transition from the upper state to the con-
interpretation of the results depend on the relation betweetinuum is possible just at the moments at which its popula-
the Rabi frequencyequal tov in the resonance conditions tion is minimum. The sinusoidal character of the Rabi oscil-
and the modulation frequeneys;. lations of the frequency|J_4(£)| is distorted due to the
If the modulation frequency is large, then at most onecomponents of the pulse with the frequencies nw; with
componeni(say jth) of the expansiori21), namely, that for n#—1.
which |E,—E;— w—jw,| is smallest, is significant for the
1-2 transition. Then we have in fact to do with a two-state L0 ' ' . ' .
damped Rabi systefitwo atomic states coupled by a mono-

chromatic field of frequencyw+jw; and of the coupling 0.8 r T
strengthvJj(g)], only slightly perturbed by the fields of 2
frequencieso+sw; ,s7#]. In Fig. 6 we show the populations = 0.6 - T
of the two discrete states and the ionization probability as &
functions of time for d;=E,—E;—0=0.004 a.u., o, %0.4 - 8

=0.004 a.u.p=0.001 a.u.£=2.405(first zero ofJ,), and
I'(t)=0.0002 a.u=const(the latter means that no threshold 0.2 T
effects are presentThe distance between the peaks is to a A_NAVWAVWAVWAWWW l
good apprqximationn/[le(g)], as “expected, because the 0'00 5000 10(')00 15(')00
resonance is restored by photons withl. If the value of¢ t(a.u.)

is chosen so thatl;(£)=0, the results are drastically

changed: both excitation and ionization are suppressed be- FIG. 7. As in Fig. 6 but foré=3.83.
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FIG. 8. The population of the upper stdtscillating curve and FIG. 9. As in Fig. 8 but fod,=—0.004 a.u.
the ionization probability with the threshold taken into account for

v=d,=©,=0.004 au.0,=0.02 a.u.£=2.405,7=0.003 a.u. Clearly Re\, , are responsible for the shift and m, for

o . . _ . the width of the peaks. For a small modulation frequency and
A quite different picture is observed if the Rabi frequencya large 1-2 coupling the spectrum has the form of an Autler-

. : ; . case, i.e., for a large modulation frequency and a small 1-2
notion of an instantaneous frequency is now useful in the, jing the spectrum is a set of AT doublets separated by
description of the 1-2 trans_ltlon. For a monochro_matlc f|eld,[he modulation frequency. In the intermediate regime one
we would observe fast oscillations of the popl_JIatlons of thecan expect the interference of the splitting effects due to both
states 1 and 2 and the depth of the modulations would de}'requency modulation and two states.
pend on how far from resonance the frequency occurs. For a
pulse with a modulated frequency the detuning changes in
time so the depth of the fast oscillations oscillates itself with
the frequencyw,. The changes in the populations are largest
in those time intervals in which we have an instantaneous Let us now check the effect of pulses with a modulated
resonance. This is shown in Fig. 10 where we present thffequency on a system, the energy spectrum of which re-
lower state population and the ionization probability for thesembles that of real atoms. Such a system in the form of a
same data as in Fig. 7 except that0.01 a.u. Now the one-dimensional atom has often been used in the discussion
qualitative features of the picture do not depend on whetheof strong-field photoionizatiof29]. The Hamiltonian reads
J;(£€)=0 for any value off, in contradistinction to what is
suggested in the paper of Agarwal and HarshawardBah
(in the case of a two-level system

As to the spectrum, we do not present here any quantita-
tive results, but their qualitative properties follow from the
general Floquet theory, which predicts the form of the solu-
tions of the first of Eqs(31) and Eq.(32). In particularb(t)
can be written as

V. PHOTOIONIZATION OF MULTILEVEL SYSTEMS

1 42 1

- = (XT]-)UZ—{—XGOCOS{(M+ fSin(ult‘F ¢)

(39

%

b(t)=exp(—iNit) > rpexpinw;t) 1.0
n=—o
o 0.8
+exp —iNot) 2 syexpinegt), (33 ,§‘06
n=-—ox — U
2
where\ ; , are some complex numbers angands, are the © 04
expansion coefficients of the periodic functions into Fourier ==
series. After the above solution has been inserted into the 0.2
third of Egs.(31) and integrated, we obtain 00 . . . | .
o 1000 2000 3000 4000 5000 6000
rn t(a.u.)

e—Ey—o—(j—Nw;—A\;

CE(OO):VEZI_:27OO J](g)n;w

Sn

+ -
€— EZ_Q)_(J _n)wl_)\z

|

(39)

FIG. 10. The population of the lower statescillating curve
and the ionization probability far=0.01 a.u. and other parameters
as in Fig. 7. Also shown the time-dependent detunidg
— éw,C0osw,t (in arbitrary units.
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FIG. 11. The population of the initialground state of the FIG. 12. The population of the initial state of the one-

one-dimensional atom fore;=0.05 a.u., ®=0.518 314 a.u., dimensional atom fo€=5.13 and other parameters as in Fig. 11.

0;=0.05877 a.u.,p=3m, £=0.1, upper solid curveg=3.8,

lower solid curve. The dotted curve describes the evolution of thidify any dominating frequency close to a particular Rabi fre-

population in the case of the atomic model including only threequency. Instead one can observe oscillations corresponding

lowest states. to the modulation frequency,. This is consistent with the
observations from the preceding section.

Due to its long range character the “regularized Cou-, The p_hotoelectron spectra have_ been qbtained by proj_ect—
lomb” binding potential supports an infinite number of NG the time-dependent wave function on field-free scattering

bound states, of which eigenenergies and eigenvectors aréates(both even and odd Because the photoelectrons are

computed numerically, as well as the scattering states. TheMbject to a jittering motion in the laser field, the spectra are
eigenenergie€, ,n=1,2,..., and thecoupling matrix ele- not stationary: they oscillate in the rhythm of the field. Our

mentsx;, can be found in Ref[29]. It is assumed that ini- spectra have been obtained for times equal to a full number

tially the atom was in the ground state. The atom-field inter2f €ycles plus such a fraction of a cycle that the instanta-
action is now taken in the length gauge. The time-dependet€OUS classmal_ velpcny of the electron jittering motion is
Schralinger equation has been integrated numerically on £€r0- At those time instants

grid, with the time evolution operator expanded into the t

Chebyshev polynomials. The details of the numerical proce- A(t)= —f €0C0g wt+ &sinmw t+ ¢)dt=0, (36
dure can be found in Ref§30,31. The numerical methods 0
of such a kind are effective for not too long times, because

or, in other words, the kinetic momentum is equal to the

they are very tm_1e_—(_:onsum|ng. In F_|g. 11 we show the tlmecanonical momentum. Note that for nonmonochromatic
evolution of the initial-state population fap=0.05 a.u.,w

—0.518 314 a.u.0, = 0.058 77 a.u.¢— 37/2. These values fields the oscillations of the peaks’ positions are more com-

AT . licated than in the case of a purely harmonic field.
of the parameters correspond to the situation in which thg In Fig. 13 we show the photoelectron spectrum for a
frequencyw is equal to the energy intervél;—E,, o+ w,

a N ; s b . weakly frequency-modulated pulsé=0.3) with other pa-
_Iﬁ“'— Etl' anﬁ ‘f[’_z“’lw_%]_ 'tE.l’ thet |on|§at|on IS nom|—12 rameters as in Fig. 11 and Fig. 12. Because the excitation is
nary al‘ WO.'pd 0 c'J:n orle(.) 1 el 'me in egfra lon was ovderl &ar from resonance, the spectrum in the case of a harmonic
optical periods. Fog=0.1 (almost no frequency modula- pulse should reflect the energetic structure of the dtadf

tion) we observe small oscillations corresponding to a NONthe three main subpeaks of the first ATI peak, which occur at

resonant, Weak_ly damped Rabi problem for t_he states_ 1an L+ ©~0243 au., E;+20~0.366 au., andE+o
2. For £=3.8 (first zero ofJ) the character is essentially ~0.425 a.u., are indeed visible in the cas&ef0.3. Due to
changed. Due to the presence of the photons of frequency

®w—2w; We have to do with a nearly resonant coupling of 0 e

the states 1 and 2. However, the “frequency” of the damped 10

oscillations is not exactly the Rabi frequency of the two-level .

system. We have checked by solving the two- and three-state =

problem numerically that including the coupling of state 2 102

with state 3 essentially improves the agreement of the two ~ ;

frequencies. The rapid oscillations are due to other nonreso- £ |o?

nant processes, i.e., the coupling of states 1 and 2 by photons”?

of frequencies other thamw—2w,; and also by counter- 107
rotating terms of the Hamiltonian. For this special value of i

. . -5 L 1 L 1 L 1 L 1
J1(&€)=0 so no coupling of the states 1 and 4 is present, but 10 0.0 02 0.4 0.6 0.8 Lo

4

this coupling would not be very important because of a rela- & (au.)
tively weak dipole coupling of those states.
The picture is very much different fg@=5.13, i.e., when FIG. 13. The photoelectron spectrum for the one-dimensional

J_,»(&€)=0, so photons which could produce a dominatingatom after 128 optical cycldplus such a fraction of the cycle that
resonant 1-2 coupling are abséRtg. 12. One cannot iden- A(t)=0] for £=0.3.
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T T I VI. CONCLUSIONS

We have investigated photoionization and photodetach-
10'H ment of model atomic systems by strong laser pulses with a
i modulated frequency. We have demonstrated that this may
be an important and subtle tool to control the process. We
have shown how such a modulation essentially modifies the
10 time evolution of the populations of the discrete states and
4 5 the photoelectron spectra. The most interesting effects occur
for the laser being tuned in the vicinity of the ionization
10° ! s ! s ! threshold, when the effective detuning during a part of the
0.2 0.4 0.6 cycle may be below the threshold, or in the vicinity of the
e (a.u.) resonant transition between the bound states, when, depend-
FIG. 14. As in Fig. 13 but fog=1.9. ing on the modulation depth, the resonance may be either
spoiled or restored. Depending on the situation, those effects
§gn be interpreted by introducing the notion of an instanta-
neous frequency or by considering the electromagnetic field
S being composed of photons, which differ in frequency
rom the optical one by a mutiple of the modulation fre-

S(ey) (au.)

our choice of the data the distance between the second al
third of those peaks i®,. Additional subpeaks are due to the
frequency modulation and the distance between each su
peak and the corresponding main peak is againThe peak

at E,+ w is significantly heightened due to the presence ofuency.

the frequency modulation, compared with the case of no The model developed in the first part of the paper can be
modulation(not shown. The pattern is repeated in the sec- used to study the effects of short laser pulses of an arbitrary

ond ATl peak(shifted by with respect to the first peak shape on the dynamics of photodetachment, with the thresh-
ie.. in the energy range 0.75. a.u) ’ old and the continuum-continuum transitions taken into ac-

In Fig. 14 we show a part of an analogous spectrum for gount.

somewhat stronger frequency modulatio§=(1.9). The
structure of the subpeaks is much more complicated because
more of the components of the pulggf amplitudesd, (&) ] The authors thank Dr. Wiodzimierz Jasski for provid-
now play important roles. The Rabi frequency correspondingng them with the computer code solving the time-
to the nearly resonant coupling of the amplitugd_,(§) of  independent Schdinger equation. This work was supported
the states 1 and 2 is now significantly smaller than One  in part by the Committee for Scientific Research Project No.
can thus expect some substructures separated, pgach of 2P30207606, and Nicholas Copernicus University Grant No.
them split, with the splitting of the order of twice the Rabi 380-F. Computations were partially performed at the Inter-
frequency. Such structures are visible in Fig. 14, though thelisciplinary Center for Mathematical and Computational
details of the picture are much more complicated. Modelling at the Warsaw University.
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