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Photoionization by pulses with a modulated frequency

P. Bała, J. Matulewski, A. Raczyn´ski, and J. Zaremba
Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ulica Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 10 December 1997!

The dynamics of the bound-state populations and the photoelectron spectra are calculated for model atomic
systems irradiated by a pulse with a harmonically modulated frequency. For a system including a single bound
state a model is adopted, which takes into account the threshold behavior typical of negative ions and admits
continuum-continuum transitions. For a model one-dimensional atom the results are obtained through a nu-
merical integration of the Schro¨dinger equation. The case of a resonant ionization is also considered. The
modulation of the frequency results in changing the instantaneous rate of decay of the initial state, in inducing
additional population oscillations for multilevel systems, and in additional peaks in the photoelectron spectra.
@S1050-2947~98!01006-3#

PACS number~s!: 32.80.Rm, 32.80.Fb, 32.80.Gc
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I. INTRODUCTION

This work belongs to a large group of papers devoted
the studies of peculiar aspects of an interaction of ato
systems with a strong laser field. Such studies are still o
vivid interest because one cannot yet say that all the de
of the dynamics of such processes are completely un
stood. An interaction of model atomic systems with las
pulses of various shapes and, in particular, photoioniza
as its important result have been the subject of numer
papers, in which the dynamics of the decay, i.e., the evo
tion of populations of the particular states, and the photoe
tron spectra are investigated. Exhaustive surveys of
works in this domain have been presented in recent revi
@1–5#.

Among the nonperturbative approaches to multipho
ionization one can distinguish an important class of mo
studies, in which due to some simplifications one is able
obtain analytical results at least up to some stage of calc
tions, e.g., essential states’ approach, Keldysh-Faisal-R
~KFR! methods, or approaches based on approximating
binding potential by contact or separable terms; a comp
list of references would be very long and we refer the rea
to particular portions of the reviews@1–5#. The present work
also belongs to this class.

Recently, in connection with advances in experimen
techniques, a growing interest is observed in studying effe
of more sophisticated pulses, not only those with a smo
envelope but also two-color@6,7#, repeated@8–10#, or modu-
lated frequency@11–13# ones. Such situations may be inte
esting because of the presence of a larger number of con
lable parameters. This gives new chances of a m
comprehensive external control of the process and in co
quence chances of a deeper insight into the details of
dynamics. The technical difficulties in solving the proble
theoretically are then essentially increased and one is fo
to resort either to a numerical integration of the Schro¨dinger
equation@14–16# ~most often for one-dimensional system
see, e.g., Ref.@17#! or to models including even further sim
plifications concerning the coupling~see, e.g., Refs.@18–
20#!.

In Sec. II we propose a model and an approach wh
571050-2947/98/57~6!/4561~11!/$15.00
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enable one to study the effects of short pulses of arbitr
shapes on model atomic systems, with the continuu
continuum transitions taken into account. This is possi
due to treating the electron continuum states as free-par
ones and to adopting a special form of the bound-continu
coupling, which, however, reflects salient features of a c
pling typical of negative ions. In consequence we are able
perform analytically a large part of the calculations and
are left with an integro-differential equation~in the time vari-
able only! for the nondecay probability amplitude. The stru
ture of this equation is independent of the pulse shape
the same relatively simple computer code can be used
obtain the initial-state decay curves and the photoelec
spectra for any pulses.

The above-mentioned approximation, the essence
which is treating the electron after ionization as a parti
free of the influence of the binding potential, is well know
in the theory of multiphoton processes; in particular, it co
stitutes the basis of the Keldysh-Faisal-Reiss appro
@5,21#. That approach has been originally formulated to o
tain the on-shellS matrix and the photoionization rates in th
case of pulses of an infinite duration. The physical con
quences of the KFR method have been discussed in nu
ous papers and, though it seems that there is still no com
agreement on its fundamental sense, it is widely used
practical calculations. It is important to stress that t
method presented here allows us to obtain the populatio
the initial state and the bound-continuum transition amp
tudes essentially at any time, though long times would
quire more numerical effort, and also for a significant a
quick depopulation of the initial state. Apart from the pra
tical aspect, i.e., the possibility of foreseeing the proper
of the initial-state depopulation process and of the photoe
tron spectra, our work also has a methodological value, a
formulates a time-dependent approach within the philoso
encountered in the KFR family of methods.

In the final part of Sec. II we describe the pulses with
modulated frequency and we briefly discuss the results
earlier works. Photodetachment by such pulses is a v
complicated dynamical process, the studies of which may
important because such pulses can be used to study s
effects in the neighborhood of resonances or thresholds:
4561 © 1998 The American Physical Society
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4562 57BAL”A, MATULEWSKI, RACZYŃSKI, AND ZAREMBA
may control the degree of detuning which varies in time.
changing the depth of the modulation one can regulate
effect of restoring the resonance. This has been demonst
by Agarwal and Harshawardhan@22,23# for two- and three-
level atomic systems. Radmoreet al. @12# have considered
photoionization from a single discrete state to a single str
tureless continuum~without the lower bound! and have
shown that the photoelectron spectra are multipeak, with
heights determined by the values of the Bessel functions,
argument of which is the modulation depth. Raczyn´ski and
Zaremba@13# have demonstrated how the results of Radm
et al.are modified due to the presence of the threshold. In
present work we show how the previous results are gene
ized when the threshold is treated properly, continuu
continuum transitions are admitted, and no rotating-wave
proximation is made. The results for the dynamics of
decay and the photoelectron spectra, obtained using
methods of Sec. II, are presented and discussed in Sec.

In Secs. IV and V we show some model and numeri
results for the photoionization of multilevel systems
pulses with a modulated frequency. The results are obta
either by integrating systems of a few differential equatio
~for atomic systems with a few discrete essential states! or by
integrating the one-dimensional time-dependent Schro¨dinger
equation on a grid. In particular, we observe how the pr
ence of the modulation can influence the resonant ioniza
and the threshold effects.

It is important to stress that, though the adopted para
eters which characterize our pulses are now beyond the
perimental range, most of our observations concerning
dynamics will remain valid in general. We have chosen su
parameters to avoid extensive computations and for dem
strative reasons. Throughout the paper atomic units are u

II. MODEL PHOTODETACHMENT: THEORY

In this section we present a formalism which enables u
obtain the nondecay probability and the photoelectron sp
tra for arbitrary pulse shapes, taking into account the e
tence of the threshold as well as the continuum-continu
transitions.

We consider a model one-electron atomic~ionic! system
interacting with a short pulse of a linearly polarized, spatia
uniform, classical laser field. The Hamiltonian of the syst
is

H5H01V5T1U1V, V5A–p1
A2

2
, ~1!

whereT is the kinetic energy,U the binding potential which
supports a single bound stateu1&, and the vector potentialA
is given by

A~ t !5F~ t !e, ~2!

e5ez is the polarization, andF(t) is an arbitrary function
describing the time dependence of the field.

Our aim is to calculate the amplitudes of the transitio
induced byV between the free atomic statesu1& and uk&,
which satisfy the relations

H0u1&5E1u1&, H0uk&5ekuk&, ~3!
y
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Such a formulation, sometimes called a mixed gauge
commonly used. Note, however, that it would be more
thodox, though technically more difficult, to look for trans
tion amplitudes between exp@2iA(0)•r #u1& and
exp@2iA(t)•r #uk&, which is equivalent to studying trans
tions betweenu1& and uk& induced by the interactionE–r in
the length gauge@24#. The mixed gauge means asking, e.
about the transition amplitudes to the states of a given
nonical momentum, which in the velocity gauge is differe
from the kinetic momentum. This means that the ene
spectra calculated in this section do not move in an osc
tory manner during the cycle, as would the spectra obtai
by projecting onto the states with a given kinetic momentu
In the simplest case of a one-color rectangular pulse
mean kinetic energies differ from the energiesek by the
value of the ponderomotive shift. If the pulse is switched
and off in a smooth way, i.e., ifA~t!50 both at the beginning
and at the end of the pulse, and its envelope changes slo
compared with the field oscillations, using the mixed gau
yields the exact results for the transition amplitudes after
pulse has been switched off~though not for the time-
dependent populations or spectra!.

The atomic state vectoruc(t)& can be written as an ex
pansion

uc~ t !&5a~ t !u1&1E d3kbk~ t !uk& ~4!

and the Schro¨dinger equation leads to the following set
equations for the amplitudes:

i ȧ5E1a~ t !1E d3kF~ t !~e–p!1kbk~ t !1
1

2
F~ t !2a~ t !,

~5!

i ḃk5ekbk~ t !1F~ t !~e–p!k1a~ t !1
1

2
F~ t !2bk~ t !

1E d3k8F~ t !~e–p!kk8bk8~ t !. ~6!

The initial conditions area(0)51 andbk(0)50.
We make now the essential approximation in the spirit

a large class of works on atom-strong-field interactions,
particular of the family of Keldysh-Faisal-Reiss approach
@5,21#. In the context of our approach it consists in replaci
the continuumU-distorted wavesuk& by the plane waves
The continuum-continuum coupling, present in the last te
of Eq. ~6!, now becomes diagonal ink, i.e., (e–p)kk8
5e–kd(k2k8).

We introduce the modified amplitudesa(t) andgk(t) by
the relations

a~ t !5expF2 i S E1t1E
0

t1

2
F~ t !2dtD Ga~ t !, ~7!
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bk~ t !5expF2 i S ekt1E
0

t 1

2
F~ t !2dt1E

0

t

F~ t !

3~e–k!dtD Ggk~ t !. ~8!

They satisfy the equations

i ȧ~ t !5E d3k~e–p!1kF~ t !exp$2 i @ekt1e–kg~ t !

2E1t#%gk~ t !, ~9!

i ġk~ t !5~e–p!k1F~ t !exp$ i @ekt1e–kg~ t !2E1t#%a~ t !,
~10!

where we have setg(t)5*0
t F(t)dt.

When we integrate Eq.~10! over t and insert the resul
into Eq.~9! we obtain an integro-differential equation for th
amplitudea(t),

ȧ~ t !52E
0

t

K~ t,t8!a~ t8!dt8, ~11!

with the kernelK(t,t8) given by

K~ t,t8!5F~ t !F~ t8!E d3ku~e–p!1ku2

3exp$2 i @ek~ t2t8!1e–kG~ t,t8!2E1~ t2t8!#%,

~12!

whereG(t,t8)5g(t)2g(t8).
As to the bound-continuum coupling, it is known that f

the bound stateu1& of angular momentuml 50 the matrix
element fork→0 behaves likek; thus u(e–p)1ku2k2dk/dek
;k3;ek

3/2 ~Wigner power law@25#!. For large energies the
coupling tends to zero, for example, in the case of the
drogen negative ionu(e–r )1ku2k2dk/dek vanishes asek

25/2

@26#, which means that the corresponding square matrix
ment ofe–p vanishes asek

21/2. In the present work, in orde
to analytically obtain the integral in Eq.~12! we have as-
sumed an exponential cutoff and taken

u~e–p1k!u25
3

4p
C2k2exp~2gek!~e–k̂!2. ~13!

We have taken the values of the parametersC259.184 a.u.,
g518.14 a.u., which yield the position and maximum of t
coupling ~13! equal to that of the H2 ion with E15
20.027 57 a.u., imitated by model with a contact poten
@27#. We have checked that in the neighborhood of the c
pling maximum, which occurs forek50.083 a.u., our for-
mula reproduces the proper value of the coupling. F
smaller energies~of order of 0.01 a.u.! our formula underes-
timates the coupling two to three times, while we do n
reach the range of larger energies for which the exponen
model reduces the coupling more rapidly than the pow
function. Our qualitative results will thus be reliable, perha
except for the overall shift of the whole spectrum due also
highly nonresonant virtual transitions.
-
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The integral in Eq.~12! can now be calculated,

E d3ku~e–p!1ku2exp@2 i ~ekt1e–kG!#

52pE
0

`

k4dk
3C2

4p
expS 2

i

2
k2t2

1

2
gk2D

3E
0

p

cos2uexp~2 ikGcosu!sinudu

5
3C2Ap

8uGu5 S r25/22
1

2
r27/2DexpS 2

1

4r D , ~14!

wheret5t2t8 andr5(g1 i t)/2G2.
Finally the kernelK has the closed analytical form

K~ t,t8!53C2Ap/2F~ t !F~ t8!eiE1~ t2t8!

3S 1

~g1 i t!5/2
2

G2

~g1 i t!7/2D expS 2
G2

2~g1 i t! D .

~15!

The bound-continuum transition amplitude can be e
pressed in terms of a single time integral

bk52 i expF2 i S ekt1
1

2E0

t

F~ t8!2dt81e–kg~ t ! D G~e–p!k1

3E
0

t

F~ t8!exp$ i @ekt81e–kg~ t8!2E1t8#%a~ t8!dt8.

~16!

By the partial wave expansion the ionization amplitu
bk can be expressed as a superposition of amplitudes co
sponding to transitions to the particular continua numera
by the angular momentuml . Using the formula for the ex-
pansion of exp(ie–kG) into Ylm( k̂) and the addition proper
ties of the spherical harmonics we get

bk~ t !52 iA3Cke2gk2/4(
l 50

`

b lYl0~ k̂!

3expF2 i S ekt1
1

2E0

t

F~ t !2dtD G , ~17!

with

b l5b l~k,t !

5
~2 i ! l 21

A2l 11
E

0

t

F~ t8!exp@ i ~ekt82E1t8!#

3@ l j l 21„kg~ t !2kg~ t8!…

2~ l 11! j l 11„kg~ t !2kg~ t8!…#a~ t8!, ~18!

where j l are the Bessel functions of half-integer order. T
photoelectron energetic spectrum after integrating o
angles and including the factorsk2dk/dek stemming from
the density of states is given by
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S~ek ,t !53C2k3expS 2
1

2
gk2D(

l
ub l~k,t !u2. ~19!

It is understood that the time dependence of the spectrum
Eq. ~19! means simply that such a spectrum would be
tained if the pulseF(t) were cut just at the instantt.

The structure of Eq.~18! is quite complicated; note, how
ever, that some general conclusions concerning the qua
tive behavior of the amplitudesb can be drawn. If the pulse
is rectangular, i.e.,F(t)5(e0 /v)cosvt, e0 being the field
amplitude, theng(t) is proportional to sinvt. If the Bessel
functions are expanded into power series in sinvt8 and, fur-
ther, if the amplitudea(t8) is assumed to decay expone
tially, which is a reasonable approximation in the case o
cw field, then for larget we getb l as a sum of Lorentz-like
terms and the typical above threshold detachment~ATD!
spectrum is reproduced@a series of peaks of the same wid
determined by the imaginary part of the coefficient in t
exponent ofa(t), separated by the photon energy#.

In this paper we concentrate on effects of the pulse
quency modulation, i.e., we take

F~ t !5
e0

v
cos@vt1jsinv1t#, ~20!

which can in fact be considered as a superposition of pu
of frequenciesv,v6v1 ,v62v1 . . . , with the components
given by the Bessel functionsJn(j) according to the relation

cos~vt1jsinv1t !5 (
n52`

`

Jn~j!cos~v1nv1!t. ~21!

As shown by Agarwal and Harshawardhan@22,23#, such a
pulse can cause a temporary population trapping in a disc
state at such times at which the instantaneous frequency~see
below! does not fit to the resonance between the energy
els. The excitation may be controlled by changing the mo
lation depthj: as follows from Eq.~21!, it is, in particular,
possible to choosej so thatJm(j)50 for v6mv1 being the
resonant frequency.

Radmoreet al. @12# have studied photoionization by suc
a pulse of a simple model system including a single bou
state and a single structureless continuum. The usual
approximation together with the rotating-wave approxim
tion has led them to an exponential decay of the initial-st
population. The spectrum is then a sum of Lorentzian te
separated by multiples ofv1, the amplitudes of which are
Jn(j); this can be seen from Eq.~16! of this paper, in which
g(t)50 and the expansion~21! has been used. By changin
the value ofj Radmoreet al. could regulate the heights o
the peaks, and, in particular, quench symmetrically a pai
the peaks.

In our previous paper@13# we have generalized the resul
of Radmoreet al.by admitting the presence of the ionizatio
threshold. We have shown that it is possible to analyze
process again in the spirit of the pole approximation but w
an oscillating pole. To briefly present that idea let us, fo
moment, make the rotating-wave approximation with resp
to the main frequencyv and neglect the continuum
continuum transitions. The kernelK(t,t8) of Eq. ~12! can
then be written as
in
-
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K~ t,t8!5
e0

2

4v2E d3ku~e–p!1ku2exp@2 i ~ek2E12v!~ t2t8!

2j~sinv1t2sinv1t8!#. ~22!

The most important contribution toK(t,t8) comes from the
region oft8't. If we leave only the two lowest terms of th
expansion of sinv1t8 at t85t, we will obtain

K~ t,t8!'
e0

2

4v2E d3ku~e–p!1ku2exp@2 i ~ek2E12v

2jv1cosv1t !~ t2t8!#. ~23!

Therefore it appears useful to introduce the notion of an
stantaneous frequency (d/dt)(vt1jsinv1t)5v1jv1cosv1t
~see also Refs.@22,23#, where the transitions between th
discrete states were effective at those time instants in wh
the instantaneous frequency suited the resonance!. It is now
possible to repeat the standard steps leading to the pole
proximation @8,24#, except that here the frequency is tim
dependent. The instantaneous ionization rate depends o
value of the bound-continuum coupling for the continuu
energy reached by the photon with the instantaneous
quency, i.e.,

G5G~ t !52puV1eu ue5E11v1jv1cosv1t
2 , ~24!

where uV1eu25ke0
2/(4v2)*dk̂u(e–p1k)u2. In particular,G(t)

50 if E11v1jv1cosv1t,0, while in Ref. @13# we have
approximated it by const3e1/2 above the threshold, in agree
ment with the Wigner power law@25#. The decay curve for
the initial-state population was then composed of pieces
decreasing curve and of horizontal sections, interchang
twice each modulation period. The spectrum was similar
that of Radmoreet al., but Lorentzians were replaced b
some higher and narrower lines.

III. MODEL PHOTODETACHMENT: RESULTS AND
DISCUSSION

We have performed calculations of the initial-state pop
lation and the photoelectron spectra for a few sets of d
We have numerically integrated Eq.~11! for all values oft,
then we have calculated the particular spectra~for different
l ) by performing the integral in Eq.~18! and the total spec-
trum according to Eq.~19!. Below all the decay curves
present the nondecay probability as a function of time
atomic units~to obtain time in seconds one has to multip
the abscissas by 2.418 89310217). The spectra are probabil
ity densities~in atomic units of inverse energy! as functions
of energy~in atomic units of energy!; to obtain the results in
eV the abscissas are to be multiplied and the ordinates
vided by 27.2116. The field intensities are in atomic un
the power density in W cm22 is obtained by multiplyinge0

2

by 3.5131016.
Typical decay curves are shown in Fig. 1 fore053

31023 a.u., v53.231022 a.u., v15431023 a.u., j52
~upper curve!, j53.5 ~lower curve!. As expected from the
crude model considerations of our previous paper@13#, we
indeed observe flat parts when the instantaneous frequen
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too small to reach the threshold and steep parts when
detuning above the threshold is maximum — then the bou
continuum coupling is strongest. The flat parts are better
ible for the lower curve for which the fraction of the mod
lation period, in which the laser is effectively tuned belo
the threshold, is longer. Effectively the decay is quicker
the latter case: the effectiveness of the decay at time inter
of an instantaneous tuning above the threshold increases
to reaching the parts of the continuum the coupling w
which is stronger, in spite of an extension of the time int
vals in which the detuning is below the threshold.

If the modulation depth is reduced so thatE11v2jv1
.0, i.e., the instantaneous frequency is all the time la
enough to ionize, we do not observe quenching of the p
cess, which means that there are no flat parts of the de
curve ~apart from the oscillations due to counter-rotati
terms of the interaction!. We can, however, distinguish th
intervals of a quicker and slower decay depending
whether the instantaneous frequency allows reaching par
the continuum that are more strongly or weakly coupled
the initial state ~see Fig. 2,e052.531023 a.u., v152
31023 a.u., j51.916). We have also checked that if th
frequencyv is chosen so thatE11v occurs at energy for
which the bound-continuum coupling takes maximum,
frequency of the oscillations of the decay curve becom
twice the modulation frequency — the quickest decay occ
now twice in each modulation period, i.e., at those time
stants in which the instantaneous frequency allows reac

FIG. 1. The population of the initial state fore05331023 a.u.,
v53.231022 a.u.,v15431023 a.u.,j52, upper curve;j53.5,
lower curve.

FIG. 2. The population of the initial state fore052.531023

a.u.,v53.231022 a.u.,v15231023 a.u.,j51.916.
he
d-
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the maximum of the coupling.
The effect of inhibiting the decay due to the instantaneo

tuning of the laser below the threshold is reduced for str
ger fields when the ionization may occur not solely due
nominally one-photon process. In Fig. 3 we can see how
flat parts of the decay curve fore05231023 a.u., v53.2
31022 a.u., v15431023 a.u., j52, become leaning for
stronger fields ofe05331023 a.u. ande05431023 a.u.
That this effect is indeed due to continuum-continuum tra
sitions can be seen from Fig. 4 in which the lower curve
again the lower curve of Fig. 3 and the upper curve cor
sponds to the same field, however, with the continuu
continuum transitions now being neglected.

We should realize that, due to the expansion~21! we have
in fact to do with ionization due to a collection of mode
with the frequenciesv1nv1 ,n50,61, . . . . The photo-
electron spectrum will thus differ from the usual abo
threshold ionization~ATI ! spectrum, which is a set of peak
separated byv: each peak will be split into subpeaks sep
rated byv1, unless the width of the lines becomes of t
order of v1, when the substructure of the peaks becom
smeared out. In Fig. 5 we can observe the substructure
the first and second ATI peaks fore052.531023 a.u., v
53.231022 a.u., v15231023 a.u., j51.916. For a very
strong modulation depthj, being of the order ofv/v1, the

FIG. 3. The population of the initial state fore05231023 a.u.,
v53.231022 a.u., v15431023 a.u., j52, upper curve;e053
31023, middle curve;e05431023, lower curve.

FIG. 4. The population of the initial state fore05431023 a.u.,
v53.231022 a.u.,v15431023 a.u.,j52, lower curve; the same
but with the continuum-continuum transitions neglected, up
curve.
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families of subpeaks due to neighboring peaks may ove
in a coherent way.

The formulas for the spectrum do not allow us to fores
the heights of the subpeaks in the general case. Some
clusions can, however, be drawn in the case of not too str
fields, i.e., when a power expansion with respect tog(t8) can
be made in the formula~16!. Then in the lowest order

bk~`!~1!52 i
e0

2v
~e–p!k1

3E
0

`

expF i ~ek2E12v!t2 i jsinv1t2
G

2
tGdt

5
e0

2v
~e–p!k1 (

n52`

`

Jn~j!
1

ek2E12v2nv11 iG/2
,

~25!

where we have made the rotating-wave approximation,
sumed an exponential decay of the initial state, applied
expansion~21!, and skipped the phase factor. The above
sult implies that the spectrum is a coherent superpositio
Lorentzian contributions shifted by multiples of the modu
tion frequency. A result of this kind has been obtained
Radmoreet al. @12#, who have also stressed that by a spec
choice of the modulation depthj such thatJm(j)50 a pair
of subpeaks (6mth) can be removed. In our previous pap
@13# we have shown that the Lorentzians are raised and
rowed if, due to oscillations of the instantaneous frequen
ionization is effective only during a part of the modulatio
period.

The above considerations may be generalized for hig
order terms ing(t), i.e., for the following ATI peaks. For
example, the second-order contribution is

bk
~2!~`!5

e0
2

4v2
~e–p!k1e–kE

0

`

dtexp@ i ~ek2E12v!t

2 i jsinv1t#E
0

t

dt8exp@2 ivt82 i jsinv1t8#

'
e0

2

4v2
~e–p!k1e–k (

n,s52`

`

Jn~j!Js~j!
21

~v1sv1!

3
1

ek2E122v2~n1s!v11 iG/2
, ~26!

where a term, which does not contribute to peaks in
neighborhood of the second ATI peak, has been skipped.
height of themth subpeak is thus proportional to

(
n52`

`

Jn~j!Jm2n~j!
1

v1~m2n!v1
. ~27!

The two-photon transition to this part of the continuu
where themth peak is located, is thus due to an absorption
two photons of frequenciesv1nv1 and v1(m2n)v1, m
50,61,62, . . . , and thecorresponding amplitudes ar
added in a coherent way.
p
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If the modulation frequencyv1 is much smaller than the
fundamental frequencyv, then the above height can be wri
ten, due to the identity satisfied by the Bessel functions@28#,
as

(
n52`

`

Jn~j!Jm2n~j!
1

v
5

1

v
Jm~2j!. ~28!

Due to the destructive interference of the amplitudes
mth subpeak of the second ATI peak may be removed
choosing the modulation depthj so thatJm(2j)50. This
approximation is even better than one might expect beca
the first correction with respect tov1/v then also vanishes
@28#,

(
n52`

`

Jn~j!Jm2n~j!
~m2n!v1

v
5

v1

v

m

2
Jm~2j!. ~29!

The modulation depth in the case presented in Fig. 5 w
chosen so thatJ1(2j)50 and indeed the subpeaks number
1 and 21 in the second ATI peak are suppressed. T
heights of other subpeaks in the figure are approxima
equal to those which follow from the above relations.

Note also that a similar argumentation can be repea
mutatis mutandisfor more-than-two-photon transitions, i.e
for higher ATI peaks. For example, the amplitude of themth
subpeak of the third ATI peak forv1!v would be propor-
tional to

(
s, j 52`

`

Js~j!Jj~j!Jm2s2 j~j!5Jm~3j!. ~30!

This result can be further generalized by induction, wh
means that quenching themth subpeak in thenth ATI peak
requires choosing the modulation depth so thatJm(nj)50.
From the properties of the Bessel functions it also follo
that the number of nonnegligible subpeaks of thenth ATI
peak is of the order of the entire part of 2nj.

This analysis of the peaks’ heights has been confirmed
our numerical calculations of the spectra; those results
not shown here.

FIG. 5. The substructures of the first and second ATI peaks
the photoelectron spectra fore052.531023 a.u., v53.231022

a.u.,v15231023 a.u.,j51.916.
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IV. RESONANT IONIZATION OF TWO-LEVEL SYSTEMS

In the process of the resonant ionization of multilevel s
tems by a pulse with a modulated frequency not only the
of reaching the continuum but also the resonance condit
can change in time. Consider a simple atomic system inc
ing two discrete statesu1& and u2& and a single~energy nor-
malized! continuumue&. It is in principle possible to gener
alize the approach of Sec. II~in which the continuum-
continuum transitions are taken into account! for the systems
with two ~or more! discrete states. However, since we a
here interested mainly in the role of the resonant state,
will limit ourselves to the case of a single continuum; t
latter will be coupled only to the upper state.

The probability amplitudes of finding the system in t
particular states are, respectively,a, b, andce . They satisfy
the equations in the interaction picture and in the rotati
wave approximation

i ȧ5exp@ i ~E12E21v!t1 i jsinv1t#vb,

i ḃ5exp@ i ~E22E12v!t2 i j sinv1t#va

1E deexp@ i ~E22e1v!t1 i jsinv1t#V2ece ,

~31!

i ċe5exp@ i ~e2E22v!t2 i jsinv1t#Ve2b,

where v5(e0/2v)(e–p)12, and V1e5(e0/2v)(e–p)1e . If
again the coupling of the upper state with the continuum
treated in the pole approximation with a moving pole, t
second of the above equations becomes

i ḃ5exp@ i ~E22E12v!t2 i jsinv1t#va2
iG~ t !

2
b,

~32!

with G(t)52puV2eu ue5E21v1jv1cosv1t
2 .

As pointed out by Agarwal and Harshawardhan@22,23#,
who, however, did not discuss ionization, the character
interpretation of the results depend on the relation betw
the Rabi frequency~equal tov in the resonance conditions!
and the modulation frequencyv1.

If the modulation frequency is large, then at most o
component~say j th) of the expansion~21!, namely, that for
which uE22E12v2 j v1u is smallest, is significant for the
1-2 transition. Then we have in fact to do with a two-sta
damped Rabi system@two atomic states coupled by a mon
chromatic field of frequencyv1 j v1 and of the coupling
strengthvJj (g)], only slightly perturbed by the fields o
frequenciesv1sv1 ,sÞ j . In Fig. 6 we show the population
of the two discrete states and the ionization probability
functions of time for d1[E22E12v50.004 a.u., v1
50.004 a.u.,v50.001 a.u.,j52.405~first zero ofJ0), and
G(t)50.0002 a.u.5const~the latter means that no thresho
effects are present!. The distance between the peaks is to
good approximationp/@vJ1(j)#, as expected, because th
resonance is restored by photons withj 51. If the value ofj
is chosen so thatJ1(j)50, the results are drasticall
changed: both excitation and ionization are suppressed
-
ct
ns
d-

e

-

s

d
n

e

s

a

e-

cause no photons necessary for the resonant transition
present. In Fig. 7 we show the populations and the ioniza
probability for j53.83 ~first zero ofJ1).

When the instantaneous frequency causes crossing
ionization threshold, the results can be further modified: io
ization is possible only in those time intervals in whichd2
1gv1cosv1t.0, whered2[E21v. On the other hand, ion
ization is more probable in those time intervals in which t
population of the upper state is largest. It is possible to co
bine the parameters so that just in those intervals the ins
taneous frequency is too small to allow ionization. To a
count for the proper threshold behavior we have assum
that the bound-continuum couplinguV2eu2 in the case of ans
continuum is proportional toe1/2 according to the Wigner
power law. In consequenceG(t)5hRe@d21jv1cosv1t#

1/2,
h being a constant which gives account of the coupl
strength. The results are shown in Fig. 8 and Fig. 9 where
present the population of the upper state and the ioniza
probability for v50.004 a.u.,d150.004 a.u.,v150.004
a.u.,j52.405,h50.003 a.u., and additionallyd250.02 a.u.
~no threshold crossing! for Fig. 8 andd2520.004 a.u. for
Fig. 9. Indeed, ionization is strongly suppressed in the la
case because the transition from the upper state to the
tinuum is possible just at the moments at which its popu
tion is minimum. The sinusoidal character of the Rabi osc
lations of the frequencyvuJ21(j)u is distorted due to the
components of the pulse with the frequenciesv1nv1 with
nÞ21.

FIG. 6. The populations of the two discrete states~oscillating
curves! and the total ionization probability ford15v150.004 a.u.,
v50.001 a.u.,j52.405, andG(t)50.00025const ~no threshold
effects!. At t50 the population was in the lower state.

FIG. 7. As in Fig. 6 but forj53.83.
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A quite different picture is observed if the Rabi frequen
v is significantly larger than the modulation frequency. Th
the transition between the discrete states can be induce
many components of the field of frequenciesv1 j v1. The
notion of an instantaneous frequency is now useful in
description of the 1-2 transition. For a monochromatic fie
we would observe fast oscillations of the populations of
states 1 and 2 and the depth of the modulations would
pend on how far from resonance the frequency occurs. F
pulse with a modulated frequency the detuning change
time so the depth of the fast oscillations oscillates itself w
the frequencyv1. The changes in the populations are larg
in those time intervals in which we have an instantane
resonance. This is shown in Fig. 10 where we present
lower state population and the ionization probability for t
same data as in Fig. 7 except thatv50.01 a.u. Now the
qualitative features of the picture do not depend on whe
Jj (j)50 for any value ofj , in contradistinction to what is
suggested in the paper of Agarwal and Harshawardhan@22#
~in the case of a two-level system!.

As to the spectrum, we do not present here any quan
tive results, but their qualitative properties follow from th
general Floquet theory, which predicts the form of the so
tions of the first of Eqs.~31! and Eq.~32!. In particularb(t)
can be written as

b~ t !5exp~2 il1t ! (
n52`

`

r nexp~ inv1t !

1exp~2 il2t ! (
n52`

`

snexp~ inv1t !, ~33!

wherel1,2 are some complex numbers andr n andsn are the
expansion coefficients of the periodic functions into Four
series. After the above solution has been inserted into
third of Eqs.~31! and integrated, we obtain

ce~`!5Ve2 (
j 52`

`

Jj~j! (
n52`

` S r n

e2E22v2~ j 2n!v12l1

1
sn

e2E22v2~ j 2n!v12l2
D . ~34!

FIG. 8. The population of the upper state~oscillating curve! and
the ionization probability with the threshold taken into account
v5d15v150.004 a.u.,d250.02 a.u.,j52.405,h50.003 a.u.
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Clearly Rel1,2 are responsible for the shift and Iml1,2 for
the width of the peaks. For a small modulation frequency a
a large 1-2 coupling the spectrum has the form of an Aut
Townes~AT! doublet with each of the peaks split into su
peaks separated by the modulation frequency. In the oppo
case, i.e., for a large modulation frequency and a small
coupling, the spectrum is a set of AT doublets separated
the modulation frequency. In the intermediate regime o
can expect the interference of the splitting effects due to b
frequency modulation and two states.

V. PHOTOIONIZATION OF MULTILEVEL SYSTEMS

Let us now check the effect of pulses with a modulat
frequency on a system, the energy spectrum of which
sembles that of real atoms. Such a system in the form o
one-dimensional atom has often been used in the discus
of strong-field photoionization@29#. The Hamiltonian reads

H52
1

2

]2

]x2
2

1

~x211!1/2
1xe0cos~vt1jsinv1t1f!.

~35!

FIG. 9. As in Fig. 8 but ford2520.004 a.u.

FIG. 10. The population of the lower state~oscillating curve!
and the ionization probability forv50.01 a.u. and other paramete
as in Fig. 7. Also shown the time-dependent detuningd1

2jv1cosv1t ~in arbitrary units!.
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Due to its long range character the ‘‘regularized Co
lomb’’ binding potential supports an infinite number
bound states, of which eigenenergies and eigenvectors
computed numerically, as well as the scattering states.
eigenenergiesEn ,n51,2, . . . , and thecoupling matrix ele-
mentsxjk can be found in Ref.@29#. It is assumed that ini-
tially the atom was in the ground state. The atom-field int
action is now taken in the length gauge. The time-depend
Schrödinger equation has been integrated numerically o
grid, with the time evolution operator expanded into t
Chebyshev polynomials. The details of the numerical pro
dure can be found in Refs.@30,31#. The numerical methods
of such a kind are effective for not too long times, becau
they are very time-consuming. In Fig. 11 we show the ti
evolution of the initial-state population fore050.05 a.u.,v
50.518 314 a.u.,v150.058 77 a.u.,f53p/2. These values
of the parameters correspond to the situation in which
frequencyv is equal to the energy intervalE32E1, v1v1
5E42E1, and v22v1'E22E1; the ionization is nomi-
nally a two-photon one. The time integration was over 1
optical periods. Forj50.1 ~almost no frequency modula
tion! we observe small oscillations corresponding to a n
resonant, weakly damped Rabi problem for the states 1
2. For j53.8 ~first zero of J1) the character is essentiall
changed. Due to the presence of the photons of freque
v22v1 we have to do with a nearly resonant coupling
the states 1 and 2. However, the ‘‘frequency’’ of the damp
oscillations is not exactly the Rabi frequency of the two-le
system. We have checked by solving the two- and three-s
problem numerically that including the coupling of state
with state 3 essentially improves the agreement of the
frequencies. The rapid oscillations are due to other nonre
nant processes, i.e., the coupling of states 1 and 2 by pho
of frequencies other thanv22v1 and also by counter
rotating terms of the Hamiltonian. For this special value ofj,
J1(j)'0 so no coupling of the states 1 and 4 is present,
this coupling would not be very important because of a re
tively weak dipole coupling of those states.

The picture is very much different forj55.13, i.e., when
J22(j)50, so photons which could produce a dominati
resonant 1-2 coupling are absent~Fig. 12!. One cannot iden-

FIG. 11. The population of the initial~ground! state of the
one-dimensional atom fore050.05 a.u., v50.518 314 a.u.,
v150.058 77 a.u.,f5

3
2 p, j50.1, upper solid curve;j53.8,

lower solid curve. The dotted curve describes the evolution of
population in the case of the atomic model including only th
lowest states.
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tify any dominating frequency close to a particular Rabi fr
quency. Instead one can observe oscillations correspon
to the modulation frequencyv1. This is consistent with the
observations from the preceding section.

The photoelectron spectra have been obtained by pro
ing the time-dependent wave function on field-free scatter
states~both even and odd!. Because the photoelectrons a
subject to a jittering motion in the laser field, the spectra
not stationary: they oscillate in the rhythm of the field. O
spectra have been obtained for times equal to a full num
of cycles plus such a fraction of a cycle that the instan
neous classical velocity of the electron jittering motion
zero. At those time instants

A~ t !52E
0

t

e0cos~vt1jsinv1t1f!dt50, ~36!

or, in other words, the kinetic momentum is equal to t
canonical momentum. Note that for nonmonochroma
fields the oscillations of the peaks’ positions are more co
plicated than in the case of a purely harmonic field.

In Fig. 13 we show the photoelectron spectrum for
weakly frequency-modulated pulse (j50.3) with other pa-
rameters as in Fig. 11 and Fig. 12. Because the excitatio
far from resonance, the spectrum in the case of a harm
pulse should reflect the energetic structure of the atom@32#:
the three main subpeaks of the first ATI peak, which occu
E21v'0.243 a.u., E112v'0.366 a.u., and E41v
'0.425 a.u., are indeed visible in the case ofj50.3. Due to

is
e

FIG. 12. The population of the initial state of the on
dimensional atom forj55.13 and other parameters as in Fig. 11

FIG. 13. The photoelectron spectrum for the one-dimensio
atom after 128 optical cycles@plus such a fraction of the cycle tha
A(t)50# for j50.3.
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4570 57BAL”A, MATULEWSKI, RACZYŃSKI, AND ZAREMBA
our choice of the data the distance between the second
third of those peaks isv1. Additional subpeaks are due to th
frequency modulation and the distance between each
peak and the corresponding main peak is againv1. The peak
at E41v is significantly heightened due to the presence
the frequency modulation, compared with the case of
modulation~not shown!. The pattern is repeated in the se
ond ATI peak~shifted byv with respect to the first peak
i.e., in the energy range 0.7521 a.u.!.

In Fig. 14 we show a part of an analogous spectrum fo
somewhat stronger frequency modulation (j51.9). The
structure of the subpeaks is much more complicated bec
more of the components of the pulse@of amplitudesJn(j)#
now play important roles. The Rabi frequency correspond
to the nearly resonant coupling of the amplitudee0J22(j) of
the states 1 and 2 is now significantly smaller thanv1. One
can thus expect some substructures separated byv1, each of
them split, with the splitting of the order of twice the Ra
frequency. Such structures are visible in Fig. 14, though
details of the picture are much more complicated.

FIG. 14. As in Fig. 13 but forj51.9.
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VI. CONCLUSIONS

We have investigated photoionization and photodeta
ment of model atomic systems by strong laser pulses wi
modulated frequency. We have demonstrated that this m
be an important and subtle tool to control the process.
have shown how such a modulation essentially modifies
time evolution of the populations of the discrete states a
the photoelectron spectra. The most interesting effects o
for the laser being tuned in the vicinity of the ionizatio
threshold, when the effective detuning during a part of
cycle may be below the threshold, or in the vicinity of th
resonant transition between the bound states, when, dep
ing on the modulation depth, the resonance may be ei
spoiled or restored. Depending on the situation, those eff
can be interpreted by introducing the notion of an instan
neous frequency or by considering the electromagnetic fi
as being composed of photons, which differ in frequen
from the optical one by a mutiple of the modulation fr
quency.

The model developed in the first part of the paper can
used to study the effects of short laser pulses of an arbit
shape on the dynamics of photodetachment, with the thre
old and the continuum-continuum transitions taken into
count.
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