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Rydberg atoms in far-infrared radiation fields. I. Dipole matrix elements of H, Li, and Rb

J. H. Hoogenraad* and L. D. Noordam†

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
~Received 30 July 1997!

The radial electric dipole moments of bound-bound, bound-free, and free-free transitions of high-lying (n
.15) Rydberg states and low-lying continuum states (e,400 cm21) are calculated for hydrogen and the
alkali-metal atoms. All dipole matrix elements for the transitions between low-l (s, p, d, andf ) states of H, Li,
and Rb are presented. Results of similar calculations for the other alkali-metal atoms~Na, K, and Cs! are
summarized. These numerical results, using quantum defect theory, are compared with semiclassical approxi-
mations. The dipole matrix elements cross zero at certain combinations of initial and final states. The matrix
elements at these so-called Cooper minima in Li, K, Rb, and Cs are presented in detail.
@S1050-2947~98!09605-X#

PACS number~s!: 32.80.Rm, 32.70.Cs, 32.30.Bv
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I. INTRODUCTION

Radiative transitions in Rydberg atoms are governed
the dipole matrix elements between high-lying states@1#. Di-
pole matrix elements between these states play an impo
role in many experiments: Transitions can be induced
collisions with charged particles@2–4#, radiative recombina-
tion @5,6#, irradiation with blackbody radiation@7–10#, or by
laser light @11,12#. The advent of tunable and intense fa
infrared free-electron lasers opened a new class of la
driven Rydberg-state experiments@13#. For a proper descrip
tion of experiments on Rydberg atoms in far-infrar
radiation fields@14–16#, there is a need for the dipole matr
elements between Rydberg states. These matrix elem
were so far not studied in this frequency range.

We have set out to calculate dipole matrix elements
bound-bound, bound-free, and free-free transitions ofhigh-
lying (n.15) Rydberg states and low-lying continuum sta
(e,400 cm21) of the alkali-metal atoms, and tabulate th
results. We present all the low-l dipole-allowed radiative
transitions between 20 and 500 cm21 ~20 to 500mm! for
hydrogen, lithium, and rubidium, and other alkali-metal
oms. Due to core interaction, the matrix elements of
alkali-metal atoms often deviate from hydrogenic appro
mations. The dipole matrix elements can either vanish or
enhanced, with sum rules only determining thetotal photo-
absorption cross section@17#. Matrix elements for the transi
tions betweenlower Rydberg states (n,15) and from these
states into the continuum have intensively been stud
@18,19#.

Dipole matrix elements for photoabsorption can cro
zero as a function of the final-state energy. The photoabs
tion rate, proportional to the square of the dipole matrix
ement, vanishes at such a zero crossing, known as the
per minimum @20#. Similar minima are found in the
photoexcitation of Rydberg states from the ground state
molecules @21–23#. The position of a Cooper minimum
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changes if the initial state is an excited state@24–26#. Ex-
tending the range ofn for the calculations, we found a num
ber of Cooper minima in the high-Rydberg transitions of t
alkali-metal atoms@13#. The Cooper minima are not repro
duced in the most used analytical approximations@27# and a
full numerical treatment of the problem is required.

In this paper we first introduce the main methods of c
culation. We start with the separation of the wave functi
into angular and radial parts. The angular parts and th
prefactors to the matrix elements are known, so that the
mainder of the paper focuses on the radial parts of the w
functions. The numerical results for the radial matrix e
ments are compared with semiclassical matrix elements
hydrogen. Section II describes the semiclassical approxi
tion, and the derived matrix elements. The computer cod
evaluate the matrix elements numerically is described in S
III. In short, we calculate radial wave functions with a N
merov code, using quantum defect theory, and evaluate
matrix elements from these wave functions. In Secs. VI–
we present the calculations for a few elements: hydrog
lithium, rubidium, and some transitions in potassium and
sium. For hydrogen, the semiclassical formulas agree w
numerical calculations@27,28#. We present the results of ou
calculations for hydrogen as a reference to compare the
sults of the alkali-metal atoms. For lithium, thes-p transi-
tions differ largely from the hydrogenic values: in the ran
of our calculations, a Rydberg bound-bound Cooper m
mum occurs. We have chosen rubidium as a model alk
metal atom. We present the matrix elements of all lowl
transitions in Sec. VIII. Even though we have performed
calculations for all alkali-metal elements up to cesium,
only present the data for these elements to where ano
behavior such as Cooper minima are found in the range
our calculations. Section X, finally, discusses some of
phenomena found in the calculations.

II. ANALYTICAL RESULTS

In the low-intensity limit, processes involving interactio
with a single photon can be assigned a cross section. Wi
the rotating wave approximation, the cross section for pho
ionization is in atomic units,

1,
4533 © 1998 The American Physical Society
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sv54/3p2av z^u1uẑuu2& z2[4/3p2avuDu2, ~1!

with v the energy of the photons,a the fine structure con
stant, ẑ the direction of polarization of the electromagne
field, u1 and u2 unperturbed wave functions, andD the di-
pole matrix element.

The potential of any single-electron atom is spherica
symmetric, and therefore the wave functionsu can be di-
vided into a radial partRnl(r ) and an angular partYlm(u,f)

u5Rnl~r !Ylm~u,f!, ~2!

Ylm~u,f!5A~ l 2m!!

~ l 1m!!

2l 11

~4p!
Pl

m~cosu!eımf. ~3!

The calculation of̂ u1uzuu2& can also be factored into a ra
dial and an angular part. The latter is calculated analytica
independent of the shape of the potential. Using the ra
wave functions, the radial part of the dipole matrix eleme
is expressed as

Rn1 l 1

n2 l 25E
0

`

Rn1 l 1
~r !rRn2 l 2

~r !dr. ~4!

The angular parts of the matrix elementsD give, for lin-
early polarized light, rise to the well known selection rul
D l5 l 12 l 2561. The change of the magnetic quantum nu
ber m depends on the angle of the polarization of the lig
and the quantization axis of the atom. If both axes coinc
m is conserved, while in other cases also transitions occu
which m changes by plus or minus one.

For coinciding axes, the angular part of the dipole mat
element can be expressed as@17#

^ l 11muẑu lm&5^ lmuẑu l 11m&5A ~ l 11!22m2

~2l 13!~2l 11!
.

~5!

The calculation of the radial part of the matrix elements
more complicated. For hydrogen, exact analytical soluti
for Rnl(r ) in terms of hypergeometric functions are know
@29#. These functions, however, converge slowly for t
highly excited states.

In the remainder of this section, we first describe appro
mations of the radial part of the hydrogenic matrix eleme
that can be made in various limiting cases. Differences
other elements with hydrogen can be modeled with a sin
parameter, the quantum defect, as described in Sec.
This does not yield simple semiclassical results for ma
elements involving a bound state. The matrix elements
tween two continuum states can be derived semiclasica
even for nonhydrogenic atoms. We give these free-free
trix elements in Sec. II C. The results of that section are u
in the remainder of the paper as a reference for the calcul
matrix elements.

A. Analytical matrix elements for H

Dipole matrix elements between loosely bound states
hydrogen can be approximated semiclassically with high
curacy. We use the results of the simplest of these calc
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tions as a reference throughout the paper. We therefore
with introducing its background by briefly repeating the e
egant derivation by Deloneet al. @27#.

It follows from the correspondence principle that dipo
matrix elements equal the Fourier component at the tra
tion frequencyv of the classical radial coordinater (t) of the
Rydberg electron along its Kepler orbit:

^n8ur un&5
1

TE0

T

r ~ t !cosvtdt. ~6!

The integration needs only be performed over one per
(T52pn3) of the classical orbiting time. For transitions b
tween near-lying states, the transition frequency can be
pressed asv5(n82n)/n3. In the half of the orbit where the
electron moves away from the core, the trajectory of an e
tron on an outgoingl 50 orbit can be written as

r ~ t !5
1

2
~6t !2/3. ~7!

Note that in this equationn is absent: The orbiting times o
highern states increase asn3, while the outer turning points
~the maximal value ofr ) scale asn2. Substituting the half-
orbit time in Eq.~7! yields the correctn dependence of the
outer turning point. By substituting Eq.~7! into Eq. ~6!, the
matrix element is

^n8ur un&5
62/3

Tv5/3E
0

p~n82n!
f2/3 cosfdf. ~8!

As n82n is an integer, the integral takes values between
and 1. The integral converges slowly to its asymptotic va
(n82n→`):

^n8ur un&'
62/3G( 2

3 )

2pA3n3v5/3. ~9!

The two main characteristics of matrix elements betwe
Rydberg states are present in this formula. First, the ma
elements are normalized to the density of states (n23), so
that an integral over an interval of the spectrum is norm
ized. Secondly, the matrix elements depend on the trans
frequency asv25/3: Transitions between nearby-lying stat
are favored over high-frequency transitions. The validity
Eq. ~9! breaks down for transitions between neighbori
states: No matrix element̂n8ur un& can be larger than the
outer turning point (2n2) of the lower state, while Eq.~9!
has no upper bound. This limitation is only of importance f
states within onen manifold: Eq.~9! yields already a smalle
value of 0.4108n2 for n→n11 transitions (v5n23).

Equation ~9! can be generalized further to remove t
asymmetry of exchanging the initialn and finaln8. We have
reformulated the results of Goreslavski� et al. @30# in terms
of the binding energies of the statesvn (51/2n2) and vn8
and the exact transition frequencyv5uvn82vnu:

^n8ur un&'C~22vn8!
3/4~22vn!3/4v25/3. ~10!
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Again, the formula consists of three parts: The densities
states in the Rydberg series at statesn and n8, a general
frequency dependence, and a prefactorC50.4108.

For transitions between states with angular momentul
Þ0, Eq. ~10! does not hold. The prefactorC, however, can
be replaced by a frequency- and angular-momentu
dependent function. Inspired by Berson@31# we have rewrit-
ten the prefactor for low angular momenta and transit
frequencies from@30#:

C6~x!5x2/3321/2/p@K2/3~x!6K1/3~x!#, ~11!

with

x5 l max
3 v/3. ~12!

In Eq. ~11!, the deviations are expressed in Bessel-K, or
McDonalds functions. The higher of the angular momenta
the two states is labeledl max. The 1 sign applies toD l
511 transitions in which the angular momentum of t
higher-lying state is one unit more than the angular mom
tum of the lower state. Figure 1 showsC1( l 3v) and the
correspondingC2( l 3v) function. At 4387 cm21, x is only
0.02 a.u., and the requirement of smalll 3v for Eq. ~11! is
satisfied in the whole range of the figure. The prefactor
flects the Bethe rule: Transitions in which both the angu
momentum and the energy are increased are more likely
those in which the angular momentum changes in the op
site direction. The difference becomes more pronouncedl
increases: the higherl , the more the orbit resembles the cla
sical Kepler orbit. Forl 5m Kepler orbits, only theD l
511 transitions are classically allowed, as reflected in
higher matrix elements for these transitions for higherl . As
Eq. ~11! is only valid for low angular momenta and transitio
frequencies, we expand it in powers ofx:

C~0!5~4/3!1/3/G~1/3!'0.4108,

C1 /C~0!5111.5702x1/321.5x21.1777x4/31O~x2!,
~13!

C2 /C~0!5121.5702x1/311.5x21.1777x4/31O~x2!.

FIG. 1. Relative dipole matrix elementsC1(x)/C(0) and
C2(x)/C(0), calculated by the analytical formula Eq.~11! as a
function of l 3v.
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C1 andC2 have the same value forx50, which is the
same as we derived for thel 50 dipole matrix elements
Normalized to this value, the two series expansions co
spond to the values in Fig. 1. The functions start symme
cally from x50. After the initial increase,C1 will also de-
crease as a function ofx: Matrix elements for higher-
angular-momentum states are smaller than those for low
angular-momentum states.

The first term in Eq.~13! for the D l 511 transitions
agrees with recent analytical calculations@32#. Reference
@32#, however, neither includes higher-order terms, nor
scribes theD l 521 transitions.

B. Quantum-defect theory for nonhydrogenic atoms

Quantum-defect theory~QDT! @33,34# is a generalization
of the hydrogenic methods. QDT wave functions of excit
states are calculated in the Coulomb potential atenergies
determined from experimental data. At large distances,
exact potential is indistinguishable from a Coulomb pote
tial. Most of the wave function of highly excited, and high
angular-momentum states, is at these large distances so
QDT provides an excellent description. In QDT, deviatio
from hydrogenic eigenenergies are described with a cha
in effective quantum number: The energy levels are thus
fined to be 1/@2(n2m l)

2#, with m l the quantum defect. Fo
high n, m l is constant, but decreases with angular quant
number, as the centrifugal barrier reduces core penetrati

Analytical methods for calculation of hydrogenic wav
functions and matrix elements can in principle be used
QDT: Both thef - and theg-wave functions can be expresse
in Bessel functions, and~somewhat cumbersome! expres-
sions for the dipole matrix elements are found@35#. The
matrix elements are nearly hydrogenic whenever the qu
tum defects are small. In that case Eq.~10! and Eq.~11! can
be used. The matrix elements strongly deviate from Eq.~10!
as a function of the quantum defect. Even Eq.~8! has this
property: At n11/2, the integral yields near-zero values.
matrix elements are expanded in a series in the differenc
the effective quantum numbern! of the states, this periodic
ity becomes clear: The coefficients can be described as
ger functions@28#. Values of these functions are tabulated f
Dn!,5 in Ref. @36#. The matrix elements depend criticall
on the evaluation of these functions. For larger differen
Dn!, the functions become difficult to evaluate. Therefo
we have chosen to generate the wave functions numeric
and calculate dipole matrix elements from them.

C. Matrix elements of continuum states

Within quantum-defect theory, one can derive matrix
ements between two continuum states. The quantum defe
then interpreted as the phase shift that the wave func
undergoes in scattering with the core. The hydrogenic c
tinuum wave functions can be phase shifted to repres
quantum defect wave functions of alkali-metal atoms. T
scattering amplitudes depend on the difference in quan
defects of the two states:D l5p(m l 82m l), wherel 8, l , so
that D l is positive. In this section, we present matrix el
ments for three regimes of the transition frequencyv relative
to the average energy of the free states,E5 1

2 (e1e8).
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Wheneverv!E, free-free matrix elements increase ra
idly when the energy difference of the two states reduc
For low l , the free-free matrix elements can be expresse
@37,38#

^e8l 8ur ue l &5A 2E

pv2cosD l . ~14!

For v.E, free-free matrix elements become similar
the semiclassical formula. Equation~10! is easily continued
over the threshold by replacing the prefactors for the den
of states with 1 for any free state@30#. Deloneet al. @37#
have derived that the quantum defect difference can be
cluded, so that the complete formula reads

^e8l 8ur ue l &5
0.4744

v5/3 cos~D l6p/6!. ~15!

The sign in this expression depends on the sign of the
mentum change:D l 511 transitions have the1 sign. Equa-
tion ~15! agrees with Eq.~10! whenD l!p/6. Equation~15!,
however, does not reflect the Bethe rule, and when the q
tum defect differences are small, Eq.~11! yields better re-
sults.

The transition from the regime where Eq.~14! holds to
the regime where Eq.~15! is valid, at v;E, can be de-
scribed by a complicated formula@37,38#. The onset of Eq.
~14! for low transition frequencies is analogous to the bre
down of Eq.~9! for n→n11 bound-bound transitions.

III. ALGORITHMS

We have numerically calculated quantum defect wa
functions and evaluated dipole matrix elements for combi
tions of states. This section describes the principles of
computer program.

For bound states, we follow a standard procedure, wh
the quantum defect is introduced by shifting the energy
which the wave function is calculated in a Coulomb pote
tial. For continuum states, the quantum defect must be
cluded by phase shifting the wave function, as describe
Sec. III B. All wave functions in one run are calculated
radial coordinates on the same grid. The choice of the gri
explained in Sec. III C. After the calculation of the wav
functions, the dipole matrix elements are calculated using
algorithms presented in Sec. III D. Finally, we tabulate t
quantum defects in Sec. III E.

A. Bound wave functions

For bound-bound transitions, we used a standard
merov integration@39# to generate the radial wave function
Wave functions are calculated by integrating inwards fr
just outside the outer turning point „r 5@21
2A111vnl ( l 11)]/2vn… @18#. In the classically forbidden
region, the physical wave function increases exponenti
while integrating inwards and small components of the
ponentially decreasing other solution damp out. The integ
tion is stopped at 90% of the inner turning point„r 5@21
1A112vnl ( l 11)#/2vn…, or whenever the wave functio
starts to increase again near the core. We have verified
-
s.
as

ty

n-

o-

n-

-

e
-
e

re
t

-
-

in
t
is

e
e

u-

ly
-

a-

at

the results do not depend on this cutoff. The resulting wa
functions are normalized afterwards.

B. Continuum wave functions

For continuum wave functions, the outer boundary con
tion cannot as easily be used as a starting value. To gene
continuum wave functions, we used the method of Spen
et al. @40#. First, a hydrogenic wave function is calculate
starting from the core. If the wave function has a nonze
quantum defect, the phase of this hydrogenic solution is
termined atRmax. The wave function is phase shifted byp
times the quantum defect. This phase, and the amplit
@given by the normalizationA2/p(2E)21/4#, provide the ini-
tial conditions for the same inward integration as for t
bound wave functions.

C. Choice of grid

The calculation of wave functions is performed on a g
of radial coordinates. Ideally, the number of grid points
adapted to the distance between the nodes of the wave f
tion. However, the behavior of the wave function dictat
different grids in two spatial regions: Near the core, whe
the energy is mainly determined by the core potential, a lo
rithmic grid serves this goal best@39#, while for continuum
states far away, the distance between the nodes is ne
constant, and a linear grid is preferred. A fair solution is
calculate the wave function on blocks of linear grid, wi
increasing density of points when approaching the core@24#.
Another approach is a grid that slowly changes from log
rithmic to linear@19,41#: x5ar 1b lnr, with r the grid index.
We have chosen a grid which consists of a logarithmic p
near the core, and a linear part far away. This grid is set
before the calculation and is equal for all states.

The lowest continuum state~at Emin) determines the
maximal radius on the grid. All continuum wave function
are calculated up to this radius

Rmax5ZFend/Emin . ~16!

Z, the charge of the core, is 1 andFend is typically 20. The
grid indices are generated by either of these two expressi

r @ i 21#5r @ i #A logarithmic, ~17!

r @ i 21#5r @ i #1Slin linear. ~18!

The logarithmic part of the grid is determined by the fix
parameterA ~typically e0.003). The most rapid oscillations o
the wave function on the linear grid occur near the match
point with the logarithmic grid. The linear step size is chos
such that a minimal number of points per node (Nmin , typi-
cally 20) at the matching point is guaranteed for the high
energyEmax of any continuum state in the calculation. Th
linear and logarithmic grid spacings determine the po
where the logarithmic step size equals the linear step s
The grid is set up from that point, so that the first linear s
is also a valid logarithmic step.Rmax andSlin determine the
number of grid points in the linear part of the grid. Th
remaining part of the total buffer of 60 000 points is used
the logarithmic part.



by

s

on
e

ay
e

d
r

io
n

te

li
e
e

th

th
w
h

u

ith
el
ob
ec
b

ld

tio
g
fo

ai

mi-
re
t in-
ost

ger
-

fine
m

hat
h

ver-
if-
the
hy-
ure
tal

le-
Eq.
be

een

fi-
s

e

57 4537RYDBERG ATOMS IN FAR-INFRARED . . . . I. . . .
The wave functions were rewritten into Numerov form
transforming the wave functions by

y@ i #5R@ i #Ar 5r/Ar logarithmic, ~19!

y@ i #5R@ i #5r/r linear. ~20!

In the linear regime, the solved differential equation is ju
the Schro¨dinger equation, while a transformation@39# is used
in the logarithmic regime.

For integrating bound states inwards, the initial conditi
of the wave function corresponds to an increasing expon
tial. The outward integration of hydrogenic free states alw
starts on the logarithmic grid. We use the expansion of thf
functions for r→0 and Eq.~20! and start the buffer with
y@ i #5y@ i 11#A( l 10.5).

D. Matrix element calculation

The integral in Eq.~4! is evaluated using the generate
wave functions. The multiplications are performed befo
Simpson’s rule is used for the integration. In the integrat
of the logarithmic part,r is used as the additional Jacobia
factor, and the result is divided by the logarithm of the s
sizeAX.

For the free-free matrix elements, Eq.~4! involves inte-
grating a rapidly oscillating and diverging function ofr . The
contributions from this region, where the potential is neg
gible compared to the energy of the state, must integrat
zero. The wave functions can be truncated to the region n
the core by applying a filter function that depends on
local wave vector@42#. First, the integrant of Eq.~4! is
mapped onto a linear grid with step sizeSlin for the entirer
range. Then, two digital filters are applied, with zeros at
asymptotic sum and difference of the wave vectors. T
three-point digital filters are applied six times, to damp t
oscillations far away from the core@42#. Unfortunately, this
reduced the usable range inr by the size of the filter func-
tions. This size„;183@1/(k11k2)1u1/(k12k2)u#… sets the
lower-energy limit on transitions we could integrate acc
rately.

We verified the algorithms by comparing the results w
calculations that only included bound states. A complet
logarithmic grid was used in those calculations, so that pr
lems with the matching of the grids, the quantum def
shifting, and the filtered matrix element calculations could
verified by requiring continuity over the ionization thresho

E. Quantum-defect extrapolation

Even though quantum defects change little as a func
of n, agreement with the binding energies of very low-lyin
states can be achieved with an interpolating polynomial,
which coefficients are tabulated@43#. We have extrapolated
the same polynomial over the ionization threshold to obt
the quantum defects in the continuum:

m l~E0!5(
k

~22E0!kTl ,k . ~21!

For bound states, the initial value for the energy isE0(n,l )
52 1

2 (n2Tl ,0)
22.
t

n-
s

e
n

p

-
to
ar
e

e
o
e

-

y
-
t
e
.

n

r

n

The first-order terms to the quantum defects, which do
nate for highn, are listed in Table I. As the size of the co
increases for the heavier elements, the quantum defec
creases. The fractional part of the quantum defect is the m
important. An increase of the quantum defect with an inte
merely changes the effectiven, but does not affect the rela
tive phase of the wave functions.

Quantum defects can also be used to parametrize the
structure splitting. A small change in the first-order quantu
defect termTl ,0 causes an energy shift for Rydberg states t
scales withn!3, in agreement with the splitting scaling wit
the overlap with the core@1#.

The quantum-defect parameters in Table I are the a
age of the two fine-structure levels. Table II shows the d
ferences in quantum defects of the fine-structure levels of
alkali-metal atoms, and the corresponding parameter for
drogen. We encounter the influence of the fine-struct
splitting on the matrix elements for the heavier alkali-me
atoms.

IV. NORMALIZATION OF THE PRESENTED MATRIX
ELEMENTS

In the remainder of this paper, we present all matrix e
ments as a fraction of the simplest semiclassical formula,
~10! with C50.4108. The tabulated values will therefore

V5
^n8ur un&calc

0.4108~22vn8!
3/4~22vn!3/4v25/3. ~22!

We present matrix elements for transitions withv varying a
factor 20. The details of the matrix element sizes had b
invisible in the variations ofv, if the unscaled matrix ele-
ments would have been given. For continuum initial and
nal states, the (22vn,n8)

3/4 factors are set to 1. Due to thi
choice,V passes smoothly over the ionization threshold.

TABLE I. First-order termsTl ,0 to the quantum defects of th
alkali-metal atoms, averaged over the fine-structure levels~from
@43#!.

s p d f

Li 0.399 0.047 0.002 0.0003
Na 1.348 0.855 0.016 0.0017
K 2.180 1.712 0.277 0.0101
Rb 3.131 2.648 1.347 0.0163
Cs 4.049 3.575 2.471 0.0335

TABLE II. Splitting of the first-order termsTl ,0 due to fine
structure~from values compiled in@1#!.

p d f

H 1.33331025 4.4431026 2.2231026

Li 1.13331025 4.4231026

Na 0.0008174 21.4931025 2.1631026

K 0.0003054 20.00017
Rb 0.0130561 0.0016422 22.3131025

Cs 0.0325281 0.0091564 20.000149
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Most data will be presented as contour plots, with co
tours chosen to represent the dynamical range of any i
vidual graph best. For rapid comparison, a gray scale
added that scales withuVu, and is common to all graphs. Th
approximate magnitudes of matrix elements~and thus the
transition rates! can therefore be compared easily betwe
the elements.

V. ACCURACY

The accuracy of the calculations could be determined
the following parameters: the accuracy of the potential us
the choice of the inner turning point, the quantum defe
used, the grid size, and computer accuracy. For calculat
involving only bound states, the grid size could be chos
arbitrarily, and convergence was found for a wide range
step sizes, the smallest size determined by the Pentium-b
computer used for the calculations. By verifying smoothn
over the threshold, the bound-free matrix elements w
similarly verified not to depend on the grid size. The dep
dence on model parameters was checked at one of the
sensitive points in the calculation: a Cooper minimum in
high-lying bound-bound Rydberg transitions. Figure 2 sho
the matrix elements between the Li 21s state and higher-
lying p states, normalized as in Eq.~22!. We have used the
exact Coulomb potential. The inaccuracies in the poten
are the position of the inner turning point and the quant
defect. The inner turning point dependence was checked
integrating the wave functions only over the outer range
the grid ~the wave functions are calculated inwards, and

FIG. 2. Li 21s-np relative dipole matrix elements, normalize
as in Eq.~22!. Markers show the positions of the individual 35p-
50p states, and a few higher-lying states. The three curves s
results for three quantum defect values of the 21s state: the middle
the correct one, and the other two deviating values.
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thus independent of the inner turning point!. The part of the
integral from 0.5 to 5 a.u. does not contribute to the mat
element. Integrating from 10 a.u.~far outside the two-
electron Li core! instead of starting from 0.5 a.u. changes t
position of the Cooper minimum by half ap-state interval. It
is therefore fair to claim insensitivity to this parameter.

The dependence on the quantum defect is shown in Fig
We have shifted the quantum defect of the Li 21s state by
1023 and observe a slight shift in the position of the Coop
minimum. The Cooper minimum shifts almost linearly wi
the quantum defect. Thep-state energy shifts 8.0 cm21 per
1023 quantum defect change in thes state, while thes-state
energy shifts 18.7 cm21 per 1023 quantum defect change i
the p state. In@43#, the quantum defects are given with a
accuracy in the 1025 range, so that the inaccuracies due
the quantum defects are small, too.

VI. HYDROGEN

We first present the matrix-elements of hydrogen, a
show the simple scaling of these matrix elements. Exact a
lytical formulas for these matrix elements exist, but are cu
bersome to evaluate@29#. We have selected some transition
and found that the relative difference between these e
formulas and our calculations was less than 1025. Our aim
therefore is to assess the accuracy of the much simpler s
classical matrix elements of Eqs.~10! and ~11! and to de-
scribe the deviations from these formulas.

Figures 3–5 show the matrix elements of transitions
tween several hydrogenic states. Figure 3, for exam
shows the transitions between hydrogens andp states. The
binding energy of thes states is represented by the horizon
axis, with markings for the bound states that are included
the calculations atop. Similarly, the vertical axis shows
p-state binding energy. The relative dipole matrix eleme
~see Sec. IV! are plotted as contours~which are chosen for
each figure! and gray shades~the same for all figures!.

The horizontal and vertical white spaces between the g
areas are the regions near the ionization thresholds of ts

w

FIG. 3. Hydrogens-p relative dipole matrix elements, norma
ized as in Eq.~22!. Diagonals showv5200 cm21. For the conver-
sion to cross sections, see Sec. VI.
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57 4539RYDBERG ATOMS IN FAR-INFRARED . . . . I. . . .
and p series. The grid size determined the closest state
the threshold. At the middle diagonal, the binding energies
thes and thep states are equal. This space marks the bou
ary between theD l 511 andD l 521 regions. The matrix
elements at this diagonal are best described by the size o
Rydberg orbit (̂ r &;v21). Equation~10! diverges, however
and we have discarded these points from the figures.

Two more diagonal lines are added to guide the eye:
upper diagonal shows theD l 511 transitions atv5200
cm21, where thep state has a higher binding energy than t
s state. Similarly, theD l 521 transitions atv5200 cm21

are shown by the lower diagonal.
Starting with thed-f transitions~Fig. 5!, we see that the

scaling with the ‘‘lowest-order approximation’’@32# in Eq.
~22! reduces the dynamic range of the graph from orders
magnitude of the unscaled matrix elements to less tha
factor of 2. TheD l 511 transitions are clearly favored, ove
theD l 521 transitions. The deviations scale mainly with t
transition frequency: the contours in Fig. 5 run almost pa
lel to the diagonals. At thev5200 cm21 diagonals, the
relative matrix elements are 1.3 for the higher and 0.7 for
lower diagonal. Higher-order semiclassical theory forl 3v
55400 cm21 @Eq. ~11! and Fig. 1# yields the same result.

For the upper-left corner,l 3v becomes so large tha
higher-order terms in the power expansion of Eq.~13! be-
come important. Taking only the first two terms forC1

~‘‘first-order approximation’’ from Ref.@32#! overestimates
the matrix elements.

For thep-d transitions~shown in Fig. 4!, the difference
between D l 511 and D l 521 transitions is less pro
nounced. According to the semiclassical theory the rela
matrix element at 200 cm21 ( l 3v51600 cm21 in Fig. 1!
should be 1.2 for the higher and 0.8 for the lower diagon
Although the 1.2 and 0.8 contours cross the 200 cm21 di-
agonals in Fig. 4, these seem no longer the best descrip

Higher-order correction is even less needed for thes-p
transitions~shown in Fig. 3!. In this range, the matrix ele
ments deviate less than 15% from Eq.~10! scaling canceled
by Eq. ~22!. Equation~11! and Fig. 1, however, do not de
scribe this deviation very well: The contours no longer r
parallel to the diagonals, and the deviations are thus de

FIG. 4. Hydrogenp-d relative dipole matrix elements.
to
f

d-

he

e

f
a

l-

e

e

l.

n.

n-

dent on both the energies of thes andp state.
The semiclassical approximations that are used for

~11! are best at these intermediate values ofl : For very low
l , deviations of the wave function near the core contribu
while for high l ( l;n) the radial and angular motion are n
longer independent. From Eq.~11! contours that run paralle
to the diagonals are expected, as the values within one g
only depend on the transition frequency. Comparing Fi
3–5 this trend is visible, and for higherl ~not shown! the
agreement is even better.

Finally, we have compared the presented results with
higher-order semiclassical theory of Eq.~11!. Far from the
diagonals, they agree within 2%. In the~lower-left! bound-
bound region of the figures, the combination of Eq.~10! and
Eq. ~11! overestimates the matrix elements. This deviation
due to the breakdown of Eq.~9! of neighboring states, a
discussed below Eq.~9!. In the~upper-right! free-free region
of the figures, two effects play a role: towards the diagon
the matrix elements increase and become less depende
l , as the regime where Eq.~14! holds is approached.

Upon inspection of Figs. 3–5, one can interpret the t
regimes for the dipole matrix elements in another way
well. Whenever Eq.~11! predicts large differences betwee
the D l 511 andD l 521 transitions, as for thed-f transi-
tions, the figure shows contours that are almost diagona
expected. For thes-p transitions, however, the contours b
come horizontal, and thehigher-l state mostly determines th
relative matrix element.

Example cross-section calculation

With the values from Figs. 3–5, the cross sections
ionization of any Rydberg state are readily evaluated, us
Eqs.~1!, ~5!, and~22!. We discuss as an example the ioniz
tion of the hydrogen 27s state with 50mm linearly polarized
light. From Fig. 3 the relative matrix element for the 27s
state~at 2150 cm21) to a p-continuum state at 50 cm21 is
found to be 1.10. We first multiply this with 0.4108, th
prefactor from the denominator of Eq.~22!, square the result
and multiply with the angular part of the dipole matrix el

FIG. 5. Hydrogend-f relative dipole matrix elements.
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4540 57J. H. HOOGENRAAD AND L. D. NOORDAM
ment for linearly polarized light as given by Eq.~5!: (1.10
30.4108)231/350.068. The frequency-dependent contrib
tions from the denominator of Eq.~22! are the binding en-
ergy of thes state,vn (2150 cm21), and the transition
frequencyv ~200 cm21). Because the final state is free, th
vn8 term should be set to 1. The frequency-dependent p
are squared, and the result is multiplied by the photon ene
to include thev term from Eq.~1!. After the conversion of
the frequencies to atomic units, this reads (300/219 3723/2

313(200/219 372)27/35627.5. The cross section in atom
units is therefore 0.096 0530.0683627.554.1. This is
equivalent to 4.13(5.291731029)251.15310216 cm2.
The conversion of radial matrix elements to a cross sec
was verified with the formulas from Ref.@44#.

VII. LITHIUM

Lithium has very interesting properties at the waveleng
under study. The quantum defects in Table I already g
some hints of these features. First of all, only thes states
have an appreciable quantum defect. As the quantum de
of the s states is almost a half, the wave functions of thes
states are shifted by almostp compared to the other serie
The s states’ wave functions mainly contain irregular Co
lomb functions, while the otherl states mainly contain regu
lar Coulomb functions. The dipole matrix elements betwe
s andp states reflect this particular configuration.

Two features dominate the relative matrix elements of
high-lying s-p transitions, as shown in Fig. 6: The larg
difference between theD l 511 and theD l 521 transition
matrix elements, and the zero in the matrix elements in
D l 511 region. The wavelength of this Cooper minimu
changes with the binding energy, as will be discussed in S
X. To assess the sensitivity of the Cooper minimum on
fine structure, we have changed the quantum defect of thp
state with a full fine structure difference in both direction
and observed no difference to the results on the scale in
6. Fors states bound with less than2120 cm21, the Cooper
minimum exists inns-ep transitions, while for deeper boun
s states the Cooper minimum appears in the transition
boundp states. The zero crossing is the continuation of
minimum in the cross sections starting from lowern: Matrix

FIG. 6. Lithium s-p relative dipole matrix elements.
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elements between the 2s ground state and the excitednp
states are much smaller than their hydrogenic equivale
The 2s-2p and 2s-3p transitions are most reduced, an
evaluation of the wave functions showed that the matrix
ements change sign between the 2p and 3p states@45#. Due
to these reduced matrix elements, the lifetimes of the lo
lying p states are orders of magnitude larger than those
equivalent states in other elements@18,46#: In contrast with
most atoms, thep states mainly decay tod states instead o
s states@18#.

Because of its abundance in stars, many of the stren
of transitions between low-lying (n<10) states are known
@47–49#. A careful inspection of these values and those fro
@18# reveals that minima in the oscillator strength exist f
thesen8s-np, n8,n transitions. Because of the small core
lithium, quantum defect theory agrees well with cross s
tions for low n that are obtained with more elaborate calc
lation methods@6#. Our calculations are in agreement wi
the tabulated values from@18#.

Table III summarizes these numerically calculated re
tive matrix elements for photoabsorption by states that
bound with2200 cm21 to states near the ionization thres
old. These values are compared with the results of two
mulas for free-free matrix elements. The first two pairs
columns contain the numerically calculated matrix eleme
and the result Eq.~15! divided by 0.4108, using the quantum
defects from Table I. Equation~15! shows, like the numeri-
cal calculations, a disparity of theD l 511 andD l 521 s-p
transitions. The values deviate strongly from the hydroge
values. In the last column, the cosine of the quantum de
difference is given: for free-free matrix elements the relat
matrix elements approach this value asv!E.

A plot for the p-d transitions~not shown! resembled the
hydrogenic results as shown in Fig. 4. As indicated by
values in Table III, the cross sections at the threshold de
ate little from the hydrogenic values of 1.2 and 0.8~cf. Fig.
4!. The analytical approximations do not reflect this Bet
rule behavior as expressed in Eq.~11!. The similarity of the
graphs for lithium and hydrogen indicates that the quant
defect difference is small enough to prefer Eq.~11! over Eq.
~15! for free-free transitions.

The other lithium transitions, involving higher-angula
momentum states, are indistinguishable from hydroge
due to the even smaller quantum defects.

VIII. RUBIDIUM

In this section we present the dipole matrix elements
the s-p, p-d, andd-f transitions in rubidium. We have cho
sen rubidium as the model the atom because of the availa
ity of experiments@14–16# and because the low-lying tran
sitions deviate strongly from hydrogen. The gene

TABLE III. Lithium: Relative dipole matrix elements for exci
tation of states at2200 cm21 to the threshold.

D l 511 D l 521 cosDl

Calculated Eq.~15! Calculated Eq.~15! Eq. ~14!

s-p 0.02 20.07 0.96 0.96 0.45
p-d 1.12 0.91 0.86 1.07 0.99
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57 4541RYDBERG ATOMS IN FAR-INFRARED . . . . I. . . .
observations found for rubidium are used in the brief d
scriptions of the other alkali-metal atoms in the next secti

Table IV presents some values of the relative matrix e
ments. A first observation is that up to thed-f transitions, the
dipole matrix elements do not obey the Bethe rule: In
bidium, D l 521 transitions are more likely thanD l 511
transitions. The results of theD l 521 transitions are reason
ably described by Eq.~15!, but theD l 511 transitions de-
viate strongly. The absolute values of theD l 511 transi-
tions are much smaller than 1, indicating that the
transitions are less likely than comparable hydrogenic tr
sitions. For higherl , the results are hydrogenic, and the pr
actors are well described by Eq.~11! ~Fig. 1!. Secondly, the
difference in quantum defects due to the fine structure s
ting ~1.3%! affects both the analytical and the numerical
sults for transitions withp states. In the remainder of thi
section, we present the wavelength dependence of the m
elements for the higher fine structure levels of thel states.
The values of the lower fine structure levels~not shown! are
well approximated by multiplying the values from the figur
with the ratios from Table IV.

Figure 7 shows the relative matrix elements for thes-p3/2
transitions. The contours of theD l 511 transitions deviate
most from those of hydrogen: First of all, the values a
negative. This indicates that a Cooper minimum exists
higher energy@25#. Secondly, the magnitude of the matr
elements decreases and the contours become more horiz
as thep-state energy increases. As discussed in Sec. X,

TABLE IV. Rubidium: Relative dipole matrix elements for ex
citation of states at2200 cm21 to the threshold.

D l 511 D l 521 cosDl

Calculated Eq.~15! Calculated Eq.~15! Eq. ~14!

s-p1/2 20.45 20.50 0.70 0.65 0.07
s-p3/2 20.49 20.54 0.66 0.61 0.03
p1/2-d 20.32 20.09 20.99 21.04 20.57
p3/2-d 20.37 20.14 21.00 21.06 20.60
d-f 20.38 20.01 20.92 21.00 20.51
f -g 1.36 0.97 0.62 1.03 1.00

FIG. 7. Rubidiums-p3/2 relative dipole matrix elements.
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Cooper minimum only depends on thep-state energy and
thus exhibits a horizontal contour. As the Cooper minimu
is approached for higher energies, the slopes of the cont
flatten similarly. The free-freeD l 511 matrix elements
change sign just before the middle diagonal, as indicated
the zero contour. This feature is also described in Sec
The matrix elements nearest to the diagonal are all posit

The D l 521 matrix elements are smaller than the co
parable hydrogenic ones. In theep-ns transitions, the rela-
tive matrix elements increase from 0.65 to 0.68 as the tr
sition frequency is increased. This is different from t
hydrogenic case, where, at higher energy, theD l 521 ma-
trix elements decrease~cf. Fig. 1!. The positive sign of the
D l 521 matrix elements in Fig. 7 shows that no Coop
minimum exists at very high energies.

The relative change of theD l 511 p-d transitions~Fig.
8! as a function of the transition frequency is much fas
than for hydrogen. Not visible on this scale, a Cooper mi
mum exists for the very high-lying, bound states: For
,n,70, the transitions fromnp to (n21)d and nd ~both
are D l 511 due to the quantum defects! have a positive
sign, while all other matrix elements are negative. For low
n, only thenp to (n21)d transitions have this opposite sign
while for highern the range extends, even though the tra
sition frequencies for the Cooper minimum decrease. Fig
8 shows the rapid increase in cross sections away from
Cooper minimum. The matrix elements for theD l 521 part
of the graph are somewhat higher than those of hydrogen~cf.
Fig. 8!, and are somewhat flatter. The relative matrix e
ments forv5200 cm21 are maximal near the threshold b
tween bound-free and bound-bound transitions. Forv;E,
the matrix elements decrease as the conditions for Eq.~14!
are met.

The d-f transitions shown in Fig. 9 resemble thep-d
transitions in many respects. The quantum defect differen
are in both cases approximately 1.3, resulting in similar a
lytical and the numerical values~Table IV!. Figure 9 shows
that the D l 521 transitions share the wavelength depe
dence, even though the values ford-f are close to 0.9 rathe
than 1. Again a maximum occurs just above the thresh
between bound-free and free-free transitions.

FIG. 8. Rubidiump3/2-d relative dipole matrix elements.
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4542 57J. H. HOOGENRAAD AND L. D. NOORDAM
The D l 511 d-f transitions again show a rapid increa
as the transition frequency increases. As for thep-d transi-
tions, this is due to a Cooper minimum near the diagon
This Cooper minimum, however, is at slightly higher phot
energy: Starting from the diagonal, the first three or fo
states have the positive sign. Figure 10 shows the trans
matrix elements for thebound-boundRb d-f transitions in
more detail. Forn;50, the Cooper minimum occurs at
photon energy of 6 cm21. The Cooper minimum slowly ap
proaches the diagonal for higher bound states.

IX. OTHER ALKALI-METAL ATOMS

In this section we present the relative dipole matrix e
ments for the excitation of Rydberg states to the ionizat
threshold with 50mm radiation. Whenever the dipole matr
elements are very small, the matrix elements around the
companying Cooper minimum are shown. Note that all th
alkali-metal atoms have a Cooper minimum in the cross s
tions for ion ization of theirns ground states@50#. These

FIG. 9. Rubidiumd-f relative dipole matrix elements.

FIG. 10. Rubidiumd-f relative dipole matrix elements for tran
sitions between very high-lying, bound states.
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ground-state Cooper minima are well studied both exp
mentally and theoretically@50,51#.

A. Sodium

The sodiums-p transitions are much like those of ru
bidium: A Cooper minimum, relatively high in the con
tinuum, changes the sign of theD l 511 transitions, and
causes them slowly to decrease. Neither the matrix elem
p-d nor thed-f transitions show remarkable features. Allp-
d transitions have negative, while alld-f transitions have
positive, matrix elements.~See Table V.!

B. Potassium

Potassium has, like the other alkali-metal atoms, ans
→p Cooper minimum far in the continuum. Thep-d transi-
tions, however, are more interesting: A Cooper minimum
the bound-free transitions for theD l 511 transitions ap-
pears near 300 cm21. Figure 11 shows the relative matri
elements, on a scale that is extended further into the c
tinuum than the other plots in this paper. The position
Cooper minimum depends strongly on the initial-state
ergy. The characteristic bend in the free-free regime is d
cussed in Sec. X. Thed-f transitions in potassium show n
particularities: All values are positive, and the values chan
smoothly.~See Table VI.!

C. Cesium

Cesium Rydberg transitions are studied by Lahiri a
Manson@25#. As cesium is the heaviest atom we study, t
fine structure splittings affect the matrix elements most
this atom.

TABLE V. Sodium: Relative dipole matrix elements for excita
tion of states at2200 cm21 to the threshold.

D l 511 D l 521 cosDl

Calculated Eq.~15! Calculated Eq.~15! Eq. ~14!

s-p 20.50 20.56 0.65 0.60 0.02
p-d 21.25 21.15 20.37 20.60 20.88
d-f 1.28 0.97 0.71 1.02 1.00

FIG. 11. Potassiump3/2-d relative dipole matrix elements.
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Table VII shows again some of the calculated matrix
ements. Like the other alkali-metal atoms, a Cooper m
mum in the continuum reduces the ionization cross sect
of the s-p transitions near the threshold. In the entire ran
of our calculations, thep-d dipole matrix elements are nega
tive and vary slowly. TheD l 521 matrix elements are
somewhat enhanced compared to hydrogen.

The d-f transitions, however, exhibit a Cooper minimu
~Fig. 12!. The d-f transitions exhibit multiple Coope
minima@25#. For the lower states, the positions of these C
per minima are difficult to calculate, and results obtained
different methods disagree@52#. Quantum defect theory
however, is appropriate for the highly excited states
study.

X. DISCUSSION

We discuss some of the features that are found in
calculations for the alkali-metal atoms. First of all, we d
tinguish two regimes. The dipole matrix elements are eit
well described by the Bethe rule formula Eq.~11!, or domi-
nated by other factors. These factors are either thatl is too
low for the semiclassical formula to apply@e.g., the Hs-p
transitions~Fig. 3!# or that strong deviations from the hydro
genic case exist, due to the difference quantum defects, a
the low-l alkali-metal states. If these other factors domina
the contours are flatter. In other words, the energy of
higher-l state mostly determines the relative matrix eleme
This can be understood as follows: The outer part of
bound wave function hardly contributes to the dipole mat

TABLE VII. Cesium: Relative dipole matrix elements for exc
tation of states at2200 cm21 to the threshold.

D l 511 D l 521 cosDl

Calculated Eq.~15! Calculated Eq.~15! Eq. ~14!

s-p1/2 20.39 20.44 0.75 0.70 0.13
s-p3/2 20.50 20.55 0.66 0.61 0.03
p1/2-d3/2 20.95 20.73 20.96 21.14 20.93
p3/2-d3/2 21.03 20.82 20.92 21.12 20.97
p3/2-d5/2 21.01 20.79 20.93 21.12 20.96
d3/2-f 20.09 20.39 0.78 0.75 0.18
d5/2-f 20.05 20.35 0.79 0.77 0.21
f -g 1.35 0.93 0.66 1.06 0.99

TABLE VI. Potassium: Relative dipole matrix elements for e
citation of states at2200 cm21 to the threshold.

D l 511 D l 521 cosDl

Calculated Eq.~15! Calculated Eq.~15! Eq. ~14!

s-p1/2 20.41 20.47 0.72 0.68 0.11
s-p3/2 20.43 20.48 0.72 0.67 0.10
p1/2-d 0.20 0.37 20.80 20.76 20.20
p3/2-d 0.19 0.36 20.80 20.77 20.21
d-f 0.63 0.24 0.95 1.10 0.67
f -g 1.37 0.98 0.60 1.02 1.00
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elements, as the continuum wave function oscillates m
rapidly than the bound state. The computed matrix elemen
therefore mainly determined at the small-r end point of the
integration of Eq.~4!. This end point is determined by th
inner turning point of the higher-l state. The energy of the
higher-l state is therefore most important for the matrix e
ments. The Rbs-p transitions~Fig. 7! clearly show this de-
pendence.

The exclusive dependence on the high-l -state energy does
not hold for smallv: If the local k vectors of both wave
functions become comparable, a larger range of the wave
function contributes to the matrix element. In that case, b
wave functions oscillate at approximately the same f
quency, and contributions from the remote area are imp
tant. At a Cooper minimum at smallv, contributions from
the range near the core and the remote wave function m
cancel each other. Upon changing the energy of one of
states, the other has to be shifted by approximately the s
amount to retain this cancellation. The position of the Co
per minimum therefore depends on thetransition frequency
rather than on the binding energy of either state. This beh
ior is found for the Rbd-f transitions~Fig. 10!, where the
Cooper minimum runs almost diagonally.

Finally, we want to discuss the ‘‘bend’’ in the Coope
minima in the free-free regime, as found in the Kp-d ~Fig.
11! and Csd-f ~Fig. 12! transitions. The shape can be u
derstood from the continuity of the matrix elements as
function of the initial- and final-state energy. For smallv,
the matrix elements are described by Eq.~14!. Near v;E
this must pass smoothly into the regime in which Eq.~15! is
valid. The bend of the Cooper minimum occurs in this tra
sition regime. Taking the example of the Kp-d transitions
~Table VI and Fig. 11! the matrix elements are positive ne
the diagonal in the free-free regime. AtE50, the zero con-
tour points a little away from the diagonal, near the h
angle of the diagonal, wherev;E. With the bend at a
p-state energy of 200 cm21, it connects to the bound-fre
Cooper minimum at the thresholdd-state energy of 500
cm21. The zero near the diagonal of the free-free Rbs-p
transitions~Fig. 7! is a remnant of a similar bend. We hav
calculated~not shown! the matrix elements of the low-lying

FIG. 12. Cesiumd5/2-f relative dipole matrix elements.
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s-p transitions in the alkali-metal atoms near their Coop
minima. The characteristic bend occurred in all these ca
lations.

The semiclassical formulas@Eqs.~14! and ~15!# also pre-
dict the existence of Cooper minima: It has been assum
@25# that all matrix elements should be positive for high e
ergies. Negative matrix elements therefore imply that a C
per minimum exists at higher free energy. We can now re
this rule, since we have numerically shown that Coo
minima exist whenever the sign is opposite to the resul
Eq. ~14!. When Eq.~15! and Eq.~14! yield opposite signs, a
Cooper minimum exists.
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