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Rydberg atoms in far-infrared radiation fields. 1. Dipole matrix elements of H, Li, and Rb
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The radial electric dipole moments of bound-bound, bound-free, and free-free transitions of highalying (
>15) Rydberg states and low-lying continuum statesc400 cm 1) are calculated for hydrogen and the
alkali-metal atoms. All dipole matrix elements for the transitions betweenr Ifsyp, d, andf) states of H, Li,
and Rb are presented. Results of similar calculations for the other alkali-metal &itan&, and Cs are
summarized. These numerical results, using quantum defect theory, are compared with semiclassical approxi-
mations. The dipole matrix elements cross zero at certain combinations of initial and final states. The matrix
elements at these so-called Cooper minima in Li, K, Rb, and Cs are presented in detail.
[S1050-294{@8)09605-X

PACS numbd(s): 32.80.Rm, 32.70.Cs, 32.30.Bv

I. INTRODUCTION changes if the initial state is an excited stp?d—26. Ex-
tending the range daf for the calculations, we found a num-
Radiative transitions in Rydberg atoms are governed byer of Cooper minima in the high-Rydberg transitions of the
the dipole matrix elements between high-lying stafigsDi- alkali-metal atomg13]. The Cooper minima are not repro-
pole matrix elements between these states play an importadticed in the most used analytical approximatif2ig§ and a
role in many experiments: Transitions can be induced byull numerical treatment of the problem is required.
collisions with charged particlg2—4], radiative recombina- In this paper we first introduce the main methods of cal-
tion [5,6], irradiation with blackbody radiatiofv—10], or by ~ culation. We start with the separation of the wave function
laser light[11,12. The advent of tunable and intense far- into angular and radial parts. The angular parts and their
infrared free-electron lasers opened a new class of laseprefactors to the matrix elements are known, so that the re-
driven Rydberg-state experimenifs3]. For a proper descrip- mainder of the paper focuses on the radial parts of the wave
tion of experiments on Rydberg atoms in far-infraredfunctions. The numerical results for the radial matrix ele-
radiation fieldd 14—16, there is a need for the dipole matrix ments are compared with semiclassical matrix elements of
elements between Rydberg states. These matrix elemertydrogen. Section Il describes the semiclassical approxima-

were so far not studied in this frequency range. tion, and the derived matrix elements. The computer code to
We have set out to calculate dipole matrix elements ofvaluate the matrix elements numerically is described in Sec.
bound-bound, bound-free, and free-free transitiongigh-  Ill. In short, we calculate radial wave functions with a Nu-

lying (n>15) Rydberg states and low-lying continuum statesmerov code, using quantum defect theory, and evaluate the
(e<400 cm'!) of the alkali-metal atoms, and tabulate the matrix elements from these wave functions. In Secs. VI-IX,
results. We present all the lolvdipole-allowed radiative we present the calculations for a few elements: hydrogen,
transitions between 20 and 500 ¢h (20 to 500um) for lithium, rubidium, and some transitions in potassium and ce-
hydrogen, lithium, and rubidium, and other alkali-metal at-Sium. For hydrogen, the semiclassical formulas agree with
oms. Due to core interaction, the matrix elements of thewmerical calculationf27,28. We present the results of our
alkali-metal atoms often deviate from hydrogenic approxi-calculations for hydrogen as a reference to compare the re-
mations. The dipole matrix elements can either vanish or béults of the alkali-metal atoms. For lithium, tisep transi-
enhanced, with sum rules only determining to&al photo-  tions differ largely from the hydrogenic values: in the range
absorption cross sectig 7]. Matrix elements for the transi- of our calculations, a Rydberg bound-bound Cooper mini-
tions betweenower Rydberg statesn<15) and from these mum occurs. We have chosen rubidium as a model alkali-
states into the continuum have intensively been studiethetal atom. We present the matrix elements of all low-
[18,19. transitions in Sec. VIII. Even though we have performed the
Dipole matrix elements for photoabsorption can crosscalculations for all alkali-metal elements up to cesium, we
zero as a function of the final-state energy. The photoabsorgnly present the data for these elements to where anomal
tion rate, proportional to the square of the dipole matrix el-behavior such as Cooper minima are found in the range of
ement, vanishes at such a zero crossing, known as the Co@ur calculations. Section X, finally, discusses some of the
per minimum [20]. Similar minima are found in the phenomena found in the calculations.
photoexcitation of Rydberg states from the ground state of
molecules[21-23. The position of a Cooper minimum Il ANALYTICAL RESULTS
In the low-intensity limit, processes involving interaction
*Present address: Philips Research Laboratories, Box WB-2Wwith a single photon can be assigned a cross section. Within
Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands. the rotating wave approximation, the cross section for photo-
TAuthor to whom correspondence should be addressed. ionization is in atomic units,
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crw=4/3472aw|(u1|2|u2>|254/3a72aw| D[, (1) ti(_)ns_as a ref_erer_1ce throughout the paper. We therefore start
with introducing its background by briefly repeating the el-

with w the energy of the photonsg; the fine structure con- €gant derivation by Delonet al. [27].

stant,z the direction of polarization of the electromagnetic It .fOHOWS from the correspondence principle that dlpole_
field, u, andu, unperturbed wave functions, amithe di- matrix elements equal the Fourier component at the transi-

pole matrix element tion frequencyw of the classical radial coordinatét) of the

The potential of any single-electron atom is sphericallyRydberg electron along its Kepler orbit:
symmetric, and therefore the wave functiomscan be di- 1 (T
vided into a radial parR,(r) and an angular pai,( 6, ¢) (n’|r|n)=ff r(t)cos wtdt. (6)
0

u:Rn|(r)Y|m(01¢)r (2)
The integration needs only be performed over one period
(I-mt2l+1_ mé (T=2mn%) of the classical orbiting time. For transitions be-
Yim(6,¢)= "\ aT+m! (4mn) Pii(cos)e™”.  (3)  tween near-lying states, the transition frequency can be ex-
pressed a®=(n’—n)/n3. In the half of the orbit where the
The calculation ofu,|z|u,) can also be factored into a ra- electron moves away from the core, the trajectory of an elec-
dial and an angular part. The latter is calculated analyticallytron on an outgoing=0 orbit can be written as
independent of the shape of the potential. Using the radial

wave functions, the radial part of the dipole matrix element 1 o3
is expressed as r(t)=5 (60 (7)

|

n

R 22— R
nyly 0 ny

The angular parts of the matrix elememsgyive, for lin-
early polarized light, rise to the well known selection rules
A,=1,—1,=*x1. The change of the magnetic quantum num-
ber m depends on the angle of the polarization of the light

1(r)ar2 ,2(r)dr. (4) Note that in this equation is absent: The orbiting times of
highern states increase @8, while the outer turning points
(the maximal value of) scale am?. Substituting the half-
orbit time in Eq.(7) yields the correch dependence of the
outer turning point. By substituting Eq7) into Eq. (6), the
matrix element is

and the quantization axis of the atom. If both axes coincide, 23

. . . o . W(n’*n)
mis conserved, while in other cases also transitions occur in (n'|r|ny= Ssj $2° cos pd . @)
which m changes by plus or minus one. Tw>Jo

For coinciding axes, the angular part of the dipole matrix

element can be expressed[a3] Asn’—nis an integer, the integral takes values between 0.5
and 1. The integral converges slowly to its asymptotic value

. - / (1+1)2—m? "N o0):
(I+lm|z||m>=(|m|z|l+lm)= m (n n )

(5) 62/3F(§) o
. : . . n'[rin)~ ——=—=—+5.
The calculation of the radial part of the matrix elements is (n’[r[n) 2m3n3w"R ©
more complicated. For hydrogen, exact analytical solutions

for Ry (r) in terms of hypergeometric functions are known The two main characteristics of matrix elements between
[29]. These functions, however, converge slowly for thegyqpherg states are present in this formula. First, the matrix
highly excited states. _ _ _ _elements are normalized to the density of states3], so

In the remainder of this section, we first describe approxithat an integral over an interval of the spectrum is normal-
mations of the radial part of the hydrogenic matrix elementyzeq. Secondly, the matrix elements depend on the transition
that can be made in various limiting cases. Differences Of‘requency aso % Transitions between nearby-lying states
other elements with hydrogen can be modeled with a singlge favored over high-frequency transitions. The validity of
parameter, the quantum defect, as described in Sec. I g. (9) breaks down for transitions between neighboring

This does not yield simple semiclassical results for matrixiaies: No matrix elemer(n’|r|n) can be larger than the

elements involving a bound state. The matrix elements begiar turning point (22) of the lower state, while Eq(9)

tween two continuum states can be derived semmlasmallynas no upper bound. This limitation is only of importance for

even for nonhydrogenic atoms. We give these free-free Magiatas within one manifold: Eq.(9) yields already a smaller
trix elements in Sec. Il C. The results of that section are useg lue of 0.41082 for n—n+1 transitions p=n"3).

in the remainder of the paper as a reference for the calculate

. Equation (9) can be generalized further to remove the
matrix elements.

asymmetry of exchanging the initinland finaln’. We have
_ _ reformulated the results of Goreslaviski al. [30] in terms
A. Analytical matrix elements for H of the binding energies of the stateg, (=1/2n?) and o,

Dipole matrix elements between loosely bound states ofnd the exact transition frequenay=|w, — wy|:
hydrogen can be approximated semiclassically with high ac-
curacy. We use the results of the simplest of these calcula- (n'[r|ny=~C(—2wn ) ¥ — 20,) %4053 (10
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C. andC_ have the same value foy=0, which is the
same as we derived for the=0 dipole matrix elements.
Normalized to this value, the two series expansions corre-
spond to the values in Fig. 1. The functions start symmetri-
cally from y=0. After the initial increaseC, will also de-
crease as a function of: Matrix elements for higher-
angular-momentum states are smaller than those for lower-
angular-momentum states.

The first term in Eq.(13) for the Al=+1 transitions
agrees with recent analytical calculatio[®2]. Reference
[32], however, neither includes higher-order terms, nor de-
scribes theAl = —1 transitions.

0 1000 2000 3000 4000 5000 6000

Photon Energy * I (cm™)
B. Quantum-defect theory for nonhydrogenic atoms

Quantum-defect theoryQDT) [33,34] is a generalization
of the hydrogenic methods. QDT wave functions of excited
states are calculated in the Coulomb potentiaklaérgies

Again, the formula consists of three parts: The densities ofl€términed from experimental data. At large distances, the
states in the Rydberg series at statesnd n’, a general exact potential is indistinguishable from a Coulomb poten-

frequency dependence, and a prefa@er0.4108. tial. Most of the wave functipn of highly excitgd, and high-
For transitions between states with angular momenitum angular-momentum states, is at these large distances so that

#0, Eq.(10) does not hold. The prefact, however, can QDT provides an excellent description. In QDT, deviations
be ’replaced by a frequency- and ar,lgular-m0|:r1entumtr°m hydrogenic eigenenergies are described with a change

dependent function. Inspired by Bersi@1] we have rewrit- in effective quantum number: The energy levels are thus de-

. 2 .
ten the prefactor for low angular momenta and transitiorfin€d to be W/2(n—x)7], with 4, the quantum defect. For
frequencies fronf30]; high n, u, is constant, but decreases with angular quantum

number, as the centrifugal barrier reduces core penetration.
Analytical methods for calculation of hydrogenic wave

FIG. 1. Relative dipole matrix element€, (x)/C(0) and
C_(x)/C(0), calculated by the analytical formula E¢ll) as a
function of I3w.

C.() =X Y 7K x) £ Ks(x)], (11 . ! oo Y
functions and matrix elements can in principle be used for
with QDT: Both thef- and theg-wave functions can be expressed
in Bessel functions, andsomewhat cumbersomexpres-
XZI?naxw/& (12) sions for the dipole matrix elements are fouf®b]. The

matrix elements are nearly hydrogenic whenever the quan-
In Eq. (11), the deviations are expressed in Begégbr ~ tum defects are small. In that case Et0) and Eq.(11) can
McDonalds functions. The higher of the angular momenta of® Useéd. The matrix elements strongly deviate from(EQ)
the two states is labeletl,,.. The + sign applies toAl as a function of the quantum def_ect. Even E8). has this
—+1 transitions in which the angular momentum of theProPerty: Atn+1/2, the integral yields near-zero values. If
higher-lying state is one unit more than the angular momenMatrix elements are expanded in a series in the difference in
tum of the lower state. Figure 1 shov@, (13w) and the f[he effective quantum numbql*_of the states, this perlodlc—
correspondingC_(13w) function. At 4387 cmi'?, x is only ity becomes clear: The coefficients can be described as An-
0.02 a.u., and the requirement of smidis for Eq. (12) is ger functiong 28]. Values of these functions are tabulated for

satisfied in the whole range of the figure. The prefactor reAN” <> in Ref.[36]. The matrix elements depend critically
flects the Bethe rule: Transitions in which both the angula©” the evaluation of these functions. For larger differences

R X e
momentum and the energy are increased are more likely thafﬁ” , the functions become difficult to evaluate. Therefore

those in which the angular momentum changes in the oppd”® have chosen to generate the wave functions numerically,

site direction. The difference becomes more pronouncdd as2"d calculate dipole matrix elements from them.
increases: the highér the more the orbit resembles the clas-
sical Kepler orbit. Forl=m Kepler orbits, only theAl
=+1 transitions are classically allowed, as reflected in the wjithin quantum-defect theory, one can derive matrix el-
higher matrix elements for these transitions for higheAs  ements between two continuum states. The quantum defect is
Eq.(11) is only valid for low angular momenta and transition then interpreted as the phase shift that the wave function
frequencies, we expand it in powers pf undergoes in scattering with the core. The hydrogenic con-
tinuum wave functions can be phase shifted to represent
quantum defect wave functions of alkali-metal atoms. The
scattering amplitudes depend on the difference in quantum
defects of the two state&;= 7(u;— ), wherel’<l , so

that A, is positive. In this section, we present matrix ele-
ments for three regimes of the transition frequencselative

to the average energy of the free states;3(e+¢€').

C. Matrix elements of continuum states

C(0)=(4/3)*3/T(1/3)~0.4108,

C,/C(0)=1+1.5703—1.5¢—1.177%*3+ O(x?),
(13

C_/C(0)=1—1.570*3+1.5¢y—1.177%*3+ O(x?).
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Whenevero<E, free-free matrix elements increase rap-the results do not depend on this cutoff. The resulting wave
idly when the energy difference of the two states reducesfunctions are normalized afterwards.
For low |, the free-free matrix elements can be expressed as

(37,39 B. Continuum wave functions
2E For continuum wave functions, the outer boundary condi-
(e'l"|r|ely= mcosm . (14)  tion cannot as easily be used as a starting value. To generate

continuum wave functions, we used the method of Spencer
freef i el imil et al. [40]. First, a hydrogenic wave function is calculated,

For w.>E’ ree-iree matrix e gment_s becpme similar to starting from the core. If the wave function has a nonzero
the semiclassical formula. E_quatuﬁ]hO) is easily continued . quantum defect, the phase of this hydrogenic solution is de-
over the threshold by replacing the prefactors for the dens't¥ermined alR The wave function is phase shifted hy

: max-*
of states_wnh 1 for any free staf80]. Dgloneet al. [37] . times the quantum defect. This phase, and the amplitude
have derived that the quantum defect difference can be "Tgiven by the normalization/2/m(2E)~¥4], provide the ini-
cluded, so that the complete formula reads tial conditions for the same inward integration as for the
bound wave functions.

(e'l"|r|ely=—=zCoq A, * 7/6). (15)
w C. Choice of grid

The sign in this expression depends on the sign of the mo- The calculation of wave functions is performed on a grid
mentum changeAl = + 1 transitions have the sign. Equa- of radial coordinates. Ideally, the number of grid points is
tion (15) agrees with Eq(10) whenA,< /6. Equation(15), adapted to the distance between the nodes of the wave func-
however, does not reflect the Bethe rule, and when the quai{on- However, the behavior of the wave function dictates
tum defect differences are small, EG.1) yields better re- different grids in two spatial regions: Near the core, where
sults. the energy is mainly determined by the core potential, a loga-

The transition from the regime where Ed.4) holds to rithmic grid serves this goal beg39], while for continuum
the regime where Eq(15) is valid, at w~E, can be de- states far away, the distance between the nodes is nearly
scribed by a complicated formu[a;’? 3g. The onset of Eq. constant, and a linear grid is preferred. A fair solution is to

(14) for low transition frequencies is analogous to the breakalculate the wave function on blocks of linear grid, with
down of Eq.(9) for n—n+1 bound-bound transitions. increasing density of points when approaching the {24
Another approach is a grid that slowly changes from loga-

rithmic to linear[19,41]: x= ar + Blnr, with r the grid index.
IIl. ALGORITHMS We have chosen a grid which consists of a logarithmic part
We have numerically calculated quantum defect waverear the core, and_a Iinear_ part far away. This grid is set up
functions and evaluated dipole matrix elements for combinaP€fore the calculation and is equal for all states.
tions of states. This section describes the principles of the The lowest continuum statéat E)) determines the
computer program. maximal radius on the_ grld._AII continuum wave functions
For bound states, we follow a standard procedure, wher® calculated up to this radius
the quantum defect is introduced by shifting the energy at R —7F. JE.. (16)
which the wave function is calculated in a Coulomb poten- max end’ =min-
tial. For continuum states, the quantum defect must be in- . . .
cluded by phase shifting the we?ve function, as described ir%’.th.e c_harge of the core, is 1 .am“d is typically 20. The_ .
Sec. Il B. All wave functions in one run are calculated atgrld indices are generated by either of these two expressions:
radial coordinates on the same grid. The choice of the grid is
explained in Sec. Il C. After the calculation of the wave
functions, the dipole matrix elements are calculated using the ) ] )
algorithms presented in Sec. Il D. Finally, we tabulate the rli—1]=rli]+ S linear. (18)
guantum defects in Sec. Il E.

r[i—1]=r[i]A logarithmic, 17)

The logarithmic part of the grid is determined by the fixed
parameteA (typically €%%%3. The most rapid oscillations of
the wave function on the linear grid occur near the matching

For bound-bound transitions, we used a standard Nupoint with the logarithmic grid. The linear step size is chosen
merov integratiof39] to generate the radial wave functions: such that a minimal number of points per nodé,f,, typi-
Wave functions are calculated by integrating inwards fromcally 20) at the matching point is guaranteed for the highest
just outside the outer turning point(r=[—1  energyE,,, Of any continuum state in the calculation. The
—V1+1lw,l(I+1)]/2w,) [18]. In the classically forbidden linear and logarithmic grid spacings determine the point
region, the physical wave function increases exponentiallyvhere the logarithmic step size equals the linear step size.
while integrating inwards and small components of the ex-The grid is set up from that point, so that the first linear step
ponentially decreasing other solution damp out. The integrais also a valid logarithmic stefR,.x and S;, determine the
tion is stopped at 90% of the inner turning point=[ —1 number of grid points in the linear part of the grid. The
+ V142w, (I +1)])/2w,), or whenever the wave function remaining part of the total buffer of 60 000 points is used for
starts to increase again near the core. We have verified thtfte logarithmic part.

A. Bound wave functions
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The wave functions were rewritten into Numerov form by ~ TABLE I. First-order termsT, 4 to the quantum defects of the

transforming the wave functions by alkali-metal atoms, averaged over the fine-structure levetsn
[43)).
y[i1=R[i]\Vr=p/\r logarithmic, (19)

S p d f
y[i]=R[i]=p/r linear. (20 Li 0.399 0.047 0.002 0.0003
In the linear regime, the solved differential equation is just Ea zl'fgg f?f; 8'20715 g'(?fél?
the Schrdinger equation, while a transformatif@@] is used Rb 3'131 2' 645 1'347 60163

in the logarithmic regime. 4' 4 ' 7 2'471 '
For integrating bound states inwards, the initial condition Cs 049 3.575 ' 0.0335

of the wave function corresponds to an increasing exponeri-
tial. The outward integration of hydrogenic free states always
starts on the logarithmic grid. We use the expansion offthe
functions forr—0 and Eq.(20) and start the buffer with
yli]=y[i+1]Al+09),

The first-order terms to the quantum defects, which domi-
nate for highn, are listed in Table I. As the size of the core
increases for the heavier elements, the quantum defect in-
creases. The fractional part of the quantum defect is the most
important. An increase of the quantum defect with an integer
merely changes the effective but does not affect the rela-

The integral in Eq.(4) is evaluated using the generated tive phase of the wave functions.
wave functions. The multiplications are performed before Quantum defects can also be used to parametrize the fine
Simpson’s rule is used for the integration. In the integrationstructure splitting. A small change in the first-order quantum
of the logarithmic partr is used as the additional Jacobian defect termr, ; causes an energy shift for Rydberg states that
factor, and the result is divided by the logarithm of the stepscales withn*?, in agreement with the splitting scaling with
size AX. the overlap with the corgl].

For the free-free matrix elements, E@) involves inte- The quantum-defect parameters in Table | are the aver-
grating a rapidly oscillating and diverging functionmfThe  age of the two fine-structure levels. Table II shows the dif-
contributions from this region, where the potential is negli-ferences in quantum defects of the fine-structure levels of the
gible compared to the energy of the state, must integrate talkali-metal atoms, and the corresponding parameter for hy-
zero. The wave functions can be truncated to the region nedlrogen. We encounter the influence of the fine-structure
the core by applying a filter function that depends on thesplitting on the matrix elements for the heavier alkali-metal
local wave vector{42]. First, the integrant of Eq(4) is  atoms.
mapped onto a linear grid with step si3g, for the entirer

range. Then, two digital filters are applied, with zeros at the |v. NORMALIZATION OF THE PRESENTED MATRIX

D. Matrix element calculation

asymptotic sum and difference of the wave vectors. Two ELEMENTS
three-point digital filters are applied six times, to damp the ) ) )
oscillations far away from the cof@?2]. Unfortunately, this In the remainder of this paper, we present all matrix ele-

reduced the usable range finby the size of the filter func- MeNts as a fraction of the simplest semiclassi.cal formula, Eq.
tions. This size(~ 18X [1/(k, + k) +|1/(k;—k»)|]) sets the (10) with C=0.4108. The tabulated values will therefore be
lower-energy limit on transitions we could integrate accu-
rately. V= (n'[r|n)carc
We verified the algorithms by comparing the results with T 0.4108 —2w,) ¥ (—2w,) 0
calculations that only included bound states. A completely
logarithmic grid was used in those calculations, so that probwe present matrix elements for transitions wishvarying a
lems with the matching of the grids, the quantum defectactor 20. The details of the matrix element sizes had been
shifting, and the filtered matrix element calculations could benvisible in the variations ofw, if the unscaled matrix ele-
verified by requiring continuity over the ionization threshold. ments would have been given. For continuum initial and fi-
nal states, the< 2w, /)% factors are set to 1. Due to this
E. Quantum-defect extrapolation choice,V passes smoothly over the ionization threshold.

Even though quantum defects change little as a function TABLE IL. St ¢ the fi q T g f.
of n, agreement with the binding energies of very low-lying - Splitting of the first-order termsT, o due to fine
. - . . . tructure(from values compiled ifl]).
states can be achieved with an interpolating polynomial, for
which coefficients are tabulatdd3]. We have extrapolated

(22

the same polynomial over the ionization threshold to obtain P d f
the quantum defects in the continuum: H 1.333x10°° 4.44x10°8 2.22x10°®
Li 1.133x10°° 4.42<10°©
w(Eg) = (—2Eo)FT, . 1) Na 0.0008174  —1.49x10°° 2.16<10°°
k K 0.0003054 —0.00017
Rb 0.0130561 0.0016422 —-2.31x10°°
For bound states, the initial value for the energy¥ign,l) Cs 0.0325281 0.0091564 —0.000149

=—3(n=Tj o 2
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FIG. 3. Hydrogers-p relative dipole matrix elements, normal-
-0.015 ized as in Eq(22). Diagonals shows =200 cm L. For the conver-
. . . . . sion to cross sections, see Sec. VI.

90 -80 -70 -60 -50 -40 -30 ) i _ _
thus independent of the inner turning pointhe part of the
p-state Energy (cm'l) integral from 0.5 t.o 5 a.u. does not contribgte to the matrix
element. Integrating from 10 a.ufar outside the two-
FIG. 2. Li 21s-np relative dipole matrix elements, normalized €lectron Li corg¢instead of starting from 0.5 a.u. changes the
as in Eq.(22). Markers show the positions of the individual@®5  position of the Cooper minimum by half@state interval. It
50p states, and a few higher-lying states. The three curves shoig therefore fair to claim insensitivity to this parameter.
results for three quantum defect values of the &thte: the middle The dependence on the quantum defect is shown in Fig. 2:
the correct one, and the other two deviating values. We have shifted the quantum defect of the Ls2ktate by
103 and observe a slight shift in the position of the Cooper
Most data will be presented as contour plots, with con-minimum. The Cooper minimum shifts almost linearly with
tours chosen to represent the dynamical range of any indthe quantum defect. The-state energy shifts 8.0 cnt per
vidual graph best. For rapid comparison, a gray scale id0 2 quantum defect change in tisestate, while thes-state
added that scales wiflv|, and is common to all graphs. The energy shifts 18.7 cm?® per 10 3 quantum defect change in
approximate magnitudes of matrix elemerigsd thus the the p state. In[43], the quantum defects are given with an
transition rates can therefore be compared easily betweenaccuracy in the 10° range, so that the inaccuracies due to
the elements. the quantum defects are small, too.

V. ACCURACY VI. HYDROGEN

The accuracy of the calculations could be determined by We first present the matrix-elements of hydrogen, and
the following parameters: the accuracy of the potential usedshow the simple scaling of these matrix elements. Exact ana-
the choice of the inner turning point, the quantum defectdytical formulas for these matrix elements exist, but are cum-
used, the grid size, and computer accuracy. For calculatiorigersome to evaluaf®9]. We have selected some transitions,
involving only bound states, the grid size could be choseraind found that the relative difference between these exact
arbitrarily, and convergence was found for a wide range oformulas and our calculations was less thanm 200ur aim
step sizes, the smallest size determined by the Pentium-bastiterefore is to assess the accuracy of the much simpler semi-
computer used for the calculations. By verifying smoothnesslassical matrix elements of Eq&l0) and (11) and to de-
over the threshold, the bound-free matrix elements werscribe the deviations from these formulas.
similarly verified not to depend on the grid size. The depen- Figures 3-5 show the matrix elements of transitions be-
dence on model parameters was checked at one of the mdgteen several hydrogenic states. Figure 3, for example,
sensitive points in the calculation: a Cooper minimum in theshows the transitions between hydrogeandp states. The
high-lying bound-bound Rydberg transitions. Figure 2 showsinding energy of the states is represented by the horizontal
the matrix elements between the Li<&tate and higher- axis, with markings for the bound states that are included in
lying p states, normalized as in ER2). We have used the the calculations atop. Similarly, the vertical axis shows the
exact Coulomb potential. The inaccuracies in the potentiap-state binding energy. The relative dipole matrix elements
are the position of the inner turning point and the quantun(see Sec. IY are plotted as contoursvhich are chosen for
defect. The inner turning point dependence was checked bgach figurg and gray shade@he same for all figurgs
integrating the wave functions only over the outer range of The horizontal and vertical white spaces between the gray
the grid (the wave functions are calculated inwards, and areareas are the regions near the ionization thresholds of the
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FIG. 4. Hydrogerp-d relative dipole matrix elements. FIG. 5. Hydrogend-f relative dipole matrix elements.

and p series. The grid size determined the closest states t .
the threshold. At the middle diagonal, the binding energies o ent on bOth the energies of.tlsea_nd p state.
thes and thep states are equal. This space marks the bound- 1he semiclassical approximations that are used for Eq.
ary between the\l = +1 andAl=—1 regions. The matrix (11 are _best at these mtermed.late values:dfor very onv
elements at this diagonal are best described by the size of the deviations of the wave function near the core contribute,
Rydberg orbit (r)~ ). Equation(10) diverges, however, while for highl (I~n) the radial and angular motion are no
and we have discarded these points from the figures. longer independent. From E@L1) contours that run parallel
Two more diagonal lines are added to guide the eye: Thé& the diagonals are expected, as the values within one graph
upper diagonal shows thAl=+1 transitions atw=200 only depend on the transition frequency. Comparing Figs.

cm~L, where thep state has a higher binding energy than the3—5 this tre_nd is visible, and for highér(not shown the
-1  agreement is even better.

s state. Similarly, theAl = —1 transitions atw=200 cm . .
Finally, we have compared the presented results with the

are shown by the lower diagonal. ) g )
higher-order semiclassical theory of Ed.1). Far from the

Starting with thed-f transitions(Fig. 5), we see that the " al
scaling with the “lowest-order approximation{32] in Eq.  diagonals, they agree within 2%. In tilewer-lef) bound-

(22) reduces the dynamic range of the graph from orders ofound region of the figures, the combination of Etp) and
magnitude of the unscaled matrix elements to less than Ed. (11) overestimates the matrix elements. This deviation is

factor of 2. TheAl = + 1 transitions are clearly favored, over dué to the breakdown of Ed9) of neighboring states, as
theAl = —1 transitions. The deviations scale mainly with the discussed below E9). In the (upper-righi free-free region

transition frequency: the contours in Fig. 5 run almost paral®f the figures, two effects play a role: towards the diagonal,

lel to the diagonals. At thee=200 cm ! diagonals, the the matrix elements increase and become less dependent on

relative matrix elements are 1.3 for the higher and 0.7 for thé» @S the regime where E¢L4) holds is approached.

lower diagonal. Higher-order semiclassical theory e Upon inspection of Figs. 3-5, one can interpret the two

=5400 cm * [Eq. (11) and Fig. 1 yields the same result.  '€9imes for the dipole matrix elements in another way as
For the upper-left cornerlw becomes so large that well. Whenever Eq(11) pred|ct_s_ large differences betvv_een

higher-order terms in the power expansion of Ftg) be- the Al=+1 andAl=—1 transitions, as for thd-f transi-

come important. Taking only the first two terms far, tions, the figure shows contours that are almost diagonal, as

(“first-order approximation” from Ref[32]) overestimates expected._ For the-p tran_sitions, however, the contours be-
the matrix elements. come horizontal, and theigher-I state mostly determines the

For thep-d transitions(shown in Fig. 4, the difference ¢lative matrix element.
between Al=+1 and Al=-1 transitions is less pro-
nounced. According to the semiclassical theory the relative
matrix element at 200 cm' (I13w=1600 cm ! in Fig. 1)
should be 1.2 for the higher and 0.8 for the lower diagonal. With the values from Figs. 3-5, the cross sections for
Although the 1.2 and 0.8 contours cross the 200 ¢nli- ionization of any Rydberg state are readily evaluated, using
agonals in Fig. 4, these seem no longer the best descriptiofgs.(1), (5), and(22). We discuss as an example the ioniza-

Higher-order correction is even less needed for shg  tion of the hydrogen 2¥state with 50um linearly polarized
transitions(shown in Fig. 3. In this range, the matrix ele- light. From Fig. 3 the relative matrix element for thes27
ments deviate less than 15% from Efj0) scaling canceled state(at — 150 cm ) to ap-continuum state at 50 cit is
by Eq. (22). Equation(11) and Fig. 1, however, do not de- found to be 1.10. We first multiply this with 0.4108, the
scribe this deviation very well: The contours no longer runprefactor from the denominator of EQ2), square the result,
parallel to the diagonals, and the deviations are thus depemnd multiply with the angular part of the dipole matrix ele-

Example cross-section calculation
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= - T —_8'1288 tation of states at-200 cm * to the threshold.
T ——-—0:050

g 8 3 TABLE lll. Lithium: Relative dipole matrix elements for exci-
|

400 -

#0000 Al=+1 Al=-1 cos\,
{\ L ——+0.100 Calculated Eq(15 Calculated Eq(15 Egq.(14)
£ 200} | —+0.200
S e sp 0.02 ~0.07 0.96 0.96 0.45
- 7 e +0.960 p-d 1.12 0.91 0.86 1.07 0.99
o —+1.000
L% or 70p
35 .
f'g I P elements between thesyround state and the excitath
+ 200 | 42 states are much smaller than their hydrogenic equivalents.
L I 20p The 2s-2p and X-3p transitions are most reduced, and

evaluation of the wave functions showed that the matrix el-
ements change sign between the @hd 3 stateq45]. Due
S u———— to these reduced matrix elements, the lifetimes of the low-
—-400 —-200 0 200 400 . .

lying p states are orders of magnitude larger than those of
equivalent states in other elemenis,46: In contrast with
most atoms, the states mainly decay td states instead of
s stateq18].
ment for linearly polarized light as given by E¢p): (1.10 Because of its abundance in stars, many of the strengths
% 0.4108f x 1/3=0.068. The frequency-dependent contribu-of transitions between low-lyingns10) states are known
tions from the denominator of E422) are the binding en- [47-49. A careful inspection of these values and those from
ergy of thes state,w, (—150 cm ), and the transition [18] reveals that minima in the oscillator strength exist for
frequencyw (200 cm™1). Because the final state is free, the thesen’s-np, n’ <n transitions. Because of the small core of
wy, term should be set to 1. The frequency-dependent partithium, quantum defect theory agrees well with cross sec-
are squared, and the result is multiplied by the photon energtjons for low n that are obtained with more elaborate calcu-
to include thew term from Eq.(1). After the conversion of lation methodg6]. Our calculations are in agreement with
the frequencies to atomic units, this reads (300/219%72) the tabulated values frofii8].
X 1X (200/219 372) "*=627.5. The cross section in atomic ~ Table Il summarizes these numerically calculated rela-
units is therefore 0.096 050.068<627.5=4.1. This is tive matrix elements for photoabsorption by states that are
equivalent to 4.X(5.2917x10 °%)2=1.15x10 % cn?.  bound with—200 cm™?! to states near the ionization thresh-
The conversion of radial matrix elements to a cross sectiowold. These values are compared with the results of two for-

—400 | {17p

s—state Energy (cm™')

FIG. 6. Lithiums-p relative dipole matrix elements.

was verified with the formulas from Ref44]. mulas for free-free matrix elements. The first two pairs of
columns contain the numerically calculated matrix element,
VI LITHIUM and the result Eq.15) divided by 0.4108, using the quantum
o ] ] ] defects from Table I. Equatiofl5) shows, like the numeri-
Lithium has very interesting properties at the wavelengths.y| cajculations, a disparity of thel = + 1 andAl=—1 s-p

under study. The quantum defects in Table | already giVgeansitions. The values deviate strongly from the hydrogenic
some hints of these features. First of all, only B1states  yajyes. In the last column, the cosine of the quantum defect
have an appreciable quantum defect. As the quantum defegfterence is given: for free-free matrix elements the relative
of the s states is almost a half, the wave functions of the yatrix elements approach this value @E.
states are shifted by almost compared to the other series: A piot for the p-d transitions(not shown resembled the
The s states’ wave functions mainly contain irregular Cou- hydrogenic results as shown in Fig. 4. As indicated by the
lomb functions, while the otherstates mainly contain regu- vajues in Table IIl, the cross sections at the threshold devi-
lar Coulomb functions. The dipole matrix elements betweergte |ittle from the hydrogenic values of 1.2 and (c8 Fig.
s andp states reflect this particular configuration. 4). The analytical approximations do not reflect this Bethe
Two features dominate the relative matrix elements of thgyle behavior as expressed in Eg1). The similarity of the
high-lying s-p transitions, as shown in Fig. 6: The large graphs for lithium and hydrogen indicates that the quantum
difference between thal=+1 and theAl=—1 transition  defect difference is small enough to prefer Etj) over Eq.
matrix elements, and the zero in the matrix elements in the1s) for free-free transitions.
Al=+1 region. The wavelength of this Cooper minimum  The other lithium transitions, involving higher-angular-
changes with the binding energy, as will be discussed in Segnomentum states, are indistinguishable from hydrogenic,
X. To assess the sensitivity of the Cooper minimum on thejue to the even smaller quantum defects.
fine structure, we have changed the quantum defect gp the
state with a full fine structure difference in both directions,
and observed no difference to the results on the scale in Fig.
6. Fors states bound with less than120 cm™ %, the Cooper In this section we present the dipole matrix elements for
minimum exists ims-ep transitions, while for deeper bound the s-p, p-d, andd-f transitions in rubidium. We have cho-
s states the Cooper minimum appears in the transitions tsen rubidium as the model the atom because of the availabil-
boundp states. The zero crossing is the continuation of thety of experimentd14—16 and because the low-lying tran-
minimum in the cross sections starting from lowerMatrix ~ sitions deviate strongly from hydrogen. The general

VIIl. RUBIDIUM
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TABLE IV. Rubidium: Relative dipole matrix elements for ex- g s ,e-‘: g
citation of states at 200 cm™* to the threshold.

—————1— ---—1.05
—-1.00

T T
Lo Lt rerr

L

400

120d
18d

observations found for rubidium are used in the brief de- o S L

scriptions of the other alkali-metal atoms in the next section. e
Table IV presents some values of the relative matrix ele- —40 200 0 200 400
ments. A first observation is that up to tte transitions, the
dipole matrix elements do not obey the Bethe rule: In ru-
bidium, Al=—1 transitions are more likely thaal=+1
transitions. The results of th&l = — 1 transitions are reason-
ably described by Eq15), but theAl=+1 transitions de-
viate strongly. The absolute values of thé=+1 transi-
tions are much smaller than 1, indicating that thes

transitions are less likely than comparable hydrogenic tran o ) . T
sitions. For highet, the results are hydrogenic, and the pref—Ch""nge sign just befo_re the mld_dle dlagonal,_as |n_d|cated by
; ! the zero contour. This feature is also described in Sec. X.

actors are well described by E@.1) (Fig. 1). Secondly, the . . "
difference in quantum defects due to the fine structure split:rhe matrix elements. nearest to the diagonal are all positive.
The Al=—1 matrix elements are smaller than the com-

ting (1.3% affects both the analytical and the numerical re- ble hvd ; | . h |
sults for transitions withp states. In the remainder of this para et y rlogemct: ones. in tk:@-nsot%%nfltlgngét N trrwe ‘T
section, we present the wavelength dependence of the matrfy® matrix elements increase from 0.65 to 0.68 as the tran-
elements for the higher fine structure levels of thetates. sition frequency IS mcrease(_j. This is different from the
The values of the lower fine structure levéf®t shown are {lydrolgemctcaje, wher? gt h|g1;heTrhenerg3_/t,_M6c_—l rfn?h
well approximated by multiplying the values from the figures fix elements | ecreasef. 19. .)' € positive sign of the
Al=—1 matrix elements in Fig. 7 shows that no Cooper

with the ratios from Table IV, minimum exists at very high energies
Figure 7 shows the relative matrix elements for ¢h ) : - .
9 Pai2 The relative change of thal=+1 p-d transitions(Fig.

transitions. The contours of thel=+1 transitions deviate 8 functi f the t ition 1 ) h fast
most from those of hydrogen: First of all, the values are ) as a function of the ransition Irequency 1S much taster
than for hydrogen. Not visible on this scale, a Cooper mini-

negative. This indicates that a Cooper minimum exists a . . .
g P mum exists for the very high-lying, bound states: For 30

higher energy[25]. Secondly, the magnitude of the matrix e
elements decreases and the contours become more horizontall < /0: the transitions frommp to (n—1)d andnd (both

as thep-state energy increases. As discussed in Sec. X, th@d"® Al =7 1 due to the quantum defesthave -a positive
sign, while all other matrix elements are negative. For lower

n, only thenp to (n—1)d transitions have this opposite sign,

Al=+1 Al=-1 cos\, e
Calculated Eq(15 Calculated Eq(15 Eg.(14) —If‘ L Z | —_0.50
£ 200 4 —-0.40
s-py,  —0.45  —0.50 0.70 0.65 0.07 S - R
s-psyy  —0.49  —0.54 0.66 0.61 0.03 > ] —+0.00
py-d -0.32 —0.09 —0.99 -1.04 -0.57 § ok -
P3j-d -037 -014 —-1.00 —1.06 —0.60 L =1
d-f -0.38 -0.01 -0.92 -1.00 -0.51 L i ) - | 30d
2 200t S S~ S = | 25d
f-g 1.36 0.97 0.62 1.03 1.00 Z I -
o N

p—state Energy (cm™)

FIG. 8. Rubidiumpg-d relative dipole matrix elements.

Cooper minimum only depends on tlpestate energy and
thus exhibits a horizontal contour. As the Cooper minimum
é's approached for higher energies, the slopes of the contours
flatten similarly. The free-freeAl=+1 matrix elements

__0.550 while for highern the range extends, even though the tran-
400 - i sition frequencies for the Cooper minimum decrease. Figure
S O A ~0.430 8 shows the rapid increase in cross sections away from the
- I e Cooper minimum. The matrix elements for thé= —1 part
£ 200 | —+0.600 of the graph are somewhat higher than those of hydrégen
< e Fig. 8, and are somewhat flatter. The relative matrix ele-
> Toroe7s ments foro=200 cm ! are maximal near the threshold be-
o Or =700 tween bound-free and bound-bound transitions. berE,
= - {38p the matrix elements decrease as the conditions for(E4.
g PR~ ¥ =] e are met.
¢ - o8 The d-f transitions shown in Fig. 9 resemble tiped
o I L transitions in many respects. The quantum defect differences
-400 - . oo are in both cases approximately 1.3, resulting in similar ana-
[ . . . . lytical and the numerical valug3able 1V). Figure 9 shows

400 200 0 200 400 that the Al=—1 transitions share the wavelength depen-
dence, even though the values tbif are close to 0.9 rather
than 1. Again a maximum occurs just above the threshold
FIG. 7. Rubidiums-pg, relative dipole matrix elements. between bound-free and free-free transitions.

s—state Energy (cm™)
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38 838 3 TABLE V. Sodium: Relative dipole matrix elements for excita-
L T A —— , T:ggg tion of states at-200 cm ! to the threshold.
400 - 7 1 —-0.90
—_——:828 Al=+1 Al=-1 COS§|
< | ——0.60 Calculated Eq(15 Calculated Eq(15 Egq.(14)
‘g 200 |+ ] —-o0.50
S . o0 sp —-050  —0.56 0.65 0.60 0.02
2 —+0.00 p-d —-1.25 —-1.15 —-0.37 —0.60 —0.88
o ol ] d-f 1.28 0.97 0.71 1.02 1.00
c — | 70f
L!: = | 35f
G I e ground-state Cooper minima are well studied both experi-
[ am mentally and theoreticall{50,51).
oo | "1 A. Sodium
A The sodiums-p transitions are much like those of ru-
-400  -200 0 200 400 bidium: A Cooper minimum, relatively high in the con-
d—state Energy (cm™') tinuum, changes the sign of th&l=+1 transitions, and
causes them slowly to decrease. Neither the matrix elements
FIG. 9. Rubidiumd-f relative dipole matrix elements. p-d nor thed-f transitions show remarkable features. pdl

d transitions have negative, while allf transitions have

The Al=+1 d-f transitions again show a rapid increase Positive, matrix elementgSee Table V).
as the transition frequency increases. As for phe transi-
tions, this is due to a Cooper minimum near the diagonal. B. Potassium
This Cooper minimum, however, is at slightly higher photon  pgiassium has, like the other alkali-metal atoms san
energy: Starting from the diagonal, the first three or four_>p Cooper minimum far in the continuum. Thed transi-
states have the positive sign. Figure 10 shows the transitiogons, however, are more interesting: A Cooper minimum in
matrix elements for théound-boundRb d-f transitions in  {he pound-free transitions for thal=+1 transitions ap-
more detail. Fom~59,1the Cooper minimum occurs at a pears near 300 cmt. Figure 11 shows the relative matrix
photon energy of 6 cm®. The Cooper minimum slowly ap-  glements, on a scale that is extended further into the con-
proaches the diagonal for higher bound states. tinuum than the other plots in this paper. The position of
Cooper minimum depends strongly on the initial-state en-
ergy. The characteristic bend in the free-free regime is dis-
IX. OTHER ALKALI-METAL ATOMS cussed in Sec. X. Thd-f transitions in potassium show no
In this section we present the relative dipole matrix ele-particularities: All values are positive, and the values change
ments for the excitation of Rydberg states to the ionizatiorsmoothly.(See Table V.
threshold with 50um radiation. Whenever the dipole matrix
elements are very small, the matrix elements around the ac- C. Cesium
companying Cooper minimum are shown. Note that all these  cagium Rydberg transitions are studied by Lahiri and
alkali-metal atoms have a Cooper minimum in the Cross seqyanson[25]. As cesium is the heaviest atom we study, the
tions for ion ization of theims ground stategS0]. These  fine structure splittings affect the matrix elements most for

this atom.
o o o o e o o o
o~ n o n o o ~ o
n n © © ~ 3] o N 0.10 8 L% CC)L
——+0.
_\IIII\\HIHIHlIIHI\IHI\III\II\I\I —+0.00 . N N 'DI ; S —0.81
) 7 120f---—0.05 RNy . | —=0.80
-10 J —=0.10 - v Y | e -0.79
---0.15 L +4 —-0.20
95f 500 -
—-0.20 i ——=0.10
85f---—0.95 1 --—0.05
—=1.00 —+0.00
-20 - 75f = 1 -—--+0.05
= | —+0.10
1 —+0.20
65f

—+0.30

|
w
o

= | 504

f—state Energy (cm™')

55f

25d
53f 1
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d—state Energy (cm™ ")
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50f 18d
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—40 =30 -20 -10

d—state Energy (cm™')
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FIG. 10. Rubidiumd-f relative dipole matrix elements for tran- p—state Energy (cm )

sitions between very high-lying, bound states. FIG. 11. Potassiunp-d relative dipole matrix elements.
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TABLE VI. Potassium: Relative dipole matrix elements for ex- 3 2 33
citation of states at-200 cm ! to the threshold. —— A . — ——0.30
400_\ Lot rrrgrtl —::8123
Al=+1 Al=-1 cos)\, :18:?8
Calculated Eq(15 Calculated Eq(15 Eg.(14) < —+0.20
lE 200 1 ] --+075
S-Pip —-0.41 —-0.47 0.72 0.68 0.11 S o Te
S-P3s2 -043  -0.48 0.72 0.67 0.10 >
Pyp-d 0.20 0.37 -0.80 —-0.76 —0.20 5 of o
pard 019 036  -0.80 -077 -0.21 L S
d-f 0.63 0.24 0.95 1.10 0.67 % L o f .
f-g 1.37 0.98 0.60 1.02 1.00 » —200 - P =
J o S S e ~ ] 20r
. . 400 SR
Table VII shows again some of the calculated matrix el- L e e ]
ements. Like the other alkali-metal atoms, a Cooper mini- -400  —200 0 200 400
mum in the continuum reduces the ionization cross sections d—state Energy (Cm"*)
of the s-p transitions near the threshold. In the entire range
of our calculations, th@-d dipole matrix elements are nega- FIG. 12. Cesiundg,-f relative dipole matrix elements.
tive and vary slowly. TheAl=—1 matrix elements are
somewhat enhanced compared to hydrogen. elements, as the continuum wave function oscillates more

The d-f transitions, however, exhibit a Cooper minimum rapidly than the bound state. The computed matrix element is
(Fig. 12. The d-f transitions exhibit multiple Cooper therefore mainly determined at the smialend point of the
minima[25)]. For the lower states, the positions of these Coolntegration of Eq.(4). This end point is determined by the
per minima are difficult to calculate, and results obtained byMNer turning point of the higherstate. The energy of the
different methods disagref52]. Quantum defect theory, higher{ state is therefore most important for the matrix ele-

however, is appropriate for the highly excited states weM€Nts: The Ris-p transitions(Fig. 7) clearly show this de-
study. pendence.

The exclusive dependence on the higstate energy does
not hold for smallw: If the local k vectors of both wave
X. DISCUSSION functions become comparable, a langeange of the wave
function contributes to the matrix element. In that case, both
We discuss some of the features that are found in tha&vave functions oscillate at approximately the same fre-
calculations for the alkali-metal atoms. First of all, we dis-quency, and contributions from the remote area are impor-
tinguish two regimes. The dipole matrix elements are eithetant. At a Cooper minimum at smad, contributions from
well described by the Bethe rule formula E41), or domi-  the range near the core and the remote wave function must
nated by other factors. These factors are either lthattoo  cancel each other. Upon changing the energy of one of the
low for the semiclassical formula to applg.g., the Hs-p ~ states, the other has to be shifted by approximately the same
transitions(Fig. 3)] or that strong deviations from the hydro- amount to retain this cancellation. The position of the Coo-
genic case exist, due to the difference quantum defects, as fper minimum therefore depends on tiansition frequency
the lowd alkali-metal states. If these other factors dominate father than on the binding energy of either state. This behav-
the contours are flatter. In other words, the energy of théor is found for the Rbd-f transitions(Fig. 10, where the
higher-I state mostly determines the relative matrix elementCooper minimum runs almost diagonally.
This can be understood as follows: The outer part of the Finally, we want to discuss the “bend” in the Cooper
bound wave function hardly contributes to the dipole matrixminima in the free-free regime, as found in thepkd (Fig.
11) and Csd-f (Fig. 12 transitions. The shape can be un-
derstood from the continuity of the matrix elements as a
function of the initial- and final-state energy. For small
the matrix elements are described by Ety). Near w~E
Al=+1 Al=—1 cos\, this must pass smoothly into the regime in which Eip) is
Calculated Eq(15) Calculated Eq(15) Eq.(14) valid. The bend of the Cooper minimum occurs in this tran-
sition regime. Taking the example of the xd transitions

TABLE VII. Cesium: Relative dipole matrix elements for exci-
tation of states at-200 cm ! to the threshold.

S-P1s2 -0.39 —0.44 0.75 0.70 0.13 (Table VI and Fig. 11the matrix elements are positive near
S-Paj —0.50 -0.55 0.66 0.61 0.03 the diagonal in the free-free regime. Bt=0, the zero con-
pyrds,  —0.95 —-0.73 —-0.96 -1.14 -0.93 tour points a little away from the diagonal, near the half
Pa-dap -1.03 -0.82 -0.92 -1.12 -0.97 angle of the diagonal, where~E. With the bend at a
Psrds,  —1.01 -0.79 —-0.93 -1.12 -0.96 p-state energy of 200 cm', it connects to the bound-free
dg-f —0.09 -0.39 0.78 0.75 0.18 Cooper minimum at the threshold-state energy of 500
dgp-f —-0.05 -0.35 0.79 0.77 0.21 cm™ . The zero near the diagonal of the free-free Rp

f-g 1.35 0.93 0.66 1.06 0.99 transitions(Fig. 7) is a remnant of a similar bend. We have

calculated(not shown the matrix elements of the low-lying
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