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Calculating the logarithmic mean excitation energy from the Shannon information entropy
of the electronic charge density
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It is shown that within the local plasma approximation, the experimental logarithmic mean excitation energy
that occurs in the expression for the stopping power is directly related to the Shannon entropy of the electronic
charge density. This energy is calculated from the Shannon entropy ofab initio wave functions for several
atoms and molecules. The results are consistent with experimental and theoretical values calculated by inde-
pendent methods. The dependence of the mean excitation energy on the quality of the wave functions is
examined. Furthermore, it is shown that the maximum entropy principle can be used as a guide in evaluating
the local plasma model.@S1050-2947~98!03706-8#

PACS number~s!: 34.50.Bw, 31.10.1z, 31.25.2v
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I. INTRODUCTION

The ability of a material to be penetrated by charged p
ticles is of wide interest in theoretical physics@1#, radiation
chemistry@2,3#, and biomedicine@4#, since it involves many
fundamental as well as applied atomic and molecular p
cesses. This ability is conventionally defined as the kine
energydE lost by a particle of chargez and velocityv pass-
ing through a path lengthdx. Also known as the stopping
power S, it can be calculated according to the Bethe-Blo
equation@1# as

S~v,I !52
dE

dx
5

4pe4z2

mv2
NZF ln

2mv2

I
2 ln~12v2/c2!

2v2/c22C/Z2d/2G , ~1.1!

wheree andm are the electron charge and rest mass,N is the
number of atoms per unit volume, andZ is the number of
electrons for each atom of the target matter. The second
third terms inside the brackets are the relativistic correctio
and c is the speed of light. The last two terms take in
account unequal contributions of individual shells and
change of the target density at high energy. The quantityI is
the mean excitation energy, which can be experimentally
termined from the measured stopping power@5,6#. Con-
versely, knowledge ofI is essential in the theoretical evalu
ation of the stopping power. The mean excitation energ
of importance since it characterizes how well the target m
terial can absorb energy, independent of the nature and s
of the incident particle. Further aspects of the penetra
process, such as the energeticrange of the projectile, and
fluctuations~straggles! in energy, may also be determine
based onI . Here, the logarithmic mean excitation energy
defined as the sum of all the logarithmic excitation energ
571050-2947/98/57~6!/4512~6!/$15.00
r-

-
ic

nd
s,

e

e-

is
-
ed
n

s

from the ground stateu0& to excited statesun& weighted by
the dipole oscillator strengthf 0n of each transition,

Z ln I 5(
n

f 0nln~En2E0!. ~1.2!

High-quality values ofI for hydrogen, obtained using Eq
~1.2!, were determined as early as 1930 by Bethe@7#. How-
ever, the lack of experimental data for the dipole oscilla
strength severely hinders the determination ofI in general.
Consequently, alternative models were developed, nota
among which are the semiempirical method of summati
@8,9#, and methods using the oscillator strength spec
@10,11# or various moments of the oscillator strength dist
butions~OSD! @12,13#.

In 1953, Lindhard and Scharff@14,15# proposed a statis
tical model approximating the charge distribution as an
eraged homogeneous electron gas and applied this to
evaluation of the logarithmic mean excitation energy. In t
local plasma approximation~LPA!, all individual electronic
transitions in Eq.~1.2! are replaced by a collective longitu
dinal interaction mode. The strength of the photoabsorpt
frequency due to the collective excitation is further appro
mated to be the local value of the charge density. It follo
that the logarithmic mean excitation energy in Eq.~1.2! may
be written as

Z ln I 5E r~r !ln@g\vp~r !#dr , ~1.3!

where g is the correction for the shift in the plasma fre
quencyvp(r ) due to the chemical environment of individu
particle excitations. The plasma frequency corresponding
a charge density at pointr is

vp~r !5@4pe2r~r !/m#1/2. ~1.4!
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57 4513CALCULATING THE LOGARITHMIC MEAN EXCITATION . . .
Substituting Eq.~1.4! into Eq. ~1.3!, and making use of
the normalization condition of the density,*r(r ) dr5Z, the
logarithmic mean excitation energy~in a.u.! may be ex-
pressed in terms of the charge density as

2Z ln I 5E r~r !lnr~r ! dr1Z ln 4p12Z ln g. ~1.5!

The first term in Eq.~1.5! is the negative of a quantity
known as the Shannon information entropy@16#, Sr , of the
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electronic charge distribution. Thus, the value ofSr can be
evaluated directly from the experimental logarithmic me
excitation energy via

Sr522Z ln I 1Z ln 4p12Z ln g. ~1.6!

Correspondingly, the stopping power can be expresse
terms of the Shannon entropy as
S@v,r~r !#5
4pz2NZ

v2 S Sr

2Z
1 ln@v2/~p1/2g!#2 ln~12v2/c2!2v2/c22C/Z2d/2D . ~1.7!
ms

ed

ith
-

,
he
and
s

on
d in
SD

of
he
fact

non
n-
ort

ave
d-
A

ation
ive
the
ata

ults
re-
he
The Shannon entropy has recently gained attention du
numerous studies and applications of information theoret
concepts for the analysis of chemical and physical phen
ena@17–24#. Sr provides a measure of the delocalization
the distribution and has been related to the quality of
basis set@18–22#, correlation in the wave function as well a
atomic and molecular properties@23,24#. The connection be-
tween the Shannon entropy and the first ionization poten
energy of atoms within the Koopmans’ theorem has b
noted by us@23#. It is interesting to note that Eq.~1.6! estab-
lishes another connection between the entropy and electr
excitations.

It is also noteworthy that the Shannon entropy of the m
mentum space density,Sp52*p(p)ln p(p)dp, has been
studied extensively by the aforementioned authors@19,21–
24#. It has been demonstrated that the momentum space
sity, particularly from the entropic perspective, provid
complementary insight into chemical phenomena of atom
molecules. The relationship between momentum space
sity and the stopping power has been advanced by Sigm
@25#. Within this kinetic theory of stopping, a functional re
lationship between the Compton profile—from which t
momentum density can be derived—and the stopping po
was developed@26#. Sabin and Oddershede@27# have calcu-
lated stopping powers for a variety of systems using b
Compton profiles and momentum densities. Since there i
rigorous relationship betweenr(r ) and p(p) @28#, one can
see that through the experimental stopping power, Shan
entropy provides a link between the densities in the t
spaces. Work investigating this link is currently in progre
in this laboratory.

In the present work, we numerically demonstrate that
mean excitation energy of various atoms and molecules
be calculated from the Shannon entropies, most of wh
were reported earlier by us. Further, we report the mean
citation energies derived from Shannon entropies using
ferent models that include electron correlation and differ
basis sets to illustrate that previous research done with re
to the maximum entropy principle may be applied to bet
model the environment of the local plasma approximati
We thus examine the model and basis set effects with re
to delocalized distributions and judge the effects on the m
excitation energy.
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II. METHODS AND RESULTS

The Shannon entropies of the first- and second-row ato
were calculated at the Hartree-Fock~HF! level using various
basis sets@22#. Near-HF @29# and configuration interaction
with single and double excitations~CISD! wave functions of
these atoms@23# are also employed. For molecules, we us
the wave functions of H2 and H2O at the CISD level using
the correlation consistent valence triple zeta basis set w
polarization functions~cc-pVTZ! @30#. For ethane and acety
lene, we used the split-valence 6-31G@31# and the Dun-
ning’s double-zeta D95@32# basis sets, respectively. Finally
for the ammonia molecule, the HF wave function with t
6-31G basis set augmented with double polarization
double diffuse functions@33# was used. The wave function
were obtained employing theGAUSSIAN94 package@34#, and
all notations are standard therein.

The mean excitation energy was calculated via Eq.~1.6!
whereg is set equal to unity. The atomic mean excitati
energies derived from the Shannon entropy are tabulate
Tables I and II. We have also reported the theoretical O
results from the numerical-HF~OSD/numerical-HF! wave
functions@35#. We have tested and found that the density
the Near-HF wave functions are very similar to that of t
numerical ones. The differences in the densities are in
less than our integration precision (1025 a.u.!. For our prac-
tical purpose, it is reasonable to assume that the Shan
entropy calculated from the near-HF wave function is ide
tical to that of the numerical-HF one. In essence, we rep
here the mean excitation values of the numerical-HF w
functions calculated from both the LPA and the OSD mo
els. It is not our intention to evaluate the merit of the LP
versus other methods~for example, see Refs.@2,36#!, but
rather to demonstrate the dependence of the mean excit
energy on the quality of the density keeping in perspect
established models. To this angle, together with
numerical-HF results, we present the theoretical OSD d
from the Hartree-Slater~OSD/HS! wave functions reported
by Inokuti and co-workers@12# and the empirical fitting data
compiled by Andersen and Ziegler@37# in Fig. 1. From the
sparse experimental data listed in Tables I and II, our res
show consistently an underestimation of experimental
sults. However, there is a striking similarity between t
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TABLE I. First-row atom mean excitation energies~in eV! calculated from Shannon information entro
pies, OSD model, and experimental values.

Level I (Sr) I ~OSD/numerical-HF! @35# Experimental

H numerical-HF 12.14 14.99@7#

He numerical-HF 35.39 39.8 44.3@12#, 41.35@12#

Li numerical-HF 26.25 22.06 37.36@11#, 37.4 @12#

CISD/6-31G 26.72
HF/6-31G 26.73
HF/3-21G 25.99

Be numerical-HF 31.51 30.69 61.7@12#

CISD/6-31G 32.50
HF/6-31G 32.69
HF/3-21G 31.79

B numerical-HF 39.30 45.14
CISD/6-31G 41.15
HF/6-31G 41.12
HF/3-21G 40.00

C numerical-HF 50.00 62.11 81.3@12#

CISD/6-31G 51.26
HF/6-31G 51.32
HF/3-21G 50.88

N numerical-HF 62.88 81.18 78.78@11#, 89.6 @12#, 78.0 @12#

CISD/6-31G 62.68
HF/6-31G 63.05
HF/3-21G 63.66

O numerical-HF 76.22 99.50 93.65@11#, 101 @12#, 92.6 @12#

CISD/6-31G 76.19
HF/6-31G 76.84
HF/3-21G 77.96

F numerical-HF 91.68 119.84
CISD/6-31G 92.27
HF/6-31G 92.93
HF/3-21G 94.17

Ne numerical-HF 109.17 142.12 132@11#, 129.5@12#

CISD/6-31G 109.60
HF/6-31G 110.44
HF/3-21G 112.13
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LPA/numerical-HF patterns with the theoretical OSD/H
ones shown in Fig. 1. In addition, numerical deviatio
would be minimized if the suggested value of 1<g<A2 was
employed. In general, our LPA/numerical-HF values app
to agree slightly better with the empirically fitted data th
those from the OSD/numerical-HF wave functions. Th
values differ mainly in elements with unsaturated valen
orbitals.

For molecular systems, the LPA/numerical-HF values
Table III agree well with the results of Ford and Brown
@38#, and Meath and co-workers@11,39–43# who employed
both experimental data and a theoretical OSD model.
H 2, NH3, C2H4, and C2H6, the calculated values ofI dem-
onstrate excellent agreement with experimental data, yi
ing deviations of less than 1%. For CO, HF, HCl, and H2O,
the LPA underestimatesI with an average of 12%. The high
electronegativities of O, F, and Cl have resulted in high
localized densities, and we conjecture that the homogene
density model is limited in these instances.

From a statistical perspective, among the distributions s
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isfying the known constraints of the system, the one with
highest entropy should be selected. This is the maxim
entropy principle, proposed by Jaynes@44#, which coincides
with the requirement of the local plasma model. Recall tha
large value of entropy corresponds to a delocalized distr
tion that yields a better portrayal of the LPA picture. Wi
this in mind, we have chosen differentab initio models to
gauge the dependency ofI on the basis set as well as on t
level of theory. Tables I and II show a decrease in the m
excitation energy in going from the HF to the CISD level f
all atoms except B and Mg. Equation~1.6! shows an expo-
nential relationship betweenI andSr ,

I 52Apg exp@2Sr/2Z#. ~2.1!

From this, it is apparent that inclusion of electron correlat
~which is essentially a delocalization effect of the dens!
will lead to a higher entropy and therefore a decrease in
mean excitation energy.
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TABLE II. Second-row atom mean excitation energies~in eV! calculated from Shannon informatio
entropies, OSD model, and experimental values.

Level I (Sr) I ~OSD/numerical-HF! @35# Experimental

Na numerical-HF 99.78 89.67
CISD/6-31G 99.45
HF/6-31G 99.53
HF/3-21G 99.77

Mg numerical-HF 100.88 88.51
CISD/6-31G 101.27
HF/6-31G 101.02
HF/3-21G 101.00

Al numerical-HF 102.39 96.75 163@12#, 167 @12#

CISD/6-31G 103.00
HF/6-31G 103.18
HF/3-21G 103.20

Si numerical-HF 107.68 109.52 173@12#

CISD/6-31G 107.87
HF/6-31G 108.32
HF/3-21G 108.24

P numerical-HF 114.85 123.92
CISD/6-31G 114.74
HF/6-31G 115.03
HF/3-21G 114.88

S numerical-HF 122.22 136.71
CISD/6-31G 122.33
HF/6-31G 122.63
HF/3-21G 122.43

Cl numerical-HF 130.96 151.16 176@12#

CISD/6-31G 131.03
HF/6-31G 131.37
HF/3-21G 131.06

Ar numerical-HF 140.82 166.88 182@12#, 189 @12#
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As for basis set dependency, the behavior ofI is more
complicated. There is an increase inI going from the 3-21G
basis set to the 6-31G basis set for Li, Be, B, and C, bu
reverse trend is observed for the remainder of the serie

FIG. 1. Mean excitation energies~in eV! per atomic electronI /Z
for all atoms through argon. The solid line corresponds to the LP
numerical-HF results; triangles to OSD/numerical-HF; dashed
to OSD/HS; and circles to empirically fitted data.
a
A

Shannon study of first- and second-row atoms and diatom
@22# suggests that this is a combined effect of the increas
ability of Gaussian functions to model the density in both t
nuclear and valence regions. In the nuclear region, addi
of the Gaussian primitives helps to describe the nuclear c
of the density—a localization effect. On the other hand,
the valence region, functions are augmented to compen
for the faster than exponential decay of the Gauss
primitives—a delocalization effect. The combined cons

/
e

TABLE III. Mean excitation energies~in eV! calculated from
Shannon information entropies and experimental values for m
ecules.

Level I (Sr) Experimental

H2 CISD/cc-pVTZ 19.19 19.26@11#

CO CISD/6-31G 71.71 81.22@43#, 81.36@38#

HF CISD/6-31G 85.02 97.03@41#

HCl CISD/6-31G 120.45 145.60@41#

H2O CISD/cc-pVTZ 66.45 71.62@11#

NH3 HF/6-3111G** 54.34 53.69@11#, 54.59@42#

C2H6 CISD/6-31G 45.66 45.4@39#

C2H4 CISD/D95 48.46 49.92@40#
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quence, measured bySr , shows that in the cases of nitroge
to neon atoms, in which the valence region is most stron
occupied, the effect of increasing the number of Gauss
functions for the valence orbitals overcomes that on the c
orbitals. A resulting delocalization in the density leads to
decrease in the mean excitation energy. The same patte
observed for second-row atoms. Since these atoms ha
more diffuse distribution compared to those of the first ro
one finds that the effect of the basis set is less pronounce
seen in the cases of Mg and Al.

Lindhard and Scharff@14# introducedg into the LPA to
compensate for the effective frequencyvp(r ) assumption.
Based on the Thomas-Fermi and Hartree distributions, t
suggested a value of unity for species in which polarizat
is not significant andA2 for heavier atoms. The use of th
wave function in place of the Thomas-Fermi distribution h
been encouraged due to the inclusion of the shell struct
which leads to a correct asymptotic behavior ofI at highZ
@45#. These facts further linkg with the degree of deforma
tion in the charge density. Here, the Shannon entropy m
provide an alternative explanation. From Eq.~1.5!, if one
considers 2Zln g as a perturbation of the value of the e
tropy, then a non zero value of 1<g<A2 implies a lower
information entropy, or a more localized distribution for th
system. This is to compensate for the rough assumptio
the homogeneous density. An alternative improvement to
LPA is to treat the contribution of each orbital individual
@46# or to have separate treatments for the core and vale
orbitals @47,48#.

We wish to further comment on the accuracy ofI calcu-
lations based onSr . The agreement betweenI (Sr) reported
here and the literature values from different sources sho
be considered with caution. These wave functions are ine
due to the basis set truncation error plus incomplete~or lack
of! treatment of electron correlation and relativistic effec
The availability of exact wave functions will obviously shi
the values ofI . SinceI enters Eq.~1.1! in a logarithmic form,
this deviation will be intensified for the value of the stoppi
power. Results from Tables I and II show that the effect
the basis set on values ofI is small. The effect is also ex
pected to be minute for the electron correlation and rela
istic corrections since the HF wave functions should ha
already accounted for more than 99% of the total ene
@49#. The deviation in the charge density is further estima
g
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to be of similar magnitude. This is indeed the case, as
apparent in Tables I and II, where the changes inI are small
upon the addition of electron correlation.

Finally, there are instances in which the referenced val
of I seem to be closer to the HF results than those at
CISD level. The same is also observed, to a lesser extent
the basis set study, where a larger basis set sometimes
duces a larger deviation from the literature values. In th
cases, the maximum entropy principle should be used
gauge how well the LPA is being modeled and hence
lower value ofI would be chosen. Note that in cases whe
the LPA model fails to reproduce accurate results, that
where the homogeneity approximation does not hold, t
principle would intensify the error. Fortunately, reviews
the local plasma model have shown its ‘‘remarkably rea
tic’’ ability in estimating the mean excitation energy@36# and
further attributed this ability to the fact that the major co
tributions to the spectrum of the oscillator strength are th
at intermediate energy range. The charge density of the
tem, then, should strive to fulfill this constraint and at t
same time should correctly describe chemical properties
interest. The maximum entropy principle, an independ
way of gauging the quality of the basis set and the wa
function, offers such a guide.

III. CONCLUSIONS

We have provided a physical foundation for the Shann
entropy by showing that it can be derived from the expe
mental mean excitation energy within the local plasma
proximation. The mean excitation energies of a series of
oms and molecules were computed from the Shan
entropy and show good agreement with experimental va
and especially with those from theoretical and semiempir
models. The maximum entropy principle can be used to
sure that the density imitates the LPA well and thus can
used as a constraint in evaluating the LPA model. Furth
more, a direct relationship between the densities in posi
and momentum space is implied through the entropic c
nection.

ACKNOWLEDGMENTS

We thank Dr. H. L. Schmider for valuable discussion
This research was supported in part by the Natural Scien
and Engineering Research Council of Canada~NSERCC!
and the Mexican Research Council~CONACyt!.
w-

ys.

k.
@1# S. P. Ahlen, Rev. Mod. Phys.52, 121 ~1980!.
@2# E. Kamaratos, Chem. Rev.84, 561 ~1984!.
@3# R. Kreutz, W. Neuwirth, and W. Pietsch, Phys. Rev. A22,

2598 ~1980!; 22, 2606~1980!.
@4# P. Todd, C. B. Schroy, K. G. Vosburgh, and W. Schimmerlin

Science174, 1127~1971!.
@5# H. Bichsel,American Institute of Physics Handbook, edited by

D. E. Gray~McGraw-Hill, New York, 1972!, pp. 8–142.
@6# J. E. Turner, National Academy of Sciences National Resea

Council Report No. 1133~1964!.
@7# H. Bethe, Ann. Phys.~Leipzig! 5, 325 ~1930!.
@8# U. Fano, Annu. Rev. Nucl. Sci.13, 1 ~1963!.
,

h

@9# A. Dalgarno and R. Bell, Proc. Phys. Soc. London89, 55
~1966!; 86, 375 ~1965!.

@10# U. Fano and J. W. Cooper, Rev. Mod. Phys.41, 724 ~1969!;
40, 441 ~1968!.

@11# G. D. Zeiss, W. J. Meath, J. C. F. MacDonald, and D. J. Da
son, Can. J. Phys.55, 2080~1977!.

@12# J. L. Dehmer, M. Inokuti, and R. P. Saxon, Phys. Rev. A12,
102 ~1975!.

@13# M. Inokuti, J. L. Dehmer, T. Baer, and J. D. Hanson, Ph
Rev. A 23, 95 ~1981!.

@14# J. Lindhard and M. Scharff, Mat. Fys. Medd. K. Dan. Videns
Selsk.27, 15 ~1953!.



es

a

n-

J

H

J

y

cl

-

.
.
L.
L.

and

,

. J.

. J.

r,

al

57 4517CALCULATING THE LOGARITHMIC MEAN EXCITATION . . .
@15# J. Lindhard and M. Scharff, National Academy of Scienc
National Research Council Report No. 1133~1964!.

@16# C. E. Shannon, Bell Syst. Tech. J.27, 379 ~1948!.
@17# S. B. Sears, R. G. Parr, and U. Dinur, Isr. J. Chem.19, 165

~1980!.
@18# S. R. Gadre and R. D. Bendale, Curr. Sci.54, 970 ~1985!.
@19# S. R. Gadre, S. B. Sears, S. J. Chakravorty, and R. D. Bend

Phys. Rev. A32, 2602~1985!.
@20# A. M. Simas, A. J. Thakkar, and V. H. Smith, Jr., Int. J. Qua

tum Chem.24, 257 ~1983!.
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