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Calculating the logarithmic mean excitation energy from the Shannon information entropy
of the electronic charge density
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It is shown that within the local plasma approximation, the experimental logarithmic mean excitation energy
that occurs in the expression for the stopping power is directly related to the Shannon entropy of the electronic
charge density. This energy is calculated from the Shannon entropl @fitio wave functions for several
atoms and molecules. The results are consistent with experimental and theoretical values calculated by inde-
pendent methods. The dependence of the mean excitation energy on the quality of the wave functions is
examined. Furthermore, it is shown that the maximum entropy principle can be used as a guide in evaluating
the local plasma modelS1050-294®8)03706-9

PACS numbd(s): 34.50.Bw, 31.10+z, 31.25-v

I. INTRODUCTION from the ground statg0) to excited state$n) weighted by
the dipole oscillator strengtfy,, of each transition,
The ability of a material to be penetrated by charged par-

ticles is of wide interest in theoretical physich|, radiation
chemistry[2,3], and biomediciné4], since it involves many ZIn1=2 fonln(E,—Eo). (1.2
fundamental as well as applied atomic and molecular pro- :
cesses. This ability is conventionally defined as the kinetic ) ) )
energydE lost by a particle of charge and velocityy pass- High-quality values of for hydrogen, obtained using Eq.
ing through a path lengtdx. Also known as the stopping (1-2), were determined as early as 1930 by Befthle How-

powerS, it can be calculated according to the Bethe-Bloch€Ver. the lack of experimental data for the dipole oscillator
equation[1] as strength severely hinders the determination of general.

Consequently, alternative models were developed, notably

among which are the semiempirical method of summations

[8,9], and methods using the oscillator strength spectra

[10,17 or various moments of the oscillator strength distri-

butions(OSD) [12,13.

_— In 1953, Lindhard and Scharffl4,15 proposed a statis-
—vcc=ClZ-dl2], (1.1 tical model approximating the charge distribution as an av-

eraged homogeneous electron gas and applied this to the
evaluation of the logarithmic mean excitation energy. In this

wheree andm are the electron charge and rest maéég the  |ocal plasma approximatioiLPA), all individual electronic

number of atoms per unit volume, a&dis the number of transitions in Eq(1.2) are replaced by a collective longitu-

electrons for each atom of the target matter. The second anglnal interaction mode. The strength of the photoabsorption

third terms inside the brackets are the relativistic correctionsirequency due to the collective excitation is further approxi-

and c is the speed of light. The last two terms take into mated to be the local value of the charge density. It follows

account unequal contributions of individual shells and thethat the logarithmic mean excitation energy in Efj2) may

change of the target density at high energy. The quahigy be written as

the mean excitation energy, which can be experimentally de-

termined from the measured stopping powé&r6]. Con-

versely, knowledge of is essential in the theoretical evalu- ZInl =f p(NIn[yhiwy(r)]dr, 1.3

ation of the stopping power. The mean excitation energy is

of importance since it characterizes how well the target ma- ) . o

terial can absorb energy, independent of the nature and speé¢iere y is the correction for the shift in the plasma fre-

of the incident particle. Further aspects of the penetratiolu€Nncywp(r) due to the chemical environment of individual

process, such as the energatimge of the projectile, and particle excitations. Th_e plasma frequency corresponding to

fluctuations (straggles in energy, may also be determined & charge density at poimtis

based on. Here, the logarithmic mean excitation energy is

defined as the sum of all the logarithmic excitation energies wy(r)=[4me?p(r)/m]Y2 (1.4

2

dE 4me*Z? v
= —In(1—v2/c?)

S(v,I)Z—a— -
v

ZlIn
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Substituting Eq.(1.4) into Eq. (1.3), and making use of electronic charge distribution. Thus, the valueSjfcan be
the normalization condition of the densityp(r) dr=2Z, the  evaluated directly from the experimental logarithmic mean
logarithmic mean excitation energyn a.u) may be ex- excitation energy via
pressed in terms of the charge density as

S==-2ZInl+ZIn47+2ZIny. 1.6
ZZInI=Jp(r)Inp(r) dr+ZIndn+2ZIny. (1.5 P 4 Y (.8

The first term in Eq(1.5 is the negative of a quantity Correspondingly, the stopping power can be expressed in
known as the Shannon information entrdd], S,, of the  terms of the Shannon entropy as

4nz?NZ[ S
Sv.p(N]=——5— é+|n[02/(w1’2y)]—|n(1—02/c2)—02/c2—c:/z— 812]|. 1.7
v
|
The Shannon entropy has recently gained attention due to Il. METHODS AND RESULTS

numerous studies and applications of information theoretical

concepts for the analysis of chemical and physical phenom- The Shannon entropies of the first- and second-row atoms
ena[17-24. S, provides a measure of the delocalization of were calculated at the Hartree-Fo@kF) level using various
the distribution and has been related to the quality of thébasis set§22]. Near-HF[29] and configuration interaction
basis sef18-23, correlation in the wave function as well as with single and double excitatiof€ISD) wave functions of
atomic and molecular properti€®3,24. The connection be- these atom§23] are also employed. For molecules, we used
tween the Shannon entropy and the first ionization potentialhe wave functions of H and H,O at the CISD level using
energy of atoms within the Koopmans’ theorem has beenhe correlation consistent valence triple zeta basis set with
noted by ug23]. It is interesting to note that E@1.6) estab-  polarization functiongcc-pVTZ) [30]. For ethane and acety-
lishes another connection between the entropy and electroniene, we used the split-valence 6-31G31] and the Dun-
excitations. ning’s double-zeta D9532] basis sets, respectively. Finally,

It is also noteworthy that the Shannon entropy of the mofor the ammonia molecule, the HF wave function with the
mentum space densitys.=— [#(p)In7(p)dp, has been 6-31G basis set augmented with double polarization and
studied extensively by the aforementioned autfd®21— double diffuse function§33] was used. The wave functions
24]. It has been demonstrated that the momentum space dewere obtained employing theaussiang4 packagg 34], and
sity, particularly from the entropic perspective, providesall notations are standard therein.
complementary insight into chemical phenomena of atoms in  The mean excitation energy was calculated via Bc)
molecules. The relationship between momentum space demhere v is set equal to unity. The atomic mean excitation
sity and the stopping power has been advanced by Sigmurghergies derived from the Shannon entropy are tabulated in
[25]. Within this kinetic theory of stopping, a functional re- Tables | and Il. We have also reported the theoretical OSD
lationship between the Compton profile—from which theresults from the numerical-HFOSD/numerical-HF wave
momentum density can be derived—and the stopping powedunctions[35]. We have tested and found that the density of
was develope@26]. Sabin and Oddershed27] have calcu- the Near-HF wave functions are very similar to that of the
lated stopping powers for a variety of systems using bottmumerical ones. The differences in the densities are in fact
Compton profiles and momentum densities. Since there is nless than our integration precision (10a.u). For our prac-
rigorous relationship between(r) and «(p) [28], one can tical purpose, it is reasonable to assume that the Shannon
see that through the experimental stopping power, Shannoentropy calculated from the near-HF wave function is iden-
entropy provides a link between the densities in the twdical to that of the numerical-HF one. In essence, we report
spaces. Work investigating this link is currently in progresshere the mean excitation values of the numerical-HF wave
in this laboratory. functions calculated from both the LPA and the OSD mod-

In the present work, we numerically demonstrate that theels. It is not our intention to evaluate the merit of the LPA
mean excitation energy of various atoms and molecules caversus other methoddor example, see Ref42,36]), but
be calculated from the Shannon entropies, most of whichather to demonstrate the dependence of the mean excitation
were reported earlier by us. Further, we report the mean exenergy on the quality of the density keeping in perspective
citation energies derived from Shannon entropies using difestablished models. To this angle, together with the
ferent models that include electron correlation and differennumerical-HF results, we present the theoretical OSD data
basis sets to illustrate that previous research done with regaftom the Hartree-SlatefOSD/HS wave functions reported
to the maximum entropy principle may be applied to betterby Inokuti and co-workerfl2] and the empirical fitting data
model the environment of the local plasma approximationcompiled by Andersen and Zieglg87] in Fig. 1. From the
We thus examine the model and basis set effects with regabarse experimental data listed in Tables | and Il, our results
to delocalized distributions and judge the effects on the meashow consistently an underestimation of experimental re-
excitation energy. sults. However, there is a striking similarity between the
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TABLE I. First-row atom mean excitation energiéa eV) calculated from Shannon information entro-
pies, OSD model, and experimental values.

Level 1(S,) |1 (OSD/numerical-HFF[35] Experimental
H numerical-HF 12.14 14.907]
He numerical-HF 35.39 39.8 44[32], 41.35[12]
Li numerical-HF 26.25 22.06 37.341], 37.4[12]
CISD/6-31G 26.72
HF/6-31G 26.73
HF/3-21G 25.99
Be numerical-HF 31.51 30.69 61[12]
CISD/6-31G 32.50
HF/6-31G 32.69
HF/3-21G 31.79
B numerical-HF 39.30 45.14
CISD/6-31G 41.15
HF/6-31G 41.12
HF/3-21G 40.00
C numerical-HF 50.00 62.11 81[32]
CISD/6-31G 51.26
HF/6-31G 51.32
HF/3-21G 50.88
N numerical-HF 62.88 81.18 78.781], 89.6[12], 78.0[12]
CISD/6-31G 62.68
HF/6-31G 63.05
HF/3-21G 63.66
(0] numerical-HF 76.22 99.50 93.64%1], 101[12], 92.6[12]
CISD/6-31G 76.19
HF/6-31G 76.84
HF/3-21G 77.96
F numerical-HF 91.68 119.84
CISD/6-31G 92.27
HF/6-31G 92.93
HF/3-21G 94.17
Ne numerical-HF 109.17 142.12 13821], 129.5[12]
CISD/6-31G 109.60
HF/6-31G 110.44
HF/3-21G 112.13

LPA/numerical-HF patterns with the theoretical OSD/HSisfying the known constraints of the system, the one with the

ones shown in Fig. 1. In addition, numerical deviationshighest entropy should be selected. This is the maximum

would be minimized if the suggested value 6£¥< 2 was  entropy principle, proposed by Jayn@sl], which coincides

employed. In general, our LPA/numerical-HF values appeawith the requirement of the local plasma model. Recall that a

to agree slightly better with the empirically fitted data thanlarge value of entropy corresponds to a delocalized distribu-

those from the OSD/numerical-HF wave functions. Theirtion that yields a better portrayal of the LPA picture. With

values differ mainly in elements with unsaturated valencghis in mind, we have chosen differeab initio models to

orbitals. gauge the dependency bbn the basis set as well as on the
For molecular systems, the LPA/numerical-HF values inlevel of theory. Tables | and Il show a decrease in the mean

Table 11l agree well with the results of Ford and Browne excitation energy in going from the HF to the CISD level for

[38], and Meath and co-workefd1,39-43 who employed all atoms except B and Mg. Equatidf.6) shows an expo-

both experimental data and a theoretical OSD model. Fonential relationship betweenandS,,

H,, NH3, C,H,, and GHg, the calculated values éfdem-

onstrate excellent agreement with experimental data, yield- _

ing deviations of less than 1%. For CO, HF, HCI, ang® I—2\/;yexp:—8p/22]. 2.9

the LPA underestimatdswith an average of 12%. The high

electronegativities of O, F, and Cl have resulted in highlyFrom this, it is apparent that inclusion of electron correlation

localized densities, and we conjecture that the homogeneouwhich is essentially a delocalization effect of the density

density model is limited in these instances. will lead to a higher entropy and therefore a decrease in the
From a statistical perspective, among the distributions satmean excitation energy.
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TABLE Il. Second-row atom mean excitation energi@s eV) calculated from Shannon information
entropies, OSD model, and experimental values.

Level 1(S,) 1(OSD/numerical-HFF[35] Experimental
Na numerical-HF 99.78 89.67
CISD/6-31G 99.45
HF/6-31G 99.53
HF/3-21G 99.77
Mg numerical-HF 100.88 88.51
CISD/6-31G 101.27
HF/6-31G 101.02
HF/3-21G 101.00
Al numerical-HF 102.39 96.75 1632, 167[12]
CISD/6-31G 103.00
HF/6-31G 103.18
HF/3-21G 103.20
Si numerical-HF 107.68 109.52 1732]
CISD/6-31G 107.87
HF/6-31G 108.32
HF/3-21G 108.24
P numerical-HF 114.85 123.92
CISD/6-31G 114.74
HF/6-31G 115.03
HF/3-21G 114.88
S numerical-HF 122.22 136.71
CISD/6-31G 122.33
HF/6-31G 122.63
HF/3-21G 122.43
Cl numerical-HF 130.96 151.16 1762]
CISD/6-31G 131.03
HF/6-31G 131.37
HF/3-21G 131.06
Ar numerical-HF 140.82 166.88 1422], 189[12]

As for basis set dependency, the behaviodl a6 more  Shannon study of first- and second-row atoms and diatomics
complicated. There is an increaseligoing from the 3-21G  [22] suggests that this is a combined effect of the increasing
basis set to the 6-31G basis set for Li, Be, B, and C, but ability of Gaussian functions to model the density in both the
reverse trend is observed for the remainder of the series. Auclear and valence regions. In the nuclear region, addition

22

20

18 |

of the Gaussian primitives helps to describe the nuclear cusp
. . . . . . . . of the density—a localization effect. On the other hand, in

the valence region, functions are augmented to compensate
for the faster than exponential decay of the Gaussian
primitives—a delocalization effect. The combined conse-

TABLE lll. Mean excitation energie¢in eV) calculated from
Shannon information entropies and experimental values for mol-

N 14 _
ecules.
12} :
Level 1(S,) Experimental
° H, CISD/cc-pVTZ 19.19 19.2611]
8r ] CO CISD/6-31G 71.71 81.2[43], 81.36[38]
6 , ) ) ) , ) , , HF CISD/6-31G 85.02 97.0311]
4 6 8 10 12 14 16 18 HCI CISD/6-31G 120.45 145.6011]
z H,0 CISD/cc-pVTZ  66.45 71.6911]
FIG. 1. Mean excitation energi¢im eV) per atomic electroh/Z NH3 HF/6-31+ +G** 54.34 53.69[11], 54.59[42]
for all atoms through argon. The solid line corresponds to the LPAC,Hg CISD/6-31G 45.66 45.439]
numerical-HF results; triangles to OSD/numerical-HF; dashed lineC,H, CISD/D95 48.46 49.9240]

to OSD/HS; and circles to empirically fitted data.
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quence, measured I8, shows that in the cases of nitrogen to be of similar magnitude. This is indeed the case, as is
to neon atoms, in which the valence region is most stronglyapparent in Tables | and I, where the changek ame small
occupied, the effect of increasing the number of Gaussianpon the addition of electron correlation.
functions for the valence orbitals overcomes that on the core Finally, there are instances in which the referenced values
orbitals. A resulting delocalization in the density leads to aof | seem to be closer to the HF results than those at the
decrease in the mean excitation energy. The same pattern dSD level. The same is also observed, to a lesser extent, for
observed for second-row atoms. Since these atoms havel3 basis set study, where a larger basis set sometimes pro-
more diffuse distribution compared to those of the first row,duces a larger deviation from the literature values. In these
one finds that the effect of the basis set is less pronounced §8S€s. the maximum entropy principle should be used to
seen in the cases of Mg and Al gauge how well the LPA is being modeleq and hence, a
Lindhard and Scharff14] introducedy into the LPA to lower value ofl would be chosen. Note that in cases where
compensate for the effective frequenay(r) assumption. the LPA model fails t_o reprodu<_:e a_ccurate results, that is,
Based on the Thomas-Fermi and Hartree distributions, theWhere the homogeneity approximation does not hold, this

) o ; = ~principle would intensify the error. Fortunately, reviews of
suggested a value of unity for species in which polarizatio he local plasma model have shown its “remarkably realis-

is not significant and/2 for heavier atoms. The use of the {ic» apility in estimating the mean excitation enerf86] and
wave function in place of the Thomas-Fermi distribution hasyrther attributed this ability to the fact that the major con-
been encouraged due to the inclusion of the shell structurgsibutions to the spectrum of the oscillator strength are those
which leads to a correct asymptotic behaviori ait highZ  at intermediate energy range. The charge density of the sys-
[45]. These facts further linky with the degree of deforma- tem, then, should strive to fulfill this constraint and at the
tion in the charge density. Here, the Shannon entropy magame time should correctly describe chemical properties of
provide an alternative explanation. From EQ.5), if one  interest. The maximum entropy principle, an independent
considers ZInvy as a perturbation of the value of the en- way of gauging the quality of the basis set and the wave
tropy, then a non zero value of<ly=< 2 implies a lower function, offers such a guide.

information entropy, or a more localized distribution for the

system. This is to compensate for the rough assumption of lll. CONCLUSIONS

the homogeneous density. An alternative improvement to the \we have provided a physical foundation for the Shannon
LPA is to treat the contribution of each orbital individually entropy by showing that it can be derived from the experi-
[46] or to have separate treatments for the core and valenagental mean excitation energy within the local plasma ap-
orbitals[47,48. proximation. The mean excitation energies of a series of at-
We wish to further comment on the accuracylafalcu- oms and molecules were computed from the Shannon
lations based of$,. The agreement betwe¢(S,) reported  entropy and show good agreement with experimental values
here and the literature values from different sources shoul@nd especially with those from theoretical and semiempirical
be considered with caution. These wave functions are inexa¢fodels. The maximum entropy principle can be used to en-
due to the basis set truncation error plus incompletdack ~ sure that the density imitates the LPA well and thus can be
of) treatment of electron correlation and relativistic effects.used as a constraint in evaluating the LPA model. Further-
The availability of exact wave functions will obviously shift more, a direct relationship between the densities in position
the values of . Sincel enters Eq(1.1) in a logarithmic form, ~&nd momentum space is implied through the entropic con-
this deviation will be intensified for the value of the stopping nection.
power. Results from Tables | and Il show that the effect of
the basis set on values bfis small. The effect is also ex-
pected to be minute for the electron correlation and relativ- We thank Dr. H. L. Schmider for valuable discussions.
istic corrections since the HF wave functions should haveThis research was supported in part by the Natural Sciences
already accounted for more than 99% of the total energyand Engineering Research Council of Candds$SERCQ
[49]. The deviation in the charge density is further estimatecand the Mexican Research Coun@ONACYt).
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