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Plasmon excitation by charged particles moving near a solid surface
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The interaction of fast charged particles with a semi-infinite medium is described using both quantum-
mechanical and semiclassical dielectric formulations. We consider the coupling with bulk and surface excita-
tions for arbitrary trajectories of the particle and apply the solutions to several cases of special interest.
Interference effects in bulk and surface excitations for some particular trajectories are described. We analyze in
detail the process of reflection-electron-energy-loss spectroscopy, obtaining results for the probabilities of
multiple bulk- and surface-plasmon excitations. The calculations are compared with available experimental
results, showing a good description of the angular dependence of the excitation phenomenon.
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PACS numbegs): 79.20.Rf, 34.50.Bw

I. INTRODUCTION arbitrary trajectories in the presence of a solid-vacuum inter-
face (Sec. I). Using a semiclassical picture we derive ex-
Plasmon excitation, both at the surface and in the bulk opressions to calculate the average energy loss of the particle
the material, is one of the most relevant processes in theue to bulk and surface excitatiofSec. Ill). In Sec. IV we
interaction of swift charged particles with solid samples.apply the general expressions to various particular cases of
These excitations are of interest in studies of electron and iofterest, like a single crossing of the surface by a particle
interactions with surfaces or thin solid foils, and in with uniform motion, a particle that reverses its motion in-

reﬂection_e'ectron_energy_loss Spectroscd@EELg of sol- side the medium, and a particle being reﬂe-cted-ne-ar a metal
ids [1,2]. surface, both for the cases of normal or oblique incidence. In

The theoretical description of these processes is usuallpec. V we apply the description to the relevant case of REEL
based either on the dielectric formulatip8—7], or in the  €xperiments, and compare the results with those from Pow-
quantized plasmon-field approai@+10]. Both pictures pro- ell's experiments. The main conclusions of this work are
vide valuable views of the process and serve to illustrate théhdicated in Sec. VI. We include in the Appendix a deriva-
classical and quantum aspects of the interactions. Severipn of the excitation probabilities for bulk and surface plas-
calculations based on these methods have been made, B0@NS using the quantum formulation. We show the essential
mostly for particles with normal or grazing incidence trajec-2greement of both methods for the case of simple metals, in
tories. Recent work by Yubero and co-workgt4,12, using  the plasmon-pole approximation.
the dielectric formulation, incorporates the full dielectric
properties of the solid as obtained from optical data, for ma- Il. SPECULAR-REFLECTION MODEL
terials with more complex electronic structure; the model
also considers the angular dependence of the process.

The purpose of this work is first to formulate in more
general terms the excitations produced by charged particle%(
with arbitrary motion near a solid-vacuum interface, includ-
ing the case of penetrating trajectories, and second, to apply
this description to the important case of reflection-electron-
energy-loss experiments. The present study is formulated us-

ing both the dielectric description and the quantum represen- o
tation of bulk- and surface-plasmon excitations. t=

/
Ze
The paper is organized as follows. First we briefly review 7\.\.
the so-called specular-reflection model based on the dielec- 0 v
tric formalism (Sec. ) and reformulate the description to
incorporate the more general case of particles moving with Z 0 —

Let us consider an external charge dengf§f(r,t) acting
on an interface between a metak(0) of dielectric function
k,w) and the vacuumz>0). Figure 1 illustrates in a

metal ek, ®) vacuum

_ _ _ o _ FIG. 1. lllustration of the scattering of a particle in a semi-
*Also with the Consejo Nacional de Investigaciones Cferats y infinite dielectric medium. This figure corresponds to the case of a

Técnicas(CONICET), Argentina. particle incident with an anglé@ relative to the surface plane, and
TComisim Nacional de Enefgi Atomica (CNEA) and Univer-  reflected at a poing, inside the medium, as in the case of REEL
sidad Nacional de Cuy@JNC), Argentina. experiments discussed in Sec. V.
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particular case the geometry of the process. According to thesheres (g, w) is the surface dielectric functida,5]

specular-reflection modd#,5], the metal and the vacuum

are treated as if they were infinite using symmetrized

charged densities,
Pmeta=LpT(r, ) +p(r',)][1-0(2) ]+ o(r,1) 8(2),

1
pvacuum:[PeXt(nt)+PeXt(r,vt)]®(Z)_O'(rut) 4(2), @

1 J—
85(q,(1)) Bl

q dk, 1
T ) ki"‘ 92 s(\/kg-l—qz,w)'

(7

These equations provide close expressions for the electric
potentials and charge densities at and in both sides of the
interface, in terms of the external perturbatie(r,t) and

with r'=r—2(r-2)2. These expressions incorporate thethe dielectric functiore(k,w) of the metal. The integrations

specular imagep®™{(r’,t) of the external density and a
surface-charge density, which is used to match the poten-
tial at the interface. The Heaviside step functi®iiz) indi-

in Egs.(6) and(7) can be treated analytically only for some
model dielectric functions. For instance, we can assume that
the dielectric function depends émonly through its compo-

cates that the charge density in the vacuum does not interagentq parallel to the surface, i.es(q, ) (see, for instance,

directly with the bulk, and vice versa.

Yubero etal. [12]). With this approximation,eg(q,w)

The electric potential is most easily obtained through=g(q,w), and the surface-charge densiifqg,») can be

Poisson’s equation in a Fourier transformed space,

1 )
¢meta(rlt)zw f dkf dw el<k‘r_wt)¢meta(k:w)n(2)

1 )
Dvacuunk I,1) = W f dkf dw el(k'r_wt)d’vacuun(k’w)-

with

4
Dmetal K, ) = m Pmetal K, @)

4
= ko) [Pl A+ K2, @)

+p2 Aa—k2,0)+o(qw)], (3

ext

4 .
¢vacuun(k )= k2 pvacuurr(k )= k2 [pvacuun‘(q+kzzrw)

vacuurr(q K.2,w)—o(q,w)], (4)
ext ext

With preta(K, ®) and pgicuun(K, @) the Fourier transforms of
the externalcharge density®'in each semispace,

ext

pmeta(kaw):f<odrf dt efi(k'ri‘”t)peXt(r,t),
z —
5

ps;i:uun(kvw): J' >odrj dt eii(k'riwt)PeX[(r,t).
z —

In the previous equations we have separated the paftg)lel
and normal k,2) components of the wave vectkrrelative
to the surfaceK=q+k,2).

Similarly, we get the Fourier transform of the electric
field E(k,w)=—ik¢(k,w). The surface-charge densityis

fixed by the continuity of the potential at the surface, i.e.,

¢meta(r’t)|z=0: ¢vacuun(rat)|z=0- This yields

o

dk,
—» K2+ g2

29 edQ,0)
7 l+egq(q,w)

ext
Pvacuu

o(q,w)= g+Kk,2,0)

1 X 2
- mpﬁnéraﬁﬁ kzz,w)) . 6)

obtained by residue integration,

2e(q,w)
1+e(q,w)

ext

o(q,0)= Pvacuunt A~ 102, @)

ext

1
- mpmeta(q"_ i9Z,w) |. €)

Here we have extended the limits of integration oketto
infinity, keeping the usual cutoff10] only in the parallel
component ok, namely, atq=q.. The potential$™(r,t)
induced in the medium by the external charge density is
obtained from Egs.3), (4), and (8) by subtracting the
vacuum field of the projectile,

ext

7T
meta(k )= Pmetal K, ) — a [pmeta(kvw)""PS;E:uurr(k:w)]

477
Tk
s:\tcuur'r(q+ |kzZ o)]

1-¢(q,w
e(q,w)

1-e(q,w)
1+e(q,w)

ext

[pmeta(q_ ik,2,w)

ext

[Pmeta q+ik,2,w)

_pﬁ’lxetta(q_ikzzrw)]] ’ (9)

|nd

vacuun(k ®) = Pyacuunt K, @)

ext

T
- ?Z[P%Xéta(k'w) + Pracuunt K, @) ]

477 1-¢(q,w)
a 1+e(q,w) L

ik,2,0)].

ext

meta(q+ ik,Z,w)

ext

vacuun( q (10)

In order to obtain these simplified expressions for the in-
duced potentials we have replacgttiqz by g=ik,z. This
change does not modify the final expressions in coordinate
space and makes the previous equations more readable.
The term proportional t§1—&(q,w)]/e(q,w) in Eq. (9)
is like the one describing the interaction of an external per-
turbation with an infinite material except for the presence of
the image charge densipf..(0—ik,2,»). Note also that
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this term appears only when the external charge density d dq (= o
ex . g L . . |nd(r (1))2— _1 dt elw'[elq-(r*R)
p®Y(r ) is different from zero inside the material, since that ¢" (I, o q
part of p®{(r,t) that occupies the vacuum semispace does o
not interact directly with the bulk but only with the surface,
through the surface-charge density The effect of this in-
teraction is represented by the terms proportional to (1
—¢&)/(1+¢) in the previous equation.

172(4.9) _qjeriiz, 1780@)
1+8(q,0)) S(Qyw)

XO(—2)@(—2-R)(e R4 _g-alzRezly |

Il. CHARGED PARTICLE (15)
MOVING IN AN ARBITRARY TRAJECTORY

Let us now study the perturbation produced by a projecWhereR: R().

tile of chargeZ moving in the proximity of a solid surface.

Previous model calculations by [53—16 and other authors IV. ENERGY LOSS AND PLASMON EXCITATION

(see, for instance, the recent work by Yubebal. [12]) Following the approach of previous authors, we evaluate
have considered some particular trajectories with simple geg,q energy-loss rate as

ometries. In this section, we generalize these previous results
by analyzing an arbitrary trajectofg@=R(t), i.e., p®{(r,t) dW _ d¢M™(r,t)
=Z45(r—R(t)). Replacing in Eqs(9) and (10), we get 5 L

dt ot F=R(1)
ind am _ (= iwta—ig-R Z (= (ot 4
mewl K. @)=77 Z| dteve =—izf do we “pM(R(1),w). (16)
1-&(q,) 5y a—ik,2 R Thus we obtain
|1+8(q,w)[®(R-z)e
1-5(q,0) w_dw 9 a7
_R.5akzRy T S\H@W) o dt o dt|. dt|.
+0(—R-2)e 1+ 2(Q.) 0(-2R) B s
o o where we separate the terms corresponding to b@8k-and
X[e ke R—glkz2: R4 (11)  surface- §) plasmon excitation,
dW 3 22 ( " R) t dt «© d i ('[,—'[)
: A7  l1l—e(q,w) (> . . —| =1 —0(—2- f ’f w we'’
ind _ jota—ig-R dt 4 —o —o
byacuuni K, @) ?2—2 Tre(@m) | dt €“'e B
Lo N d l1-¢ , W f ’
X[0O(2-R)e* R+ @(—2-R)e kZR], ><®(—2-R’)f 42 o80) g o)
e(q,0)
(12 s 5 '
X[e~ Iz (R=R)|_g=dlz (R+R")], (18)
We perform an integral ik, to get the induced potential )
in coordinate space. dwW A L -y [ 9
- =—i = dt do we'? —
dt s 4 —o0 — q
. 4 dgq (= S
ind I -1 jotaig-(r—R)
metal 1) ZWJ q f—oo drete 172(00) o r-rig-alRIF2RD (19

1-a( ) 1-a( ) 1+e(q,w)
—&(Q,w) 5. Rl—7 —e(q,w
Trea ® T e with R=R(t) andR’=R(t").
These expressions can be analytically integrated only for
some simple models of the dielectric function. Let us
' consider—for instance—the classical frequency-dependent
dielectric function

XO(—2- R)(e*q|2-sz|_e—q|2.R+Z‘)

(13
2
w
| Z (dq (= &(q,0)=1— ——— (20
¢l?a?cuun(r'w): 2w f Eq f_wdt g otgig-(r—R) w(wtiy)
as an instructive approximatiom,=3/rg is the plasma
1-&(q,0) e-a(2RI+2) (14)  frequency of the medium in atomic units, witl the one-
1+e(q,0) electron radius in the electron gas describing the salits

an effective damping rate which accounts for the finite life-
Finally, we can join both expressions faxx0 andz>0 in  time of the plasmons. Replacing in the previous equations
one single equation, we obtain
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dW q t , T T T
— =—Zzw2®(—2~R)J quf dt'e (1712 0.00
dt 5 p 0 . :
X cog wy(t—1')]3o(q|R—R’|sin ¢) [e~ Iz (R-R") -0.02
—e IRRINP(-2.R), (D) El
8 0.4
5
dw a t : = I .=
gt =—Zzw§J c0qu dt’e™ "2 cod wg(t—t')] © 006f : ]
S 0 o ;
5 5t bulk
XJQ(C”R_ R’lSin (,D)eiqlziRleicﬂzhR ‘, (22) 0.08F e SR |
-20 -1I0 (I) 1IO 20

whereJg(x) is the Bessel function of order @=¢(t,t’) is
the angle betweeR— R’ and the normat to the surfaceg, t(au)
is the usual cutoff in the plasma response function, and . . ,

FIG. 2. Energy-loss rate as a function of timér a particle of

=wy/V2 is the surface-plasmon frequency. This final ex- X . .
unity charge that crosses an aluminum surface in a normal trajec-

pression generalizes previous results for simple trajectoriest.ory with velocityv =10 a.u. The dashed and solid curves show the

contributions from bulk and surface excitations given by E88)

V. APPLICATIONS and(24).
A. Particle traversing a metal surface = dwW
As a first illustrative example, let us review the case of a AWs=— f_wdt dt
particle of chargeZ that crosses the surface in a normal s
trajectory,R(t) =vt, which remains undisturbed by the plas- 272w,
mon excitation events. This approximation holds for suffi- = fo5(0)

ciently large kinetic energies, namelmv2/2>hwp. Both

cases corresponding to a projectile abandoning or entering 72 ws t rﬁqcv) qcv/ wg 26
' . =7Z°— |arctan — | — —————|.
t;i g,)olld are contemplated. The energy-loss rate réfads ’ s 1+ (qulwy)?
dw 72 On the other handjW/dt|g is zero while the projectile is in
e s wf,@)(—v-2t)[f11(0)+sgr{t)f11(2wp|t|) the vacuum semispacéx0). Inside the metal, its first term
B v is independent of time and yields the usual stopping power
—20(t)f 15 wp|t]) cog wp|t])] (29  Of acharged projectile in an infinite solid,
p plt) L
, dw z? 2 0)=—# v -
dw| z | =7 opfu(0)=—fw,—,
S5t | = wisanvfi2adt) dtlg v M
S
Y where\p is the mean free path for bulk-plasmon excitation,
2(t)fll(ws|t|)cosws|t|)]- (24 given in this case by
Here sgnX) is the signum function, i.e+~1 for x<0 and 1 zzwp 5
+1 for x=0. The auxiliary functiond ,(x) are defined as No o Fiv? InV1+(gev/wp)®. (28)

m

£ _ The “begrenzung” term Z?w?/v)f11(2wy|t]) in Eq. (23
Fam(>) = fo Oly(1+y7)n e "y, (25 reduces the intensity of the cgupling to gulk plasmons in the
vicinity of the surface, due to a boundary effect first analyzed
o by Ritchie[3].
where {=qcv/w, for bulk-plasmon excitations, and
=v(./ws for surface-plasmon excitations.

In Fig. 2 we show both terms for a projectile of unity
charge crossing the surface of aluminum,=0.55 a.u.,
¥l w,=0.067. We see thatl W/dt|s is only important in the Let us now calculate the energy-loss rate by a particle of
vicinity of the surface. It increases when the projectile ap-chargeZ and velocityv that att=0 reverses its direction of
proaches the interface, reaches a maximum amplitude at erotion inside an infinite solid. Even though this example
actly t=0, and decreases again, showing an oscillatory bedoes not use the specular-reflection model, it is illustrative of
havior once the projectile has traversed the surfacethe effects produced, for instance, by a large-angle elastic
IntegratingdW/dt|s in time we get the total energy trans- scattering. The trajectory R(t) = —v|t|. The corresponding
ferred to the medium in surface-plasmon excitations, external charge density reads

B. Particle reversing its direction of motion
inside an infinite solid
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FIG. 3. Energy-loss rate for a particle with velocity= 10 a.u.
inside aluminum, which at timé=0 instantaneously reverses its
direction of motion. The stationary energy-loss ratetfaiO is the -0.10
value corresponding to the case of permanent uniform motion.
-0.15 L L

-20 -IIO 0 10 20
! (29 t(a.u.)

p¥ik,w)=2

w+k-v+i77_ w—Kk-v—in
FIG. 4. Energy-loss rate due to the excitation of b(dk and
with »—0". Replacing in Eqs(3) and(16) we obtain surface plasmongb) for a normally incident particle reflected at
time t=0 inside aluminum, at a distan@g from its surface. The
solid and dashed lines correspond to two different reflection dis-

tances, zy= — mv/wg (full curve) and zy=—37v/2ws (dashed

daw v
B:_hwp )\_P{l_®(t)[fll(2wp|t|) curve.

dt

_flo(wp|t|)5in(wp|t|)_fll(wp|t|)003wp|t|)]}- dw Zzwg
(30) E == v {—Sgl’(t)SgI’(tO+|'[|)f11(2w5|t0+|'[||)
S

+20(—t,—|t|)f —t,—|t]))co t—t
In Fig. 3 we see that before the collision<(0), the particle (tom[thfulws(~to~th)cod y(t—t,)]
loses energy at a constant rate, as given by (Ed. For —20(1)O(—ty—t)f11(wg 2ty +1t])coq wst)
t>0, an oscillatory behavior appears. This is due to the fact
that the particle traverses again a region where it has excited —20(~19)O(to+ ) fyy(wst)codwst)

plasmons in its incoming trajectory. The corresponding in- +20(—t,)O(ty+1)f1y(ws(t+1,))cog we(t—1t,)]

duced electric field produces an oscillatory correction to the

energy-loss rate which fades away for very large times. +20(—ty)O(t,+t)f1(wg(t+1,))
XCOiws(t-i'to)]}, (32

C. Particle reflected near a metal surface with normal incidence

Let us now consider the case of a particle with normalwith t,=2z,/v. In Fig. 4 we show these terms as a function
incidence that is reflected at a distangge from a metal- of time for the case of a particle of unity charge and velocity
vacuum interface. The trajectory now rea@t)=(vlt| v =10 a.u. reflecting inside aluminum at two different depths
+20)2. The reflection occurs inside or outside the material[Zo=—7v/ws (full curve) and zy=—37v/2ws (dashed
depending whethez, is negative or positive, respectively. curve]. We note thadW/dt|g is zero while the particle is

The energy-loss rate becomes outside the material. Once inside the solid, the energy-loss
rate increases towards its value for an infinite bulk, as given
dw Zzwrz, in Eq. (27). However, after the reflection &&0, an oscilla-
atl T T, O(—to—t)){f1.(0) tory behavior appears, as discussed in the preceding section.
B Again, a “begrenzung” effect reduces the coupling to bulk
=2 fi(wp([te] —[t]))cog wp(|to| +[t])] plasmons in the vicinity of the surface, amV/dt|g ap-
proaches zero dt=|t,|. This same “begrenzung” increases
=sgr(t) f13(2wp([to| = t])) the coupling to surface plasmons in the vicinity of the sur-
+20(t)f13(0)cog2wpt) +20(1) face, and s@lW/dt|s reaches a maximum whenever the par-

ticle enters or leaves the soliffig. 4(b)]. However, the most
X[ f1a(wp(2]te] —[t]))— f1i(wpt) Jcogwpt)},  (31)  interesting feature of these figures is the fact that, when the
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' ' latter caseQg(zo) =0, andQg(z,) decreases when the dis-

. tancez, of closest approach to the surface increases. When
the projectile is reflected inside the solid, we note a strong
oscillatory behavior of these excitation probabilities as a
. function of the penetration distand®g(z,) shows an oscil-
latory behavior with characteristic wavelengtiv/ws. This
effect is dominant for large values a§, whereQg behaves

20

1.5

T as
ZZ
05 1 Qs(zo)~4 53— T2 0)[1+Co%204t,)]. (35
0.0 In particular, we see th&(z,) ~0 for certain characteristic
-100 -50 0 50 depthszy=(n+1/2)7v/wg, with n=0,1,2,. . .. Theprojec-

z(au) tile completes its trajectory without any energy loss by
FIG. 5. FunctionsQg(z) and Q«(z), from Egs.(33) and (34), surface-plasmon excitation. We should remember, however,

giving the average number of bulk- and surface-plasmon excitationg’]e approxlmatlor’yz 0 used in th's_ case. For finite Value§ of
in aluminum for normally incident particles, as a function of the ¥ there will be no exact cancellation of ti@gs values. This
coordinatez of the reflection point. The values far 0 correspond ~ cancellation effect can be interpreted in terms of the results
to particles reflected inside the metal, while those Zor0 (only ~ Obtained in the preceding section, where the projectile could
surface-plasmon excitatidrare for particles reflected outside the '€Cover in one part of its trajectory part of the energy in-
solid. vested in plasmon excitation in another papi(z,) also
shows a similar oscillatory behavior, superposed to a term
particle is reflected at certain characteristic distances frontinear in the depttzy which is related to the mean free path
the surface, it can recover in the outgoing part of its trajecfor bulk-plasmon excitation in an infinite medium as dis-
tory the energy invested in surface-plasmon excitation beforeussed in a previous section. The dashed line in Fig. 5 shows
the reflection, as in the case shown with dotted line in Figthe approximationQg(zp)~ —2z3/\p, corresponding to
4(b). This striking result can be more clearly seen when theEgs. (27) and (28), where boundary effects are neglected
energy-loss rate is integrated in time to get the total energyi.e., the particle is assumed to dissipate energy uniformly, at
AW(z,) dissipated during the reflection process by plasmorihe bulk rate, once inside the medium
excitation. The oscillatory behavior ofQ(zy,) described here was
suggested by Ritchie as due to the interference between the
incoming and outgoing parts of a reflecting trajectfaty]. It
was also described by Yubero and Tougadrd] and Ger-
vasoni and co-worker$l5,16. However, the present de-
scription in terms of energy dissipation rates provides a de-
@p|to|f12(0) tailed account of how this interference between the incoming
and outgoing trajectories develops in time. Until now, this
—f22(2wp|to|)—2 f,0(0) oscillatory dependence of the energy loss with the depth of
1 penetration in a reflection geometry has not been experimen-
; tally investigated, but we may note that a similar effect has
2f11(0)+f21(0))S|n(2wp|t0|) begn obserg\]/ed in electron bgmbardment of Ag foils, where
the radiation emitted as the result of the decay of plasmons
_ presents an oscillatory dependence with the foil thickness
T 4Tad wplto] )OS wpto) ~Fod )OI 2wplo) |, [18], which is also due to interference effects between the
(33) incoming and outgoing trajectories.

[

dw
AWB(Z()): - f_ H dt

B

Zzwp
®( - to)
1%

=2

+

© dW Z2wg D. Particle reflected near a metal surface
AWs(z9) = - jﬁx W‘ dt=2 v {f22204[to]) with oblique incidence
S
Finally, let us consider the case of a particle that is re-
+20(—1o)f2(0)[1+cog2wto) ] flected at a distance from a metal-vacuum interface in a
— 40 (—ty)f o w4lty])COL wty)} (34) specular trajectory that forms an anglevith respect to the
(o} sIt0 sto/J*

surface, as shown in Fig. 1. The trajectory redRi&)

In Fig. 5 we show the corresponding average numbers of (v cosét)x+ (v sin 4t|+z)2. As before, the reflection oc-
bulk- and surface-plasmon excitations, defined @y(z,) curs inside or outside the material, depending on whether
=AWg(zy)/hwg andQg(zy) = AW(zp)/hwg, as a function is negative or positive, respectively.

of the coordinatez, of the reflection point. The curves for Let us note that the cylindrical symmetry of the system is
negative values af, describe those processes where the prolost due to the oblique trajectory. This means that now the
jectile is reflected inside the solid, while those with>0 energy-loss rates cannot be represented in terms of the
correspond to a reflection that occurs in the vacuum. In thisimple auxiliary functiond ,,, as before. In Fig. 6 we show
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FIG. 6. (a) and(b) show the average number of bulk and surface
plasmonsQg(z) andQg(z), as a function of the coordinareof the
reflection point. The figure corresponds to the case of oblique tr
jectories, for various angles of incidenéas indicated in the figure.

FIG. 7. Average number of bulk and surface plasmdps(z)
ae_indQS(z), calculated as in Fig. 6 and normalized to the asymptotic
values corresponding to very deep reflection points.

vicinity of the trajectory, up to a distance of the order of

':_he average ntémbers (: bl_JIk-thand surfa;:e-plasn:pn exf'taﬂqc. Thus, after reflection, the projectile would interact
ions, Qg(z) andQs(2). Again, the curves for negative val-  gyonaiv with this former perturbation only if it follows a

ues sz. de;cribe tho§e Processes where the projectile is repiath near to its incoming trajectory. In the present case of
flected inside the solid, while those witt>0 correspond 10 ,pjiqe incidence, the incident and reflected trajectories do

a reflection that occurs in the vacuum. . .
Lo not coincide, and so the oscillatory dependenceQgt
As for the case of normal incidenc®g(z) =0 for zo  ¢7q4ag away with decreasing angiés y dep eee)
>0, andQ(zo) decreases when the distarmeof closest In this example we have used a Drude-type approximation
approach to the surface increases. When the projectile is r¢5; ihe dielectric function, as given in E(R0). When allow-

flected inside the solid, however, we note that the strong,.q js made for spatial dispersion through a hydrodynamic
oscillatory behavior characteristic of normal incidence disapyie|ectric function

pears at smaller reflection anglés In particular, only the

term linear in the deptlz, remains inQg(zy). This term is w2

related to the mean free pah [Eq. (28)] for bulk-plasmon e(k,w)=1+ /WE&H—I) (36)
excitation, and increases with the lendthraveled by the Y

particle inside the solid. In Fig.(# we showQg(2o) NOr-  he plasmon oscillations behave in a different way. The in-
malized to the average number of bulk-plasmon excitationgy,ced potential does not remain localized to the vicinity of
for a particle traveling a distande=2|zo|/sin 6 inside an  the trajectory, but resembles rings of water that spread with
infinite solid, given byQg(zo)=1/\p. Similarly, Fig. 1b)  yelocity ~ 3, leaving behind an oscillating potential plateau
showsQg(z,) normalized to twice the average number of[19). But this perturbation fades away far from the trajectory,
surface plasmons excited when a projectile crosses a metahd, for particle velocities much larger than the group veloc-
surface in an oblique trajectory, namely,Qs ity g (whereB~1 a.u), the present discussion still applies.
=272%f,,(0)/Av sin 6 [see Eq(26)]. The progressive disap-

pearance of the oscillatory contribution, when the arjie V. REFLECTION-ELECTRON-ENERGY LOSS
decreased, is clearly seen in both cases.
Roughly speaking, the oscillatory behavior @{z) can As a final application, let us analyze a beam of electrons

be understood as due to the interaction of the emerging praeflecting at a metal surface. This problem is of great practi-
jectile with the charge density perturbation produced duringcal interest in relation with experimental methods where
its incoming trajectory. Hence, the value @{z) would de- charge projectiles are used as a probe of a solid surface, as in
pend on whether the outgoing projectile is in phase or out ofhe case of reflection-electron-energy-loss spectroscopy. In
phase with these charge density oscillations. However, wheprinciple, for any given REELS geometry the electron can
surface and bulk plasmons are excited by the particle entefollow different trajectories inside the soli®3,12, which

ing the solid, the charge density is mainly perturbed in thecontribute to the measured intensity. Here we shall consider
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a simplified model where all the electrons impinge on the 0.8 - T T

surface in an oblique trajectory of angleand are specularly

reflected by single elastic-scattering events at varying depths 06 1(1,0) @)

z inside the solid. For a monoenergetic beam of electrons of

energyE,, these elastically scattered electrons would be de-
tected roughly around a main spectral line. However, they
can lose energy during their travel in and out of the solid by,
for instance, plasmon excitations. Thus the spectra would
show a series of satellite lines at energiEg—nghw,
—nghiwg, Which are due to the excitation ofz bulk plas-
mons andhg surface plasmons. In fact, these are probabilis-
tic processes characterized by Poisson distributi8;s 20,

and an appropriate treatment of these excitations can be ob-

5 10 15 20 25 30

. . . v(a.u)
tained from a quantum-mechanical formulation of the pro- 10 . . . . .
cesses. This alternative formulation is considered in the Ap-
pendix, where we derive the probabilistic distribution of b
multiple excitations for a beam of electrons. We note, in i
particular, that, since not all the electrons come from the
same depth, these distributions must be averagedzover 6| 10,1)
After taking into account the differential probabilities for -
each trajectory, and integrating over all possible values of 4t
penetration distances for a beam of electrons incident on
the medium, the probability of excitingg bulk andng sur- ol
face plasmons finally reads K1,0)
0 dz —-2|z| —-2|z| % 15 30 45 60 75 90
Prens( D= | X sine A sing/ AN sine 0 (deg)
QB( ) Qs( )”S FIG. 8. Approximate expressions for the relative intensities
X Pe(26) exd —Qg(2)] 1(1,0) andl(0,1) from Eq.(40), for electrons reflected in alumi-
num. In(a) we show the velocity dependence for the case of normal
Xexd —Qs(2)]. (37) incidence, while in(b) we show the angular dependence for a ve-

locity v=10.
Here); is the mean free path for all those inelastic processes
d|fferent from plasmon excitation. The exponential term de-atter case, the average number of plasmon excitations can be
pending on the elastic mean free paiy) gives the prob- approximated by their asymptotic values
ability that the electron is not elastically scattered in its entire
trajectory inside the solid, except at precisely the depth
This latter collision occurs with a probabilitgz/\ . sin 6.
Finally, P.(¢) is the probability for the electron to be de-
flected in an anglep=26 by this elastic collision with an
atom in the solid. We refer to the Appendix for a derivation

of }_h'i’ expression and flqr fl;rther daetatlls. th babilit a normal trajectory, as in E@26). Using this approximation
el us now' normalize "( ) to the probability in Eg. (38), the normalized probability for the excitation of

Po,o8) for no plasmon ex0|tat|ons and define the relative-n; pulk andng surface plasmons becomes

intensity function

Qs(2)~2Q¥sin o,

where Q%z Z%f,(0)/hv is the average number of surface
plasmons excited when a projectile crosses a metal surface in

1 (2Q2\"s/ N, \M
Ing .ng(6) g 0~ 17 | Sin g ()\i +\p 40
Png .ng 0)/Poo(6) Moreover, we see that this expression can be written in terms

of the normalized probabilities for excitation of one bulk or
one surface plasmon, namely,

- 2 ..dz exp(—2[z|/\; sin 6)QEEQL exp( — Qg— Q)
"~ ng!ng! [°..dz exp(—2|z|/\; sin 8)exp(—Qg—Qg)

(6)~ (41)

”B Ng

(38) ?[l(O.l)]”s[l(l,O)]“B.

Since the transport mean free path is much larger for elastiEquations(40) and(41) provide very useful approximations
than for inelastic collision$11,23, in the latter expression to evaluate the energy-loss spectra of a beam of electrons in
we have neglected the exponential term\in REELS experiments.

This integral cannot be evaluated analytically, except if In Fig. 8 we show the approximate expressions in(&Q)
all oscillations and begrenzung effects are neglected. In thior the relative loss intensitidg1,0) andl (0,1) for the case
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Cm 0'0 1 1 1 1 1
= 0 15 30 45 60 75 90
? 0 (deg)
Ccn
= ©02) FIG. 10. Mean-free-path dependence of the relative loss inten-
’ (b) E=8keV sities | (np ,ng), normalized to the intensity of the elastic peak
0.4 : : : : . 1(0,0), for the reflection of 8-keV electrons in aluminum. We ob-
0 15 30 45 60 75 90 serve that the intensity for bulk plasmofi® shows a much larger
0 (deg) dependence on the /\p value than the one for surface plasmons

a).
FIG. 9. Relative loss intensitid¢np ,ng) as given by Eq(38), @
normalized to the approximation in E¢40), for the reflection of From the previous results it seems that one of the relevant
electrons in aluminuma) for normal incidence as a function of the Parameters in the excitation process is the mean-free-path
electron velocity, andb) for an electron beam of 8 keV as a func- ratio \j/\p, showing the relative importance of plasmon
tion of the angled. excitation versus other excitation processes. The dependence
of the relative intensitie$(1,0)/1(0,0) andI(0,1)/1(0,0) on
of an aluminum surfaces{,=0.55 a.u.), showing the depen- this ratio is shown in Fig. 10, for different values ®f/\p
dences on electron velocityfor normal incidencépart(a)],  and as a function of the incidence angleWe observe that
and on incidence anglé for velocity v =10 [part (b)]. The the intensity corresponding to bulk plasmonél,0)/(0,0)
mean free paths for inelastic collisions and plasmon exci- [Part(b)], depends very much on the ratig/\p, while its
tation Ap were calculated as indicated by Tung and co-anhgular dependence is very weak; on the other hand, the
workers [22,23. We see that the bulk-plasmon excitation INtensity corresponding to surface plasmoh,1)/1(0,0)
probability (1,0)=~\, /(\; + \p) is nearly independent of the LPart(@], shows a much smaller dependencerofnp, but
projectile velocity and incidence angle, whereas the surface? large angular dependence. -
plasmon excitation probability(0,1) shows a velocity de- As a final test of these results, we compare in Fig. 11 the

endence as well as the characteristic anqular dependen robabilities for the excitation of single bulk or surface plas-
Bl/sina 9 P ns calculated with this model, with the experimental re-

. ) . sults of Powell[21] for an 8-keV electron beam impinging
These approximate expressions generally overestimate th, an ajuminum surface. These experiments provide an im-
surface-plasmon excitation probabilitiefd,ns) and fail for - hortant set of data for different angles, showing very nicely
bulk-plasmon  production at moderate velocities. This isthe angular dependence of the process. We have adjusted a
shown in Fig. 9, where the relative loss intensiti€sg ,Ns)  single free parameter in our model, i.e., the ratio of the plas-
as given by Eq(38), normalized to the approximation in Eq. mon excitation to the inelastic mean free pathg\;~2, so
(40), are plotted as a function of the electron veloaitfor  as to fit the bulk-plasmon excitation probability at almost
normal incidencda) and as a function of the anglefor an  normal incidence. As already indicated, the results for the
electron beam of 8 ke\h). In general, the approximate ex- surface-plasmon excitation are much less sensitive to this
pressions in Eqg40) and(41) worsen for decreasing angles, ratio, and so similar comparisons can be obtained with
since “begrenzung” effects are comparatively more impor-slightly different values. In this way we obtain a very satis-
tant. Similarly its failure for decreasing velocities is due tofactory agreement with the experimental values.
the fact that for not so large velocities the mean free path
for plasmon excitation is comparable to the characteristic VIl. SUMMARY AND CONCLUSIONS

distance in the vicinity of the surface where “begrenzung” We have formulated in general terms the interaction be-
effects are importantl4]. tween a charged particle moving in an arbitrary trajectory
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12 . . T . - ratio, which would be important for comparisons widp

1® : initio calculations of mean free paths of electrons in solids.
A=0.54
1.0
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APPENDIX: THE SEMICLASSICAL FORMALISM

We present here a description of the plasmon excitation
process using the semiclassical formalism, originally devel-
0 (deg) oped by Lucas andupijic [24]. In this formalism the external
particle is assumed to follow a classical trajectory, whereas
FIG. 11. Probabilities of bulk- and surface-plasmon excitationsthe excitations in the mediurtbulk and surface plasmons
calculated with this model and compared with the experimentaBre described in a quantum-mechanical way. This allows us
results by Powell(Ref. [21]) for 8-keV electrons reflected on alu- to calculate the average number of excited plasmons of a fast
minum surfaces. charge moving inside a material, following an arbitrarily pre-
scribed trajectory. In principle, the analysis may not coincide
with the collective modes in the bulk and the surface of awith that of the dielectric formalism, but we will see that the
semi-infinite medium. The excitation of plasmons is de-results are very similar, and in some cases identical, depend-
scribed using both the dielectric and the quantum-mechanicahg on the dielectric functions used.
versions of the process. Both descriptions were shown to be
equivalent when a simple plasmon-pole representation of the 1. Surface modes
dielectric function is used. Previous results for simple trajec- . e . . . .
tories may be derived from the present description. Lgt us consider two seml-lnflmte media with dleleqtrlc
We find that for penetrating trajectories the average numfunctions ei() and e5(w), and with plasma frequencies

ber of excited plasmons displays an interference structur&@p1 @Ndwp, divided by a flat interface @=0. The condi-
which is more important for normal incidence, and graduall tion for the existence of surface modes at the interface, ob-

diminishes when the incidence angle decreases. The interpri&in€d by Ritchie[3], is in general given by (w) +&5(w)

tation of this behavior is clear from the present description,~0- @nd in particular, for a metal-vacuum interface, by

and is due to the spatial localization of the induced potentiaf1(«) +1=0. For a simple Drude-type dielectric function,

on the surface, both at the penetration and emergence point§€ solution to this equation gives a surface-plasmon fre-
We analyzed in particular the case of electrons reflecte§Uency ws=wp/v2. This gives rise to electrostatic fields,

in a solid sample and derive expressions for the probabilityVhich are solutions of the Laplace equation in each medium,

of multiple plasmon excitations by an electron reflected in a7 ¢=0, except for points on the interface, where the

specular trajectory. This case is of particular interest forSOurces of th_e field are Iocgted. The solutions of this problem

reflection-energy-loss spectroscopies. We may note thahow an oscnlat_ory behavpr on the plane pf the surface, but

other cases of nonspecular-reflection conditions may also Héecay exponentially for points away from it.

analyzed by a simple extension of the present calculation. Hence, the general electrostatic potential may be repre-
In order to represent the experimental conditions we perSénted in terms of simple plane-wave modes, with wave vec-

formed statistical averages that take into account variouorsd parallel to the surfaceand in the range €q<qp),

probability factors: the probability of reflection at various

depths inside the medium, the probability of multiple bulk- H(rH)=> Aq(z)eiq-refw exp—iwg)+c.c. (Al)

and surface-plasmon excitations, and the extinction effect q

due to other inelastic processes. Simple approximations to, . ) ) _

the complete expressiofiike Egs. (40) and (41)] may also This fleld.may be quantlzed in th*e ysual wap], replacing

be useful for a more rapid test of experimental results.  the classical amplituded, and Ay in terms of the corre-
We have compared our calculations with the experimenta$Ponding annihilation and creation operatagsanday,

results by Powell. We find a general good agreement for the

intensity of the surface-plasmon excitation lines, and we find A _>( Thos 1/2a

that the intensity of the bulk-plasmon lines is a sensitive a qA 4

function of the mean-free-path rat\g/\p, which measures

the relative importance of plasmon excitation versus other AF mhog) 12 + A2
excitation processes. This quantity is in principle calculable a = gA ag (A2)

from current theories on inelastic scattering and electron

mean free paths; therefore we expect that the use of thehereA is the area of the surface. Now each mode repre-
present description of the process may provide a way to exsents a surface plasmon with momentdrg and energy
tract from the experiments the most adequate values of thiws.
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The Hamiltonian of the pure surface-plasmon field takes

the usual form

Hg:% fwsalag, (A3)

and the final expression for the quantized potential becomes

. ws 1/2

$(r=2 A) exp( —alz))
q
X[aqexp—iwgt)explig-r)

+a] expliwgt)exp(—ig-)]. (Ad)

The electric fieldE and induced charge densipymay be
obtained by simple derivations, in particular, we get

p(F,t)=—%V2¢=§q‘, quexp(—|wt)eX[:J(|q ré(z),
(AS5)

which explicitly shows that the sources of this field are lo-

cated at the surface=0.

a. Interaction with an external charge

Let us consider an external char@ethat moves in a
trajectory R(t). The interaction with the surface-plasmon
field is given by the Hamiltonian term:

Hin(t)=Z#[R(1)]
szﬁws
5

2
) exd —alz-R(D|]  (A6)

X{aq exp —iwgt)exdiq-R(t)]
+a} expliwgt)exd —ig-R(t)]} (A7)

and the total Hamiltonian becomes
H= % fhwsalag+ §q‘, [fo(Dage s+ 1} (t)ales],
(A8)
with

Wsg

gA

1/2
) exfl —a|z-R(t)[lexdiq- R(1)].
(A9)

ar
fq(t):<

The time evolution of the plasmon-field state may be sim-

ply obtained in the interaction picture from the equation

L ov(t)
ih——=H

int\P(t)
=§ [fo(age s+ (Date' W (1).
(A10)

This shows thatV(t) has the form of a coherent stdi25],
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\If(t)=exp<—i§q: [1g(ag+ 1% (Hal] | ¥ (—x),
(A11)
with
1 [t
Iq(t)=%j_ fo(t') exp—ingd )dt’,  (A12)

and where¥ (—<) represents the initial state of the plas-
mons. We assume that the plasmon field is initially in the
ground stateW (—«)=|0), where|0) is the state with no
excited plasmons.

Developing the equatiofA11) in eigenstate$n,) of the
free HamiltonianH2, Eq. (A3), wherenq denotes the num-
ber of (excited plasmons for a given modg

(@)"
Ing) = \/mlo% (AL13)
one getq25]
, . n( T)n
W(t)= H ex ——||q<t>| 2[ i3 (1)] 0).
(A14)

Then, the final probability that the particle will excitg,
plasmons of a given modg, after interacting with the me-
dium between times= — o andt= +, is given by

(Qq)”

Pa=l(ngl¥(=))P=exa—Qq) ——,  (A15)

with Q= [14()|%. This has the form of a Poisson distribu-
tion, with Q the relevant parameter that gives the average
number of surface-plasmon excitations for a given mqde
viz.,

(Ng)= E Pon=exp(— Qq>2 (Q“) n=Qq.
(A16)

The simplicity of this result is due to the fact that, since
the projectile does not modify its energy or its momentum
when it excites one plasmon, the probability of exciting an-
other plasmon is independent of the former process. Hence,
the composite probability to excite, plasmons of the mode
d;,Nn, plasmons of the modeg,, and so on, will be given by

)=exp - Q)H (Q“) ,

q

P(nlvn21 . (A17)
with

A
Q=3 )=z [ el (a9

Here we have transformed the sum over modes into an inte-
gral in the usual way.



57 PLASMON EXCITATION BY CHARGED PARTICLES . .. 4509

Finally, we can compute the probability to excite a totalmons increases. In the limit— 0, Qg diverges because the
number ofn plasmons(with any arbitrary distribution of electron moves parallel to the surface, exciting an ever in-
excited modesas follows: creasing number of plasmons.

On the other hand, in the case of normal incidence,
#=90°, we can integrate E§A24) and obtain

P= > P(nl,nz,...)=%eXF(—Q)-

o (A19) (A27)

qLU _ (qev/ ws)
1+ (qev/ we)?

. Wg
From this result we can calculate the average number of

plasmons excited by the external charge, after its interactiop, agreement with EG26) in the text, showing explicitly the

with the surface, relation between the mean energy loss and the average num-
n ber of plasmon excitation&Ws=7% wQg. (Notice also that
(Ny=>, nP,=>n Q—exq -Q)=Q. (A20) theresultis the same for transmission and for reflecting tra-
n n nt jectories, since the response of the plasmon field is sym-

_ - N metrical for equal perturbations on both sides of the inter-
In particular, the probability of exciting only one plasmon face)

(of any mode is given by

P,=Q exp(—Q), (A21) 2. Bulk modes
_. S The treatment of the bulk modes is analogous to the one
and the probability of no-plasmon excitation is simply of surface plasmons. The average number of bulk plasmons
excited by a charge moving with trajectoR(t) is
Po—exp(— Q). (A22) Qs y 9 9 jector(t)
- BRI ~(o0) |2
b. Electrons reflected at a surface in grazing incidence QB_W sz>0d K Ik(oo)| ' (A28)
Let us consider in particular the case of an electron of
velocity v which is specularly reflected at the surface of a 1 (= )
metal. The angle of incidence measured from the plane of the T() =7 f_xdtflz(t)eXP( —iwpt), (A29)

surface isf. The trajectory is therefore

47TZZﬁwp

R(M=(v cosd) tx+ (v sino)ltlz,  (A23) — )1/2exF[iq-R(t)]sir{kzZR(t)]

fr(t)=

wherex is a versor parallel to the surface.
Replacing this trajectory in the former formulas, we ob-
tain the average number of excited surface plasmons,

X0O(—2-R(1)), (A30)

wherek=q+ k, -z is the three-dimensional wave vector of
Z2wg (27 dc the bulk plasmon, which for convenience is decomposed into
Qs= hor fo dafo dq parallel(q) and perpendiculargz) components with respect
to the surface. Her¥ represents the volume of the medium.
qzvg The Heaviside functio® (—z- R(t)) indicates that the cou-
(A24)  pling with the bulk modes takes place only when the particle
is inside the medium.

><[(qv sin )2+ (ws—qu cos # cosa)?]?”

If the incidence is very grazing, i.ey,=v sSiné is very
small, we can make the replacement 3. Comparison with the dielectric formalism
2.2 a. Surface plasmons
qv;
[q2v§+ (we—qu COS 6 oS )22 L_Jsing the semiqlassical _formalisr_n, the average nu_mber of
excited plasmons in a portion of trajectdifyom — until a
given timet) is

’7T
— 2q0, 6(ws—Qqu cos 6 cos o) (A25)

A 2 2
for v,—0. Qs(t)= 22 d%qll (D%, (A31)
Using this limit, we can integrate and obtain the following

expression foQg:
z2 qcv
Q™ v sin 0 arctar( (w_s

where

- 1) . (A26)

1 [t o,
|q(t)=g f_ocdt’fq(t’)e_"“st. (A32)

We can see from this equation that, when the incidence
becomes more grazing, the average number of excited pla§)sing these equations we obtain
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A ’ & " dw _ 2 5 t ’ Ge
Qg(t)= o)’ szqf dtf dt"f4(t") o (t") ot B——Zzwp(@(—z-R(t))fmdt fo dq
xXexg —iog(t"—t")]. (A33) X0 (—2-R(t"))(exp{—a|z-[R() —R(t")][}
—exp{—q|z-[R(t) +R(t")][})

In order to compare with the dielectric formalism, we derive

from this an expression for the energy loss per time unit, as X cod wp(t—t")[Jo[q[R() = R(t")]sin ¢],
follows: (A38)
which corresponds to Eq21) of the text in the limity
dw dQg(t) —0.
dt s “sT 4t Thus we have shown that the quantum formulation of

Lucas for plasmon excitations is equivalent to the dielectric

Awg ) , . formalism using the specular-reflection model and the Drude
2m%h dq %dt {fq(Ofg(t") approximation(with y=0), for particles with arbitrary tra-

jectories.
Xexd —iwg(t—t")]
4. Multiple plasmon excitations

(1) T (Dexd —iog(t —Dlt (A34) In order to compare our model with experimental results,

it is necessary to calculate the probability that the projectile
We consider here the general case of a particle movingXxcitesng bulk plasmons ands surface plasmons along its
with an arbitrary trajectonyR(t), then trajectory. To formulate this, we first consider the differential
probability P,.{z) that the particle is reflected due to an
elastic scattering process at a deptinside the materia(cf.

7Z%hwg| 2 . ) Fig. 1):
fq(t)=(q—As) exd —d|z-R(t)[Jexdiq-R(t)]. 9- b
A35
(435 P el D) =X X3 /h) CeXH eI\
Replacing this in Eq(A34), and integrating over the angle of ;{ -2|7| ) dz
i =ex - - , A39
g, we obtain Ne SIN(B) ] Ag Sin(H) (A39)
qw . with X, =X,=|z|/sin 6, dx=dz/sin §, and where\ .= 1/no,
| = _Zzngchqj dt’ cog wg(t—t")] is the mean free path for elastic scattering of electrons in the
dt S 0 —o material. EquatiofA39) combines the probabilities that the
o particle is not scattered along the incoming and outgoing
X Jo[a[R(t) = R(t")]sin ¢] trajectories(with path lengthsx; andx,, respectively, and
xexg —q|z-R(t)|—g|2-R(t)]], (A36) suffers a single scattering event in the element of trajectory

dx.
The probability for the electron to be scattered in the di-
whereg is the angle between the vect(t) —R(t’) and the rection of observation within a small solid angl€) is given

normal to the surface. by
This expression coincides exactly with E@2) of the
text, deduced from the dielectric formalism and the specular- :i % (A40)
reflection model, using a Drude model for the dielectric ¢ o, dQ’
function, with plasma frequenay, and attenuation constant

Once this trajectory is defined, the probability of exciting
ng bulk plasmons andg surface plasmons by the particle is
given by the combined Poisson distribution, as in &{7):

y=0.

b. Bulk plasmons
ng Ns

Qg Q
ng.ng™— exq QB) eXF( QS) ’ (A41)

The treatment for the bulk modes is analogous to the pre-

. : D
vious one for surface plasmons. Replacing

with the values 0fQg and Qg calculated before.

o [ATZhep\ Y , Moreover, the probability that no other type of inelastic
=\ —iz sinkz2-R(t) Jexdiq-R(1)] processes occur for this trajectory is given by
X 0 (—2-R(1)), (A37) o] 212
Pin(z)=ex ik (A42)

in an equation similar to Eq(A34) for bulk plasmons, and where\; is the mean free path corresponding to any other
integrating with respect tk, and to the angle aof, we obtain inelastic process different from plasmon excitation.
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Then, we can integrate the total probability of excitimg (ng) plasmons along the whole trajectory, for a particle reflected
at a distancéz| from the surface, assuming a single elastic collision, as follows:

dPngng(0) 1 do fo dz F{—2|z| (1 1

dQ o, dQ _w)\esineex sind |\, \e

} Ding g (A43)

In order to compare with the available experimental data, we consider the ratio between the former expression and the
probability that the particle is reflected without any plasmon lass, the elastic peakwhich is given byd P o 6)/d{).
Thus we obtain théntensity ratio ng,ng) for a given value of the incidence angle:

0
| - AP, o 0)/dQ_ 1 Jiwdz exp(—2|z|/\; sin /) Qz2Q¢° exp— Qg — Qs) s
B NS dPog 6)/dQ  nglng f 12 Xt —212lIn. 5 rexsl— 0o :

whereQg=Qg(2) andQs=Qg(2), as calculated before.
We note that, in taking this ratio, the dependence on the elastic-scattering cross sgatacels out.
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