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Plasmon excitation by charged particles moving near a solid surface
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The interaction of fast charged particles with a semi-infinite medium is described using both quantum-
mechanical and semiclassical dielectric formulations. We consider the coupling with bulk and surface excita-
tions for arbitrary trajectories of the particle and apply the solutions to several cases of special interest.
Interference effects in bulk and surface excitations for some particular trajectories are described. We analyze in
detail the process of reflection-electron-energy-loss spectroscopy, obtaining results for the probabilities of
multiple bulk- and surface-plasmon excitations. The calculations are compared with available experimental
results, showing a good description of the angular dependence of the excitation phenomenon.
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I. INTRODUCTION

Plasmon excitation, both at the surface and in the bulk
the material, is one of the most relevant processes in
interaction of swift charged particles with solid sample
These excitations are of interest in studies of electron and
interactions with surfaces or thin solid foils, and
reflection-electron-energy-loss spectroscopy~REELS! of sol-
ids @1,2#.

The theoretical description of these processes is usu
based either on the dielectric formulation@3–7#, or in the
quantized plasmon-field approach@8–10#. Both pictures pro-
vide valuable views of the process and serve to illustrate
classical and quantum aspects of the interactions. Sev
calculations based on these methods have been made
mostly for particles with normal or grazing incidence traje
tories. Recent work by Yubero and co-workers@11,12#, using
the dielectric formulation, incorporates the full dielectr
properties of the solid as obtained from optical data, for m
terials with more complex electronic structure; the mo
also considers the angular dependence of the process.

The purpose of this work is first to formulate in mo
general terms the excitations produced by charged part
with arbitrary motion near a solid-vacuum interface, inclu
ing the case of penetrating trajectories, and second, to a
this description to the important case of reflection-electr
energy-loss experiments. The present study is formulated
ing both the dielectric description and the quantum repres
tation of bulk- and surface-plasmon excitations.

The paper is organized as follows. First we briefly revie
the so-called specular-reflection model based on the die
tric formalism ~Sec. I! and reformulate the description t
incorporate the more general case of particles moving w
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arbitrary trajectories in the presence of a solid-vacuum in
face ~Sec. II!. Using a semiclassical picture we derive e
pressions to calculate the average energy loss of the par
due to bulk and surface excitations~Sec. III!. In Sec. IV we
apply the general expressions to various particular case
interest, like a single crossing of the surface by a parti
with uniform motion, a particle that reverses its motion i
side the medium, and a particle being reflected near a m
surface, both for the cases of normal or oblique incidence
Sec. V we apply the description to the relevant case of RE
experiments, and compare the results with those from P
ell’s experiments. The main conclusions of this work a
indicated in Sec. VI. We include in the Appendix a deriv
tion of the excitation probabilities for bulk and surface pla
mons using the quantum formulation. We show the essen
agreement of both methods for the case of simple metals
the plasmon-pole approximation.

II. SPECULAR-REFLECTION MODEL

Let us consider an external charge densityrext(r ,t) acting
on an interface between a metal (z,0) of dielectric function
«(k,v) and the vacuum (z.0). Figure 1 illustrates in a

FIG. 1. Illustration of the scattering of a particle in a sem
infinite dielectric medium. This figure corresponds to the case o
particle incident with an angleu relative to the surface plane, an
reflected at a pointz0 inside the medium, as in the case of REE
experiments discussed in Sec. V.
4498 © 1998 The American Physical Society
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57 4499PLASMON EXCITATION BY CHARGED PARTICLES . . .
particular case the geometry of the process. According to
specular-reflection model@4,5#, the metal and the vacuum
are treated as if they were infinite using symmetriz
charged densities,

rmetal5@rext~r ,t !1rext~r 8,t !#@12Q~z!#1s~r ,t !d~z!,

rvacuum5@rext~r ,t !1rext~r 8,t !#Q~z!2s~r ,t !d~z!,
~1!

with r 85r22(r• ẑ) ẑ. These expressions incorporate t
specular imagerext(r 8,t) of the external density and
surface-charge densitys, which is used to match the poten
tial at the interface. The Heaviside step functionQ(z) indi-
cates that the charge density in the vacuum does not inte
directly with the bulk, and vice versa.

The electric potential is most easily obtained throu
Poisson’s equation in a Fourier transformed space,

fmetal~r ,t !5
1

~2p!4 E dkE dv ei ~k•r2vt !fmetal~k,v!,
~2!

fvacuum~r ,t !5
1

~2p!4 E dkE dv ei ~k•r2vt !fvacuum~k,v!,

with

fmetal~k,v!5
4p

k2«~k,v!
rmetal~k,v!

5
4p

k2«~k,v!
@rmetal

ext ~q1kzẑ,v!

1rmetal
ext ~q2kzẑ,v!1s~q,v!#, ~3!

fvacuum~k,v!5
4p

k2 rvacuum~k,v!5
4p

k2 @rvacuum
ext ~q1kzẑ,v!

1rvacuum
ext ~q2kzẑ,v!2s~q,v!#, ~4!

with rmetal
ext (k,v) andrvacuum

ext (k,v) the Fourier transforms o
the externalcharge densityrext in each semispace,

rmetal
ext ~k,v!5E

z,0
drE

2`

`

dt e2 i ~k•r2vt !rext~r ,t !,

~5!

rvacuum
ext ~k,v!5E

z.0
drE

2`

`

dt e2 i ~k•r2vt !rext~r ,t !.

In the previous equations we have separated the paralle~q!
and normal (kzẑ) components of the wave vectork relative
to the surface (k5q1kzẑ).

Similarly, we get the Fourier transform of the electr
field E(k,v)52 ikf(k,v). The surface-charge densitys is
fixed by the continuity of the potential at the surface, i.
fmetal(r ,t)uz505fvacuum(r ,t)uz50 . This yields

s~q,v!5
2q

p

«S~q,v!

11«S~q,v!
E

2`

` dkz

kz
21q2 S rvacuum

ext ~q1kzẑ,v!

2
1

«~Akz
21q2,v!

rmetal
ext ~q1kzẑ,v!D , ~6!
e

d

ct

,

where«S(q,v) is the surface dielectric function@4,5#

1

«S~q,v!
5

q

p E
2`

` dkz

kz
21q2

1

«~Akz
21q2,v!

. ~7!

These equations provide close expressions for the ele
potentials and charge densities at and in both sides of
interface, in terms of the external perturbationrext(r ,t) and
the dielectric function«(k,v) of the metal. The integrations
in Eqs.~6! and~7! can be treated analytically only for som
model dielectric functions. For instance, we can assume
the dielectric function depends onk only through its compo-
nentq parallel to the surface, i.e.,«(q,v) ~see, for instance
Yubero et al. @12#!. With this approximation,«S(q,v)
5«(q,v), and the surface-charge densitys(q,v) can be
obtained by residue integration,

s~q,v!5
2«~q,v!

11«~q,v! Frvacuum
ext ~q2 iq ẑ,v!

2
1

«~q,v!
rmetal

ext ~q1 iq ẑ,v!G . ~8!

Here we have extended the limits of integration overkz to
infinity, keeping the usual cutoff@10# only in the parallel
component ofk, namely, atq5qc . The potentialf ind(r ,t)
induced in the medium by the external charge density
obtained from Eqs.~3!, ~4!, and ~8! by subtracting the
vacuum field of the projectile,

fmetal
ind ~k,v!5fmetal~k,v!2

4p

k2 @rmetal
ext ~k,v!1rvacuum

ext ~k,v!#

5
4p

k2 H 12«~q,v!

11«~q,v!
@rmetal

ext ~q2 ikzẑ,v!

1rvacuum
ext ~q1 ikzẑ,v!#

1
12«~q,v!

«~q,v!
@rmetal

ext ~q1 ikzẑ,v!

2rmetal
ext ~q2 ikzẑ,v!#J , ~9!

fvacuum
ind ~k,v!5fvacuum~k,v!

2
4p

k2 @rmetal
ext ~k,v!1rvacuum

ext ~k,v!#

5
4p

k2

12«~q,v!

11«~q,v!
@rmetal

ext ~q1 ikzẑ,v!

1rvacuum
ext ~q2 ikzẑ,v!#. ~10!

In order to obtain these simplified expressions for the
duced potentials we have replacedq6 iq ẑ by q6 ikzẑ. This
change does not modify the final expressions in coordin
space and makes the previous equations more readable

The term proportional to@12«(q,v)#/«(q,v) in Eq. ~9!
is like the one describing the interaction of an external p
turbation with an infinite material, except for the presence
the image charge densityrmetal

ext (q2 ikzẑ,v). Note also that
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4500 57DENTON, GERVASONI, BARRACHINA, AND ARISTA
this term appears only when the external charge den
rext(r ,t) is different from zero inside the material, since th
part of rext(r ,t) that occupies the vacuum semispace d
not interact directly with the bulk but only with the surfac
through the surface-charge densitys. The effect of this in-
teraction is represented by the terms proportional to
2«)/(11«) in the previous equation.

III. CHARGED PARTICLE
MOVING IN AN ARBITRARY TRAJECTORY

Let us now study the perturbation produced by a proj
tile of chargeZ moving in the proximity of a solid surface
Previous model calculations by us@13–16# and other authors
~see, for instance, the recent work by Yuberoet al. @12#!
have considered some particular trajectories with simple
ometries. In this section, we generalize these previous re
by analyzing an arbitrary trajectoryR5R(t), i.e., rext(r ,t)
5Zd„r2R(t)…. Replacing in Eqs.~9! and ~10!, we get

fmetal
ind ~k,v!5

4p

k2 ZE
2`

`

dt eivte2 iq•R

3H 12«~q,v!

11«~q,v!
@Q~R• ẑ!e2 ikzẑ•R

1Q~2R• ẑ!eikzẑ•R#1
12«~q,v!

«~q,v!
Q~2 ẑR!

3@e2 ikzẑ•R2eikzẑ•R#J , ~11!

fvacuum
ind ~k,v!5

4p

k2 Z
12«~q,v!

11«~q,v!
E

2`

`

dt eivte2 iq•R

3@Q~ ẑ•R!eikzẑ•R1Q~2 ẑ•R!e2 ikzẑ•R#.

~12!

We perform an integral inkz to get the induced potentia
in coordinate space.

fmetal
ind ~r ,v!5

Z

2p E dq

q E
2`

`

dt eivteiq•~r2R!

3F12«~q,v!

11«~q,v!
e2q~ uẑ•Ru2z!1

12«~q,v!

«~q,v!

3Q~2 ẑ•R!~e2quẑ•R2zu2e2quẑ•R1zu!G ,
~13!

fvacuum
ind ~r ,v!5

Z

2p E dq

q E
2`

`

dt eivteiq•~r2R!

3
12«~q,v!

11«~q,v!
e2q~ uẑ•Ru1z!. ~14!

Finally, we can join both expressions forz,0 andz.0 in
one single equation,
ty
t
s

1

-

e-
lts

f ind~r ,v!5
Z

2p E dq

q E
2`

`

dt eivteiq•~r2R!

3F12«~q,v!

11«~q,v!
e2q~ uẑ•Ru1uzu!1

12«~q,v!

«~q,v!

3Q~2z!Q~2 ẑ•R!~e2quẑ•R2zu2e2quẑ•R1zu!G ,
~15!

whereR5R(t).

IV. ENERGY LOSS AND PLASMON EXCITATION

Following the approach of previous authors, we evalu
the energy-loss rate as

dW

dt
5Z

]f ind~r ,t !

]t U
r5R~ t !

52 i
Z

2p E
2`

`

dv ve2 ivtf ind
„R~ t !,v…. ~16!

Thus we obtain

dW

dt
5

dW

dt U
B

1
dW

dt U
S

, ~17!

where we separate the terms corresponding to bulk- (B) and
surface- (S) plasmon excitation,

dW

dt U
B

52 i
Z2

4p2 Q~2 ẑ•R!E
2`

t

dt8E
2`

`

dv veiv~ t82t !

3Q~2 ẑ•R8!E dq

q

12«~q,v!

«~q,v!
eiq•~R2R8!

3@e2quẑ•~R2R8!u2e2quẑ•~R1R8!u#, ~18!

dW

dt U
S

52 i
Z2

4p2 E
2`

t

dt8E
2`

`

dv veiv~ t82t !E dq

q

3
12«~q,v!

11«~q,v!
eiq•~R2R8!e2q~ uẑ•Ru1uẑ•R8u!, ~19!

with R5R(t) andR85R(t8).
These expressions can be analytically integrated only

some simple models of the dielectric function. Let
consider—for instance—the classical frequency-depend
dielectric function

«~q,v!512
vp

2

v~v1 ig!
~20!

as an instructive approximation.vp5A3/r S
3 is the plasma

frequency of the medium in atomic units, withr S the one-
electron radius in the electron gas describing the solid;g is
an effective damping rate which accounts for the finite li
time of the plasmons. Replacing in the previous equati
we obtain
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57 4501PLASMON EXCITATION BY CHARGED PARTICLES . . .
dW

dt U
B

52Z2vp
2Q~2 ẑ•R!E

0

qc
dqE

2`

t

dt8e2g~ t2t8!/2

3cos@vp~ t2t8!#J0~quR2R8usin w! @e2quẑ•~R2R8!u

2e2quẑ•~R1R8!u#Q~2 ẑ•R8!, ~21!

dW

dt U
S

52Z2vs
2E

0

qc
dqE

2`

t

dt8e2g~ t2t8!/2 cos@vs~ t2t8!#

3J0~quR2R8usin w!e2quẑ•Rue2quẑ•R8u, ~22!

whereJ0(x) is the Bessel function of order 0,w5w(t,t8) is
the angle betweenR2R8 and the normalẑ to the surface,qc
is the usual cutoff in the plasma response function, andvs
5vp /& is the surface-plasmon frequency. This final e
pression generalizes previous results for simple trajector

V. APPLICATIONS

A. Particle traversing a metal surface

As a first illustrative example, let us review the case o
particle of chargeZ that crosses the surface in a norm
trajectory,R(t)5vt, which remains undisturbed by the pla
mon excitation events. This approximation holds for su
ciently large kinetic energies, namely,mv2/2@\vp . Both
cases corresponding to a projectile abandoning or ente
the solid are contemplated. The energy-loss rate reads~for
g50!

dW

dt U
B

52
Z2

v
vp

2Q~2v• ẑt !@ f 11~0!1sgn~ t ! f 11~2vputu!

22Q~ t ! f 11~vputu!cos~vputu!#, ~23!

dW

dt U
S

5
Z2

v
vs

2@sgn~ t ! f 11~2vsutu!

22Q~ t ! f 11~vsutu!cos~vsutu!#. ~24!

Here sgn(x) is the signum function, i.e.,21 for x,0 and
11 for x>0. The auxiliary functionsf nm(x) are defined as

f nm~x!5E
0

j

dy
ym

~11y2!n e2xydy, ~25!

where j5qcv/vp for bulk-plasmon excitations, andj
5vqc /vs for surface-plasmon excitations.

In Fig. 2 we show both terms for a projectile of uni
charge crossing the surface of aluminum~vp50.55 a.u.,
g/vp50.067!. We see thatdW/dtuS is only important in the
vicinity of the surface. It increases when the projectile a
proaches the interface, reaches a maximum amplitude a
actly t50, and decreases again, showing an oscillatory
havior once the projectile has traversed the surfa
IntegratingdW/dtuS in time we get the total energy trans
ferred to the medium in surface-plasmon excitations,
-
s.

a
l

-

ng

-
x-

e-
e.

DWS52E
2`

`

dt
dW

dt U
S

5
2Z2vs

v
f 22~0!

5Z2
vs

v FarctanS qcv
vs

D2
qcv/vs

11~qcv/vs!
2G . ~26!

On the other hand,dW/dtuB is zero while the projectile is in
the vacuum semispace (t.0). Inside the metal, its first term
is independent of time and yields the usual stopping po
of a charged projectile in an infinite solid,

dW

dt U
B

52
Z2

v
vp

2 f 11~0!52\vp

v
lP

, ~27!

wherelP is the mean free path for bulk-plasmon excitatio
given in this case by

1

lP
5

Z2vp

\v2 lnA11~qcv/vp!2. ~28!

The ‘‘begrenzung’’ term (Z2vp
2/v) f 11(2vputu) in Eq. ~23!

reduces the intensity of the coupling to bulk plasmons in
vicinity of the surface, due to a boundary effect first analyz
by Ritchie @3#.

B. Particle reversing its direction of motion
inside an infinite solid

Let us now calculate the energy-loss rate by a particle
chargeZ and velocityv that att50 reverses its direction o
motion inside an infinite solid. Even though this examp
does not use the specular-reflection model, it is illustrative
the effects produced, for instance, by a large-angle ela
scattering. The trajectory isR(t)52vutu. The corresponding
external charge density reads

FIG. 2. Energy-loss rate as a function of timet for a particle of
unity charge that crosses an aluminum surface in a normal tra
tory with velocityv510 a.u. The dashed and solid curves show
contributions from bulk and surface excitations given by Eqs.~23!
and ~24!.
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rext~k,v!5ZS i

v1k•v1 ih
2

i

v2k•v2 ih D , ~29!

with h→01. Replacing in Eqs.~3! and ~16! we obtain

dW

dt U
B

52\vp

v
lP

$12Q~ t !@ f 11~2vputu!

2 f 10~vputu!sin~vputu!2 f 11~vputu!cos~vputu!#%.

~30!

In Fig. 3 we see that before the collision (t,0), the particle
loses energy at a constant rate, as given by Eq.~27!. For
t.0, an oscillatory behavior appears. This is due to the
that the particle traverses again a region where it has exc
plasmons in its incoming trajectory. The corresponding
duced electric field produces an oscillatory correction to
energy-loss rate which fades away for very large times.

C. Particle reflected near a metal surface with normal incidence

Let us now consider the case of a particle with norm
incidence that is reflected at a distancez0 from a metal-
vacuum interface. The trajectory now readsR(t)5(vutu
1z0) ẑ. The reflection occurs inside or outside the mater
depending whetherz0 is negative or positive, respectively
The energy-loss rate becomes

dW

dt U
B

52
Z2vp

2

v
Q~2to2utu!$ f 11~0!

22 f 11„vp~ utou2utu!…cos@vp~ utou1utu!#

2sgn~ t ! f 11„2vp~ utou2utu!…

12Q~ t ! f 11~0!cos~2vpt !12Q~ t !

3@ f 11„vp~2utou2utu!…2 f 11~vpt !#cos~vpt !%, ~31!

FIG. 3. Energy-loss rate for a particle with velocityv510 a.u.
inside aluminum, which at timet50 instantaneously reverses i
direction of motion. The stationary energy-loss rate fort,0 is the
value corresponding to the case of permanent uniform motion.
ct
ed
-
e

l

l,

dW

dt U
S

52
Z2vs

2

v
$2sgn~ t !sgn~ to1utu! f 11~2vszto1utuz!

12Q~2to2utu! f 11„vs~2to2utu!…cos@vs~ t2to!#

22Q~ t !Q~2to2t ! f 11~vsu2to1tu!cos~vst !

22Q~2to!Q~ to1t ! f 11~vst !cos~vst !

12Q~2to!Q~ to1t ! f 11„vs~ t1to!…cos@vs~ t2to!#

12Q~2to!Q~ to1t ! f 11„vs~ t1to!…

3cos@vs~ t1to!#%, ~32!

with to5z0 /v. In Fig. 4 we show these terms as a functi
of time for the case of a particle of unity charge and veloc
v510 a.u. reflecting inside aluminum at two different dept
@z052pv/vs ~full curve! and z0523pv/2vs ~dashed
curve!#. We note thatdW/dtuB is zero while the particle is
outside the material. Once inside the solid, the energy-
rate increases towards its value for an infinite bulk, as giv
in Eq. ~27!. However, after the reflection att50, an oscilla-
tory behavior appears, as discussed in the preceding sec
Again, a ‘‘begrenzung’’ effect reduces the coupling to bu
plasmons in the vicinity of the surface, anddW/dtuB ap-
proaches zero att5utou. This same ‘‘begrenzung’’ increase
the coupling to surface plasmons in the vicinity of the s
face, and sodW/dtuS reaches a maximum whenever the pa
ticle enters or leaves the solid@Fig. 4~b!#. However, the most
interesting feature of these figures is the fact that, when

FIG. 4. Energy-loss rate due to the excitation of bulk~a! and
surface plasmons~b! for a normally incident particle reflected a
time t50 inside aluminum, at a distancez0 from its surface. The
solid and dashed lines correspond to two different reflection
tances, z052pv/vs ~full curve! and z0523pv/2vs ~dashed
curve!.
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57 4503PLASMON EXCITATION BY CHARGED PARTICLES . . .
particle is reflected at certain characteristic distances f
the surface, it can recover in the outgoing part of its traj
tory the energy invested in surface-plasmon excitation be
the reflection, as in the case shown with dotted line in F
4~b!. This striking result can be more clearly seen when
energy-loss rate is integrated in time to get the total ene
DW(z0) dissipated during the reflection process by plasm
excitation.

DWB~z0!52E
2`

` dW

dt U
B

dt

52
Z2vp

v
Q~2to!Fvputou f 11~0!

2 f 22~2vputou!22 f 22~0!

1S 1

2
f 11~0!1 f 21~0! D sin~2vputou!

14 f 22~vputou!cos~vpto!2 f 22~0!cos~2vpto!G ,
~33!

DWS~z0!52E
2`

` dW

dt U
S

dt52
Z2vs

v
$ f 22~2vsutou!

12Q~2to! f 22~0!@11cos~2vsto!#

24Q~2to! f 22~vsutou!cos~vsto!%. ~34!

In Fig. 5 we show the corresponding average numbers
bulk- and surface-plasmon excitations, defined byQB(z0)
5DWB(z0)/\vB andQS(z0)5DWS(z0)/\vs , as a function
of the coordinatez0 of the reflection point. The curves fo
negative values ofz0 describe those processes where the p
jectile is reflected inside the solid, while those withz0.0
correspond to a reflection that occurs in the vacuum. In

FIG. 5. FunctionsQB(z) and QS(z), from Eqs.~33! and ~34!,
giving the average number of bulk- and surface-plasmon excitat
in aluminum for normally incident particles, as a function of t
coordinatez of the reflection point. The values forz,0 correspond
to particles reflected inside the metal, while those forz.0 ~only
surface-plasmon excitation! are for particles reflected outside th
solid.
m
-
re
.
e
y
n

of

-

is

latter case,QB(z0)50, andQS(z0) decreases when the dis
tancez0 of closest approach to the surface increases. W
the projectile is reflected inside the solid, we note a stro
oscillatory behavior of these excitation probabilities as
function of the penetration distance.QS(z0) shows an oscil-
latory behavior with characteristic wavelengthpv/vs . This
effect is dominant for large values ofz0 , whereQS behaves
as

QS~z0!'4
Z2

\v
f 22~0!@11cos~2vsto!#. ~35!

In particular, we see thatQS(z0)'0 for certain characteristic
depthsz05(n11/2)pv/vs , with n50,1,2,. . . . Theprojec-
tile completes its trajectory without any energy loss
surface-plasmon excitation. We should remember, howe
the approximationg50 used in this case. For finite values
g there will be no exact cancellation of theQS values. This
cancellation effect can be interpreted in terms of the res
obtained in the preceding section, where the projectile co
recover in one part of its trajectory part of the energy
vested in plasmon excitation in another part.QB(z0) also
shows a similar oscillatory behavior, superposed to a te
linear in the depthz0 which is related to the mean free pa
for bulk-plasmon excitation in an infinite medium as di
cussed in a previous section. The dashed line in Fig. 5 sh
the approximationQB(z0)'22z0 /lP , corresponding to
Eqs. ~27! and ~28!, where boundary effects are neglect
~i.e., the particle is assumed to dissipate energy uniformly
the bulk rate, once inside the medium!.

The oscillatory behavior ofQ(z0) described here was
suggested by Ritchie as due to the interference between
incoming and outgoing parts of a reflecting trajectory@17#. It
was also described by Yubero and Tougaard@11# and Ger-
vasoni and co-workers@15,16#. However, the present de
scription in terms of energy dissipation rates provides a
tailed account of how this interference between the incom
and outgoing trajectories develops in time. Until now, th
oscillatory dependence of the energy loss with the depth
penetration in a reflection geometry has not been experim
tally investigated, but we may note that a similar effect h
been observed in electron bombardment of Ag foils, wh
the radiation emitted as the result of the decay of plasm
presents an oscillatory dependence with the foil thickn
@18#, which is also due to interference effects between
incoming and outgoing trajectories.

D. Particle reflected near a metal surface
with oblique incidence

Finally, let us consider the case of a particle that is
flected at a distancez from a metal-vacuum interface in
specular trajectory that forms an angleu with respect to the
surface, as shown in Fig. 1. The trajectory readsR(t)
5(v cosut)x̂1(v sinuutu1z0)ẑ. As before, the reflection oc
curs inside or outside the material, depending on whethez0
is negative or positive, respectively.

Let us note that the cylindrical symmetry of the system
lost due to the oblique trajectory. This means that now
energy-loss rates cannot be represented in terms of
simple auxiliary functionsf nm as before. In Fig. 6 we show

ns
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4504 57DENTON, GERVASONI, BARRACHINA, AND ARISTA
the average numbers of bulk- and surface-plasmon ex
tions,QB(z) andQS(z). Again, the curves for negative va
ues ofz describe those processes where the projectile is
flected inside the solid, while those withz.0 correspond to
a reflection that occurs in the vacuum.

As for the case of normal incidence,QB(z0)50 for z0
.0, andQS(z0) decreases when the distancez0 of closest
approach to the surface increases. When the projectile is
flected inside the solid, however, we note that the stro
oscillatory behavior characteristic of normal incidence dis
pears at smaller reflection anglesu. In particular, only the
term linear in the depthz0 remains inQB(z0). This term is
related to the mean free pathlP @Eq. ~28!# for bulk-plasmon
excitation, and increases with the lengthl traveled by the
particle inside the solid. In Fig. 7~a! we showQB(z0) nor-
malized to the average number of bulk-plasmon excitati
for a particle traveling a distancel 52uz0u/sinu inside an
infinite solid, given byQB* (z0)5 l /lP . Similarly, Fig. 7~b!
showsQS(z0) normalized to twice the average number
surface plasmons excited when a projectile crosses a m
surface in an oblique trajectory, namely,QS*
52Z2f 22(0)/\v sinu @see Eq.~26!#. The progressive disap
pearance of the oscillatory contribution, when the angleu is
decreased, is clearly seen in both cases.

Roughly speaking, the oscillatory behavior ofQ(z) can
be understood as due to the interaction of the emerging
jectile with the charge density perturbation produced dur
its incoming trajectory. Hence, the value ofQ(z) would de-
pend on whether the outgoing projectile is in phase or ou
phase with these charge density oscillations. However, w
surface and bulk plasmons are excited by the particle en
ing the solid, the charge density is mainly perturbed in

FIG. 6. ~a! and~b! show the average number of bulk and surfa
plasmons,QB(z) andQS(z), as a function of the coordinatez of the
reflection point. The figure corresponds to the case of oblique
jectories, for various angles of incidenceu as indicated in the figure
a-
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vicinity of the trajectory, up to a distance of the order
1/qc . Thus, after reflection, the projectile would intera
strongly with this former perturbation only if it follows a
path near to its incoming trajectory. In the present case
oblique incidence, the incident and reflected trajectories
not coincide, and so the oscillatory dependence ofQ(z)
fades away with decreasing anglesu.

In this example we have used a Drude-type approxima
for the dielectric function, as given in Eq.~20!. When allow-
ance is made for spatial dispersion through a hydrodyna
dielectric function

«~k,v!511
vp

2

b2k22v~v1 ig!
, ~36!

the plasmon oscillations behave in a different way. The
duced potential does not remain localized to the vicinity
the trajectory, but resembles rings of water that spread w
velocity 'b, leaving behind an oscillating potential platea
@19#. But this perturbation fades away far from the trajecto
and, for particle velocities much larger than the group vel
ity b ~whereb'1 a.u.!, the present discussion still applies

VI. REFLECTION-ELECTRON-ENERGY LOSS

As a final application, let us analyze a beam of electro
reflecting at a metal surface. This problem is of great pra
cal interest in relation with experimental methods whe
charge projectiles are used as a probe of a solid surface,
the case of reflection-electron-energy-loss spectroscopy
principle, for any given REELS geometry the electron c
follow different trajectories inside the solid@23,12#, which
contribute to the measured intensity. Here we shall cons

a-

FIG. 7. Average number of bulk and surface plasmons,QB(z)
andQS(z), calculated as in Fig. 6 and normalized to the asympto
values corresponding to very deep reflection points.
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57 4505PLASMON EXCITATION BY CHARGED PARTICLES . . .
a simplified model where all the electrons impinge on
surface in an oblique trajectory of angleu and are specularly
reflected by single elastic-scattering events at varying de
z inside the solid. For a monoenergetic beam of electron
energyE0 , these elastically scattered electrons would be
tected roughly around a main spectral line. However, th
can lose energy during their travel in and out of the solid
for instance, plasmon excitations. Thus the spectra wo
show a series of satellite lines at energiesE02nB\vp
2nS\vs , which are due to the excitation ofnB bulk plas-
mons andnS surface plasmons. In fact, these are probabi
tic processes characterized by Poisson distributions@8,9,20#,
and an appropriate treatment of these excitations can be
tained from a quantum-mechanical formulation of the p
cesses. This alternative formulation is considered in the
pendix, where we derive the probabilistic distribution
multiple excitations for a beam of electrons. We note,
particular, that, since not all the electrons come from
same depth, these distributions must be averaged overz.

After taking into account the differential probabilities fo
each trajectory, and integrating over all possible values
penetration distancesz, for a beam of electrons incident o
the medium, the probability of excitingnB bulk andnS sur-
face plasmons finally reads

PnB ,nS
~u!5E

2`

0 dz

le sin u
expS 22uzu

le sin u DexpS 22uzu
l i sin u D

3Pe~2u!
QB~z!nB

nB!
exp@2QB~z!#

QS~z!nS

nS!

3exp@2QS~z!#. ~37!

Herel i is the mean free path for all those inelastic proces
different from plasmon excitation. The exponential term d
pending on the elastic mean free path (le) gives the prob-
ability that the electron is not elastically scattered in its en
trajectory inside the solid, except at precisely the depthz.
This latter collision occurs with a probabilitydz/le sinu.
Finally, Pe(f) is the probability for the electron to be de
flected in an anglef52u by this elastic collision with an
atom in the solid. We refer to the Appendix for a derivati
of this expression and for further details.

Let us now normalizePnB ,nS
(u) to the probability

P0,0(u) for no plasmon excitations, and define the relativ
intensity function

I nB ,nS
~u!

5PnB ,nS
~u!/P0,0~u!

5
*2`

0 dz exp~22uzu/l i sin u!QB
nBQS

nS exp~2QB2QS!

nB!nS! *2`
0 dz exp~22uzu/l i sin u!exp~2QB2QS!

.

~38!

Since the transport mean free path is much larger for ela
than for inelastic collisions@11,23#, in the latter expression
we have neglected the exponential term inle .

This integral cannot be evaluated analytically, excep
all oscillations and begrenzung effects are neglected. In
e

hs
of
-
y
,
ld

-

b-
-
-

e

f

s
-

e

-

tic

if
is

latter case, the average number of plasmon excitations ca
approximated by their asymptotic values

QB~z!'2uzu/lP sin u,
~39!

QS~z!'2QS
0/sin u,

where QS
05Z2f 22(0)/\v is the average number of surfac

plasmons excited when a projectile crosses a metal surfac
a normal trajectory, as in Eq.~26!. Using this approximation
in Eq. ~38!, the normalized probability for the excitation o
nB bulk andnS surface plasmons becomes

I nB ,nS
~u!'

1

nS! S 2QS
0

sin u D nSS l i

l i1lP
D nB

. ~40!

Moreover, we see that this expression can be written in te
of the normalized probabilities for excitation of one bulk
one surface plasmon, namely,

I nB ,nS
~u!'

1

nS!
@ I ~0,1!#nS@ I ~1,0!#nB. ~41!

Equations~40! and ~41! provide very useful approximation
to evaluate the energy-loss spectra of a beam of electron
REELS experiments.

In Fig. 8 we show the approximate expressions in Eq.~40!
for the relative loss intensitiesI (1,0) andI (0,1) for the case

FIG. 8. Approximate expressions for the relative intensit
I (1,0) andI (0,1) from Eq.~40!, for electrons reflected in alumi
num. In~a! we show the velocity dependence for the case of norm
incidence, while in~b! we show the angular dependence for a v
locity v510.
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4506 57DENTON, GERVASONI, BARRACHINA, AND ARISTA
of an aluminum surface (vp50.55 a.u.), showing the depen
dences on electron velocityv for normal incidence@part ~a!#,
and on incidence angleu for velocity v510 @part ~b!#. The
mean free paths for inelastic collisionsl i and plasmon exci-
tation lP were calculated as indicated by Tung and c
workers @22,23#. We see that the bulk-plasmon excitatio
probability I (1,0)'l i /(l i1lP) is nearly independent of th
projectile velocity and incidence angle, whereas the surfa
plasmon excitation probabilityI (0,1) shows a velocity de
pendence as well as the characteristic angular depend
;1/sinu.

These approximate expressions generally overestimate
surface-plasmon excitation probabilitiesI (0,nS) and fail for
bulk-plasmon production at moderate velocities. This
shown in Fig. 9, where the relative loss intensitiesI (nB ,nS)
as given by Eq.~38!, normalized to the approximation in Eq
~40!, are plotted as a function of the electron velocityv for
normal incidence~a! and as a function of the angleu for an
electron beam of 8 keV~b!. In general, the approximate ex
pressions in Eqs.~40! and~41! worsen for decreasing angle
since ‘‘begrenzung’’ effects are comparatively more imp
tant. Similarly its failure for decreasing velocities is due
the fact that for not so large velocities the mean free pathlP
for plasmon excitation is comparable to the characteri
distance in the vicinity of the surface where ‘‘begrenzun
effects are important@14#.

FIG. 9. Relative loss intensitiesI (nP ,nS) as given by Eq.~38!,
normalized to the approximation in Eq.~40!, for the reflection of
electrons in aluminum;~a! for normal incidence as a function of th
electron velocity, and~b! for an electron beam of 8 keV as a fun
tion of the angleu.
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From the previous results it seems that one of the relev
parameters in the excitation process is the mean-free-
ratio l i /lP , showing the relative importance of plasmo
excitation versus other excitation processes. The depend
of the relative intensitiesI (1,0)/I (0,0) andI (0,1)/I (0,0) on
this ratio is shown in Fig. 10, for different values ofl i /lP
and as a function of the incidence angleu. We observe that
the intensity corresponding to bulk plasmons,I (1,0)/I (0,0)
@part ~b!#, depends very much on the ratiol i /lP , while its
angular dependence is very weak; on the other hand,
intensity corresponding to surface plasmons,I (0,1)/I (0,0)
@part ~a!#, shows a much smaller dependence onl i /lP , but
a large angular dependence.

As a final test of these results, we compare in Fig. 11
probabilities for the excitation of single bulk or surface pla
mons calculated with this model, with the experimental
sults of Powell@21# for an 8-keV electron beam impingin
on an aluminum surface. These experiments provide an
portant set of data for different angles, showing very nic
the angular dependence of the process. We have adjus
single free parameter in our model, i.e., the ratio of the pl
mon excitation to the inelastic mean free pathslP /l i'2, so
as to fit the bulk-plasmon excitation probability at almo
normal incidence. As already indicated, the results for
surface-plasmon excitation are much less sensitive to
ratio, and so similar comparisons can be obtained w
slightly different values. In this way we obtain a very sat
factory agreement with the experimental values.

VII. SUMMARY AND CONCLUSIONS

We have formulated in general terms the interaction
tween a charged particle moving in an arbitrary trajecto

FIG. 10. Mean-free-path dependence of the relative loss in
sities I (nP ,nS), normalized to the intensity of the elastic pea
I (0,0), for the reflection of 8-keV electrons in aluminum. We o
serve that the intensity for bulk plasmons~b! shows a much larger
dependence on thel i /lP value than the one for surface plasmo
~a!.
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57 4507PLASMON EXCITATION BY CHARGED PARTICLES . . .
with the collective modes in the bulk and the surface o
semi-infinite medium. The excitation of plasmons is d
scribed using both the dielectric and the quantum-mechan
versions of the process. Both descriptions were shown to
equivalent when a simple plasmon-pole representation of
dielectric function is used. Previous results for simple traj
tories may be derived from the present description.

We find that for penetrating trajectories the average nu
ber of excited plasmons displays an interference struc
which is more important for normal incidence, and gradua
diminishes when the incidence angle decreases. The inte
tation of this behavior is clear from the present descripti
and is due to the spatial localization of the induced poten
on the surface, both at the penetration and emergence po

We analyzed in particular the case of electrons reflec
in a solid sample and derive expressions for the probab
of multiple plasmon excitations by an electron reflected i
specular trajectory. This case is of particular interest
reflection-energy-loss spectroscopies. We may note
other cases of nonspecular-reflection conditions may als
analyzed by a simple extension of the present calculatio

In order to represent the experimental conditions we p
formed statistical averages that take into account vari
probability factors: the probability of reflection at variou
depths inside the medium, the probability of multiple bu
and surface-plasmon excitations, and the extinction ef
due to other inelastic processes. Simple approximation
the complete expressions@like Eqs.~40! and ~41!# may also
be useful for a more rapid test of experimental results.

We have compared our calculations with the experime
results by Powell. We find a general good agreement for
intensity of the surface-plasmon excitation lines, and we fi
that the intensity of the bulk-plasmon lines is a sensit
function of the mean-free-path ratiol i /lP , which measures
the relative importance of plasmon excitation versus ot
excitation processes. This quantity is in principle calcula
from current theories on inelastic scattering and elect
mean free paths; therefore we expect that the use of
present description of the process may provide a way to
tract from the experiments the most adequate values of

FIG. 11. Probabilities of bulk- and surface-plasmon excitatio
calculated with this model and compared with the experime
results by Powell~Ref. @21#! for 8-keV electrons reflected on alu
minum surfaces.
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ratio, which would be important for comparisons withab
initio calculations of mean free paths of electrons in solid
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APPENDIX: THE SEMICLASSICAL FORMALISM

We present here a description of the plasmon excita
process using the semiclassical formalism, originally dev
oped by Lucas and Sˇunjić @24#. In this formalism the externa
particle is assumed to follow a classical trajectory, wher
the excitations in the medium~bulk and surface plasmons!
are described in a quantum-mechanical way. This allows
to calculate the average number of excited plasmons of a
charge moving inside a material, following an arbitrarily pr
scribed trajectory. In principle, the analysis may not coinc
with that of the dielectric formalism, but we will see that th
results are very similar, and in some cases identical, dep
ing on the dielectric functions used.

1. Surface modes

Let us consider two semi-infinite media with dielectr
functions «1(v) and «2(v), and with plasma frequencie
vp1 andvp2 , divided by a flat interface atz50. The condi-
tion for the existence of surface modes at the interface,
tained by Ritchie@3#, is in general given by«1(v)1«2(v)
50, and in particular, for a metal-vacuum interface,
«1(v)1150. For a simple Drude-type dielectric function
the solution to this equation gives a surface-plasmon
quencyvs5vp /&. This gives rise to electrostatic fields
which are solutions of the Laplace equation in each mediu
¹2f50, except for points on the interface, where t
sources of the field are located. The solutions of this prob
show an oscillatory behavior on the plane of the surface,
decay exponentially for points away from it.

Hence, the general electrostatic potential may be rep
sented in terms of simple plane-wave modes, with wave v
tors q parallel to the surface~and in the range 0,q,qc!,

f~rW,t !5(
q

Aq~z!eiq•re2quzu exp~2 ivst !1c.c. ~A1!

This field may be quantized in the usual way@25#, replacing
the classical amplitudesAq and Aq* in terms of the corre-
sponding annihilation and creation operatorsaq andaq

† ,

Aq→S p\vs

qA D 1/2

aq ,

Aq*→S p\vs

qA D 1/2

aq
† , ~A2!

whereA is the area of the surface. Now each mode rep
sents a surface plasmon with momentum\q and energy
\vs .

s
l
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4508 57DENTON, GERVASONI, BARRACHINA, AND ARISTA
The Hamiltonian of the pure surface-plasmon field tak
the usual form

HS
05(

q
\vsaq

†aq , ~A3!

and the final expression for the quantized potential beco

f~rW,t !5(
q

S p\vs

qA D 1/2

exp~2quzu!

3@aqexp~2 ivst !exp~ iq•r !

1aq
† exp~ ivst !exp~2 iq•r !#. ~A4!

The electric fieldEW and induced charge densityr may be
obtained by simple derivations, in particular, we get

r~rW,t !52
1

4p
¹2f5(

q

qAq

2p
exp~2 ivst !exp~ iq•r !d~z!,

~A5!

which explicitly shows that the sources of this field are
cated at the surfacez50.

a. Interaction with an external charge

Let us consider an external chargeZ that moves in a
trajectory R(t). The interaction with the surface-plasmo
field is given by the Hamiltonian term:

H int~ t !5Zf@R~ t !#

5(
q

S pZ2\vs

qA D 1/2

exp@2quẑ•R~ t !u# ~A6!

3$aq exp~2 ivst !exp@ iq•R~ t !#

1aq
† exp~ ivst !exp@2 iq•R~ t !#% ~A7!

and the total Hamiltonian becomes

H5(
q

\vsaq
†aq1(

q
@ f q~ t !aqe

2 ivst1 f q* ~ t !aq
†eivst#,

~A8!

with

f q~ t !5S pZ2\vs

qA D 1/2

exp@2quẑ•R~ t !u#exp@ iq•R~ t !#.

~A9!

The time evolution of the plasmon-field state may be s
ply obtained in the interaction picture from the equation

i\
]C~ t !

]t
5H intC~ t !

5(
q

@ f q~ t !aqe
2 ivst1 f q* ~ t !aq

†eivst#C~ t !.

~A10!

This shows thatC(t) has the form of a coherent state@25#,
s

es

-

-

C~ t !5expS 2 i(
q

@ I q~ t !aq1I q* ~ t !aq
†# DC~2`!,

~A11!

with

I q~ t !5
1

\ E
2`

t

f q~ t8! exp~2 ivst8!dt8, ~A12!

and whereC(2`) represents the initial state of the pla
mons. We assume that the plasmon field is initially in t
ground state,C(2`)5u0&, where u0& is the state with no
excited plasmons.

Developing the equation~A11! in eigenstatesunq& of the
free HamiltonianHS

0 , Eq. ~A3!, wherenq denotes the num-
ber of ~excited! plasmons for a given modeq,

unq&5
~aq

†!n

An!
u0&, ~A13!

one gets@25#

C~ t !5)
q

expS 2
1

2
uI q~ t !u2D (

n50

`

@2 i I q* ~ t !#n
~aq

†!n

n!
u0&.

~A14!

Then, the final probability that the particle will excitenq
plasmons of a given modeq, after interacting with the me-
dium between timest52` and t51`, is given by

Pq
n5 z^nquC~`!& z25exp~2Qq!

~Qq!n

n!
, ~A15!

with Qq5uI q(`)u2. This has the form of a Poisson distribu
tion, with Qq the relevant parameter that gives the avera
number of surface-plasmon excitations for a given modeq,
viz.,

^Nq&5(
n

Pq
nn5exp~2Qq!(

n

~Qq!n

n!
n5Qq .

~A16!

The simplicity of this result is due to the fact that, sin
the projectile does not modify its energy or its momentu
when it excites one plasmon, the probability of exciting a
other plasmon is independent of the former process. He
the composite probability to exciten1 plasmons of the mode
q1 ,n2 plasmons of the modeq2 , and so on, will be given by

P~n1 ,n2 , . . .!5exp~2Q!)
q

~Qq!nq

nq!
, ~A17!

with

Q5(
q

uI q~`!u25
A

~2p!2 E d2quI q~`!u2 ~A18!

Here we have transformed the sum over modes into an i
gral in the usual way.
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57 4509PLASMON EXCITATION BY CHARGED PARTICLES . . .
Finally, we can compute the probability to excite a to
number of n plasmons~with any arbitrary distribution of
excited modes! as follows:

Pn5 (
n1 ,n2 ,...

n11n21¯5n

P~n1 ,n2 ,...!5
Qn

n!
exp~2Q!.

~A19!

From this result we can calculate the average numbe
plasmons excited by the external charge, after its interac
with the surface,

^N&5(
n

n Pn5(
n

n
Qn

n!
exp~2Q!5Q. ~A20!

In particular, the probability of exciting only one plasmo
~of any mode! is given by

P15Q exp~2Q!, ~A21!

and the probability of no-plasmon excitation is simply

P05exp~2Q!. ~A22!

b. Electrons reflected at a surface in grazing incidence

Let us consider in particular the case of an electron
velocity v which is specularly reflected at the surface of
metal. The angle of incidence measured from the plane of
surface isu. The trajectory is therefore

R~ t !5~v cosu! t x̂1~v sin u!utuẑ, ~A23!

wherex̂ is a versor parallel to the surface.
Replacing this trajectory in the former formulas, we o

tain the average number of excited surface plasmons,

QS5
Z2vs

\p E
0

2p

daE
0

qc
dq

3
q2vz

2

@~qv sin u!21~vs2qv cosu cosa!2#2 . ~A24!

If the incidence is very grazing, i.e.,vz5v sinu is very
small, we can make the replacement

q2vz
2

@q2vz
21~vs2qv cosu cosa!2#2

→
p

2qvz
d~vs2qv cosu cosa! ~A25!

for vz→0.
Using this limit, we can integrate and obtain the followin

expression forQS :

QS'
Z2

\v sin u
arctanSAS qcv

vs
D 2

21D . ~A26!

We can see from this equation that, when the incide
becomes more grazing, the average number of excited p
l

of
n

f

e

-

e
s-

mons increases. In the limitu→0, QS diverges because th
electron moves parallel to the surface, exciting an ever
creasing number of plasmons.

On the other hand, in the case of normal inciden
u590°, we can integrate Eq.~A24! and obtain

QS5
Z2

\v FarctanS qcv
vs

D2
~qcv/vs!

11~qcv/vs!
2G ~A27!

in agreement with Eq.~26! in the text, showing explicitly the
relation between the mean energy loss and the average n
ber of plasmon excitations:DWS5\vsQS . ~Notice also that
the result is the same for transmission and for reflecting
jectories, since the response of the plasmon field is s
metrical for equal perturbations on both sides of the int
face.!

2. Bulk modes

The treatment of the bulk modes is analogous to the
of surface plasmons. The average number of bulk plasm
QB excited by a charge moving with trajectoryR(t) is

QB5
V

4p3 E
kz.0

d3kW uI kW~`!u2, ~A28!

I kW~`!5
1

\ E
2`

`

dt fkW~ t !exp~2 ivpt !, ~A29!

f kW~ t !5S 4pZ2\vp

Vk2 D 1/2

exp@ iq•R~ t !#sin@kzẑ•R~ t !#

3Q„2 ẑ•R~ t !…, ~A30!

wherekW5q1kz • ẑ is the three-dimensional wave vector
the bulk plasmon, which for convenience is decomposed
parallel~q! and perpendicular (kzẑ) components with respec
to the surface. HereV represents the volume of the medium
The Heaviside functionQ„2 ẑ•R(t)… indicates that the cou
pling with the bulk modes takes place only when the parti
is inside the medium.

3. Comparison with the dielectric formalism

a. Surface plasmons

Using the semiclassical formalism, the average numbe
excited plasmons in a portion of trajectory~from 2` until a
given timet! is

QS~ t !5
A

~2p!2 E d2quI q~ t !u2, ~A31!

where

I q~ t !5
1

\ E
2`

t

dt8 f q~ t8!e2 ivst8. ~A32!

Using these equations we obtain
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QS~ t !5
A

~2p\!2 E d2qE
2`

t

dt8E
2`

t

dt9 f q~ t8! f q
* ~ t9!

3exp@2 ivs~ t82t9!#. ~A33!

In order to compare with the dielectric formalism, we deri
from this an expression for the energy loss per time unit
follows:

dW

dt U
S

52\vs

dQS~ t !

dt

52
Avs

~2p!2\ E d2qE
2`

t

dt8$ f q~ t ! f q
* ~ t8!

3exp@2 ivs~ t2t8!#

1 f q~ t8! f q
* ~ t !exp@2 ivs~ t82t !#%. ~A34!

We consider here the general case of a particle mov
with an arbitrary trajectoryR(t), then

f q~ t !5S pZ2\vs

qA D 1/2

exp@2quẑ•R~ t !u#exp@ iq•R~ t !#.

~A35!

Replacing this in Eq.~A34!, and integrating over the angle o
q, we obtain

dW

dt U
S

52Z2vs
2E

0

qc
dqE

2`

t

dt8 cos@vs~ t2t8!#

3J0@quR~ t !2R~ t8!usin w#

3exp@2quẑ•R~ t !u2quẑ•R~ t8!u#, ~A36!

wherew is the angle between the vectorR(t)2R(t8) and the
normal to the surface.

This expression coincides exactly with Eq.~22! of the
text, deduced from the dielectric formalism and the specu
reflection model, using a Drude model for the dielect
function, with plasma frequencyvp and attenuation constan
g50.

b. Bulk plasmons

The treatment for the bulk modes is analogous to the p
vious one for surface plasmons. Replacing

f kW~ t !5S 4pZ2\vp

Vk2 D 1/2

sin@kzẑ•R~ t !#exp@ iq•R~ t !#

3Q„2 ẑ•R~ t !…, ~A37!

in an equation similar to Eq.~A34! for bulk plasmons, and
integrating with respect tokz and to the angle ofq, we obtain
s

g

r-

e-

dW

dt U
B

52Z2vp
2Q„2 ẑ•R~ t !…E

2`

t

dt8E
0

qc
dq

3Q„2 ẑ•R~ t8!…„exp$2quẑ•@R~ t !2R~ t8!#u%

2exp$2quẑ•@R~ t !1R~ t8!#u%…

3cos@vp~ t2t8!#J0@quR~ t !2R~ t8!usin w#,

~A38!

which corresponds to Eq.~21! of the text in the limit g
→0.

Thus we have shown that the quantum formulation
Lucas for plasmon excitations is equivalent to the dielec
formalism using the specular-reflection model and the Dru
approximation~with g50!, for particles with arbitrary tra-
jectories.

4. Multiple plasmon excitations

In order to compare our model with experimental resu
it is necessary to calculate the probability that the projec
excitesnB bulk plasmons andnS surface plasmons along it
trajectory. To formulate this, we first consider the different
probability Pref(z) that the particle is reflected due to a
elastic scattering process at a depthz inside the material~cf.
Fig. 1!:

Pref~z!5exp~2x1 /le!
dx

le
exp~2x2 /le!

5expS 22uzu
le sin~u! D dz

le sin~u!
, ~A39!

with x15x25uzu/sinu, dx5dz/sinu, and wherele51/nse
is the mean free path for elastic scattering of electrons in
material. Equation~A39! combines the probabilities that th
particle is not scattered along the incoming and outgo
trajectories~with path lengthsx1 andx2 , respectively!, and
suffers a single scattering event in the element of traject
dx.

The probability for the electron to be scattered in the
rection of observation within a small solid angledV is given
by

Pe5
1

se

dse

dV
. ~A40!

Once this trajectory is defined, the probability of excitin
nB bulk plasmons andnS surface plasmons by the particle
given by the combined Poisson distribution, as in Eq.~A17!:

DnB ,nS
5exp~2QB!

QB
nB

nB!
exp~2QS!

QS
nS

nS!
, ~A41!

with the values ofQB andQS calculated before.
Moreover, the probability that no other type of inelas

processes occur for this trajectory is given by

Pin~z!5expF 22uzu
l i sin uG , ~A42!

wherel i is the mean free path corresponding to any ot
inelastic process different from plasmon excitation.
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Then, we can integrate the total probability of exciting (nB ,nS) plasmons along the whole trajectory, for a particle reflec
at a distanceuzu from the surface, assuming a single elastic collision, as follows:

dPnB ,nS
~u!

dV
5

1

se

dse

dV E
2`

0 dz

le sin u
expF22uzu

sin u S 1

l i
1

1

le
D GDnB ,nS

. ~A43!

In order to compare with the available experimental data, we consider the ratio between the former expression
probability that the particle is reflected without any plasmon loss~i.e., the elastic peak!, which is given bydP0,0(u)/dV.

Thus we obtain theintensity ratio I(nB ,nS) for a given value of the incidence angle:

I nB ,nS
~u!5

dPnB ,nS
~u!/dV

dP0,0~u!/dV
5

1

nB!nS!

E
2`

0

dz exp~22uzu/l i sin u!QB
nBQS

nS exp~2QB2QS!

E
2`

0

dz exp~22uzu/l i sin u!exp~2QB2QS!

, ~A44!

whereQB5QB(z) andQS5QS(z), as calculated before.
We note that, in taking this ratio, the dependence on the elastic-scattering cross sectionse cancels out.
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