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Quasiclassical study of differential inelastic scattering of oriented Ca„4s5p,1P1… atoms on He

A. Devdariani and E. Tchesnokov
Department of Physics, St. Petersburg University, St. Petersburg 199034, Russia

E. I. Dashevskaya and E. E. Nikitin
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A quasiclassical analysis of the differential inelastic scattering of oriented Ca(4s5p,1P1) atoms on He at a
collision energy of 1 eV is presented. Inelastic channels correspond to spin-changing events populating dif-
ferent Zeeman sublevels of three fine-structure states of Ca(4s5p,3Pj ), j 50, 1, and 2. The magnitude of the
right-left scattering asymmetry in the helicopter plane is shown to depend on the locking dynamics. The
relative values of different Zeeman-specific cross sections are determined by the diffraction scattering on the
attractive 1P state in the entrance channels, by the Coriolis mixing between degenerate components of the
repulsive 3S1 intermediate state, and by the radial coupling between 1-1 and 02-02 fine-structure compo-
nents of the3S1-3PV states in the exit channels. The predicted large right-left scattering asymmetry suggests
that it can be measured experimentally.@S1050-2947~98!07106-6#

PACS number~s!: 34.50.2s
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I. INTRODUCTION

Recently, quasiclassical calculations of differential cro
sections for Na* -Ne @1,2# and Ne* -Ar @3# scattering at low
energies within the so-called sudden locking approximat
were carried out. For the former system, it was found t
this approximation reproduces well the accurate clo
coupling quantal results@4#, and also helps to understand th
oscillatory interference structure of the cross section for
scattering of unpolarized sodium atoms in either of its fin
structure states2Pj , j 5 1

2 and 3
2 @5#. For the latter system, th

quasiclassical locking approximation qualitatively expla
the experimentally detected right-left azimuthal asymme
in the scattering of helicopter-polarized atom
Ne* (2p53s,3P2) @6#. In both cases, the locking approxim
tion was applied under the conditions that the initial and fi
states belong to the same~or virtually the same! energy level
of colliding species, and that in the molecular region there
no coupling between different molecular states. Since
quasiclassical locking approximation showed itself to
quite helpful in the above cases, we thought that its appl
tion to more complicated events would be of interest. W
have chosen the spin-changing collisions of calcium as
example of such a system;

Ca* ~4s5p,1P1!1He→Ca* ~4s5p,3Pj !1He. ~1!

For this collision event, the molecular states features dif
ent types of coupling which can be treated analytically
terms of Landau-Zener, Demkov, and Nikitin models.

Recent theoretical studies of this process were motiva
by cell experiments on spin-changing collisions1P→3P @7#,
as well as an intramultiplet mixing between3Pj multiplet
levels@7,8# and especially on the alignment effect in molec
lar beam studies@9,10#. Related studies include measur
ments of the absorption profile of the
571050-2947/98/57~6!/4472~11!/$15.00
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Ca(4s2,1S– 4s5p,1P) –He transitions, and the dependen
of the spin-changing transitions in the far-wing laser scat
ing @11,12# on the detuning.

The existing theoretical studies of Ca-He collisions f
into three different categories. The first is based on a se
classical treatment of the dynamical problem@13,14#. The
adiabatic potential curves were calculated from the effec
Hamiltonian approach, as described in Ref.@15#, supple-
mented with the multiple-scattering method for a descript
of the short-range part of the interaction of the excited el
tron of Ca with He@16#. In Ref. @17#, a generalization of this
method for many-election outer shells and the intermed
angular momenta coupling case was suggested. Within
approach, crossing between molecular potentials3S1 @cor-
relating with 3P2(Ca)11S0(He)# and 1P @correlating with
1P1(Ca)11S0(He)# was predicted, and the crossing distan
R0 was estimated as 15 a.u. This permitted the authors
Ref. @14# to obtain a reasonable agreement with experime
data @7,9#. Additional intersections and extrema forR,R0
were predicted in Refs.@18,19#, and configuration interaction
effects have been incorporated@20# into calculations of adia-
batic potential curves. The latter refinement led to quite go
agreement with experimental data on spectral line satel
@11#.

The second approach, as described in Refs.@21–25#, is
based on close-coupling calculations using the model po
tial calculations of similar systems@22# and flexible Morse-
spline van der Waals forms. The choice of parameters in
potentials was guided by the desire to reproduce the exp
mental results as reported in Refs.@7,9#. Although the agree-
ment for the spin-changing reaction and intramultiplet m
ing and alignment effects@9# are rather good, an intersectio
distanceR0 of about 8.5 a.u. seems to be too small, as o
can judge from later calculations~see below!; moreover, the
potential curves adopted did not show additional inters
tions and extrema. This approach was also used for a ca
lation of the total cross section for different final Zeem
states of the Ca atom@26#. The particular choice of the initia
4472 © 1998 The American Physical Society
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57 4473QUASICLASSICAL STUDY OF DIFFERENTIAL . . .
states was guided by the experimental conditions@27#.
The third approach concentrated solely on a calculation

the potential curves. The theoretical method was based
l -dependent pseudopotentials. The first calculations al
this line @28# yielded a value ofR0 of about 13 a.u., and
provided an independent confirmation of the existence
additional extrema at smallerR0 . The improved version of
this approach@29# gave a value ofR0 of about 16 a.u. How-
ever, a comparison with experimental data on the satellite
Ca(4s2,1S– 4s5p,1P) –He optical transitions@11# led to the
conclusion that the theory seemed to overestimate the re
sion at smallR. The latter conclusion can also be draw
from the comparison of the theoretical and experimental d
on far-wing profiles for another system, Li(2p23d)-He
@30#, for which the potential curves were calculated by
similar method.

Neither of the above theoretical works provided a co
plete set of Zeeman-specific differential cross sections
spin-changing collision@Eq. ~1!#. In the present paper w
address this problem using the potential curves from R
@19#, and a simplified semiclassical description that ado
the locking approximation. The use of this approximati
makes it easy to establish a correlation between general
tures of the differential cross sections and the pattern of a
batic potential curves. The results obtained can be rega
as approximate theoretical predications for anticipated
periments.

The plan of the presentation is the following. In Sec.
we discuss the molecular potential curves of the Ca*He sys-
tem, and identify the range of interatomic distances imp
tant for the dynamics of reaction~1!. In Sec. III the genera
quasiclassical approximation to the scattering amplitude
presented. Sections IV and V deal with the locking matric
and the molecular scattering matrices. The differential a
integral cross sections are calculated in Sec. VI. Finally, S
VII summarizes our findings.

II. ADIABATIC POTENTIALS OF Ca „4s5p…–He
QUASIMOLECULE

The adiabatic potential curves used in this paper w
borrowed from our earlier calculations@18,19#, and corre-
spond to the eigenvalues of the electronic Hamiltonian. T
matrix of this Hamiltonian was built on the basis of on
electron wave functions of the excited Ca atom, on the sp
orbit interaction in a free Ca atom, and also on the excha
and polarization interaction between Ca* and He. These po
tentials are shown in Fig. 1. They are completely determi
by the following parameters: the singlet-triplet spacingDE
in free Ca atom~expressed via the Slater exchange integr!;
the fine-structure splittingsD«20 andD«21 in free-atom Ca;
and twoR-dependent matrix elementsVS andVP , that de-
scribe the interaction between a hypothetical atom Ca* , pos-
sessing no spin-orbit coupling, and atom He.

An interesting feature of these potential curves are
maxima for 3S1 and 1S1 states at aboutR510 a.u. These
maxima are related to the maximum of the radial wave fu
tion of the excited electron of Ca, which explains why twoS
curves run almost parallel to each other. The maximum
the same origin exists for a simpler system K* -He, where
instead of twoS curves there exists one doubletS curve
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which passes through its maximum at about 13 a.u.@31#. We
attribute the difference in the position of the maximum f
Ca* -He and K* -He systems to a more compact shape of
wave functions of a 5p electron in Ca. We also note that th
S curves without maxima, proposed in Ref.@24# and used
later for quantum flux studies in the Ca* -He system@32#,
were modified in Ref.@33# in such a way as to produc
maxima.

We believe that theoretical calculations of potent
curves at interatomic distancesR,5 a.u., that correspond to
the repulsion, are not reliable, since the applicability con
tions of the method used in Ref.@16# are marginally fulfilled.
For a collision energy of 1 eV, this part of the potential
essential for scattering through angles larger than 0.25
At these angles, the cross sections are very small, and
were not considered in this paper. Therefore these portion
the curves are not shown in Fig. 1. On the other hand, par
the potentials just to the left of the barrier maxima are i
portant for the differential cross sections for the scatter
through the angles discussed in this paper.

III. SCATTERING AMPLITUDES

We will use a quasiclassical approximation for the sc
tering amplitudes in the space-fixed~SF! center-of-mass
frame xyz. The x axis of this frame is directed opposite t
the initial wave vector of relative motionk, and thez axis is
chosen to be an appropriate quantization axis for the e
tronic angular momentum of free Ca atom. Leta jn and
a8 j 8n8 be the initial and final electronic quantum numbers
Ca ~a and a8 stand for the Russell-Sounders nomenclat
1P and 3P; j 8 and j are the electronic angular momenta, a
n8 andn are their projections onto thez axis!. The scattering
amplitude in this frame,Fa8 j 8n8;a jn

xyz (u,w), depends on two
angles; the polar angleu of the final wave vectork8 with
respect tok, and the azimuthal anglew which is counted
from they axis in theyz plane. Along with the SF frame, we
consider the natural collision frame~NCF! XYZ @1#. The X
axis of this frame coincides withx axis of the SF frame, and
the Z axis is parallel to the vector product of the final an
initial wave vectors,k83k. Clearly, theY axis of NCF
makes the anglew with y axis. The scattering amplitude i
the NCF is independent ofw; let it be Fa8 j 8n8;a jn

XYZ (u). Two
amplitudes,Fxyz andFXYZ are trivially related to each othe
by rotation about thex ~or X! axis, and by reflection in the

FIG. 1. Adiabatic potential curves for the system Ca* -He.
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4474 57DEVDARIANI, TCHESNOKOV, DASHEVSKAYA, AND NIKITIN
XY plane @15#. We will consider particular cases of th
transformation that corresponds to the right and left scat
ing in the SF frame.

The scattering to the right through angleu is defined by
the value of the azimuthal anglew50, while the scattering to
the left corresponds tow5p. We just have@1#

Fa8 j 8n8;a jn
xyz,right

~u![Fa8 j 8n8;a jn
xyz

~u,w50!5Fa8 j 8n8;a jn
XYZ

~u!,

Fa8 j 8n8;a jn
xyz, left

~u![Fa8 j 8n8;a jn
xyz

~u,w5p!

5~21! j 82 jFa8 j 82n8;a j2n
XYZ

~u!. ~2!

We see that the left-right azimuthal asymmetry in the
frame is described by NCF amplitudes with opposite proj
tions of electronic angular momentum onto theZ axis. Note
also that for the forward scattering (u50) the amplitudes,
Fa8 j 80;a j0

xyz,right (0) and Fa8 j 80;a j0
xyz, left (0) should be equal to eac

other; on the other hand, Eq.~2! implies that ifu j 82 j u is odd,
they differ in sign. Therefore we haveFa8 j 80;a j0

XYZ (0)50, pro-
vided u j 82 j u is odd. In what follows we will discuss only th
NCF amplitudes, and for simplicity drop the superscr
XYZ.

The quasiclassical approximations for NCF amplitud
falls into two categories: one corresponds to the scatte
through classical angles,u@udiff ~udiff being the diffraction
angle!, and the other to the scattering through small ang
u!1, which also includes nonclassical~diffraction! angles,
u<udiff . Since under quasiclassical conditionsudiff is very
small ~udiff'1/kR0 , whereR0 is a range of the potential!,
these two cases possess the common region of applicab
udiff!u!1.

For scattering through classical angles, the amplitu
Fa8 j 8n8;a jn(u) can be written via two auxiliary function
f a8 j 8n8;a jn

1 (u) and f a8 j 8n8;a jn
2 (u), which in turn are expresse

via the scattering matrix in theJ-helicity body-fixed repre-
sentationSa8 j 8n8;a jn(J) ~n andn8 are projections ofj and j 8
onto the classical total angular momentum vectorJ! @1#:

Fa8 j 8n8;a jn~u!5exp@ in8~u2p!#@ f a8 j 8n8;a jn
1

~u!u
n5n
n85n8

1~21! j 81 j f a8 j 8n8;a jn
2

~u!u
n52n
n852n8#, ~3!

f a8 j 8n8;a jn
1

~u!5
exp~2 ip/4!

A2pk8k sin u
E

0

`

exp~2 iuJ!

3Sa8 j 8n8;a jn~J!AJdJ, ~4!

f a8 j 8n8;a jn
2

~u!5
2exp~ ip/4!

A2pk8k sin u

3E
0

`

exp~ iuJ!Sa8 j 8n8;a jn~J!AJdJ. ~5!

For the scattering through small angles,Fa8 j 8n8;a jn(u) is rep-
resented as
r-

F
-

t

s
g

s,

ty,

e

Fa8 j 8n8;a jn~u!5
2 i

Ak8k
E

0

`

J dJ (
m8mn8n

i m2m8

3Jm82m~uJ!Dm8n8
j 8 Dm8n8

j 8

3exp~2 ipn8!Sa8 j 8n8;a jnDmn
j Dmn

j , ~6!

where Jm82m is the Bessel function of orderm82m, and
Dmn

j are the particular values of the WignerD functions,
Dmn

j 5Dmv
j (0,p/2,0); see Ref.@34#.

Expressions~3! and ~6! become identical to each othe
whenn8u is neglected in the exponent of the first factor
the right-hand side of Eq.~3! ~scattering angles are smal
u!1!, and when the Bessel function on the right-hand s
of Eq. ~6! is replaced by its asymptotic expression~scattering
angles are larger than the diffraction angle,Ju@1!. A series
of transformations ‘‘initial SF frame–natural collisio
frame–body-fixedJ-helicity frame’’ is intended to expres
the scattering amplitudes through theJ-helicity S matrix
which has a simple structure, and can be constructed in
so-called locking approximation@1#

S5CTrSMC, ~7!

whereC is the locking matrix, andSM is the molecular scat-
tering matrix @1#. When rewriting this equation in terms o
the matrix elements, we take into account thatC matrix is
diagonal ina j ~these quantum numbers are written as sup
scripts!, and explicitly introduce the reflection symmetr
quantum numbers:

Sa8 j 8n8;a jn
~s!

~J!5 (
v8,v

Cv8;n8
a8 j 8s

~J!Sa8 j 8v8;a jv
M ,s

~J!Cv;n
a js~J!.

~8!

Herev is the absolute value of theR-helicity projection ofj ,
anda j quantum numbers still have a significance in a se
of adiabatic correlation~see Fig. 1!. Thus, for process~1!, we
have the following identification ofa j anda8 j 8:

a j5a1[1P1 when it appears inC,

a j[1P when it appears inSM,

a8 j 8[3S1,3P when it appears inSM

a8 j 85a80,a81,a82[3Pj~ j 50,1,2!

when it appears inCTr.

Note that the scattering matrix decomposes into two blo
that correspond to the positive (s51) and negative (s5
21) reflection symmetries. Actually, the quantum numbes
on the left-hand side of Eq.~8! is redundant~hence it is
bracketed!, sinces is related to theJ-helicity quantum num-
bern and the parity of the statew ass5w(21)n @the parity
quantum number implicitly enters into the seta; for collision
~1! w5w8521#.

In our case, with the initial 4s5p,1P1 state, the positive
substates arej 51 andn561, and the negative substates a
j 51 andn50. The final states 4s5p. 3Pj include both posi-
tive and negative substates: the former arej 51 and n5
61 and j 52 andn561, while the latter arej 50,1,2 and
n50 and j 52 andn562. This yields 13 nonzero elemen
of the scattering matrix that connect the initial singlet a
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final triplet states. The number of different cross sectio
which describe the transfer of state moments in process~1! is
larger than the number of nonzero elements of the scatte
matrix, since these cross sections are generated from di
ent bilinear combinations of the elements of the scatter
matrix. However, if we restrict ourselves to a transition b
tween states of the helicopter polarization~the orientation of
j and j 8 perpendicular to the collision plane!, the number of
different cross sections,qa8 j 8n8;a jn(u), will be equal to the
number of nonzero elements of the scattering matrix. Exp
itly, the differential cross sections for the scatting to the rig
and left in the SF frame are

qa8 j 8n8;a jn
right

~u!5uFa8 j 8n8;a jn~u!u2,
~9!

qa8 j 8n8;a jn
left

~u!5uFa8 j 82n8;a j2n~u!u2,

Out of 13 cross sections, three correspond to (1P1 , j
51, n50)→(3P, j 50,1,2,n50) right-left invariant transi-
tions, while ten others, (1P1 , j 51, n561)→(3P, j 51,2,n
561,71) and (1P1 , j 51, n50)→(3P, j 52, n562), rep-
resent five right-left pairs.

IV. LOCKING MATRIX

A locking matrix describes the coupling of the electron
angular momentumj to the molecular axis as a result o
interatomic interaction when two atoms approach each ot
In our case this coupling corresponds to the transition fr
the Hund coupling casee to the coupling casec. Before the
collision, the good quantum number of the system isn, the
J-helicity projection ofj . After j is coupled to the molecula
axis, the good quantum number is theR-helicity projection
of j , or its absolute valuev and the reflection quantum num
bers. For the case under consideration, the following bloc
of the locking matrix are of interest.

~i! In the entrance channels, the 333 locking matrix with
elementsCv;n

a1s factors out into a 232 block Cv;n
a11 ~v

51,0; n51,21!, and a single elementC1;0
a1251.

~ii ! In the exit channels, the 939 locking matrix factors

out into two diagonal elementsC0;0
a80251, C1;0

a812518; two

232 blocks with the elementsCv;n
a811 ~v51,0; n51,21!

andCv;n
a821 ~v52,1; n51,21!; and one 333 block with the

elementsCv;n
a822 ~v52,1,0; n52,0,22!.

The structure of the 232 locking matrix which connects
statesun& anduvs& is well understood@35,36#. It can be rep-
resented in the form

S 11

01 D5~Cvn
a11!S 11

21D ,

~Cv;n
a11!5S A1/21s exp~ ia!

2A1/22s exp~ ia!

A1/22s exp~2 ia!

A1/21s exp~2 ia!
D ,

~10!

where two parametersa ands are the locking angle and th
slipping probability. The sudden locking~SL! limit SLCv;n

a11

of the matrixCv;n
a11 corresponds tos50. We have calculated

parametersa ands in matrix ~10!, as suggested in Ref.@36#,
and found that, for the case under discussion~collision en-
s

ng
r-
g
-

-
t

r.

s

ergy 1 eV!, both a ands are well represented by the linea
functions of the impact parameterb.

The 333 locking matrix presumably has no simple re
resentation@37#. Its sudden locking limit for the statej 52 is

S 22

12

02
D 5~SLCv;n

a822!S 12
0

22
D ,

~SLCv;n
a822!

5S A1/8 exp~2ia!

2A1/2 exp~2ia!

A3/8 exp~2ia!

A3/4 A1/8 exp~22ia!

0 A1/2 exp~22ia!

2 1
2 A3/8 exp~22ia!

D .

~11!

We have solved the 333 nonsudden locking problem nu
merically for a range of impact parameters, and found th
with an accuracy of 5% the locking matrix can be rep
sented as

C5MSLC, ~Mv8,v
a8,2

!5S 1
0
0

0
1

s10

0
2s10

1
D . ~12!

Here the structure of the correction matrixM has been found
from a related study of the 232 problem. The values of the
parametersa in Eq. ~11! ands in Eq. ~12! are the same as in
Eq. ~10!, because of the same spacing between the sin
and triplet potential curves.

V. MOLECULAR SCATTERING MATRIX

A molecular scattering matrix describes the fictitious sc
tering event in which the long-range Coriolis coupling b
tween molecular states is suppressed. As a result,MS pos-
sesses a few off-diagonal matrix elements which are rela
to nonadiabatic transitions between molecular states. In
case we take into account the following transitions:

~i! Localized transitions of the Landau-Zener~LZ! type
near the crossing of1P and 3S1 potential curves. These
transitions are induced by the spin-orbit interaction and c
nect states of the same symmetry:1P(vs516)
↔3S1(vs516).

~ii ! Localized transitions of the Nikitin type in the regio
of the a-c recoupling. These transitions are induced by t
radial motion and connect states of the same symme
3S1(vs516)↔3P(vs516) and 3S1(vs502)
↔3P(vs502).

~iii ! Nonlocalized transitions of resonance type betwe
the components of the3S1 potential on the way in, from the
crossing point of3S1 and 1P curves to the turning point on
the 3S1 curve, and on the way out, from the turning point o
the 3S1 curve up to the locking distanceRL . These transi-
tions are induced by the rotational motion and connect
generate states of different axial symmetry:3S1(vs502)
↔3S1(vs512)

Accordingly, the molecularS matrix is constructed from
the matrices of adiabatic evolution and the matrices of no
diabatic transitions. The 12312 scattering matrixMS is fac-
tored out into 636 matrix MS1 of positive reflection sym-
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metry, and the 636 matrix MS2 of negative symmetry. The
matrix MS1 reads

MS15 lim
R→`

@exp~2 ik8R2 ikR1 iJp1 ip/2!A~RN ,R!

3@~Nii~RN!#TrA~RLZ ,RN!

3@Ni~RLZ!#TrA2~R1 ,RLZ!Ni~RLZ!A~RLZR!#. ~13!

The matrix MS2 is slightly more complicated, since
also includes, besides the localized transitions of types~i!
and ~ii !, a nonlocalized transition of type~iii !:

MS25 lim
R→`

@exp~2 ik8R2 ikR1 iJp1 ip/2!A~RN ,R!

3@~Nii~RN!#TrNiii ~RLZ ,RN!A~RLZ ,RN!

3@Ni~RLZ!#Tr@Niii ~R,RLZ!#2A2~Rt ,RLZ!

3Ni~RLZ!A~RLZ ,R!#. ~14!

HereA’s are diagonal matrices of adiabatic evolution b
tween interatomic distances indicated, andN’s are the matri-
ces of nonadiabatic transitions labeled by the type of tra
tion. For localized transitions@types~i! and ~ii !#, the center
of the nonadiabaticity region is indicated~RLZ or RN!, while
for the nonlocalized transitions@type ~iii !# the whole range is
indicated. Note that within the accuracy of our calculatio
the matrixNiii (RLZ ,RN) on the right-hand side of Eq.~14!
can be identified with the matrixNiii (RLZ ,RL), since both
RN ~RN0 andRN1! are very close toRL .

The explicit forms of the matrix elements ofA matrices
are

Ac8c~R1 ,R2!5dc8cexp@ iDc~R1 ,R2!#,
~15!

Dc~R1 ,R2!5
1

\ E
R1

R2A2m@E2Uc~R!2~J11/2!2/2mR2#.

Here c stands for the set of quantum numbersa jvs of a
molecular state, and the total energyE and the potential en
ergy curvesUc(R) are referred to the common origin. No
also that the centrifugal energy in the molecular region
determined by the total angular momentumJ rather than by
the relative angular momental ,l 8, even in the asymptotic
regionR→`. The switching fromJ to l ,l 8 which is neces-
sary to insure correct boundary conditions for the scatte
wave function, is accomplished by the locking matrices. T
matrices of nonadiabatic transitionsNi, Nii , andNiii are of a
block-diagonal form, with blocks consisting of 232 matri-
ces.

For the type-~i! transition, 1P(vs516)
↔3S1(vs516), the coupling between adiabatic states, t
emerge from the diabatic states1P and 3S1 under the ac-
tion of the spin-orbit interaction, is described by the Landa
Zener model. It was found earlier@14# that the motion here is
almost diabatic, and the transition probability between dia
tic statesp8 is

p85
2pVso

2

DFLZA~2/m!@E2ULZ2~J11/2!2/2mRLZ
2 #

~16!
-

i-

,

s

g
e

t

-

-

Here Vso is the matrix element of the spin-orbit interactio
between1P(vs516) and 3S1(vs516) states,RLZ is the
crossing distance between these potential curves,ULZ is the
potential energy at the crossing distance, andDFLZ is the
difference in slopes of these potentials at the crossing po
The (Nc8c

i ) matrix actually assumes the form

~Nc8c
i

!5SAp8exp~2 ip/4!

21

1
Ap8exp~ ip/4! D , ~17!

wherep8!1.
In region ~ii !, the 232 blocks of theN matrices have a

standard form for the Nikitin exponential model@15,38#:

~Nc8c
ii

!5SA12Pexp~2 iw!

2APexp~2 ic!

APexp~ ic!

A12Pexp~ iw!
D , ~18!

whereP is the transition probability between adiabatic m
lecular states, andw andc are certain phases that depend
the type of the transition. In Eq.~18!, the transition probabil-
ity depends on two parameters, related to the spacing of
tential curves far from the coupling region,DE, the logarith-
mic derivative of the difference of two adiabatic potentials
the center of the coupling region,a/2, the mixing angleq/2,
and the relative velocity of atoms at the center of the c
pling region,np . The parameters in question are@15,38#

§5DE/~\anp!, §p5§ sin2~q/2!. ~19!

In terms of these parameters, the expressions for the tra
tion probability and phases read

P5exp~2p§p!
sinh~p§2p§p!

sinh~p§!
~20!

and

w5g~§p!2g~§!,

c5g~§2§p!2g~§!2H 2A§§p2~§2§p!ln
A§1A§p

A§2A§p
J ,

~21!

where

g~z!5p/42arg G~11 iz!1z~ ln z21!. ~22!

For the type-~ii ! transition, the interaction between adi
batic states belonging to the intermediatea-c Hund case
arises from the coupling by the radial motion of the partn
within a small range of interatomic distances close toR
5RN . Actually, there are two different cases here: one c
responding to cosq50 @transitions 3S1(vs

516)↔3P(vs516)#, and the other to cosq521
3 @transi-

tion 3S1(vs502)↔3P(vs502)#, with slightly different
values ofRN . In both cases, the general equations~18!–~22!
apply, in whichDE is identified withD«21 for the first case
and withD«20 for the second case. We note, in passing, t
the transition probability for the case cosq50 coincides
with the Rosen-Zener-Demkov formula, while, in the lim
q!1, the Landau-Zener formula is recovered.
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Finally, for the type-~iii ! transition, the interaction be
tween adiabatic states 02 and 12 of the Hunda nomencla-
ture for the 3S1 multiplet is due to the rotational couplin
between degenerate states. The matrixNiii is simply the
232 matrix of rotation through angleF, which is covered
by the molecular axis during the excursion of the syst
alongR1 /R2 interval „with R1 andR2 being appropriate dis
tances, as implied by Eq.~14!…. The explicit expression for
Niii , when it is supposed to act on the column vec
(u12&,u02&), reads

~Nc8c
iii

!5S cosF
2 i sin F

2 i sin F
cosF D . ~23!

The rotational mixture of states can, in principle, have a s
nificant effect on the overall nonadiabatic transition proba
ity @39#.

The molecular scattering matrixMS can now be synthe
sized fromA andN matrices. Sandwiched betweenC matri-
ces, MS yields the scattering matrixS in the J-helicity rep-
resentation.

VI. DIFFERENTIAL AND INTEGRAL CROSS SECTIONS

Calculation of differential cross sections in the quasicl
sical approximation is facilitated by two simplification
which are related to the structure of theJ-helicity S matrix
and the stationary-phase solutions of the integrals that de
the scattering amplitude. As discussed at length in Ref.@15#,
each element of theS matrix can be represented as a su
over different classical pathsg that connect the initial and
final states and run on different portions of adiabatic pot
tial curves with the relative angular momentumJ ~or impact
parameterb related toJ askb5J1 1

2!:

Sc8c~J!5(
g

sc8c
g

~J!exp@2idc8c
g

~J!#. ~24!

The reason behind the splittingSc8c(J) into several compo-
nents is that each of them features quite specific behavio
much stronger dependence of the exponential onJ compared
to that of the preexponential factor. The exponents, wh
are similar to the WKB phase shifts for elastic scattering, c
be recovered from the classical deflection functionshc8c

g (J),
while the preexponential factorssc8c

g (J) contains parameter
that enter into theN andC matrices.

For our case, the number of different paths can be redu
to two, if the collision energy is noticeably higher than t
spin-orbit interaction. Then the paths that correspond to
ferent fine-structure exit channels coalesce, and the sum
Eq. ~24! will be over two paths. Let the deflection function
for these paths behSP

1 (b) and hSP
2 (b). The first path cor-

responds to the entrance along the1P potential curve to the
separationRLZ , then the further approach on the3S1 poten-
tial curve until the turning pointRt(

3S1) and the recede
along this curve until it merges with the manifold of3P
state. For this path, the system moves atR,RLZ across the
3S1 potential. Therefore, we adopt notationhSP

1 5hSP
S .

The second path runs on the1P potential curve until the
turning point Rt(

1P), then recedes, and after reaching t
crossing pointRLZ continues on the3S1 potential; the re-
r

-
-

-

ne

-

: a

h
n

ed

f-
in

spective deflection function ishSP
2 5hSP

P . The curves rep-

resenting two functionshSP
S (b) andhSP

P (b) meet at a cer-
tain pointbLZ , and form two branches of a single deflectio
functionhPS(b) for the inelastic scattering@15#. We note in
passing that if the collision energy is noticeably higher th
the attraction energy for the1P potential curve atRLZ , then
bLZ is close toRLZ . The deflection functionhPS(b) for the
potentials shown in Fig. 1 and for a collision energy of 1 e
is represented in Fig. 2.

We now turn to a calculation of the scattering amplitud
and cross sections. Consider first scattering through clas
angles. The representation of theS matrix in the form given
by Eq. ~24! is suitable for calculation of the scattering am
plitudes in the stationary-phase approximation. In this
proximation, one looks at a givenu for a value ofJ ~or b! at
which the total phase composed of7uJ and 2dc8c

g (J) has an
extremum. These values ofJ are found from the equation:

uhc8c
g

~J!u5u, ~25!

and each roots of this equation,J5JG(u), defines a trajec-
tory G which is scattered through angleu. Because of the
complicated shape of the deflection function and the con
bution of positive and negative values ofh to the same value
of u ~recall that the range ofu is 0/p! the number of solu-
tions to Eq. ~25! that determine different trajectoriesG is
usually larger than the number of pathsg that enter into sum
~24!. In this approximation, the scattering amplitudeFc8c(u)
is represented as a sum over different trajectoriesG:

Fc8c~u!5(
G

Aqc8c
G

~u! exp@2iFc8c
G

~u!1 iCc8c
G

#. ~26!

All the quantities that enter into the right-hand side of E
~26! can be recovered from the classical deflection functio
hc8c

G (b) of the inelastic event, transition probabilities, an
phases that enter into the matrices of nonadiabatic transit
and parameters of the locking matrix. For instance, for
deflection function shown in Fig. 2, the number of trajec
ries is six foru,u rep.rain

S , four for u rep.rain
S ,u,uatt.rain

S , and
two for uatt.rain

S ,u @the indices rep.rain and att.rain with in
dexS stand for the repulsive and attractive rainbows at theS
branch of the functionhSP(b)#.

FIG. 2. Deflection function for the inelastic collisions Ca(1P1)
1He→Ca(3Pj )1He at a collision energy 1 eV.
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TABLE I. Parameters used for the calculation of the differential cross sections for the inelastic sca
Ca(1P1,n)1He→Ca(3Pj ,n8)1He ~in a.u.! at a collision energy of 1 eV.

Collision energyE 3.67531022

Initial wave vectork 22.06
Reduced massm 6686
Relative velocityn 0.003 32
Landau-Zener crossing distanceRLZ 14.6
Pseudocrossing distance forV51 states,RN1 22
Pseudocrossing distance forV502 states,RN0 21.2
Locking angle,aL 0.058b
Slipping probability,s 0.012b
Energy spacing1P123P2 0.71431023

Energy spacing3P223P1 0.9331024

Energy spacing3P123P0 0.3231024

Landau-Zener parameterAp8 for head-on
collision
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When expression~26! is used for the calculation of th
differential cross section through classical angles@Eqs.~3!–
~5!#, the latter will assume the form

qc8c~u!5(
G

qc8c
G

~u!12 (
GÞG8

Aqc8c
G

~u!qc8c
G8 ~u!

3cos@2DFc8c
G,G8~u!1DCc8c

G,G8#. ~27!

The first sum on the right-hand side of Eq.~27! represents
a contribution from fluxes traveling along different traject
ries; usually this term varies slowly and regularly withu. It
can be written schematically as

qc8c
G

~u!5Lc8c@bc8c
G

~u!#Tc8c@bc8c
G

~u!#qc8c
G,el

~u!, ~28!

where the factorLc8c comes from a bilinear combination o
locking matrices,Tc8c comes from matrices of nonadiabat
transitions, andqc8c

G,el(u) are similar to the classical elast
cross sections

qc8c
G,el

~u!5
1

sin u
bc8c

G
~u!Udbc8c

G
~u!

du
U. ~29!

The form of the arguments in functionsLc8c and Tc8c is
intended to emphasize the fact that theiru dependence
should be recovered from a particular trajectoryG with the
impact parameterbc8c

G (u).
The second sum on the right-hand side of Eq.~27! repre-

sents the interference contribution from waves travel
along different trajectories. The phase differenc

DFc8c
G,G8(u) are completely defined by the deflection fun

tion, and are supposed to be large~applicability of the
stationary-phase approximation!. The phase difference

DCc8c
G,G8 arise from combination of the phases entering intoC

andN matrices, and also from the stationary phase integ
tion.

When someDFc8c
G,G8(u) are not large, the stationary-pha

approximation breaks down, and some terms in the first
second sums show divergence. Then they can be comb
g
s

a-

d
ed

and replaced by a certain uniform approximation which
not divergent. The important property of this approximati
is that it does not require any additional information on t
scattering. In our calculations we used the Airy uniform a
proximation@15# to calculate the cross sections close to t
rainbow anglesu rep.rain

S anduatt.rain
S . Actually, at an energy of

1 eV, the deflection function can be calculated in the hig
energy approximation@15# up to scattering angles of abou
0.15 rad, where the cross sections are not too small.

Consider now the scattering through angles in the diffr
tion region. In this region the scattering amplitude is giv
by Eq. ~6!. A simplified version of this expression can b
obtained if one solves the integral overJ in the stationary-
phase approximation. In this case, the possible classical
jectories correspond to nondeviated trajectories; that is,
respectiveJG values are found from the equation

uhc8c
g

~J!u50. ~30!

The angle dependence of the scattering amplitude is g
by a linear combination of the Bessel functions:

Fc8c~u!52 iA2pk(
G

bGudhc8c
G

~b!/dbub5bG

21/2

3exp~ ipsc8c
G /4!Gc8c

G
~u,JG!, ~31!

where

Gc8c
G

~u,JG![Ga8 j 8n8;a jn
G

~u,JG!5 (
m8mv8v

Dm8n8
j 8 Dm8v8

j 8

3Dmn
j Dmv

j i m2m8Jm82m~uJG!

3exp~2 ipv8!Sa8 j 8v8;a jv~JG!, ~32!

andsc8c
G

5sgn„dhc8c
G (b)/db… at b5bG .

The values of parameters which were used for the ca
lation of the cross section are given in Table I. The calc
lated cross sections are presented in Figs. 3–10. In th
figures, positive values ofu correspond to scattering to th
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right, and negative values correspond to scattering to the
In all these figures, we single out the following four regio
of scattering angles.

~i! u<uLZ50.03. Here the main contribution to the cro
section comes from the scattering on1P potential.

~ii ! uLZ<u<urep.rain
S 50.10. In this region, the main contri

bution to the cross section comes from the scattering on
potential barrier of the3S1 potential.

~iii ! urep.rain
S <u<uatt.rain

S 50.19. Here, the main contributio
to the cross section comes from the scattering on the po
tial well of the 3S1 potential.

~iv! uatt.rain
S <u. The cross section is determined by t

interference of two waves, one scattered by the repuls
branch of the3S1 potential and the other scattered by t
attractive branch of the1P potential.

Considering the above, one easily understands why all
cross sections drop atu'u rep.rain

S 50.10 ~rainbow scattering
on the barrier of the3S1 potential!. Another general feature

FIG. 3. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,0→3P0,0 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left. Since for this transition the right-left scattering asy
metry is absent, only the scattering to the right is shown.

FIG. 4. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,0→3P1,0 transition. Positive scattering anglesu
correspond to the scattering to the right, and negative angle
scattering to the left. Since for this transition the right-left scatter
asymmetry is absent, only the scattering to the right is shown.
ft.

e

n-

e

e

is the increase of the cross sections near the Landau-Z
angleuLZ50.03. This is related to the constructive interfe
ence of waves scattered on3S1 and 1P potentials, and the
increase in the Landau-Zener transition probability at imp
parameters close tobLZ . At still smaller angles, the increas
of the cross sections is related to a graduate transition to
glory scattering.

The difference in various cross sections is mainly due
the Coriolis interaction, which acts in the region of locking
large interatomic distances, and also in the region of mix
components of the3S1 state atR,RL . The largest cross
sections correspond to the initial zeroJ-helicity state, since
this state is already locked to the molecular axis, and
comes completely the1P12 molecular state.

Compare now cross sections for transitions1P1,0
→3P0,0, 1P1,0→3P1,0, 1P1,0→3P2,0, and 1P1,0→3P2,2.
Consider first the region of classical angles,~Figs. 3–10!.
Here the cross section for transition1P1,0→3P1,0 is consid-
erably smaller compared to other cross sections. This is

er-
-

to
g

FIG. 5. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,0→3P2,0 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left. Since for this transition the right-left scattering asy
metry is absent, only the scattering to the right is shown.

FIG. 6. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,0→3P2,2 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left.
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plained in the following way. The scattering in this range
angles is driven by the motion on the3S1 potential, where
there exists a considerable Coriolis mixing between
3S12

1 component~populated in the Landau-Zener transitio
on the way in! and the3S02

1 , component atR,RLZ . This
mixing leads to a considerable depletion of the state3S12

1 ,
so that the nonadiabatic transition3S12

1 →3P12 which oc-
curs after the system crossesRLZ on the way out, finally
brings the system to the3P10 state.

Turn now to smaller scattering angles. Here the cross
tion for the transition1P1,0→3P1,0 is the largest one exhib
iting a peak at zero angles. The cross section for transi
1P1,0→3P2,2 is smaller, and shows a large asymmetry. T
cross sections for two other transitions,1P1,0→3P0,0 and
1P1,0→3P2,0, are still smaller and vanish atu50. These
features are explained by the fact that in this range of ang
the scattering is driven mainly by the motion on the1P
potential ~hence the initial high population of the1P12 is

FIG. 7. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,1→3P1,21 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left.

FIG. 8. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,1→3P1,1 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left.
f

e

c-

n
e

s,

not considerably depleted!, and the peak is due to the contr
bution of the diffraction termJ0(kbglory

P u) with bglory
P 59.8

~see Fig. 2!, since other contributions, proportional t
Jm82m(kbglory

P u) with m82mÞ0, vanish atu50. On the
other hand, the diffraction termJ0(kbglory

P u) does not con-
tribute to the cross sections for the transitions1P1,0→3P0,0

and 1P1,0→3P2,0 sinceD00
1 5D610

2 50. As for the transition
1P1,0→3P2,2, the large asymmetry of the cross section
due to the strong manifestation of the locking.

In general, the azimuthal scattering asymmetry shows
self in two features: in a shift of the scattering pattern alo
u axis, and in a difference in heights of the seconda
maxima situated at both sides from the main maximum. T
shift Duc8c in the cross section for transitionc→c8 is
roughly determined by an equation

Duc8c5
daL,c8

dJ
n81

daL,c

dJ
n. ~33!

er-

er-

FIG. 9. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,1→3P2,21 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left.

FIG. 10. Differential cross sectionq for Ca1He scattering~in
a.u.! for the 1P1,1→3P2,1 transition. Positive scattering anglesu
correspond to scattering to the right, and negative angles to sca
ing to the left.
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Since two derivatives are close to each other, a notice
shift exists for transitions withn81n52, that is, for transi-
tions 1P1,0→3P2,2, 1P1,1→3P2,1, and 1P1,1→3P1,1.

The overall intensity of the scattering to the right in t
scattering plane can be characterized by integral ‘‘in-h
plane’’ cross sectionssa8 j 8n8;a jn , which represent differen
tial cross section integrated only over the polar angleu:

sa8 j 8n8;a jn5E
0

p

qa8 j 8n8;a jn~u!sin udu. ~34!

The overall intensity of the scattering to the left is given
a similar expression in whichn8,n is replaced by2n8,
2n, and the total intensity for scattering both to the rig
and left is given by the sum of two in-half-plane cross s
tions:

sa8 j 8n8;a jn
right1left

5sa8 j 8n8;a jn1sa8 j 82n8;a j2n ; ~35!

see Table II. The right-left scattering asymmetry can be t
characterized by the difference of two in-half-plane cro
sections

Dsa8 j 8n8;a jn
right2left

5sa8 j 8n8;a jn2sa8 j 82n8;a j2n , ~36!

or by the ratio

Aa8 j 8n8;a jn5
Dsa8 j 8n8;a jn

right2left

sa8 j 8n8;a jn
right1left , ~37!

see Table II. If the in-half-plane cross sectionsa8 j 8n8;a jn is
summed over finalj 8,n8 states, it will give a total in-half-
plane cross section for the scattering to the right in the c
lision plane out of the initial statea jn:

sa8;a jn5 (
j 8n8

sa8 j 8n8;a jn ; ~38!

see Table III. Similarly,sa8;a j2n is the scattering to the lef
from the same initial statea jn. Finally, if sa8;a jn is averaged
over all initial projections n, it yields an azimuthal-
independent quantity. When multiplied by 2p ~a result of
integration over the azimuthal angle!, it yields the total inte-
gral cross section for inelastic scattering1P1→3Pj , all j :

s~1P1→3Pj , all j !5
2p

3 (
j 8n8n

sa8 j 8n8;a jn

TABLE II. Nonvanishing Zeeman-specific cross sections for
inelastic scattering Ca(1P1,n)1He→Ca(3Pj ,n8)1He.

Collision event s right1left Ds right2left A

1P1,0→3P0,0 1.26 0 0
1P1,0→3P1,0 1.80 0 0
1P1,0→3P2,0 0.92 0 0
1P1,0→3P2,2 2.94 0.54 0.18
1P1,1→3P1,21 1.11 0.21 0.19
1P1,1→3P1,1 1.17 0.36 0.31
1P1,1→3P2,21 1.23 0.44 0.35
1P1,1→3P2,1 1.24 0.11 0.09
le

-

t
-

n
s

l-

5
p

3 (
j 8n8n

sa8 j 8n8;a jn
right1left

5
2p

3 (
n

sa8;a jn ; ~39!

see Table II. Of course,s(1P1→3Pj , all j ) is directly ex-
pressed via the scattering matrix

s~1P1→3Pj , all j !5
2p

3 E
0

`

(
j 8v8v

uSa8 j 8v8;a jv~J!u2
JdJ

k2 .

~40!

VII. CONCLUSION

In this paper, we presented a quasiclassical theory of
elastic, spin-changing collisions of an excited Ca(4s5p,1P1)
atom with He, at a collision energy of 1 eV. All Zeema
specific differential cross sections for transitions f
helicopter-oriented atoms are peaked at small angles.
feature is completely different from the small-angle elas
scattering which comes from collisions with large impa
parameters. In our case, the maximum value of the imp
parameter is determined by the access to the Landau-Z
crossing between the1P1 and 3S1 potential curves which
steer the nuclear motion in the region of a quasimolecu
The small scattering angles arise as a result of interplay
tween attractive and repulsive interatomic motion in t
range of impact parameters where the quasiclassical app
mation to the scattering matrix is well founded. The range
scattering angles splits into the range of classical angles
the range of diffraction angles. For the latter range, the
fects of quantum scattering are shown by an out-of-pla
contribution of the incident wave into the in-plane scatteri
amplitudes. However, all the information which is need
for a calculation of cross sections is recovered from class
deflection functions, and matrices of the localized nonad
batic transitions: the Landau-Zener coupling for the cross
1P1 and 3S1

1 potential curves, the Demkov and Nikitin cou
pling for 3SV

1 and 3PV potential curves, the nonlocalize
Coriolis coupling for the components of the3S1 potential
curve, and the locking coupling for the molecular potent
curves merging to the same initial and final atomic states

We have shown that the locking phenomenon is resp
sible for a noticeable right-left asymmetry of the different

TABLE III. The total in-half-plane cross sections for the sca
tering to the right in collisions of helicopter-polarized atom
Ca(1P1,n→3P, all j 8,n8) and the total integral cross section in co
lisions of unpolarized atoms Ca(1P1,unpol→3P, all j 8,n8) ~last
row!.

Collision event Cross section

1P1,1→3P, all j 8,n8 2.99
1P1,0→3P, all j 8,n8 4.93
1P1,21→3P, all j 8,n8 1.81
1P1,unpol→3P, all j 8,n8 20.3
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cross sections for the scattering of helicopter-oriented ato
We also identified the parameters which are responsible
the scattering asymmetry and the absolute values of the c
sections, including those entering into the locking mat
~locking angles and slipping probabilities!.

The quasiclassical approximation used makes the con
tion between the input—adiabatic molecular states—
output—differential cross sections—particularly easy, sin
they are interrelated by the classical deflection functions
inelastic scattering and standard models of nonadiabatic
pling. This leaves the possibility to update the results wh
better potential curves are available, or to modify them if o
replaces He by Ne. The results of calculations yield inform
tion which is necessary for planning experiments on the m
, J

, J
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surements of the Zeeman-specific differential inelastic s
tering of an excited Ca atom.
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