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Quasiclassical study of differential inelastic scattering of oriented Cé4s5p,'P,) atoms on He
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A quasiclassical analysis of the differential inelastic scattering of orienteds5a(4P;) atoms on He at a
collision energy of 1 eV is presented. Inelastic channels correspond to spin-changing events populating dif-
ferent Zeeman sublevels of three fine-structure states ofSS@(?tPj), j=0, 1, and 2. The magnitude of the
right-left scattering asymmetry in the helicopter plane is shown to depend on the locking dynamics. The
relative values of different Zeeman-specific cross sections are determined by the diffraction scattering on the
attractive I state in the entrance channels, by the Coriolis mixing between degenerate components of the
repulsive ®3 " intermediate state, and by the radial coupling between 1-1 an@ 0 fine-structure compo-
nents of the®S, *-311, states in the exit channels. The predicted large right-left scattering asymmetry suggests
that it can be measured experimentall$1050-2947®8)07106-6

PACS numbegs): 34.50—s

. INTRODUCTION Ca(4s?,'S-4s5p,'P)—He transitions, and the dependence

Recently, quasiclassical calculations of differential crosPf the spin-changing transitions in the far-wing laser scatter-

sections for Na-Ne [1,2] and Né& -Ar [3] scattering at low ing [11,12) on the detuning.

eneraies within the so-called sudden locking aporoximatio The existing theoretical studies of Ca-He collisions fall
gles v d out. For the f ¢ 'tg ppf d th rl:nto three different categories. The first is based on a semi-
Were carried out. For the tormer system, it was foun atlassical treatment of the dynamical probl¢@8,14]. The

this approximation reproduces well the accurate closegyiahatic potential curves were calculated from the effective
coupling quantal resulfg}], and also helps to understand the |5 miltonian approach, as described in REE5], supple-
oscillatory interference structure of the cross section for thgnented with the multiple-scattering method for a description
scattering of unpolarized sodium atoms in either of its finef the short-range part of the interaction of the excited elec-
structure statedP;, j =3 and3 [5]. For the latter system, the tron of Ca with He[16]. In Ref.[17], a generalization of this
quasiclassical locking approximation qualitatively explainsmethod for many-election outer shells and the intermediate
the experimentally detected right-left azimuthal asymmetryangular momenta coupling case was suggested. Within this
in the scattering of helicopter-polarized  atoms approach, crossing between molecular potentials [cor-
Ne* (2p®3s,°P,) [6]. In both cases, the locking approxima- relating with 3P,(Ca)+ 'Sy(He)] and I [correlating with
tion was applied under the conditions that the initial and final'p,(Ca)+ !S,(He)] was predicted, and the crossing distance
states belong to the santer virtually the samgenergy level R, was estimated as 15 a.u. This permitted the authors of
of colliding species, and that in the molecular region there iRef.[14] to obtain a reasonable agreement with experimental
no coupling between different molecular states. Since thejata[7,9]. Additional intersections and extrema fB<R,
quasiclassical locking approximation showed itself to bewere predicted in Ref$18,19, and configuration interaction
quite helpful in the above cases, we thought that its applicaeffects have been incorporatg2D] into calculations of adia-
tion to more complicated events would be of interest. Wepatic potential curves. The latter refinement led to quite good
have chosen the spin-changing collisions of calcium as aggreement with experimental data on spectral line satellites
example of such a system; [11].
The second approach, as described in Rgf&—29, is
based on close-coupling calculations using the model poten-
Ca* (4s5p,'Py) +He—Ca (4s5p,°Pj)+He. (1) tial calculations of similar systenf€2] and flexible Morse-
spline van der Waals forms. The choice of parameters in the
potentials was guided by the desire to reproduce the experi-
For this collision event, the molecular states features differmental results as reported in Refg,9]. Although the agree-
ent types of coupling which can be treated analytically inment for the spin-changing reaction and intramultiplet mix-
terms of Landau-Zener, Demkov, and Nikitin models. ing and alignment effect®] are rather good, an intersection
Recent theoretical studies of this process were motivatedistanceR, of about 8.5 a.u. seems to be too small, as one
by cell experiments on spin-changing collisiot3— 3P [7], can judge from later calculatiorisee below;, moreover, the
as well as an intramultiplet mixing bet\Nee°er multiplet  potential curves adopted did not show additional intersec-
levels[7,8] and especially on the alignment effect in molecu-tions and extrema. This approach was also used for a calcu-
lar beam studie$9,10]. Related studies include measure- lation of the total cross section for different final Zeeman
ments of the absorption profile of the states of the Ca atof26]. The particular choice of the initial
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states was guided by the experimental conditi2%. 8

The third approach concentrated solely on a calculation of
the potential curves. The theoretical method was based on
[-dependent pseudopotentials. The first calculations along
this line [28] yielded a value ofR, of about 13 a.u., and
provided an independent confirmation of the existence of
additional extrema at small&®,. The improved version of ,
this approacti29] gave a value oR, of about 16 a.u. How- 1
ever, a comparison with experimental data on the satellites of
Ca(4s?,1S—4s5p,*P)—He optical transition§11] led to the 2
conclusion that the theory seemed to overestimate the repul-
sion at smallR. The latter conclusion can also be drawn
from the comparison of the theoretical and experimental data
on far-wing profiles for another system, Lif2 3d)-He
[30], for Wh'Ch the potentlal curves were Calculated by a FIG. 1. Adiabatic pO'[en'[Ia| curves for the System*Gde.
similar method. ) ) )

Neither of the above theoretical works provided a com-Which passes through its maximum at about 13[&1]. We
plete set of Zeeman-specific differential cross sections in attribute the difference in the position of the maximum for
spin-changing collisiofEq. (1)]. In the present paper we C& -He and K'-He systems to a more compact shape of the
address this problem using the potential curves from Refwave functions of a p electron in Ca. We also note that the
[19], and a simplified semiclassical description that adopts~ curves without maxima, proposed in R¢24] and used
the locking approximation. The use of this approximationlater for quantum flux studies in the Cale system[32],
makes it easy to establish a correlation between general federe modified in Ref[33] in such a way as to produce
tures of the differential cross sections and the pattern of adignaxima.
batic potential curves. The results obtained can be regarded We believe that theoretical calculations of potential
as approximate theoretical predications for anticipated excurves at interatomic distanc&<5 a.u., that correspond to
periments. the repulsion, are not reliable, since the applicability condi-

The plan of the presentation is the following. In Sec. 11, tions of the method used in R¢fL6] are marginally fulfilled.
we discuss the molecular potential curves of th&i@asys-  For a collision energy of 1 eV, this part of the potential is
tem, and identify the range of interatomic distances impor£ssential for scattering through angles larger than 0.25 rad.
tant for the dynamics of reactiafl). In Sec. Il the general At these angles, the cross sections are very small, and they
quasiclassical approximation to the scattering amplitudes i&ere not considered in this paper. Therefore these portions of
presented. Sections IV and V deal with the locking matriceghe curves are not shown in Fig. 1. On the other hand, part of
and the molecular scattering matrices. The differential andhe potentials just to the left of the barrier maxima are im-

integral cross sections are calculated in Sec. VI. Finally, Sedortant for the differential cross sections for the scattering
VII summarizes our findings. through the angles discussed in this paper.
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IIl. SCATTERING AMPLITUDES
Il. ADIABATIC POTENTIALS OF Ca (4s5p)—He

QUASIMOLECULE We will use a quasiclassical approximation for the scat-
tering amplitudes in the space-fixe®F center-of-mass
frame xyz Thex axis of this frame is directed opposite to
the initial wave vector of relative motiok, and thez axis is

The adiabatic potential curves used in this paper wer
borrowed from our earlier calculatiorjd8,19, and corre-
spon_d to the_ eigen\_/alues of the ele_ctronic HamiIFonian. Th%hosen to be an appropriate quantization axis for the elec-
g;ggrxo r?fw terxl\l/se ;?]rgtlilé?]r;?)r; t\;]veas(,3 x?:?;gdogatg?ogqaséi ;);eosnpein'gro_mc angular. m‘omentu.m of free C_:a atom. Lefn and

o o ! a’'j’'n’ be the initial and final electronic quantum numbers of
orbit interaction in a free Ca atom, and also on the exchang&a (a anda’ stand for the Russell-Sounders nomenclature
and polarization interaction between”Cand He. These po- 1p and3P; j’ and] are the electronic angular momenta, and
tentials are shown in Fig. 1. They are completely determine%, andn a}e their projections onto treaxis). The scatteriﬁg
by the following parameters: the singlet-triplet spacihf . . : Xyz )
in free Ca atonm{expressed via the Slater exchange integral amplitude in this frameFa’i’n’;ailn(a"P)’ depends on _tWO
the fine-structure splittingd e,, and Ae,, in free-atom Ca; angles; the polar anglé of the final wave vectok’ with
and twoR-dependent matrix elements; andVy;, that de- respect tok, _ar_1d the azimuthal angle_ which is counted
scribe the interaction between a hypothetical atorh,Gms- ~ from they axis in theyz plane. Along with the SF frame, we
sessing no spin-orbit coupling, and atom He. consider the natural collision fram@®&CF) XY Z[1]. The X

An interesting feature of these potential curves are thé@Xis Of this frame coincides witk axis of the SF frame, and
maxima for 33" and 13+ states at abouR=10 a.u. These theZ axis is parallel to the vector product of the final and
maxima are related to the maximum of the radial wave funcinitial wave vectors,k’xk. Clearly, theY axis of NCF
tion of the excited electron of Ca, which explains why tho Makes the angle with y axis. The scattering amplitude in
curves run almost parallel to each other. The maximum othe NCF is independent af; let it be F,\7,,.5;,(6). Two
the same origin exists for a simpler systeri-Ke, where amplitudesF*Y? andF*YZ are trivially related to each other

instead of two2 curves there exists one doubEtcurve by rotation about thex (or X) axis, and by reflection in the
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XY plane[15]. We will consider particular cases of this —i (e
transformation that corresponds to the right and left scatter-  F/j/nr.5jn(6) = == f Jdy > imm
ing in the SF frame. ik Jo

The scattering to the right through angldés defined by

’
m' mv’ v

X o(ODAL AV

the value of the azimuthal angle= 0, while the scattering to m'n’Sm’y
the left corresponds te= 7. We just havd 1] XeXF(—iWV')Sarj/yr;ajVALmAJ}nw (6)
xyz right — XYz —0)=XYZ wher '_m is the B | function of orden’ —m, an
Fa’i’n’:ain(0)=Fa’j'n’;ajn(0a¢’_0)_Fa’j’n’;ajn(a)i ereJy —m IS the Bessel function of o den , and

A‘;nv are the particular values of the Wignér functions,
Al,,=D1,,(0,7/2,0); see Ref[34].

P ain(O=F ol (.= ) Expressions(3) and (6) become identical to each other
Y wvyz whenn’ 6 is neglected in the exponent of the first factor on
==V R nraj-n(0). (2)  the right-hand side of Eq(3) (scattering angles are small,

#<1), and when the Bessel function on the right-hand side
seof Ea. (6) is replaced by its asymptotic expressiseattering

We see that the left-right azimuthal asymmetry in the ; X X
frame is described by NCF amplitudes with opposite projec-angles are larger than the diffraction anglé> 1). A series

. . . of transformations “initial SF frame—natural collision
tions of electronic angular momentum onto thexis. Note

. . frame—body-fixedJ-helicity frame” is intended to express
also that for the forward scattering€0) the amplitudes, the scattering amplitudes through tlehelicity S matrix

ight left
F)e(lyjz’r(l)?aj (0) and F:)’/jl’g;aj (0) should be equal to each hich has a simple structure, and can be constructed in the
other; on the other hand, E) implies thatif[j’—j| isodd,  so-called locking approximatiojt]

they differ in sign. Therefore we ha\ié;()gzo;ajo(O):O, pro-

_ ~TreM
vided|j’ —j| is odd. In what follows we will discuss only the S=CTSTC, ™
NCF amplitudes, and for simplicity drop the superscriptwhereC is the locking matrix, an&" is the molecular scat-
XYZ tering matrix[1]. When rewriting this equation in terms of

The quasiclassical approximations for NCF amplitudeshe matrix elements, we take into account tRatnatrix is
falls into two categories: one corresponds to the scatteringiagonal inaj (these quantum numbers are written as super-
through classical angle®> 64 (045 being the diffraction  script9, and explicitly introduce the reflection symmetry
angle, and the other to the scattering through small anglesguantum numbeo:
0<1, which also includes nonclassiaaiffraction) angles,

0< 04 . Since under quasiclassical conditiofg is very S;‘,TJ,),V,_ajV(J): 2 Ci’rj-yyer(J)SZ’ﬁwr-ajw(J)CZj-i(J)-
small (64~1/KkRy, whereR, is a range of the potential ’ oo ’ ' ’

these two cases possess the common region of applicability, ®
Ot < O<1. Here w is the absolute value of tHe-helicity projection ofj,

For scattering through classical angles, the amplitudendaj quantum numbers still have a significance in a sense
Farjrnriajn(6) can be written via two auxiliary functions of adiabatic correlatiofsee Fig. 1 Thus, for procesél), we
f;,j,v,;aju(e) andf,,;,,.,;,(6), which in turn are expressed have the following identification odj anda’j":
via the scattering matrix in thé-helicity body-fixed repre-
sentationS,,,.4j,(J) (v andv’ are projections of andj’
onto the classical total angular momentum ve&pf1]: aj='I1 when it appears inS¥,

aj=al=!P; when it appears irC,

rir 33+ 3 H M
Farjrnain( ) =exdin’ (0= )1t 0.0, (0)]r=r a'j’="%"I when it appears inS
G a'j’=a’'0a’1a'2=3P;(j=0,1,2)
+(—1) Jfa’j’v’;ajv(a)|z:7n,]’ 3

-n

when it appears inC™.

Note that the scattering matrix decomposes into two blocks

f; rai (0)= M exp(—i6J) that correspond to the positiverE1) and negative €=
e v27k'k sin 6 Jo —1) reflection symmetries. Actually, the quantum number
on the left-hand side of Eq@8) is redundant(hence it is
X Sa’i’V’?aiv(J)‘/de' 4) bracketed, sincec is related to thel-helicity quantum num-
ber v and the parity of the stat® asoc=w(—1)" [the parity
- 9 — exp(i m/4) ((qlu)antum/numtlu]ar implicitly enters into the sgtfor collision
Nty aiv :f W=W =—1].
R V2mk'k sin 6 In our case, with the initial 45p,'P; state, the positive
o substates arp=1 andv= * 1, and the negative substates are
X fo exp(iGJ)Sa/j,V,;ajV(J)\/de. (5 j=1 andv=0. The final states<bp. 3Pj include both posi-

tive and negative substates: the former arel and v=

*+1 andj=2 andv= =1, while the latter arg =0,1,2 and
For the scattering through small anglesgyj,.ajn(0) isrep-  »=0 andj=2 andv=*2. This yields 13 nonzero elements
resented as of the scattering matrix that connect the initial singlet and
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final triplet states. The number of different cross sectionergy 1 eV}, both « ands are well represented by the linear
which describe the transfer of state moments in pro€Bss  functions of the impact parametbr

larger than the number of nonzero elements of the scattering The 3x 3 locking matrix presumably has no simple rep-
matrix, since these cross sections are generated from differesentatiof37]. Its sudden locking limit for the stae=2 is
ent bilinear combinations of the elements of the scattering

matrix. However, if we restrict ourselves to a transition be- 2" , +2
tween states of the helicopter polarizatidhe orientation of 1~ :(SLcj‘)j*) 0 |,
j andj’ perpendicular to the collision plapeghe number of 0~ -2

different cross sectiong),:jn.ajn(6), Will be equal to the
number of nonzero elements of the scattering matrix. EXpliC(SLCZ'_IZ}*)
itly, the differential cross sections for the scatting to the right ’

and left in the SF frame are J1/8 exp 2i @) J3i14 18 ex —2ia)
qggjh’tn’;ajn( 0):|Fa’j’n’;ajn( 0)|2, =| — m eXF(?Ia) 0 \/FZ eX[(—Zlfz)
C) V38 exp2ia) -1 38 exg—2ia)
qlae'fz’n';ajn( 6):|Fa'j’—n’;aj—n( 9)|2, (11)

We have solved the 83 nonsudden locking problem nu-
merically for a range of impact parameters, and found that,
with an accuracy of 5% the locking matrix can be repre-

Out of 13 cross sections, three correspond @(]
=1,n=0)—(3P,j=0,1,2,n=0) right-left invariant transi-
tions, while ten others,'P;,j=1,n=+1)—(®P,j=1,2,n

==1,71) and ¢P;,j=1,n=0)—(?P,j=2, n==2), rep- sented as
resent five right-left pairs. 1 0 0
c=MSlc, (M3 )=[0 1 =—sp|. @12
IV. LOCKING MATRIX o'\

0 sy 1
A locking matrix describes the coupling of the electronic
angular momentun) to the molecular axis as a result of
interatomic interaction when two atoms approach each othe
In our case this coupling corresponds to the transition fro
the Hund coupling case to the coupling case. Before the
collision, the good quantum number of the syster,ishe
J-helicity projection ofj. After j is coupled to the molecular
axis, the good quantum number is tRehelicity projection

of j, or its absolute value and the reflection quantum num- A molecular scattering matrix describes the fictitious scat-
bero. For t_he case_under co_nsideration, the following blockstering event in which the long-range Coriolis coupling be-
of the locking matrix are of interest. . o tween molecular states is suppressed. As a re¥8tpos-

(i) In the entrance channels, the<3 locking matrix with  sesses a few off-diagonal matrix elements which are related
elementsC3:7 factors out into a X2 block C3') (@ o nonadiabatic transitions between molecular states. In our
=1,0; »=1,-1), and a single elemer@}’; = 1. case we take into account the following transitions:

(i) In the exit channels, the>9 locking matrix factors (i) Localized transitions of the Landau-ZengZ) type
out into two diagonal elemem@S:g’:l, Ci‘?é*:y; two  near the crossing otIl and 32*_ potential curves. These
2% 2 blocks with the element&? 1+ (=10 v=1-1) transitions are induced by the spin-orbit mtelractlon an+d con-

) o ] nect states of the same symmetry:Il(w=1")
andC; %" (w=2,1;»=1,-1); and one X3 block with the 35 +( o= 1),
eIementsC‘Z,';ﬁ_ (w=2,1,0;v=2,0—-2). (i) Localized transitions of the Nikitin type in the region

The structure of the 22 locking matrix which connects of the a-c recoupling. These transitions are induced by the

stategv) and|w?) is well understood35,36. It can be rep- radial motion and connect states of the same symmetry:

Here the structure of the correction mathkik has been found
From a related study of the>22 problem. The values of the
)arametersy in Eq. (11) ands in Eq. (12) are the same as in

g. (10), because of the same spacing between the singlet
and triplet potential curves.

V. MOLECULAR SCATTERING MATRIX

resented in the form 33 (07=1%) =3[ (w"=1%) and 35 H(w7=0")
. <3M(w=07).
1 :(Cal+)( +1) (iii) Nonlocalized transitions of resonance type between
0" wv 1) the components of th&S, * potential on the way in, from the

crossing point o2 * and 1 curves to the turning point on
arr. | Vi2+sexpia) V12-sexp—ia) the 33 * curve, and on the way out, from the turning point on
(Cov)=|_ [1/2—s explie) 12+sexp—ia))’ the 33" curve up to the locking distand®, . These transi-
(10)  tions are induced by the rotational motion and connect de-
generate states of different axial symmetAE " (w”=0")
where two parameters ands are the locking angle and the .33+ (w7=1")
slipping probability. The sudden lockin@L) limit S-C3:" Accordingly, the moleculaB matrix is constructed from
of the matrixCijV+ corresponds te=0. We have calculated the matrices of adiabatic evolution and the matrices of nona-
parametersy ands in matrix (10), as suggested in R€36], diabatic transitions. The 2212 scattering matriX'S is fac-
and found that, for the case under discusgicullision en-  tored out into 6<6 matrix MS* of positive reflection sym-
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metry, and the & 6 matrix MS~ of negative symmetry. The Here Vg, is the matrix element of the spin-orbit interaction

matrix MS* reads between'II(w”=1%) and 33 * (0’=17%) statesR,; is the
crossing distance between these potential cutgs,is the
MS* = lim [exp(—ik’R—ikR+iJm+im/2)A(Ry,R) potential energy at the crossing distance, &, ; is the
R—e difference in slopes of these potentials at the crossing point.
X[(NT(Ry)]"A(RLz ,Ry) The (N'C,C) matrix actually assumes the form
X[N'(R2)]"A%(Ry, RizIN'(RZ)A(RZR)]. (13 (N ) | VPrex—imld) 1 a9
e’ -1 Jp explil4) )’

The matrix MS™ is slightly more complicated, since it
also includes, besides the localized transitions of types wherep’<1.
and (i), a nonlocalized transition of typi): In region (i), the 2x 2 blocks of theN matrices have a

f for the Nikiti ial :
MS- — lim [exp( — ik’ R—ikR+iJ i m/2)A(Ry R) standard form for the Nikitin exponential moddl5,3§

o (N[ VI PeR—ie)  VPexiv) | o
XL(N"(R\)T"™N"(Rz ,Rn)A(RLz, Ry) c'e —Pexp(—iy) V1-Pexplie))’
X[N'(Ri2)I"IN"(R,R.2) I*A%(R;,Riz) whereP is the transition probability between adiabatic mo-
XN(R)A(RLz,R)]. (14) lecular states, ang and ¢ are certain phases that depend on

the type of the transition. In E@18), the transition probabil-

HereA's are diagonal matrices of adiabatic evolution be-ity depends on two parameters, related to the spacing of po-
tween interatomic distances indicated, a\id are the matri-  tential curves far from the coupling regiodE, the logarith-
ces of nonadiabatic transitions labeled by the type of transithic derivative of the difference of two adiabatic potentials at
tion. For localized transitionftypes (i) and (ii)], the center the center of the coupling region/2, the mixing angle?/2,
of the nonadiabaticity region is indicatéR, , or Ry), while and the relative velocity of atoms at the center of the cou-
for the nonlocalized transitiorigype (ii )] the whole range is  Pling region,v,,. The parameters in question 415,39
indicated. Note that within the accuracy of our calculations, .
the matrixN"(R_z,Ry) on the right-hand side of Eq14) s=AE/(havy), sp=s sif(9/2). (19)
can be identified with the matrit" (R, z,R,), since both
Ry (Ryno @andRy;) are very close tdz, .

The explicit forms of the matrix elements &f matrices

are sinh(7rs — s )
P=exp— msp) —

In terms of these parameters, the expressions for the transi-
tion probability and phases read

(20

Aco(R1,R2) = 6crcexdiAc(Ry,Ry) ], (15) sinf(7rs)
1 (R and
ARy Ry)= f V2u[E—U(R)— (J+1/2)%2uR?].
R1 e="(sp)— ¥(s),
Here ¢ stands for the set of quantum numbergyo of a Nl
i - S S
molecular state, and the total enefgyand the potential en y=y(s—sp) — ¥(s)— 2@—(g—gp)ln p

ergy curvedJ . (R) are referred to the common origin. Note Js— \/g ’
also that the centrifugal energy in the molecular region is (21)
determined by the total angular momentdmather than by

the relative angular momental’, even in the asymptotic Wwhere

regionR— . The switching fromJ to I,I" which is neces-
sary to insure correct boundary conditions for the scattering
wave function, is accomplished by the locking matrices. The
matrices of nonadiabatic transitioh, N", andN" are of a

block-diagonal form, with blocks consisting ofx2 matri- ba_t|c states belongln_g to the '”tefmed'“?‘@ Hund case
ces. arises from the coupling by the radial motion of the partners

For the typefi) transition, M(w=1%) within a small range of interatomic distances closeRo
= Ry . Actually, there are two different cases here: one cor-

v(z)=mld—argl'(1+iz)+z(In z—1). (22

For the typefii) transition, the interaction between adia-

=337 (w7=17), the coupling between adiabatic states, tha ) S o
emerge from the diabatic statésl and 33 under the ac- resgondgng fo cos=0 [transitions 132+(’”_
tion of the spin-orbit interaction, is described by the Landau-- 1) TH(@"=1 )1; and the other to co8=—3 [transi-
Zener model. It was found earlit4] that the motion hereis 0N "2 (@7=07)="Il(«”=07)], with slightly different
almost diabatic, and the transition probability between diaba¥@/ues ofR . In both cases, the general equatioh8—(22)
tic statesp’ is apply,_m whichAE is identified withAe,, for the first case
and withA e, for the second case. We note, in passing, that
2.7V2 the transition probability for the case cds-0 coincides
= with the Rosen-Zener-Demkov formula, while, in the limit

= (16)
AF N(2Im)[E—U z— (I+1/2%12uR%,] ¥<1, the Landau-Zener formula is recovered.

p/
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Finally, for the typefiii) transition, the interaction be- 02 ¢
tween adiabatic states 0and 1~ of the Hunda nomencla- 015 [ NI )
ture for the 33+ multiplet is due to the rotational coupling 01 E ®loprain

between degenerate states. The mahi% is simply the
2X 2 matrix of rotation through angl®, which is covered
by the molecular axis during the excursion of the system

0.05 [
E eLZ

o\ T = T~~~ — =

Nen (rad)

alongR; /R, interval (with R; andR, being appropriate dis- 005 |
tances, as implied by Eq14)). The explicit expression for o1 b
N", when it is supposed to act on the column vector s b
(|1_>1|0_>)1 reads N eﬁmn
0.2 =t )
i cosd —i sin® 2 4 6 8 10 12 14 16
— b(a.u.)
(Nero) —isin® cos® 23

FIG. 2. Deflection function for the inelastic collisions Ggg)
The rotational mixture of states can, in principle, have a sig-+ He—Ca(P;) +He at a collision energy 1 eV.
nificant effect on the overall nonadiabatic transition probabil-
ity [39]. spective deflection function i3 ;= 7. The curves rep-

The molecular scattering matri¥S can now be synthe- - ; s 1l
. i , : resenting two functions)s;(b) and »y(b) meet at a cer-
sized fromA andN matrices. Sandwiched betwe€nmatri- ;. pointb,», and form two branches of a single deflection

M . . . . ..
Ces, tStY'eIdS the scattering matrig in the J-helicity rep- function npx(b) for the inelastic scatterinfl5]. We note in
resentation. passing that if the collision energy is noticeably higher than

the attraction energy for th1 potential curve aR,,, then
V1. DIFFERENTIAL AND INTEGRAL CROSS SECTIONS b 7 is close toR 7. The deflection functionyx(b) for the

Calculation of differential cross sections in the quasiclas-Potentials shown in Fig. 1 and for a collision energy of 1 eV
sical approximation is facilitated by two simplifications IS represented in Fig. 2. . _
which are related to the structure of thehelicity S matrix We now turn to a calculation of the scattering amplitudes
and the stationary-phase solutions of the integrals that defirfid cross sections. Consider first scattering through classical
the scattering amplitude. As discussed at length in Ré, angles. The. representation of tBematnx in the form given
each element of th& matrix can be represented as a sumbY EQ.(24) is suitable for calculation of the scattering am-
over different classical pathg that connect the initial and Plitudes in the stationary-phase approximation. In this ap-
final states and run on different portions of adiabatic potenProximation, one looks at a givemfor a value ofJ (or b) at
tial curves with the relative angular momentuntor impact ~ Which the total phase composed®®J and 25/, (J) has an
parameteb related toJ askb=J+3): extremum. These values dfare found from the equation:

See(D) = 87, (I)ex2i 67, ()] (24) | 78(D]=6, (25
Y

. I~ . _and each roots of this equatiod=Jr-(6), defines a trajec-
The reason behind the splittirg, ¢(J) into several compo tory I' which is scattered through angte Because of the

nmeunctﬁ ;strghnatee;adcg gfn;heenrggi?ttw:ifuétsei%;:g'gn?egz\gor: 8omplicated shape of the deflection function and the contri-
9 P . P P . bution of positive and negative values pto the same value
to that of the preexponential factor. The exponents, which

are similar to the WKB phase shifts for elastic scattering, cal of 6 (recall that the range of is O/r) the number of solu-

) . ; Rions to Eq.(25) that determine different trajectorids is
be recovered from the classical deflection functiegis,(J), usually larger than the number of patihat enter into sum

while the preexponential factogg, ((J) contains parameters (24). In this approximation, the scattering amplitudg .( )
that enter into théN and C matrices. is represented as a sum over different trajectdries

For our case, the number of different paths can be reduced
to two, if the collision energy is noticeably higher than the
spin-orbit interaction. Then the paths that correspond to dif- Foo8)=2 \/qz,c( 0) exp[2i(I)£,C( 0)+i\If£,C]. (26)
ferent fine-structure exit channels coalesce, and the sum in r
Eq. (24) will be over two paths. Let the deflection functions
for these paths b@én(b) and U%n(b)- The first path cor- All the quantities that enter into the_ right-hanq side of Eq.
responds to the entrance along tHé potential curve to the (26) can be recovered from the classical deflection functions
separatiorR, , , then the further approach on tR& * poten- ﬁZrc(b) of the inelastic event, transition probabilities, and
tial curve until the turning poinR,(32*) and the recede phases that enter into the matrices of nonadiabatic transitions
along this curve until it merges with the manifold &f1 and parameters of the locking matrix. For instance, for the
state. For this path, the system moveRRatR,, across the deflection function shown in Fig. 2, the number of trajecto-
35" potential. Therefore, we adopt notatiopk;=75y.  res is SiX for < Oy o four for 6 o< 6< 3 raine and
The second path runs on thdl potential curve until the two for 65, .,< 0 [the indices rep.rain and att.rain with in-
turning pointR(*I1), then recedes, and after reaching thedexZ, stand for the repulsive and attractive rainbows atthe
crossing pointR, ; continues on the’> " potential; the re- branch of the functionys (b)].
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TABLE |. Parameters used for the calculation of the differential cross sections for the inelastic scattering
Ca(*P,,) + He—~Ca(P; /) + He (in a.u) at a collision energy of 1 eV.

Collision energyE

Initial wave vectork

Reduced masga

Relative velocityv

Landau-Zener crossing distanBg,

Pseudocrossing distance fr=1 statesRy;
Pseudocrossing distance fAr=0" statesRyq

Locking angle,a,

Slipping probability,s

Energy spacingP,;—

Energy spacingP,—

Energy spacingP,;— 3P,

Landau-Zener parametefp’ for head-on
collision

3.675<10 2

22.06

6686

0.003 32
14.6

22

21.2
0.05%
0.01d
0.714x10°3
0.93x 1074
0.32x1074
0.11

When expressiori26) is used for the calculation of the
differential cross section through classical anglegs. (3)—
(5)], the latter will assume the form

Qore(8) = chc<e>+22 Vab, (6)g.(6)

r+r’

r,r’ r.r’
XCog2Ad ;. (0)+AV ;. 1. (27
The first sum on the right-hand side of Eg7) represents
a contribution from fluxes traveling along different trajecto-
ries; usually this term varies slowly and regularly withit
can be written schematically as
r r r Tel
Uero(0)=Ler[be ()1 Terc[be (0)1acic(6), (28
where the factok .. comes from a bilinear combination of
locking matrices,T.,. comes from matrices of nonadiabatic
transitions, andqg;‘ce'(a) are similar to the classical elastic

Cross sections

T,el

q.S(6)==—— bl

sin

dby, ( 0)‘
— 0 (29)

o) —o5

The form of the arguments in functiors, . and T/ is
intended to emphasize the fact that theéirdependence
should be recovered from a particular trajectdryvith the
impact parametebg,c(a).

The second sum on the right-hand side of EY) repre-

sents the interference contribution from waves traveling
differences

along different trajectories. The phase

A(I)F r (0) are completely defined by the deflection func-
tion, and are supposed to be largapplicability of the
stationary-phase approximation The phase differences

A\Ifg E arise from combination of the phases entering i@to

and replaced by a certain uniform approximation which is
not divergent. The important property of this approximation
is that it does not require any additional information on the
scattering. In our calculations we used the Airy uniform ap-
proximation[15] to calculate the cross sections close to the
rainbow angledy,, oinand O3 i Actually, at an energy of
1 eV, the deflection function can be calculated in the high-
energy approximatiofpl5] up to scattering angles of about
0.15 rad, where the cross sections are not too small.
Consider now the scattering through angles in the diffrac-
tion region. In this region the scattering amplitude is given
by Eq. (6). A simplified version of this expression can be
obtained if one solves the integral ovérin the stationary-
phase approximation. In this case, the possible classical tra-
jectories correspond to nondeviated trajectories; that is, the
respectivel; values are found from the equation

|72,.(3)]=0 (30)

The angle dependence of the scattering amplitude is given
by a linear combination of the Bessel functions:

~iN27k3 brld g o(b)/dbly 5,

/4)GC (0,3r),

Ferc(0)=

X exp(i 770 (32)

where

Gc c(e‘]r) Gaj n’ a]n(a‘lr)_ Z Am n’A;n’u’
m'mv'v
Al

XAL AL jm=m'g L (0r)

XeX[I(—iWU')Sa,j/v/;ajv(Jr), (32)

and N matrices, and also from the stationary phase integragng ¥, —sgn(d+., (b)/db) atb=by .
c’'c c’'c

tion.
When someA(I)F T (0) are not large, the stationary-phase

The values of parameters which were used for the calcu-
lation of the cross section are given in Table I. The calcu-

approximation breaks down, and some terms in the first anthted cross sections are presented in Figs. 3—10. In these
second sums show divergence. Then they can be combindigures, positive values of correspond to scattering to the
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FIG. 3. Differential cross sectiog for Cat+He scattering(in FIG. 5. Differential cross sectiog for Cat+He scattering(in

a.u) for the P, o3Py, transition. Positive scattering angles ~ a.u) for the Py o—°P; transition. Positive scattering angles
correspond to scattering to the right, and negative angles to scattegorrespond to scattering to the right, and negative angles to scatter-
ing to the left. Since for this transition the right-left scattering asym-ing to the left. Since for this transition the right-left scattering asym-
metry is absent, only the scattering to the right is shown. metry is absent, only the scattering to the right is shown.

right, and negative values correspond to scattering to the leftS the increase of the cross sections near the Landau-Zener

of scattering angles. ence of waves scattered 6 * and 1 potentials, and the
(i) 6=<6,,=0.03. Here the main contribution to the cross increase in the Landau-Zener transition probability at impact
section comes from the scattering 6H potential. parameters close to ;. At still smaller angles, the increase

(i) G <6< eip.rainzo'lo' In this region, the main contri- of the cross §ections is related to a graduate transition to the

bution to the cross section comes from the scattering on th@l0ry scattering. _ . _

potential barrier of thé’S* potential. The difference in various cross sections is mainly due to
(iii) 65 <0< = 0.19. Here, the main contribution the Coriolis interaction, which acts in the region of locking at

to the cropé,s section comes from the scattering on the potelln"erge interatomic distances, and also in the region of mixing

tial well of the 33 potential components of the’S* state atR<R, . The largest cross
(V) 6%, <@. The cross. section is determined by the sections correspond to the initial zedehelicity state, since

. att.rain = ©- .“this state is already locked to the molecular axis, and be-

interference of two waves, one scattered by the repulsw%omes comoletely thall. . molecular state

branch of the®3, " potential and the other scattered by the pietely L . ' itiori

attractive branch of théIl potential. 3C ompare - now Cross Secg“’”s for t{""”s't'os 1.0
Considering the above, one easily understands why all thgonF;?é)ér fﬁslfoaeprléo’ionpéfoaasps?i’gél aannd Iégily():;izl’g

cross sections drop d@t~ Hip_ram: 0.10 (rainbow scattering g gesIgs. '

Here the cross section for transitid®, ,— P, ¢ is consid-
. + ! 1,0 1,0
on the barrier of the’X * potentia). Another general feature erably smaller compared to other cross sections. This is ex-

1p .3
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1 3
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ra
FIG. 4. Differential cross sectiog for Ca+He scattering(in otrac)
a.u) for the 1P1,0—>3P1Y0 transition. Positive scattering anglés FIG. 6. Differential cross sectioq for Cat+He scattering(in
correspond to the scattering to the right, and negative angles ta.u) for the 1P1Y0H3P2'2 transition. Positive scattering anglés
scattering to the left. Since for this transition the right-left scatteringcorrespond to scattering to the right, and negative angles to scatter-
asymmetry is absent, only the scattering to the right is shown. ing to the left.
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FIG. 7. Differential cross sectioq for Ca+He scattering(in FIG. 9. Differential cross sectioq for Cat+He scattering(in

a.u) for the P, ;,—3P, _, transition. Positive scattering anglés ~ a.u) for the 'P, ;—3P, _, transition. Positive scattering anglés
correspond to scattering to the right, and negative angles to scattegorrespond to scattering to the right, and negative angles to scatter-
ing to the left. ing to the left.

plained in the following way. The scattering in this range of not considerably depletgdand the peak is due to the contri-
angles is driven by the motion on ti& " potential, where bution of the diffraction termlo(kbgo,yﬁ) with bgory=9.8
there exists a considerable Coriolis mixing between thdsee Fig. 2, since other contributions, proportional to
33~ component(populated in the Landau-Zener transition Jm—m(Kblior,8) With m’—m=#0, vanish atg=0. On the
on the way in and the33 /-, component aR<R_,. This  Other hand, the diffraction termo(kbglory'g)_ does not con-
mixing leads to a considerable depletion of the stie_, ”'buge o th3e cross sectllons Eor the transitioif, o Poo
so that the nonadiabatic transiticit,~ —>IT;- which oc- and “Pyg—"Pa SiNCeAgy=A%,=0. As for the transition

. 1P1,0—>3P22, the large asymmetry of the cross section is
curs after the system crossB; on the way out, finally 4,6t the strong manifestation of the locking.
brings the system to théP,, state.

¢ In general, the azimuthal scattering asymmetry shows it-
Turn now to smaller scattering angles. Here the cross se

. - 3 ) > S€Gelf in two features: in a shift of the scattering pattern along
tion for the transition"P; o—°P; o is the largest one exhib- axis, and in a difference in heights of the secondary

i}ing a geak 'at zero angles. The cross section for transitiof},yima situated at both sides from the main maximum. The
P10—7"P2is smaller, and shows a large asymmetry. Thegpitt Ag_,. in the cross section for transition—c' is

cross sections for two other transitions9; —°Pg o and roughly determined by an equation

1P, =3Py, are still smaller and vanish a=0. These

features are explained by the fact that in this range of angles,

the scattering is driven mainly by the motion on thH dap ¢ dag,

potential (hence the initial high population of th&l,- is Aberc= dJ n+ dJ (33
1P1’1_- 3P1‘1 'P1 1—~3P2‘1
10* . 10* ¢
E | |
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FIG. 8. Differential cross sectioq for Cat+He scattering(in FIG. 10. Differential cross sectiog for Cat+He scattering(in

a.u) for the *P, ;—3P,, transition. Positive scattering anglés a.u) for the P, ;—3P, transition. Positive scattering anglés
correspond to scattering to the right, and negative angles to scattecterrespond to scattering to the right, and negative angles to scatter-
ing to the left. ing to the left.
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TABLE Il. Nonvanishing Zeeman-specific cross sections for the  TABLE Ill. The total in-half-plane cross sections for the scat-
inelastic scattering Cé[—”lyn)+ He—>Ca(3P,-'n,)+He. tering to the right in collisions of helicopter-polarized atoms
Ca(P,,—3P, allj’,n") and the total integral cross section in col-

Collision event grigntreft A gright-lett A lisions of unpolarized atoms CE#y,np0— 3P, allj’,n’) (last
row).
P —3Poo 1.26 0 0
Py o—P1o 1.80 0 0 Collision event Cross section
Py —3Pap 0.92 0 0
1P, %P, 2.94 0.54 0.18 PP, allj',n’ 2.99
p, %P, 1.11 0.21 0.19 'Pyo—°P, allj',n’ 4.93
1P, 3P, 117 0.36 0.31 Py =P, allj’,n’ 1.81
P, %P, , 1.23 0.44 0.35 P 1unpor— P, all j',n’ 203
P3P, 1.24 0.11 0.09
. . . . _ T right+left

Since two derivatives are close to each other, a noticeable =3 Z Tarin’ ajn
shift exists for transitions witm’ +n=2, that is, for transi- j'n'n
tIOHS 1P1y0—)3P2'2, 1P111—)3P211, and lP1y1—>3P111. 277

The overall intensity of the scattering to the right in the =3 En‘, Tarajn; (39

scattering plane can be characterized by integral “in-half-

plane” cross sections ;i n.ajn, Which represent differen-

tial cross section integrated only over the polar argjle see Table Il. Of course;(lplﬁ3pj , all j) is directly ex-
pressed via the scattering matrix

Oa’j'n’;ajn™ J’O qa’j’n’;ajn( 6)sin 6d 6. (34)
1 3 2w (= , JdJ

The overall intensity of the scattering to the left is given by o(*P1="Py, all )= fo 2 [Sariroriaio( )| K
a similar expression in whicm’,n is replaced by—n’, hee (40)
—n, and the total intensity for scattering both to the right
and left is given by the sum of two in-half-plane cross sec-
tions: VII. CONCLUSION

Ugg?}:fijnzaa'wn';ajn+ Tarjr—n':aj—n; (35 In this paper, we presented a quasiclassical theory of in-

elastic, spin-changing collisions of an excited Csgg,*P;)
see Table Il. The right-left scattering asymmetry can be themtom with He, at a collision energy of 1 eV. All Zeeman-
characterized by the difference of two in-half-plane crossspecific differential cross sections for transitions for

sections helicopter-oriented atoms are peaked at small angles. This
fight-left feature is completely different from the small-angle elastic
Aaa'j'n';ajn:Ua’j’n’;ajn_o'a’j’fn’;ajfnv (36) scattering which comes from collisions with large impact

) parameters. In our case, the maximum value of the impact

or by the ratio parameter is determined by the access to the Landau-Zener

A o fight-left crossing between thél_]l a_nd 85+ pqtential curves which
Auirmain= a’j’n’;ajn 37) steer the nuclear motion in the region of a quasimolecule.
j'n’;ajn right+Teft ’

The small scattering angles arise as a result of interplay be-
tween attractive and repulsive interatomic motion in the
see Table Il. If the in-half-plane cross sectiof:; n:.ajn IS range of impact parameters where the quasiclassical approxi-
summed over final]’,n’ states, it will give a total in-half- mation to the scattering matrix is well founded. The range of
plane cross section for the scattering to the right in the colscattering angles splits into the range of classical angles and

a’j’'n’;ajn

lision plane out of the initial statajn: the range of diffraction angles. For the latter range, the ef-
fects of quantum scattering are shown by an out-of-plane

Gor :2 Gorirr (38) contr_ibution of the incident wave into the in—plgnelscattering

asan e ansam: amplitudes. However, all the information which is needed

for a calculation of cross sections is recovered from classical
see Table Ill. Similarlyo,:.,j- is the scattering to the left deflection functions, and matrices of the localized nonadia-
from the same initial statajn. Finally, if o), is averaged batic transitions: the Landau-Zener coupling for the crossing
over all initial projectionsn, it yields an azimuthal- [1, and®3; potential curves, the Demkov and Nikitin cou-
independent quantity. When multiplied byr2a result of  pjing for 35/ and 311, potential curves, the nonlocalized
integration over the azimuthal anglét yields the total inte- ¢ qriglis coupling for the components of tH&* potential
gral cross section for inelastic scatterifg,—°P;, all j: curve, and the locking coupling for the molecular potential
2 curves merging to the same initial and final atomic states.
0(1plﬂ3pj, al j)=— > Tarjnrsajn We have shown that the locking phenomenon is respon-
3 i'n'n sible for a noticeable right-left asymmetry of the differential
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cross sections for the scattering of helicopter-oriented atomsurements of the Zeeman-specific differential inelastic scat-
We also identified the parameters which are responsible fdering of an excited Ca atom.

the scattering asymmetry and the absolute values of the cross
sections, including those entering into the locking matrix
(locking angles and slipping probabilities This work was supported in part by the Russian Founda-

The quasiclassical approximation used makes the connelion of Basic ResearctiGrant No. 96-03-33679)a A.D.
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output—differential cross sections—particularly easy, sincesi,[y where this work was completed, the hospitality of Pro-
they are interrelated by the classical deflection functions fofeséor Y. Sato. and valuable discuss’ions on adiabatic poten-
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