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Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution

T. K. Fang and T. N. Chang
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

~Received 23 July 1997!

A deconvolution procedure is proposed to determine the resonant widthG, the asymmetry parameterq, and
the background cross sectionsb of a Fano-type resonance in theabsenceof an ultrahigh-energy resolution.
This procedure enables a direct extrapolation to infinite energy resolution using a set of explicitanalytical
relations in terms of the ratio between the widthG and the experimental energy resolutionV in the limit of
G/V!1. @S1050-2947~98!04906-3#

PACS number~s!: 32.80.Fb, 32.70.Jz, 32.80.Dz
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I. INTRODUCTION

Theoretically, the structure profile of anisolated reso-
nance is often described by the Fano formula@1# in terms of
an asymmetry parameterq and the smoothly varying back
ground cross sectionsb , i.e.,

s~E!5sb

~q1e!2

11e2
, ~1!

where e5(E2Er)/(
1
2 G) is the reduced energy defined

terms of the energyEr and the widthG of the resonance. The
cross sections is expected to reach its peak valuesmax
5sb(11q2) and a zero at energies

Emax5Er1
1
2 ~G/q! and Emin5Er2

1
2 ~Gq!, ~2!

respectively. An accurate determination ofq andG is essen-
tial to the understanding of the multielectron interactions
sociated with an atomic resonance. For example, theq pa-
rameter measures qualitatively the interference betw
contributions due to transitions from initial state to the
spectiveboundandcontinuumcomponents of the final-stat
wave function. The widthG, which determines the nonrad
ative decay rate of a resonance through autoionization,
resents thebound-continuummixing of the resonant state@1#.

In spite of the tremendous improvement in energy reso
tion V @2,3#, the widthsG of some of the best known narrow
resonances, e.g., the Hesp,2n2 and 2pnd 1P ~or, alterna-
tively, the 2,1n and 2,21n) series@2,3#, remain substantially
smaller than the best experimental resolution. A physical
terpretation of an atomic transition involving such a narr
resonance may become unreliable based on theq andG de-
rived from adirect numerical fit of the observed spectrum
the Fano Formula. The measured data, in fact, represe
spectrum convoluted with anexperimentally determined
monochromator functionF @1–3#, i.e.,

sc~E;V!5E
2`

1`

s~E8!F~E82E;V!dE8. ~3!

The variation of the observedsmax effectively measures the
ratio G/V. For example,smax of the He sp,2n1 1P ~or,
2,0n) resonance is expected to reach a constant as the e
tive principal quantum numbern increases@1,2#. In reality,
571050-2947/98/57~6!/4407~6!/$15.00
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the observedsmax decreases monotonically whenG/V de-
creases rapidly asG decreases at a rate ofn23 @2,3#.

The monochromator functionF is often approximated a
the center by a Gaussian distributionG and modified at its
tail by a Lorentzian distributionL, where

G~E;V!5
e2E2/d2

Apd2
and L~E;V!5

1

p

S 1

2
V D

E21S 1

2
V D 2 .

~4!

The energy resolutionV may be measured by the full widt
at half maximum~FWHM! of the distribution function and
d5V/(2Aln2). In general, the value ofV in G andL may
be different. However, for simplicity, the same value is a
sumed in this study.~Use of differentV will not affect our
proposed procedure given later, but it may lead to sligh
modified analytical expressions.! Similar to Domkeet al. @2#,
we approximateF by a weighted combination ofG andL,
i.e.,

F~E;V,wg ,wl !5wgG~E;V!1wlL~E;V!, ~5!

where the sum of the experimentally determined weight
factorswg andwl equals one.

Figure 1 presents a number of selected convoluted spe
sc(E;V) with V ranging from 2 to 8 meV. The spectr
s(E) corresponding to infinite energy resolution~i.e., with
V50) are derived from Eq.~1! for a fictitious resonance
with Er52.1110 Ry,sb51.0 Mb, andG55.031026 Ry.
The q parameter varies from 0.4 to 4. For simplicity, w
have chosen a monochromator function defined by a se
weighting factorswg50.6 andwl50.4, similar to the ones
determined in recent high-resolution He experiment@2#. In
practice,wg andwl may vary asV varies.

By applying a Fourier transformation to the Gaussian d
tribution function, Eq.~3! becomes integrable@4# and it can
be expressed in terms of an analytical formula shown exp
itly in the Appendix. Whereas the term involving the Loren
zian distribution is relatively straightforward, the ones th
correspond to the Gaussian distribution are highly nonline
As a result, it is impractical to deconvolute the observ
spectra analytically for a direct determination ofq and G.
4407 © 1998 The American Physical Society
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Alternative nonanalytical deconvolution precesses have b
attempted in a limited cases with varying success@5#.

II. DECONVOLUTION PROCEDURE

In this paper, we introduce a simple deconvolution pro
dure with the purpose of determiningG, q, sb , andEr of a
Fano-type resonance from the observed spectra~e.g., the
ones simulated by the convoluted spectra shown in Fig. 1! in
theabsenceof an ultrahigh energy resolutionV, i.e., whenG
is a few orders of magnitude smaller thanV. Our proposed
procedure starts with an initial estimate ofEr from a plot of
the observedEmax or Emin againstV shown on the left of
Fig. 2. By neglecting the (G/q) term in Eq.~2! initially, we
approximateEr by the extrapolated value ofEmax at V50
for a resonance with auqu greater than one. In contrast, for
resonance with auqu smaller than one, we drop theGq term
and approximateEr by Emin(V50). When uqu is close to
one, the initialEr equals the average ofEmin andEmax esti-
mated atV50. Our calculation has shown that the value
Er determined at the end does not depend critically on
initial estimate ofEr .

The key step of our proposed procedure involves an
pansion of the observed spectrasc(E;V) in terms of a set of
harmonic oscillatoreigenfunctionsCn , i.e.,

sc~E;V!5 (
n50

`

cn~V!Cn„r~E;V,Er !…, ~6!

FIG. 1. Convoluted spectrasc(E;V) derived from Eq.~3! with
energy resolutionsV ranging from 2 to 8 meV. The spectra corr
sponding to infinite energy resolution, i.e.,s(E) defined by Eq.~1!,
are generated by using a set of profile parametersEr52.1110 Ry,
sb51.0 Mb, andG55.031026 Ry. Theq parameter varies from
0.4 to 4. The photoelectron energy is expressed in terms ofD by
k252.101D31023 Ry. The monochromator function is defined b
a set of weighting factorswg50.6 andwl50.4.
en

-

f
e

x-

where r5A2ln2(E2Er)/(
1
2 V) is a modified reduced en

ergy andCn(r) is a r-dependent normalized harmonic o
cillator eigenfunction defined in its standard form in terms
the Hermite polynomials Hn(r). The expansion coefficien
cn(V) in Eq. ~6! is evaluated from theobservedspectrasc

for eachV by an integration

cn5E
2`

1`

scCn~r!dr. ~7!

It turns out that only the first two coefficientsc0 andc1 at a
few V are required to determine the values ofG, q, andsb .

Mathematically, by substituting Eqs.~3! and ~5! into Eq.
~7! and using the generating function of theHermite polyno-

mials, i.e., e2x212tx5(n50
` Hn(t)xn/n!, a straightforward

calculation will lead to a simple expression for the coef
cient cn , i.e., cn /sb5I g,nwg1I l ,nwl , where

I g,n5
1

~4p!1/4A2nn!
E

2`

1`@r1qA2ln2~G/V!#2

r212ln2~G/V!2
e2~1/4!r2

rndr

~8!

and

I l ,n5E
2`

1`@r1qA2ln2~G/V!#212ln2@~q211!G/V11#

r212ln2~11G/V!2

3Cn~r!dr. ~9!

Equations~8! and~9! can be evaluated analytically by apply
ing the integral@6#

E
2`

1`e2s2x2

x21t2
dx5

p

t
Fc~ ts!et2s2

, ~10!

FIG. 2. The observedEmax andEmin in terms ofD as functions
of V ~meV! and the expansion coefficientsc0 andc1 as functions of
V21 (mRy21). The error bar represents the experimentalV. The
photoelectron energy is expressed in terms ofD by E52.1101D
31023 Ry, Emin(V50)52.110 9993 Ry, and Emax(V50)
52.111 0005 Ry. The weighting factorswg50.6 andwl50.4 re-
main unchanged for allV.
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where Fc(x)512(2/Ap)*0
xe2y2

dy is the complementary
error function. Bothc0(V) andc1(V) are functions ofG/V,
i.e.,

c0

sb
5~4p!

1/4
1m~q221!S G

V D and
c1

sb
52nqS G

V D .

~11!

The coefficientsm andn are given bym5( f 0
(g)wg1 f 0

( l )wl)
andn5( f 1

(g)wg1 f 1
( l )wl), where

f 0
~g!5p

3/4Aln2Fc~u!eu2
, f 0

~ l !5A2ln2p
3/4

Fc~v !ev2
,
~12!

f 1
~g!5~4p!

1/4FAln22 ln2Ap

2
Fc~u!eu2S G

V D G , ~13!

and

f 1
~ l !5~4p!

1/4
2FAln22 ln2ApFc~v !ev2S 11

G

V D G . ~14!

The variablesu andv are given byu5Aln2/2(G/V) andv
5Aln2@11(G/V)#, respectively. WhenG!V, m, andn can
be expanded as

m5 (
n50

`

mnS G

V D n

and n5 (
n50

`

nnS G

V D n

, ~15!

where mn and nn can be evaluated analytically using Eq
~12!–~14!.

From Eqs.~11! and~15!, the coefficientsc0 andc1 can be
expressed in terms of a power series inG/V when G!V.
Since G is a constant yet to be determined, thec0 and c1
obtained from theobservedspectra can be expanded inV21

as

c05 (
n50

`

anS 1

V D n

and c15 (
n51

`

bnS 1

V D n

. ~16!

A comparison between Eq.~16! and the analytical expres
sions Eqs.~11! and ~15! shows that only three numericall
fitted coefficientsa0 , a1, andb1 are required to determin
the values ofG, q, andsb . Specifically, whenG/V!1,

a05~4p!1/4sb ,a15m0sb~q221!G,

and

b152n0qsbG, ~17!

where m051.9646wg11.3282wl and n051.5675wg
10.9234wl .

Shouldwg and wl remain unchanged asV varies,G, q,
andsb can be determined directly froma0 , a1, andb1 from
the numerical fits ofc0 and c1 to Eq. ~16!. In the limit of
G/V!1, bothc0 and c1 vary linearly as functions ofV21

~see, e.g., Fig. 2!. sb is determined by extrapolatingc0 to
V2150. G and q are calculated from the products (q2

21)G andqG in terms ofa1 andb1. After G, q, andsb are
determined with an initialEr , which excludes the (G/q) and
qG terms, the entire procedure is repeated by starting wi
.

a

more accurateEr using Eq.~2! and the extrapolatedEmax and
Emin asV→0. A newr for eachV is introduced to evaluate
c0 andc1 before a new set ofG, q, andsb are determined.
The process is repeated untilEr , G, q, andsb all converge
numerically.

III. RESULTS AND DISCUSSIONS

Figure 3 compares the theoretical structure profiles to
calculated results starting from the simulated spectra sh
in Fig. 1. The ratioG/V varies approximately from 0.007 to
0.035.wg andwl are kept unchanged for allV. The agree-
ment for Er is better than six digits and forG, q, and sb
better than three digits. To estimate the effect onG andq due
to the uncertainty inEr , we have performed a calculation b
selecting anEr that is either above or below the theoretic
Er by a DE5Vmax/2, i.e., with anEest.Er65 meV ~or,
with a DE that is over 70 times greater thanG). Figure 4
shows that the estimatedq parameter differs from the theo
retical value only by about 5% whereas the effect onG is
greater and the difference could be as large as 12%.
effect onG andq is significantly reduced~to less than 1%!,
if DE is replaced byVmin/2, i.e., with anEest.Er61meV.

In practice,wg andwl may vary asV varies andc0 and
c1 may not necessarily vary smoothly as a function ofV21.
In particular, a linear extrapolation toV2150 may not yield
accurately the backgraound cross sectionsb . To circumvent
this difficulty, we rewrite Eq.~16! for c0 as

FIG. 3. Comparison between the theoretical spectra gener
directly from Eq. ~1! and the fitted results using the present d
convolution procedure starting from the simulated spectra show
Fig. 1.
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X5Y1R~q221!GF (
n51

` S mn21

m0
D S G

V D n21G , ~18!

where X5@(c0 /sb
est)2(4p)1/4#(V/m0) and Y5(R

21)(4p)1/4(V/m0) are expressed in terms of an estimat
background cross sectionsb

est and a ratioR5sb /sb
est. In the

limit of G/V!1, the sum in Eq.~18! is reduced to 1
1(m1 /m0)(G/V). The ratiom1 /m0 is approximately a con-
stant~e.g., it varies less than 2.5% aswg increases from 0.5
to 1.0!. If the estimatedsb

est is very close to its correct valu
sb , the contribution fromY to X approaches 0 andX, which
decreases almost linearly asV21 increases, approaches
value of (q221)G asV21→0. On the other hand, as show
in Fig. 5, the contribution ofY to X is greatly amplified asV
increases even ifsb

est is different only by as little as 1% from
the correctsb , i.e., X is expected to deviate substantial
from a straight line asV21→0. As a result, bothsb and
(q221)G can be determined by a straight line from aX
versusV21 plot. Once the values ofsb and (q221)G are

FIG. 4. Comparison between the theoretical spectra~center! and
the fitted spectra using an estimatedEr , which is displaced by an
DE, approximately 50 times of the resonance widthG, from the
correctEr .

FIG. 5. X(1026 Ry! as a function ofV21 (mRy21) for reso-
nances withq50.4 and 4. The solid straight line corresponds
sb

est5sb .
determined, the productqG can be estimated by plottingZ
5c1V/(2sbn0) againstV21 and then by extrapolatingZ to
V2150.

We have also applied the present procedure to a simul
spectra shown in Fig. 6 by introducing a random error up
10% to the convoluted spectra for theq54 resonance shown
in Fig. 1. Again, bothsb and (q221)G are determined by
the fitted straight lines from theX and Z versusV21 plots
shown in Fig. 7. The fittedq andG deviate from their cor-
resonding input values by approximately 5% and 10%,
spectively.

Finally, the present deconvolution procedure was app
to the simulated He ground-state photoionization spe
@generated from the result of a recent B-spline-based c
figuration interaction ~BSCI! calculation @7,8## for the
sp,2n2 and 2pnd 1P resonances. The results for th
sp,232 1P resonance starting from spectra convoluted w
V ranging from 1 to 8 meV is presented in Fig. 8. Th
resonance energyEr agrees with the theoretical value to be
ter than six digits andG, q, andsb to three digits or better.
With a resonant width of about 0.1 meV and a best availa
experimental resolution of near 1 meV at a photon ene
close to 60 eV@3#, the Hesp,232 1 P resonance represen
perhaps the best candidate for a detailed experimental d
mination of the resonant parameters using the deconvolu
procedure proposed in this paper.

FIG. 6. Convoluted spectrasc(E;V) derived from Eq.~3! with
energy resolutionsV ranging from 2 to 10 meV. A random error u
to 10% is introduced to simulate the experimental uncertain
Similar to the spectra given in Fig. 1, the spectra correspondin
infinite energy resolution, i.e.,s(E) defined by Eq.~1!, are gener-
ated by using a set of profile parametersEr52.1110 Ry,sb51.0
Mb, q54, andG55.031026 Ry. The photoelectron energy is ex
pressed in terms ofD by k252.101D31023 Ry.
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APPENDIX

Mathematically, Eq.~3! is integrable and is given by

sc~E;V!5wls l
c~E;V!1wgsg

c~E;V!. ~A1!

The term that corresponds to the Lorentzian distribution
be evaluated by a simple change of variable and is given

s l
c~E;V!5sb

@~e1q!G/V#21~q211!G/V11

@~G/V!e#21~11G/V!2
,

~A2!

FIG. 7. Comparison between the theoretical spectra gener
directly from Eq.~1! and the fitted results using the present dec
volution procedure starting from the simulated spectra shown
Fig. 7 andX and Z as functions ofV21 (mRy21) for resonance
with q54.
.

n,
.

n
y

wheree5(E2Er)/(
1
2 G). The second term that correspon

to the Gaussian distribution is far more complicated and
be expressed analytically by

sg
c~E;V!5sb@11Abpeb~12e2!J~b,e!#, ~A3!

whereb5 ln2(G/V)2 and

J~b,e!5~q221!L~b,e!22qF~b,e!. ~A4!

L and F are expressed in terms of a complex variableh,
i.e.,

L~b,e!5cos~2be!@12Re~h!#1sin~2be!Im~h!
~A5!

and

F~b,e!5sin~2be!@12Re~h!#2cos~2be!Im~h!,
~A6!

where

h5erf~geiu! ~A7!

with g5Ab(11e2), u5tan21e and the error function
erf(z) given by

erf~z!5
2

Ap
E

0

z

e2y2
dy. ~A8!

ed
-
in

FIG. 8. Comparison between the theoretical He ground-s
photoionization spectrum near thesp,232 1P resonance@8# and the
fitted result using the present procedure. The photoelectron en
is expressed in terms ofD by E52.8051D31023 Ry.
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