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Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution
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A deconvolution procedure is proposed to determine the resonant Wjdtre asymmetry parametgr and
the background cross sectior, of a Fano-type resonance in thbsenceof an ultrahigh-energy resolution.
This procedure enables a direct extrapolation to infinite energy resolution using a set of expllgiical
relations in terms of the ratio between the widthand the experimental energy resolutiGnin the limit of
'’ <1.[S1050-2947@8)04906-3

PACS numbg(s): 32.80.Fb, 32.70.Jz, 32.80.Dz

. INTRODUCTION the observedr,,,, decreases monotonically whdH () de-
. _ . creases rapidly aE decreases at a rate of ® [2,3].
Theoretically, the structure profile of asolated reso- The monochromator functiof is often approximated at

nance is often described by the Fano formulpin terms of  the center by a Gaussian distributiGhand modified at its
an asymmetry parameterand the smoothly varying back- tail by a Lorentzian distributiorC, where
ground cross sectiony,, i.e.,
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where e=(E—E,)/(3I') is the reduced energy defined in 2

4

terms of the energi, and the widthl" of the resonance. The
cross sections is expected to reach its peak valweg,,,

— oy(1+ ¢?) and a zero at energies The energy resolutiof) may be measured by the full width

at half maximum(FWHM) of the distribution function and

E..=E+1T/q and E . =E,—iTq, (@ 0=0/(2VIn2).In general, the value d® in G and £ may

be different. However, for simplicity, the same value is as-
respectively. An accurate determinationcpind[ is essen-  sumed in this study(Use of different() will not affect our
tial to the understanding of the multielectron interactions asproposed procedure given later, but it may lead to slightly
sociated with an atomic resonance. For examplegifpa- ~ modified analytical expressionsSimilar to Domkeet al.[2],
rameter measures qualitatively the interference betweewe approximateZ by a weighted combination of and £,
contributions due to transitions from initial state to the re-i.e.,
spectiveboundand continuumcomponents of the final-state
wave function. The widtH", which determines the nonradi- F(E;Q,wg, W) =WgG(E; Q) +w, L(E; Q), 6)
ative decay rate of a resonance through autoionization, rep-
resents thdound-continuunmixing of the resonant stafé¢].  where the sum of the experimentally determined weighting
In spite of the tremendous improvement in energy resolufactorswy andw, equals one.

tion Q [2,3], the widthsI" of some of the best known narrow Figure 1 presents a number of selected convoluted spectra
resonances, e.g., the B@,2n~ and ond 'P (or, alterna- ¢°(E;Q) with Q ranging from 2 to 8 meV. The spectra
tively, the 2,1 and 2;-1,) serieq2,3], remain substantially o(E) corresponding to infinite energy resolutidire., with
smaller than the best experimental resolution. A physical in{)=0) are derived from Eq(1) for a fictitious resonance
terpretation of an atomic transition involving such a narrowwith E,=2.1110 Ry,o,=1.0 Mb, and'=5.0x10"°% Ry.
resonance may become unreliable based omjthedI” de-  The g parameter varies from 0.4 to 4. For simplicity, we
rived from adirect numerical fit of the observed spectrum to have chosen a monochromator function defined by a set of
the Fano Formula. The measured data, in fact, representveeighting factorsw,=0.6 andw,=0.4, similar to the ones
spectrum convoluted with amxperimentally determined determined in recent high-resolution He experimgit In

monochromator functiogr [1-3], i.e., practice,wy andw; may vary as() varies.
By applying a Fourier transformation to the Gaussian dis-
re tribution function, Eq.(3) becomes integrablef] and it can
C . — ! I _E- ! i
o (B Q)= f,x o(E) AE' —EQ)dE". ©) be expressed in terms of an analytical formula shown explic-

itly in the Appendix. Whereas the term involving the Lorent-
The variation of the observedr,,,, effectively measures the zian distribution is relatively straightforward, the ones that
ratio I'/Q). For example,o . Of the Hesp,2v* P (or,  correspond to the Gaussian distribution are highly nonlinear.
2,0,) resonance is expected to reach a constant as the effeBs a result, it is impractical to deconvolute the observed
tive principal quantum number increaseg1,2]. In reality,  spectra analytically for a direct determination epfand I

1050-2947/98/5(6)/44076)/$15.00 57 4407 © 1998 The American Physical Society



4408 T. K. FANG AND T. N. CHANG 57

1.05 T T T T T T T T T 2.0 T T T 1.90 T 0.04 T
Q=2 meV Q=4mev ] [Q=8meV ] q=04 q=04 q=04
o3t 1t 15F E . (Q<0 1 1.8} { oosf
- q=04 min (83=0) —_ _
= [ 1 fq=04 1 F . ] - / o o
= E 1.0 15 186} 1Z 002}
© . 06 S ny
[ w_ =0, ] L ] L
0.5 w? - 04 1.84 0.01
0.0 TR 1.820 0.00 L
2.0 T T T 3.00 T 0.40
a=4 =4 =4
1.5F 1 2709 030"
) x = =
= g 1.0 18 240 £ 020
o < AN S iy
0.5F Emax (Q=0) b 210 1 010}
?'ig e e e W05 "% "5 72 " aes "o aee
. T T - -1
Q=4 meV Q = 8 meV & (meV) 172 (mRy™) 178 (mRy™)
= ! 4 ! 4 FIG. 2. The observe#&,,,, andE,, in terms ofA as functions
£ as= L = 1 of O (meV) and the expansion coefficiertg andc, as functions of
o ! 1t ] $ Q7' (mRy ). The error bar represents the experimetitalThe
Q = 2 meV photoelectron energy is expressed in terms\aby E=2.110+ A
0.60 REEI i X10°% Ry, Enin(2=0)=2.1109993 Ry, andE,(Q=0)
e 10 1A1 1213 9 10 1A1 12 13 9 10 1A1 12 13 =2.111 0005 Ry. The weighting factovs,=0.6 andw,=0.4 re-

main unchanged for all).
FIG. 1. Convoluted spectr@®(E; Q) derived from Eq(3) with

energy resol_uti_ohﬂ ranging from 2 to_8 meV. The spectra corre- where p= W(E_ Er)/(%ﬂ) is a modified reduced en-
sponding to infinite energy resolutlon,. i.e(E) defined by Eq(2), ergy and® (p) is a p-dependent normalized harmonic os-
are generated by using a si of profile parameigrs2.1110 Ry, cillator eigenfunction defined in its standard form in terms of
op=1.0 Mb, andl'=5.0x10"" Ry. Theq parameter varies from - . . -

the Hermite polynomials H(p). The expansion coefficient

0.4 to 4. The photoelectron energy is expressed in terms by . .
k?=2.10+ Ax 10" 2 Ry. The monochromator function is defined by ¢,(€2) in Eq. (6) 'S evaluated from thebservedspectras®
for each() by an integration

a set of weighting factora/y=0.6 andw,=0.4.

. . . +oo
Alternative nonanalytical deconvolution precesses have been Ch= J oV (p)dp. (7)
attempted in a limited cases with varying succss —o
It turns out that only the first two coefficientg andc, ata
Il. DPECONVOLUTION PROCEDURE few Q) are required to determine the valueslbfg, andoy, .

In this paper, we introduce a simple deconvolution proce-_ Mathematically, by substituting Eqé3) and (5) into Eq.
dure with the purpose of determiniig g, o}, andE, of a (7) and using thze generating function of tHermite polyno-
Fano-type resonance from the observed spe@rg., the mials i.e., e ¥ 2%=3%* H (t)x"/n!, a straightforward
ones simulated by the convoluted spectra shown in Bign 1  calculation will lead to a simple expression for the coeffi-
theabsencef an ultrahigh energy resolutidd, i.e., whenl'  cientc,, i.e.,c,/op=IgWg+1, ;w;, Where
is a few orders of magnitude smaller thén Our proposed
procedure starts with an initial estimate Bf from a plot of ol p+ g/ 2
the observedE . Or Epj, against() shown on the left of 1y,= 1/%1 = j Lp 2q 2In2(F/Qi] e~ (L4p?
Fig. 2. By neglecting thel{/q) term in Eq.(2) initially, we (4m)* 2t )= p=+2In2(I'/€)
approximateE, by the extrapolated value &,,,, at =0 ®
for a resonance with fj| greater than one. In contrast, for a
resonance with &| smaller than one, we drop thH&g term and
and approximateE, by E.i,(2=0). When|q| is close to
one, the initialE, equals the average &, and E,, esti- +2[ p+qy2In2(T/Q) 1%+ 2In2[ (g% + 1)T/Q +1]
mated at()=0. Our calculation has shown that the value of Il,n:f 2 2
E, determined at the end does not depend critically on the o poH2In2(1+T/02)
initial estimate ofE, . _ X W, (p)dp. 9

The key step of our proposed procedure involves an ex-
pansion of the observed spectr& E; (1) in terms of a set of

p"dp

Equationg8) and(9) can be evaluated analytically by apply-

harmonic oscillatoreigenfunctions¥ ,, i.e., ing the integra[6]
s} +xe*$ X T t252
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where Fc(x)=1—(2/\/F)fée‘y2dy is the complementary
error function Bothcy(€2) andc,({2) are functions of'/Q},
ie.,

= 1.0
3 — Theory
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The variabless andv are given byu=yIn2/2(I'/Q}) andv © 5F ]
=In2[ 1+ (T'/Q)], respectively. Wheil' <, u, andv can [
be expanded as 0 Ad
0.95 097 099 1.01 1.03 1.05
" A

r\" - r
g/ and = vn(ﬁ . (15

/-L:E Mn
n=0 n=0

where u, and v, can be evaluated analytically using Egs.

(12-(14.

From Eqgs.(11) and(15), the coefficientg, andc, can be
expressed in terms of a power serieslif) whenI'<().
Sincel is a constant yet to be determined, ttywandc,
obtained from thebservedspectra can be expanded( *
as

n

and c¢,;= 2, B,
n=1

n=

- 1
Co= EO an(ﬁ

1)”
al - (16)

FIG. 3. Comparison between the theoretical spectra generated
directly from Eq.(1) and the fitted results using the present de-
convolution procedure starting from the simulated spectra shown in
Fig. 1.

more accurat&, using Eq.(2) and the extrapolated,,,,, and
Enin as1—0. A newp for each(} is introduced to evaluate
Co andc, before a new set df, g, ando}, are determined.
The process is repeated urt], I', q, ando, all converge
numerically.

[ll. RESULTS AND DISCUSSIONS

A comparison between Edq16) and the analytical expres-
sions Egs(11) and (15) shows that only three numerically
fitted coefficientsag, a1, and B, are required to determine

Figure 3 compares the theoretical structure profiles to our
calculated results starting from the simulated spectra shown

the values ofl’, q, ando,. Specifically, whed'/Q <1,

ao=(4m) Yoy, a1= poop(q*~1)T,

and

B1=2veqopl’, 17)
where  uo=1.9646v;+1.3282v; and vy=1.567%v,
+0.9234y, .

Shouldwy andw,; remain unchanged &3 varies, I, q,
andog, can be determined directly from,, a4, andB; from
the numerical fits oty andc,; to Eq. (16). In the limit of
I'/Q<1, bothcy andc, vary linearly as functions of) ~*
(see, e.g., Fig. 2 oy, is determined by extrapolating, to
Q" 1=0.T and q are calculated from the productgX
—1)I" andql" in terms ofa; andB,. After I, q, ando, are
determined with an initiak, , which excludes thel{/q) and

in Fig. 1. The ratiol'/Q) varies approximately from 0.007 to
0.035.wy andw; are kept unchanged for al}. The agree-
ment for E, is better than six digits and fdr, q, and oy
better than three digits. To estimate the effecloandq due
to the uncertainty i, , we have performed a calculation by
selecting ark, that is either above or below the theoretical
E, by a AE=Q /2, i.e., with anE.~=E,*=5 meV (or,
with a AE that is over 70 times greater thdp). Figure 4
shows that the estimateagl parameter differs from the theo-
retical value only by about 5% whereas the effectloris
greater and the difference could be as large as 12%. The
effect onI” andq is significantly reducedto less than 1%
if AE is replaced by ,/2, i.e., with anE s~=E, £ 1meV.

In practice,wy andw; may vary as() varies andc, and
¢, may not necessarily vary smoothly as a functior(of?.
In particular, a linear extrapolation @~ 1=0 may not yield
accurately the backgraound cross sectign To circumvent

gl’ terms, the entire procedure is repeated by starting with his difficulty, we rewrite Eq(16) for cq as
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FIG. 4. Comparison between the theoretical speceatej and
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AE, approximately 50 times of the resonance widithfrom the
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_1)(477)1/4(Q/Mo) are expressed in terms of an estimated FIG. 6. Convoluted spectr@®(E; Q) derived from Eq/(3) with

background cross sectiarf* and a ratioR= o, /o™ In the
limit of I'/Q2<1, the sum in Eq.(18) is reduced to 1
+(pq /o) (I'/Q). The ratiou, / g is approximately a con-
stant(e.g., it varies less than 2.5% wag increases from 0.5
to 1.0. If the estimatedrg™is very close to its correct value
oy, the contribution fron¥ to X approaches 0 and, which
decreases almost linearly & ! increases, approaches a
value of @°—1)I" asQ) " *—0. On the other hand, as shown
in Fig. 5, the contribution o¥ to X is greatly amplified a$)
increases even 'kf-‘fftis different only by as little as 1% from
the correctoy,, i.e., X is expected to deviate substantially
from a straight line a2 '—0. As a result, bothr, and
(q°—1)I" can be determined by a straight line fromXa
versusQ ! plot. Once the values o, and (@2>—1)I" are
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FIG. 5. X(10® Ry) as a function ofQ ™! (mRy ') for reso-

energy resolution§) ranging from 2 to 10 meV. A random error up
to 10% is introduced to simulate the experimental uncertainty.
Similar to the spectra given in Fig. 1, the spectra corresponding to
infinite energy resolution, i.eq(E) defined by Eq(1), are gener-
ated by using a set of profile parameté&s=2.1110 Ry,o,=1.0

Mb, g=4, and'=5.0x 10~ ® Ry. The photoelectron energy is ex-
pressed in terms i by k?=2.10+ AX 103 Ry.

determined, the produgI’ can be estimated by plotting
=¢,Q/(20y,v) against) " and then by extrapolating to
Q7 '=0.

We have also applied the present procedure to a simulated
spectra shown in Fig. 6 by introducing a random error up to
10% to the convoluted spectra for the=4 resonance shown
in Fig. 1. Again, botho, and @*—1)I" are determined by
the fitted straight lines from th¥ and Z versus{ ! plots
shown in Fig. 7. The fitted) andI" deviate from their cor-
resonding input values by approximately 5% and 10%, re-
spectively.

Finally, the present deconvolution procedure was applied
to the simulated He ground-state photoionization spectra
[generated from the result of a recent B-spline-based con-
figuration interaction (BSCI) calculation [7,8]] for the
sp,2n~ and 2pnd!P resonances. The results for the
sp,23” P resonance starting from spectra convoluted with
Q ranging from 1 to 8 meV is presented in Fig. 8. The
resonance enerdy, agrees with the theoretical value to bet-
ter than six digits and’, q, and o, to three digits or better.
With a resonant width of about 0.1 meV and a best available
experimental resolution of near 1 meV at a photon energy
close to 60 e\[3], the Hesp,23™ ! P resonance represents
perhaps the best candidate for a detailed experimental deter-

nances withq=0.4 and 4. The solid straight line corresponds to mination of the resonant parameters using the deconvolution

O'gsE(Tb.

procedure proposed in this paper.
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o 10F ofit = 4.22 E to the Gaussian distribution is far more complicated and can
5 | rft=a57x10°Ry 3 be expressed analytically by
ok il cS(E:Q)=0 [1+ Weﬁ(l_EZ)E €], A3
095 097 099  1.01 1.03  1.05 o B =0l A (B.e)] *3)
A where 8=1In2(I'/Q)? and
FIG. 7. Comparison between the theoretical spectra generated _ )
directly from Eq.(1) and the fitted results using the present decon- E(B.€)=(q°—1)A(B,e)—29P(B,¢€). (A4)

volution procedure starting from the simulated spectra shown in . .
Fig. 7 andX andZ as functions of2 ! (mRy~1) for resonance A and ® are expressed in terms of a complex variaple

with g=4. e,
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APPENDIX ®(B,e)=sin(2Be)[1—Re 5)]—cog2B€)Im(7),
Mathematically, Eq(3) is integrable and is given by (A6)
where
o%(E; Q) =w,0{(E; Q) +wgo4(E; Q). (A1)
n=erf(ye'’) (A7)

The term that corresponds to the Lorentzian distribution can
be evaluated by a simple change of variable and is given byith y=./3(1+€?), 6=tan ‘e and the error function
erf(z) given by
[(e+qT/QP+(g*+ I/ +1

of(E;Q)=0 ,
i€ )= [(T/Q)e]?+(1+T/Q)? erf(z)= iJZe—yzdy_ (A8)
(A2) JmJo
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