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Unified construction of variational R-matrix methods for the Dirac equation
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A systematic construction, based on a unified approach described by Gerjuoy, Rau, and Bprdhod.
Phys. 55, 725 (1983], of unrestricted variational principles related to tRematrix theory for the Dirac
equation is presented. Variational principles for eigenvalues and matrix elements of the oﬁAé?*éi(fs and
B(i)(E), relating values of upper and lower components of spinor wave functions on a sSrédce closed
volumeV inside which the functions satisfy the Dirac equation at ené&rggre derived. A variational principle
for eigenvalues of the operatoR{ ~)(E) andB(*)(E) has been already found before by Hamacher and Hinze
[Phys. Rev. A44, 1705(1991)] but other variational principles are constructed in this paper.
[S1050-294{@8)00706-9

PACS numbegps): 03.80+r, 11.80—m, 31.15-p, 34.10:+x

I. INTRODUCTION determining their matrix elements. Among several ap-
proaches enabling one to achieve this gdal3,8—11, there
Among a variety of theoretical methods used for a de-are methods employing the calculus of variations. A variety
scription of such atomic processes as electron-atom scattesf variational principles related to the nonrelativistic
ing, atomic photoionization, and spectra of Rydberg atomsR-matrix theory has been invented during the last fifty years
finite volume treatments, usually referred to BRsmatrix [12—42 and some of them have been successfully applied in
methods, play a very prominent rdl&—3]. It is a common  atomic physics calculations3,34]. Recently, Szmytkowski
feature of such methods that the configuration space of thg7], following a remark made by Rasv[30], has shown
total system, target plus electron, is divided into separatéhat, on combining a general method for construction of
domains, at least one of which has a finite volume. The dyvariational principles described by Gerjuoy, Rau, and Spruch
namics of the system is considered independently in eacfy3] (cf. also Refs[44, 45)) with the operator formulation of
domain. The total wave functio, describing behavior of {he R-matrix theory[4—7], all the finite-volume variational

the system in the whole configuration space, is obtained byinciples that have already been known, and also some new,
matching solutions of the wave equation at interfaces befnay be derived in a systematic wi46].

tween adjacent domains. It may be shown that complete in- Recent years have seen a rapid growth of interest in

formation required for the matching procedure at a surface ; i : :

enclosing aqparticular domail? is ge?nbodied in a square analysis of relativistic effects in atomic proces§ég,48. In
matrix R (or, equivalently, in its inversB=R, frequentl view of the conspicuous success of the nonrelativistic varia-
denoted alsb e?)s‘) To ex%lain the meaning of’the ?natrR,y tional R-matrix methods in describing atomic phenomena
assume that a complete discrete set of orthonormal functior{é’34]’ it is natural to expect that their relat|V|_st_|c counter-
spanning the surfacé is known. Then an arbitrary suffi- parts should be equally helpful when the relativity has to be
ciently regular function, including the functiol, may be taken into account. The need for the relativistic versions of
expanded in this set on the surfaSelf the particle is de- Variational R-matrix methods has been recently articulated
scribed by a Schidinger equation, the matri transforms a by Aymar, Greene, and Luc-Koen[g]. In response to this
vector of expansion coefficients of the normal gradépr ~ réquest, in the present paper we attempt to generalize the
into a vector of expansion coefficients of the functign  'esults of Ref[7] to the case when the wave equation gov-
Obviously, the matrice® and B are not unique since the €Ming dynamics of a system is a Dirac equation. For the
expansion basis at the surfaenay be chosen in an infinite sake of _brewty and aiming to kee_p the presentatlon as simple
number of ways. In this connection, Nesbet-6] and @S possible, we restrict our considerations to the case of po-
Szmytkowski[7] pointed out that it is more natural and fun- tential scattering. In Sec. Il, the reIansIR:—rpatrlx theory
damental to build the nonrelativistic theory amtegral op- is formulated in terms of integral operatofd*)(E) and

eratorsfz(E) and 3(E), of which R(E) andB(E) are ma- fﬁ(i)(E), which on the surfacé link upper and lower com-

trix representations The operatorR(E) is defined so that Ponents of those wave spinots which in the volumeV
when it acts atS on normal derivatives of functions thatih ~ €nclosed byS satisfy a Dirac equation at enerdy. The

are solutions of the Schdinger equation at enerdy, values operatorsfz”)(E) and f%(*)(E) are, in some sense, the ana-
of these functions o are produced. The operatB(E) is  logs of the operator®(E) and B(E), respectively, encoun-
the inverse ofR(E). The primary goal of the theory is to tered in the nonrelativistic theory. The specific feature of the

find the operatorR(E) and B(E) by constructing their ker- relativistic case is that two other operatdR§)(E) and
nels or, equivalently, to find the matricB§E) andB(E) by ~ B()(E) appear in the course of development of the theory
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and these operators must be treated on an equal foot with thep') such that for any reasonable four-component spinor
operatorsR(*)(E) andB*)(E). After analysis of properties function ®(p) defined on the surfacg one has

of the operatorR(*)(E) and3*)(E) and their integral ker-

nels, in Sec. Ill we apply the general powerful approach of f d%p' 8@ (p—p )D(p')=D(p),
Gerjuoy, Rau, and Sprud#3] and derive variational prin- S

ciples for eigenvalues and matrix elements of the operators

RE)E) and BE)(E). In particular, we rederive a varia- szp' 52(p—p"H®T(p )= (p). (4)
~ S
tional principle for(common eigenvalues ofR()(E) and

BM(E) found, in an alternative way, several years ago by Let W(E,r) and¥’'(E,r) be two particular solutions to
Hamacher and Hinzet9]. The variational principles derived the Dirac equatioril) corresponding to the same real energy
in Sec. Il are unrestricted, which means that no particulaiE. Applying the Gauss divergence theorem we obtain
constraints need to be imposed on trial wave functions used. R R

In some cases it may be desirable, however, to use trial func- (HU' W) — (V' |HP )= (V' |icha, V). 5)
tions that are subjected to some subsidiary conditions. There-

fore, in Sec. IV we present constrained forms of the variaHere a,(p) is the 4<4 Hermitian matrix defined as

tional principles found in Sec. Ill. The principles derived in

Secs. lll and IV are linear, bilinear, or fractional bilinear in an(p)=n(p)- e, ®)
trial functions and therefore are ideally suited for the us
with linear trial_ functions of the Ra'yleigh-Ritz. fqrm. EX.' at the pointp. In virtue of the reality ofE the left-hand side
amples of applications of such functions to variational prin- ¢ Eq. (5) vanishes yielding

ciples constructed in Sec. lll are presented in Sec. V. The '
paper concludes with a brief discussion of the results pre- (V']ia,¥)=0 7
sented in Sec. VI.

eWheren(p) is an outward unit vector normal to the surfage

(for reasons that should become clear shortly, we have re-
Il. THE OPERATORS B()(E) AND R)(E) tained in Eq(7) the imaginary unit). To proceed further we
define matrices
We shall be concerned with a Dirac particle of a given
real energyE moving in a real, local, in general noncentral B =5 (p)=BFa,(p) ®)
potential V(r). The wave equation governing the dynamics n mE

of the particle is _ ) ) _
wherel is the unit 4<4 matrix. Obviously, one has

(BT ED=0, @ BH+EI=1 a )+ al (P =an(p). O
whereH is the Dirac Hamiltonian The matrices3(*) are Hermitian while
A=—icka V+Bmc+V(r) 2 o (p)=ai (p). (10)

with the Hermitian 4<4 matricese and 8 defined as usual For the sake of later applications \ive notice the following
[50]. properties of the matrice8™) and ") (p):
As in all R-matrix treatments, we restrict our consider- - +
' () g(£) = g(*) (=) g(F) = (=) (£)( o) =
ations to a finite volum@ enclosed by a surfacg& We wish BB =" BB =0 ag(pa, (p)=0,
to find a homogeneous boundary condition satisfied dry

solutions of Eq(1). In what follows,r is a position vector of ai(p)ay (p)=p), (11
a point in the volume/. If the pointr lies on the surfacé, (+) (+) (+) (+) (+)

we denote this using the symbplinstead ofr. To denote ay (p)B =0, B ay(p)=ay (p),
volume and surface integrals containing products of two B B

spinor functions, we shall use the following notation: B e (p)=0, ai(p)pT=aT(p), (12

which may be easily derived from the definitiof@ and the
(‘I’|‘D'>Ef dBraot(nd’(n), anticommutation relations satisfied by the matriaeand 8
v [50]. With the matricesxff)(p) the relation(7) may be re-

written in two equivalent forms:

(¢)|q)l)5f5d2PCDT(P)(D,(P)a (3) (Ia'(']+)q,!|\l}):(q,!|lal(q+)q}),

where the dagger denotes the matrix Hermitian conjugation. (i aﬁl’)\lf’|\lf):(\lf’|ia§]’)\lf), (13
Hered?®r is an infinitesimal volume element around the point

r andd?p is an infinitesimalscalar surface element around where it may be interpreted that the matrideéﬁ(p) and

the pointp. We define also a surface delta functiéff)(p iaﬁf)(p), considered as operators acting on solutions of the



57

Dirac equation(1) at fixed energyE, are Hermitian with
respect to the surface scalar prod(jit

With the matrices «{")(p) one may associate linear Her-

mitian integral operator8)(E) such that

ia)(p)W(E,p)==+B*)(E)¥(E,p) (14)

for any solution of Eq.(1) at energyE. The operators
B&)(E) are represented by their integral

B&)(E,p,p’) and Eq.(14) may be equivalently rewritten in
the form
(D)W (Ep)== [ P/ BIEpp (E D)
(15

[notice that the kernel8(*)(E,p,p’) are the 4<4 matrices.
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J dzp"R(i)(E,p,p”)B(i)(E,p",p’)
S

=f d2p"B)(E,p,p")R)(E,p",p)
S

=6 (p—p")B"). (23
The kernelsR(*)(E,p,p’) are Hermitian,
RUN(E,p.p") =R Ep',p), (24)
and possess the propefisf. Eq. (18)]
RUNE,p.p')=B ' RUE,p.p") B . (25)

Consider now those particular solutioft¥;(E,r)} to the
Dirac equation(1) that on the surface satisfy the relation

Since the left-hand side of this equation remains invariant

after premultiplication with3(*), this restricts a class of ad-

missible kernels3(*)(E,p,p’) to such that

BENE,p.p') =8B (E,p,p'). (16)

ia"(p)Vi(E,p)=b;(E)BW;(E,p). (26)

By utilizing Eq. (14) we may rewrite this relation in the form

BY(E)W;(E,p)=b,(E) B W,(E,p). 27

Further constraints follow from the fact that, to represent the

Hermitian operatorsB=)(E), the kernels B=)(E,p,p')
must be Hermitian themselves, i.e.,

B=N(E,p.p" ) =B (E,p,p). (17
Equations(16) and (17) imply
BE(E.pp)=p B (Epp)pT. (19

It must be emphasized that the operatbs$™ (p) and

+B)(E) are not identical and for an arbitrary four-
component spinor functio®(r) in general one has
ial"(p)®(p)# =B (E)D(p) (19

unless®(r) obeys inV the Dirac equatiorfl) at energyE.

In applications it will be convenient to use the Hermitian

integral operatorR*)(E) defined by

BHW(E,p)=+RE(E)ia(p)W(Ep) (20

for any solution to Eq.(1) at energyE. In terms of the
associated % 4 matrix kernelsR(*)(E,p,p’) Eq. (20) may
be rewritten as

FOUED = | o REE e (0 W (E )
21

The operatorsR(*)(E) and B*)(E) are reciprocal in the
sense of

RENE)BH(E)=BH(E)RE(E)=). (22

The corresponding reciprocity relation for the kernels[cf.

RENE,p,p') andBE)(E,p,p') is

It follows that the surface functions¥;(E,p)} may be in-

terpreted as eigenfunctions of the operaﬁ?bT)(E) with the
singular weight3("). The constant$h;(E)} are correspond-

ing eigenvalues. Since the operatdis)(E) and 8+ are
Hermitian, the eigenvalueih;(E)} are real and eigenfunc-
tions associated with different eigenvalues are orthogonal
with respect to the weighg(*) over the surfaces
(V| BW))=0, bi(E)#bj(E). (28)
Without loss of generality we shall assume that eigenfunc-
tions associated with degenerate eigenval(ieshere are
any) are also mutually orthogonal over the surfgtand that
all eigenfunctions are normalized to unity in the sense of

(| g =1. (29)

Then for two arbitrary eigenfunctions of the operator
B)(E) one has

(W B W) =8 (30
The functions{ 8" W¥,(E,p)} form a complete set on the
surfaceS in the subspace ofipper componentgthis is a
consequence of singularity of the weigBt™)) and the cor-
responding closure relation is

;_ B W (E,pV(E,p)B =8P (p—p)BH.
(31

We have defined the functiodal;(E,r)} as those solu-
tions to the Dirac equationil) that on the surfaceS are

eigenfunctions of the operatd#*)(E) with the weightg(*)
Eq. (27)]. It appears that the surface functions
{V(E,p)} are simultaneously eigenfunctions of the operator
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BC)(E) with the weight3™). Indeed, upon premultiplying J' 2 1m(+) ' -1 (+)
’ dop'R'(E,p,p )Vi(E,p')=b, “(E v.(E,p),
both sides of Eq(26) with the matrixa (p) one has s P (Epp)YVi(Ep) =0y (BB (E )

(42)
ial(p)Wi(E,p)=—Db; AE)B VW (Ep), (32
which, after utilizing Eq.(14), may be rewritten as f d?p' RC(E,p,p")¥i(E,p')=b,(E) B W,(E,p),
S
B(E)W(E,p)=b; {E)B W (E,p). (33 (43

This proves the conjecture and shows also that eigenvalugemming from Eqgs(36) and(37), imply the spectral repre-

~ : (%) AW
of the operato3~)(E) are{b; }(E)}. With the normaliza- S€Ntations of the kemeR~(E,p,p"):
tion (29) adopted above one finds the orthogonality relation

(+) "y — (+)ap. -1 t ryR(+)
(q;im(*)\pj):b?(E)gij (34) RUNE,pp') }i BW(E,p)by H(E)Y(E.p")B T,
(44)
and the corresponding closure relation in the subspace of
lower components
RONEpp')= 2 B WI(Ep)by H(E)W[(E,p)B .
> BUWI(E,p)b AE)Y(E.p)B =8P (p—p)B ). (45)

all i

39 Notice the asymmetry between the representatidfs-(41)
For the sake of completeness of our discussion, we presefd (44)—(45). i i
eigenvalue equations for the operat®§™)(E): We have seen that the operatdsS”)(E) and R(™)(E)
have a common set of eigenvalufs;(E)}. Similarly, a
R(E)W,(E,p)=b, L(E) B W,(E,p), (36) common set of eigenvalues of the operat##s)(E) and
A RU(E) is {b; *(E)}. Moreover, the four operators have a
RIE)W(E,p)=b;(E)BW¥,(E,p). (370  common set of eigenfunctiofd;(E,p)}. This suggests that
the kernelsB(*)(E,p,p') and R(7)(E,p,p’) should be re-
It is to be noticed that the operato$*)(E) andR()(E) lated as should be the kernel(")(E,p,p') and
have a common set of eigenvalues as do the operatof®'™(E,p,p’). To obtain the desired relations we operate on
BO(E) andR(E). Egs.(40) and (41) from the left with a%_)(p) and a{M(p),
Given the eigenfunction§¥;(E,p)} and the eigenvalues respectively, and then on the resulting equations from the
{b,(E)}, one may reconstruct the kemnd#&*)(E,p,p’) and  fight with a{")(p’) anda{(p’), respectively. Upon utiliz-
R&E)NE,p,p'). By combining Eqs(15), (26), and(32) one  ing the properties of the matriceéi)(p) and8*), making
obtains integral eigenvalue equations for the surface funcdse of the eigenvalue equatiof6) and(32) and comparing
tions {¥;(E,p)}: the results with the spectral representatight and(45) one
finds

| @B € Wi E ) DB (E ),
@8

RENE,p.p')=al (p) BT (E.p.p')ay ) (p'). (46)

IIl. CONSTRUCTION OF VARIATIONAL PRINCIPLES

J d’p’'B7(E,p.p ) ¥i(E,p')=b; H(E)BWi(E,p). o - .
S A. Variational principles for eigenvalues

(39 of B*)(E) and R*)(E)
By virtue of the relations(30), (31), (34), and (35 these In this subsection we shall derive variational principles
eigenvalue equations imply spectral representations of thiyr eigenvalues of the operato&ﬁi)(E) andfz(i)(E). [We
(+) AN ~ A
kernelsB'=/(E.p.p"): recall that the operator8(*)(E) and R(")(E) and the op-
) eratorsB(7)(E) and R(*)(E) have common sets of eigen-
BH)(E,P,P'):;_ BIW(E,p)bi(E)¥/(E,p') B, values, respectively. Also, eigenvalues of the operators
all 1

(40) B)(E) and R(H(E) are reciprocals of eigenvalues of the

operatorsB(*)(E) and R*)(E).] For the sake of brevity,
_ _ _ _ throughout this subsection we shall omit all indices labeling
(—) "y — (=p. -3 t "y R(—) . . - .
B (E.p.p )_gﬁ BWi(E.pb ((BE)WI(E.p)B . eigenvalues and corresponding eigenfunctions.
(41) Following the ideas of Gerjuoy, Rau, and Sprii4B] (cf.
also Refs[44,45), we treat the defining Eq$l), (26), and
Similarly, the integral eigenvalue equations (32 as constraints and consider the functionals
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F(i)[F,f@),K@),\P] This gives
—b L+ (N)|i oW T D LW SFE b= N A W]

—l e =ob 17 (NP B ]+ (ichapA ) —ialT A

AR ET - [17 ()| B5W)]+ (icha, al,
o o FbHIBENE)| W) +([H—E]AT)| 6W). (51)

Here b**=b and b™* are numbers(possibly complex

\)(p) are regular functions defined on the surfakavhile

A)(r) and W (r) are regular functions defined in the vol-

umeV. The functions\ (*)(p) andA(*)(r) are the Lagrange SFE[b I N A w]=0, (52

functions for the problem discussed and are responsible for . N

incorporation of the constraint®6) and (1) (if the upper it is necessary to impose the conditions

superscripts are choseor the constraint§32) and(1) (if the i

lower superscripts are chogemnespectively. 15 (\F[Hw) =0, (53)

The finctionals(47) possess an important property. If the

numberb equals some eigenvalue, sh{E), of the opera-

tors B)(E) andR()(E) and if simultaneously¥ (r) coin-  gnd

cides with a corresponding eigenfunctidf(E,r), the value

of the functional F*) is b(E) irrespective of particular icia,(p)A™)(p)—ial™ (PN *)(p) Tb*YE)B N ) (p)

forms of the Lagrange functions)(p) and A(Y)(r). Simi-

larly, if b~ I=b~1(E) and¥ (r)="W¥(E,r), then the value of

the functionalF(*) is b™*(E) regardless of forms of the We may conveniently split Eq55) premultiplying it by suit-

functionsx()(p) and A{-)(r). According to Gerjuoy, Rau, ably chosen matrices. Operating from the left with™) we

and Spruch[43], this property may be exploited and it is obtain

possible to find such optimal forms of the Lagrange func- . (+) () — 1 ) ()

tions, we shall denote them by=)(p) andA=)(r), that the ictiay ™ (p) A (p) b= (E)B'N ") (p)=0  (56)

functionals(47) will be stationary subject to small and oth-

erwise arbitrary variations ob=%, A(*)(p), A*)(r), and

We see that to make the function®) stationary, which is
equivalent to

[H—EJA®)(1=0 inV (54)

=0 on S (55

while operating witha{")(p) we get

W (r) aroundb=X(E), A (p), AX)(r), and W(E,r), re- ich BAE) (p)—i BN (p)=0. (57)
spectively. To find the functiona™)(p) and A)(r), we
vary Eq.(47) obtaining Hence the boundary conditions satisfied by the functions

A)(r) on the surfaces follow
SFEbTI N A W]
i (p)A ) (p)Fb=YE)BHAF) (p)=0. (59
= b1+ (N Fial W Fb=1 W)
Comparison of this result with Eq&6) and(32) shows that
the Lagrange functiond (*)(r) satisfy on the surfacé the
same homogeneous boundary condition as the eigenfunction
W (E,r). Moreover, in virtue of Eqs(1l) and (54) the func-
tions ¥ (E,r) and A()(r) are solutions of the same differ-
ential equations. This implies that the functioh™)(r) may
be chosen43] as

F b N W)+ (N Fial ¥
Fb*1BH) 50 +(SAF)|[H—E]W)
+(A®)|[H-E]s¥) (48)

[heresb™! meanss(b=1) andnot (8b)*!]. Because of Egs.
(1), (26), and (32), the terms containing the variations

(B)(ry=(F)
SN (p) and SA)(r) vanish and Eq(48) takes the form A=y (ED, (59
(E)rREL 3 (£) A (%) where the proportionality factorg'~’ are to be determined.
SF DTSN AT ] This is done with the aid of Eq57) and the condition(53).
:5bt1[11()\(i)lﬂ(t)q’)]"r‘()\(i)“agi)g‘lf One obtains
ch (W|pHW)
The right-hand side of Eq49) may be conveniently trans-
formed by utilizing the Gauss divergence theorem, whichand consequently
applied to the volume integral in E¢49), states that 1 1
R R AF(N=+— ——"—"——VP(E,r). (61
(AG|[A-E]8W)=([H-EJA)|sF) ch (V[BFW)

—(AP|icha,d¥). (500  Furthermore, Eqg57) and(61) give
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B. Variational principles for matrix elements

+ + 1 + ~
BENE (p)= i(\mﬁ(t)\p) BV (E,p). (62) of R®)(E) and their reciprocals

In this subsection we shall derive variational principles
It may seem distressing that the construction presented aboyg, matrix elements q)|7“g(t)q)r) and their reciprocals,
does not provide the lower component of the spinorq)fz(:)q), “1 \where RC(E the i | i
A(F)(p) and the upper component of the spindr(p) but (@] ') °, where R"=!(E) are ne Integral operators
we shall see in a moment that this does not cause any prokf)i—e'cmed In .Sec. I W.h'leq)(p) .and ©’(p) are sufficiently
regular spinor functions defined on the surfaSe For

this purpose, we shall need auxiliary spinor functions
wE)(E,r) and ¥’ (F)(E,r) defined as those particular solu-
tions of the relativistic wave equatidd), which on the en-
closing surfaceS satisfy inhomogeneous boundary condi-

The relations (61) and (62) between the functions
A)(r) andAF)(p) and the eigenfunctio® (E,r) suggest
that in variational calculations it should be convenient to
choose the trial Lagrange functions as

tions
— 1 1 _ i@ (T ENE p)=+ 83D
A(i)(r):i_ﬁ — — \I’(r), (63) Ian (p) ( :P) B (p)a
c (=) (+ ‘x )
(WIB=) o PV CIEp) == BD (p). (70
. 1 . The conditions(70) are the analogs of the inhomogeneous
BENFH) (p)=t——BHW(p). (64)  Neumann boundary conditions used in the nonrelativistic
(¥|pH)) theory[7]. Since the functionsl ™)(E,r) and ¥'(*)(E,r)

satisfy the Dirac equatiofil), we may utilize Eq.(20) and
rewrite the conditiong70) in the form containing the opera-

On substituting these particular forms of(*)(r) and R
tors R)(E):

BHNE)(p) to the functionalg47) and utilizing the relation
e (Y ey (£) BEWE(E,p)=REE)D(p),
N ag? W) =(B N w),  (69)

N AW H)(E,p)=REIE)D (p). (7D)
following from the properties of the matrices,”)(p) and _ _ _
B [the relation(65) shows that we do not need to know At first we shall construct functionals whose stationary

anything about the lower component of the spinét)(p)  Values are@lR(%’). To this end, we treat Eqél), (70),
v . and(71) as constraints and consider the functionals
and the upper component of the spindr’(p), which may

be arbitrary, we find the functionals FED, DR, ) N A g ()]
— (VieW) 1 (W([A-E]) =(B|RED") + (x| g () —R=)P)
FOP]=t—F—+— 2 — (66 =
(V|gw)  Ch (W] gw) N iap w5 g0
with the desirable property +H(AP|[H-E]¥' ™). (72)
= L — Hereﬁ(t) are somepossibly non-Hermitianlinear integral
FOIW]=F*[¥] (67)  operators acting on functions defined on the surfage

¥ (p) and \F)(p) are sufficiently regular functions de-
fined onS, while A)(r) and¥'(*)(r) are sufficiently regu-
lar functions defined in the volumé&’. The functions
xE(p), N (p), and A)(r) are the Lagrange functions
] incorporating the constraintg1), (70), and(1), respectively.

(the asterisk denotes the complex conjugatidrhe sought
variational principles, the analogs of the nonrelativistic
variational principleg52) and(76) of Ref.[7], are
(¥]ialHW) L1 (V|[H-E]¥)
(V|gw) S (W)

We seek such functiong™)(p), \(*)(p), and AF)(r) that

the first variations of the functionald?2) due to small varia-
68 tions of RE), x()(p), N (p), AC)(r), and W' C)(r)

around RENE), xF(p), AE(p), AP(r), and
} ' ()(E,r), respectively, vanish. We have

b(E) =sta\{

(Pliay W) 1 (W[[H-E]V)
(V[gw)  Ch (w|gw)

= _
b (E)—Sta{ 5F(¢)[q),q)r;7”3(1),X(t),)\(ﬂ,A(t),q,r(t)]

:(<1>|57%(:)<D’)+(X(i>|3(i>5\pf(r)_ SRED)

The principle (68), the relativistic counterpart of the cel- ()5 (=) el (£) (NP s
ebrated Kohn variational principld 2], has been found ear- TNl oW )+ (A H-E]OW ),
lier in a different way by Hamacher and Hing49]. (73
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where we have utilized the fact that terms Containing tn&[r(i)(E,r) Suggest that we may restrict our considerations to

variationsdy ™) (p), SN (p), and SAF)(r) vanish due to
the constraintg71), (70), and(1). Application of the Gauss
theorem to the volume integral transforms E@3) to the

form

5|:(i)[q),q)';ﬁ(i),x(i),)\(i),[\(i),qf'(i)]
=(CI)—)((t)|57%(i)q)')+(,8(t))((t)—iagi))\(i)

Fichaph | SW' ) +([H-EJA) oW (*)).
(74
On stipulating

6F(i)[(1)7(1)’;’fe(i)’x(i),)\(i),A(i),\I}’(i)]:O (75)

we find
[H-EJA®)(nN=0 in V, (76)
®(p)-x"(p)=0 on S, (77)
and
BEX T (p) =i (PN (p) +ichan(p) A (p)=0
on S. (78

Premultiplying Eq.(78) by () and utilizing the relations
(11) and(12) we have

BEX N p) +icha (AT (p)=0 (79
while premultiplying bya{*)(p) we obtain
—iBENE) (p)+ich BN (p)=0. (80)
From Eq.(77) it follows that
X (p)=D(p) (81
while Egs.(79) and (81) imply
ia,™ (p) A (p)=— Cihﬁ(i@(p)- (82)

Comparison of Egs(76) and (82) with Egs. (1) and (70)
shows that the Lagrange function$™)(r) satisfy the same
differential equation inV’ as the functions? *)(E,r) do and

obey onS the inhomogeneous boundary conditions that dif-

fer from those satisfied by (*)(E,r) only by the multipli-

cative factors+ 1/c# in inhomogeneous terms. This implies

that we may choose

1
AF(N=F—VF)(E,r)

- (83
and consequentlicf. Eq. (80)]
BN (p)=F BV )(E,p). (84)

The relations(81), (83), and (84) between the functions
xFUp), AF)(p), and A)(r) and the functionsb(p) and

the following trial forms of the Lagrange functions:

X (p)=2(p), (85)
BN (p) =5 B (p) (86)

and
A ()= :% v, (87)

Substitution of these particular forms gf=)(p), A\(=)(p),

and A )(r) to the definition(72) gives the variational func-
tionals

FE[D,d W) W (5] = (| g (2)
+ (BT
(T)ialHT )
-1 eh-gwe
* o (WHIH-E] )-
(88

By applying the Gauss divergence theorem to the volume
integral appearing on the right-hand side of this equation, it
may be easily shown that the function&é®8) possess a sym-
metry property

FE[D,® ;W) W (= FE* [ d: ' () g,
(89)

The functionalq488) are stationary for small, smooth, and
otherwise arbitrary variations off*)(r) and ¥'(*)(r)
around¥()(E,r) and ¥'(*)(E,r), respectively, and their
stationary values aref{|R(*)®’). We have thus the varia-
tional principles

(<I>|7“z<f>d>'>=sta4<¢|ﬁ<f@'<1>>+<ﬂ<i>\17<i>|d>'>

F(UO)ialPw =)

T (VO |[A-EJW (),

h

1
c (90)

which are the counterparts of the nonrelativistic variational
principle (96) of Ref. [7].

Next we shall derive variational principles for reciprocals
of the matrix elements of the operatoR*)(E), i.e., for

(@|R™)®")~L. To this end we construct the functionals
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FE[D, b’ 'R(+ ) () ,:(i),X(i),q_;'(i)]

1 T (+ FVaxrr (+ 2+ ’
:m_,_(x(f)w(f)qﬂ(f)_R(f)q) )

+(NHia w5 gHp)

H(AB|[A-E]W (). (91)

We seek such formg™)(p), A (p), and A)(r) of the

Lagrange functiong=)(p), A(*)(p), andA)(r) [incorpo-
rating the subsidiary condition&l), (70), and (1), respec-
tively] that the funct|onaI$91) are stationary for small varia-

tions of R), x)(p), \*)(p), A)(r), and ¥’ )(r)

around R(+)(E), Y Up), NFp), AE)N(r), and
P’ (5)(E,r). Varying Eq.(91) we obtain
FE[D, 0 R, x5 NE)AE) 7]
D|SR D’ .
:_(lA—)+(x(t)|B(t)5«y'(t)_573(“:)(1)/)
(PIRD)?

+ (NP oW )+ (AS|[H-E]s¥' ),
(92)

To simplify this equation, we use the Gauss theorem an

transfer the operatiofH—E] on 8%’ )(r) to AM)(r).
This yields

SE(* )[q) P’ R (*) )\( )A (*) \Pf(ﬂ]

(D|SRE)D")

= | (P eR )
(O[R1P)?

+(BE S —ia PN tichanA )| oW ()

+([H-EJA®)| W’ (), (93)

To ensure that

SEHD, 0" RE) (I NE A W (£)]=0 (94
holds for essentially arbitrarpR(*) and s¥'()(r), we

must require

[H-EJA®)(N=0 in V, (95)
1
PO D(p)+x(p=0 onS (96
(RED'| D)2
and
B X (p)—ial Y (PN (p) +ichay(p) AT (p)=0
on S. (97)
Operating on Eq(97) from the left with 3(*) gives
BEXF(p)tictia, ) (p)AF)(p)=0 (99)
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and with ") (p) gives

—iBENE) (p)+ickh BFIAFT) (p)=0. (99
We deduce from Eq96) that
(+) —1
X (p)=—— @(p) (100
(R(i)q)!|q))2
and from Eqgs(98) and (100 that
() 1 (*)
P AT (p)=— —B D (p).
ch (R(+ O’ |D)2
(101

Utilizing the boundary conditiong71) and the Hermicity

property of the operatoré(i)(E), it is convenient to rewrite
Egs.(100 and(101) in the forms

1
(B D) (RED | D)

p)=- D(p),
(102

(A ()= S EE—

n ch (q)'|ﬂ(—)\p(—))(ﬂ(—)q;'(—)|¢)

X BH)D(p). (103

gomparlson of Eq995), (103, (1), and(70) shows that we

may choose
1 1
ch (@']FEWE) BV D)

TENE,N)
(104)

(==

and consequentljctf. Eq. (99)]
1
(@' BwE) (B0 )| D)

X W EN(E, p).

It is then natural to choose trial estimates pf")(p),
AF)(p), andAF)(r) as

BENE) ()= =

(105

1

O (p),

(106

X p)=-— — ~
(BEW D) RED|D)

1

BN (p)=+ — — ,
(q)f|ﬂ(i)q;(i))(’3(i)q;'(i)|<p)

X,B(i)\l_f(i)(p), (107
and
A=+ _ ),
ch (q)/|B(t)q,(i))(l[g(i)qw(t)|(p)
(108

which leads us to the symmetriin the sense of Eq89)]
functionals
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P o (=) 1 vEOIH—Ew (D)
(Vi i£<|[]>_(109)

(¢|B<:>q7/(:))(ﬂ<:>q_,<:)|¢f)

FELD,0/ W), w (5)]= = — —
(@|Ig(i)\p/(t))(ﬁ(i)\p(t)|q)')

The resulting variational principles

P @ (£) 1 YEIH-—ETW (2

Pl %) 1 (A-E ) 110
ch ((D|B(i)q;'(i))(’3(i)\p(i)|q)')

(®|R™P’) 1=stat + — —
((I)|’3(i)q/'(i))(B(i)qf(i)|q)f)

are the analogs of the nonrelativistic variational principle SECN D @' BE) () N () A ) ()
(115 of Ref.[7]. [@,0"; 8%, x =) A, ]

—(@8BHD )+ (x| el oW (5 — 5B )p ")

C. Variational principles for matrix elements . N . o .
+(ANHBH U E) (A [H-E]oW"H))

(114

of B®)(E) and their reciprocals

In this subsection we shall derive variational principles

for matrix elements ®|B*)®’) and their reciprocals _
(®|BHd") "1, whereB*)(E) are the integral operators de- and, making use of the Gauss theorem, may be transformed

fined in Sec. Il whiled(p) and ®’(p) are any reasonable © the form

spinor functions defined on the surfaSeAs in the preced-
ing subsection, we introduce auxiliary spinor functions
YE)(E,r) and ' (5)(E,r) satisfying inV the wave equa-
tion (1). This time, however, the function®*)(E,r) and
¥'(*)(E,r) are enforced to satisfy on the surfaSehe in-

5F(t)[q),<1)';23(i>,)((t),)\(t),/\(i),\lf'(t)]

=(®—X(i)|5[3(i)q>')+(—iaff)x(i)-i-ﬁ(i))\(i)

homogeneous boundary conditions +ictianA )|V () 4+ <[|2| —EJA)| 5w’ (),
BHVENE, p)==BHD(p), (115
BEWE(E, p)==pHD(p), (111  To make the right-hand side of E(.15) vanish for arbitrary

SB) and sV’ ()(r),
which may be viewed as the analogs of the inhomogeneous
Dirichlet boundary conditions used in the nonrelativistic

theory[7]. By virtue of Eq.(14), the conditiong111) may be SFED, "B, x5 N5 A g ()]=0,
rewritten in the form (116
ial™(p) ¥ E)(E, p)=B=(E)D(p), it is necessary to require
oy (pV' NEP=BTE)D (p). (112 [H-EJA®/(N=0 in (117
TP derive variational principles for the matrix elements d(p)—x(p)=0 on S, (118
(®|BF)d'), we start with the functionals
" and
F(i)[(l),q)’;B(i),x(i)1)\(i),A(i),’\I]’(t)]
= (@B +((ial W - B D) —ia (P (p)+ BN (p) +ichan(p)A ) (p)=0
FONE|BE ()3 g on S. (119

+ NG ER = TUED) .
(AP|H-EJ¥")) (113 Equation(119 implies

The notation used in Eq113) is similar to that used in Sec.
Il B and should be self-explanatory. The first variation of BENI (p)+icha (P AT (p)=0 on S,
Eq. (113 is (120
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—iBE S (p)+ich BHOAT)(p)=0 on S (121)

and from Eqgs(118 and(121) we find

X (p=2(p), (122

+ + 1 +
BN (p)= B (p). (123

Egs.(117), (123, (1), and(11)) give
A<i>(r)=+iqf<i>(E r) (124

“ch '
and consequentlicf. Eq. (120)]

BUNH(p)=Fia (PP E,p). (125

Choosing trial forms of the Lagrange functions as

P =D (p), (126)
BENE(p)=Fia = (p) T E)(p), (127
— 1 —

ch

and substituting these estimates to B3 yields the func-
tionals

FE[D,0 ;W) W ) ]=(|ialH W' (2)
+(ia W)
F(ialwEH|w )
1 W (H|MH STHUES!
* o (WHIH-EJW ),
(129

possessing the symmetry propefg8Q). The sought varia-
tional principles are

(d>|f3(i)d>’)=sta{(d>|i alIW )+ (oW D)
F(iaPwE | g ()
(130

ii<q7<i>|[ﬁ—E]q7'<i>>
ch

and are akin to the nonrelativistic stationary princifil&5)
of Ref. [7].

Finally, we shall construct variational principles for the

reciprocals of the matrix elementd(B)®’). The starting
points are the functionals
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+ (NSO Ez g
+(AE|[H-EJW’ (), (131

Varying Eq.(131) we obtain
5|:(i)[q),q)';B(i),X(i)’)\(i),A(i),qﬂ(i)]

(®|5B D)
-+

(q)lzg(ﬂq),)z ()((t)|ia$1t)5ll"(t)—523(i>(1)')

+()\(i)|’3(i)5\p/(i))+<A(i)|[|:| _ E]&‘I”(i)>
(132

and, after application of the Gauss theorem,
5|:(i)[q)’q)/;fg(i)’x(i)’)\(i)'/\(i)’xp/(i)]
- MvL(X(i)Iﬁff(i)@’)
(@|B=)0")?
(=i a4 BENE) 4 ick anA )| oW (2))
+([H—EJA™)| 6w’ )y, (133
Demanding
SFE[D, @7 By NE) AE 9 (£)]=0 (134
yields
[H—EJAS)(r)=0

in v, (135

®(p)+x(p=0 onsS, (136

(é(i)q)/ |(I))2
—iag™ (P X (p)+ BN (p) +ichan(p)A ) (p) =0
(137

on S.

Premultiplying Eq.(137 by 8 or a{*)(p) gives, respec-
tively,

BNF(p)+icha, (P AT (p)=0, (139
—iBH ) (p) +ich BHOAF(p)=0. (139

Hence, we find
X (p)=- D(p), (140

(B0 |@)?
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BN ()= — ;B(i@(p)- 14)  BENH(p)== :
¢k (B! |d)? (@']ia DT (ialHW )| D)
N P (=) (=)
The Hermicity of the operator8(*)(E) and Eq.(112) al- Xiag (PV=(E.p). (149
lows us to rewrite these relations in the more convenient )
forms Choosing
() ! () !
X (p)=— " ®(p), X (p=————— ™ @ (p),
(i W ]| 0) (B | D) (iay W | D) (B |D)
(142 (146)
1 1
(AN E)(p)= — — . 1
B )= G @ ) (fa W ) BENH (p) =t ——
(@']i a W) (i 0w )| )
X BHP(p). (143
(E)( )T ()
Comparison of Eqs(135), (143, (1), and(111) yields ay (pY T (p), (147)
1 1 1 _
AP =F— *) il (*)
EIRTES) IEa) (== — w(r)
ch (q> liay ") (ia @) Ch (@[t T ) (i ol T )| )
X W E)(E,r) (144 (148
and consequentlcf. Eq. (138)] we get the symmetrifin the sense of Eq89)] functionals

. — = (oW p ) 1 v H-E]P )
FELD,@ W) g =)= = n VO o M-EY ) (149
(@[iay W ) (iaf WD) O (Dliaf W)l WD)

and arrive at the variational principles

o (i w®) \?'“)) _1 V| A-Ew ()
(®|BFd") " L=stat + o | — { _|[ ] — ) (150
(@i W ) (iaPTE)| D ) Ch (@)iaHW (i DT D)

analogous to the nonrelativistic principl&54) of Ref.[7]. ing the same boundary condition as the exact solution does.
The advantages may be twofold. First, this may facilitate the

optimal choice of trial functions. Second, the restriction may

IV. VARIATIONAL PRINCIPLES lead to a simpler form of a functional varied. We shall illus-
WITH CONSTRAINED TRIAL FUNCTIONS trate the second advantage considering the variational prin-

- S . . ciples(90) and(130).
Str;ﬂid\/%ﬁgﬂnr?]legrrl]gcéﬁﬁstgaelrI;/uendcslgnieﬁsgé Zﬁcggt re- Consider at first the variational princip(80). If the trial
quired to satisfy any restrictive conditions apart from thefunctions ¥ ()(r) and¥'()(r) are forced to satisfy on the
reasonable requirement of continuity of their upper andsurfaceS the “Neumann” boundary conditionf. Eq.(70)]
lower components across any surface subdividing the vol-
ume V. In particular, the approximating functioni(*)(r) ey = -
and ¥’/ (*)(r) used in the variational principleé90) and la (¥ (p)= =2 (p),

(110 do not need to satisfy the “Neumann” boundary con-

ditions (70) obeyed on the enclosing surfaSeby the exact _

solutions W(*)(E,r) and ¥'(“)(E,r). Similarly, it is not ial (P V' F(p)==p D (p), (151

necessary that approximating functions used in the varia-

tional principles(130) and(150) should satisfy the “Dirich-

let” boundary conditiong111). the second and the third terms on the right-hand side of Eq.
In actual applications, however, it may be profitable to(90) cancel yielding the analog of the nonrelativistic Jackson

restrict a class of admissible trial functions to those satisfyvariational principle[cf. Eq. (160 of Ref.[7]]
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R _ and
(®|RH)D") =stat (| gHW' ()
M7= (18 ), (158

respectively and(*) is anN-dimensional column eigenvec-

tor with elementgc{™)} corresponding to the eigenvalﬁe
Similarly, the use of the trial function

1 T+ " o+
:E<‘P(*)|[H—E]\If’(*)) . (152

Similarly, if in the variational principle(130) the approxi-

mating functions? (=)(r) andW’(*)(r) are restricted to sat-
isfy the “Dirichlet” boundary conditiondcf. Eq. (111)]

N
_ V(=2 ¢ ¢(n) (159
BEW ) (p)==BH)d(p), =1

in the variational principlé69) yields estimates of the eigen-

)y == gD (p), 153 N !
P (P)==p P) (153 values of B(7)(E) andR(*)(E). Any such estimateh 2, is
this yields the constrained variational principle an eigenvalue of the generalized matrix eigenproblem
(<D|l:>’(+)<b’)=sta4(¢>|ia$f)\l_f’(+)) S =M HpL, (160

1 _ _ where S() and M(™) are squareNx N matrices with ele-
ia<\lj(i)|[H_E]\If’(t)> (154 ments

S 1 -
analogous to the nonrelativistic principl&62) of Ref.[7]. Sq(f)= —(¢>i|iaﬁf)¢,— _ J<¢i|[H_ E]l¢;), (161

V. APPLICATION OF LINEAR TRIAL FUNCTIONS

_ o - N Mi=(ilB 4, (162

Analysis of the variational principles derived in Secs. Il
and IV shows that trial functions enter them in a linear, bi-andc(™) is a corresponding eigenvector.
linear, or fractional bilinear way. This implies that these To find variational estimates of the matrix elements
variational principles are ideally suited for approximate com—(<p|fg(t)<pf) and (cp|£g(i)<pf) one may employ trial func-
putations of actual eigenvalues and matrix elements with th@ons
use of the Rayleigh-Ritz linear trial functions. While particu-
lar steps in the derivation of the variational principles in the N N
relativistic theory presented in Sec. Il differ in details from (<)) => c (), vE(n= /) ghi(r).
their counterparts in the nonrelativistic theory, the details of i=1 i=1
the use of the Rayleigh-Ritz trial functions are nearly iden- (163
tical in both cases. The_refore, we shall omit these details her‘?he use of these functions in the principk&®) and (110
(an interested reader is referred to Ref] for a thorough ) ) "
description of all necessary movemengnd present only gives approximate values ofi( R)®’):
final results with relevant definitions.

We begin with the variational principlg8) for common (@“’%(i)q)/):f(i)T[s(t)]flfr(i)
eigenvalues of the operato$™)(E) andR(")(E). Choos-
ing a trial function in the form

N
= > (®BHg)([STT (B | D).

ihj=1
N
V(=3 ¢ ei(n), (159 (164

= Here f()* are N-dimensionalrow vectors with elements
where{¢;(r)} are given basis spinor functions afid'*)} {f* = (@] ¢))}, ') areN-dimensionakolumnvec-
are variational parameters and substituting @5 into the ~ tors with elements{f/ )= (8(*)¢;|®")}, and S*) are
principle (68) one finds that approximations to the eigenvaI—SqLéa(Té\lDX '\rlesmpaetcr:it(i:\(/a(:l;vnAhngligoeS;ISyd(ta:]igegsgyo?qtﬁfeﬂ)trial

(+) (=) A an ) . ,
giegse(rjlflilue(sE z)fat%%%en(;;iizvéz S£:|tlriie;3;eng]rir&::1 are functions(163) in the Qrinciples(130) and (150 gives varia-
tional estimates of ®|B(“)d’):

St =M+, (156 .
(q)|'[g(i)q)'):g(i)T[T(i)]*lg'(t)
HereS(") andM(™) are squardl x N matrices with elements

N
=2 (Plial )T (al g0,

i,j=1

1 -
(+) — i) (b ITH= )
Si=(diliay" o+ (lH-Eley) (157 (169
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where g(™)T are N-dimensionalrow vectors with elements
{gF* =(®lia{T )}, g’*) are N-dimensional column
vectors with elementsg; (“)=(ia{") ¢;|®")}, andT) are
squareN X N matrices with elements

1 N
T ==(ay” ¢ild)* - (Sil[H-Elg). (160

VI. CONCLUDING REMARKS

OF VARIATIONALR-. .. 4363

tional principle$ by using the general approach described by
Gerjuoy, Rau, and Sprud#3] (cf. also Refs[44,45). Our
success illustrates the power of the Gerjuoy-Rau-Spruch’s
procedure, which is not sufficiently appreciated yet.

The variational principles derived in the present work
may serve as a starting point for developing numerical codes
suitable for the use for the relativistic description of atomic
processes. Currently we are working on the application of
the variational principle$68) and(69) to analysis of relativ-
istic effects in low-energy electron—atom collisions.

In this paper we have achieved two goals. Firstly, we have

succeeded in formulating thR-matrix theory for the Dirac
equation(cf. Refs.[51,52) in the language of integral opera-

tors rather than matrices. Such a generalization facilitates
further development of the theory. This has been shown iy
the course of achieving the second goal of the paper: a de
vation of a variety of stationary principles for eigenvalues

and matrix elements of the integral operat@ft?)(E) and
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