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Unified construction of variational R-matrix methods for the Dirac equation
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A systematic construction, based on a unified approach described by Gerjuoy, Rau, and Spruch@Rev. Mod.
Phys. 55, 725 ~1983!#, of unrestricted variational principles related to theR-matrix theory for the Dirac

equation is presented. Variational principles for eigenvalues and matrix elements of the operatorsR̂(6)(E) and

B̂(6)(E), relating values of upper and lower components of spinor wave functions on a surfaceS of a closed
volumeV inside which the functions satisfy the Dirac equation at energyE, are derived. A variational principle

for eigenvalues of the operatorsR̂(2)(E) andB̂(1)(E) has been already found before by Hamacher and Hinze
@Phys. Rev. A44, 1705~1991!# but other variational principles are constructed in this paper.
@S1050-2947~98!00706-9#

PACS number~s!: 03.80.1r, 11.80.2m, 31.15.2p, 34.10.1x
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I. INTRODUCTION

Among a variety of theoretical methods used for a d
scription of such atomic processes as electron-atom sca
ing, atomic photoionization, and spectra of Rydberg ato
finite volume treatments, usually referred to asR-matrix
methods, play a very prominent role@1–3#. It is a common
feature of such methods that the configuration space of
total system, target plus electron, is divided into sepa
domains, at least one of which has a finite volume. The
namics of the system is considered independently in e
domain. The total wave functionC, describing behavior of
the system in the whole configuration space, is obtained
matching solutions of the wave equation at interfaces
tween adjacent domains. It may be shown that complete
formation required for the matching procedure at a surfacS
enclosing a particular domainV is embodied in a squar
matrix R ~or, equivalently, in its inverseB5R21, frequently
denoted also asY!. To explain the meaning of the matrixR,
assume that a complete discrete set of orthonormal funct
spanning the surfaceS is known. Then an arbitrary suffi
ciently regular function, including the functionC, may be
expanded in this set on the surfaceS. If the particle is de-
scribed by a Schro¨dinger equation, the matrixR transforms a
vector of expansion coefficients of the normal gradient¹nC
into a vector of expansion coefficients of the functionC.
Obviously, the matricesR and B are not unique since th
expansion basis at the surfaceS may be chosen in an infinite
number of ways. In this connection, Nesbet@4–6# and
Szmytkowski@7# pointed out that it is more natural and fun
damental to build the nonrelativistic theory onintegral op-

eratorsR̂(E) and B̂(E), of which R(E) andB(E) arema-

trix representations. The operatorR̂(E) is defined so that
when it acts atS on normal derivatives of functions that inV
are solutions of the Schro¨dinger equation at energyE, values

of these functions onS are produced. The operatorB̂(E) is

the inverse ofR̂(E). The primary goal of the theory is to

find the operatorsR̂(E) andB̂(E) by constructing their ker-
nels or, equivalently, to find the matricesR(E) andB(E) by
571050-2947/98/57~6!/4351~14!/$15.00
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determining their matrix elements. Among several a
proaches enabling one to achieve this goal@1–3,8–11#, there
are methods employing the calculus of variations. A vari
of variational principles related to the nonrelativist
R-matrix theory has been invented during the last fifty ye
@12–42# and some of them have been successfully applie
atomic physics calculations@3,34#. Recently, Szmytkowski
@7#, following a remark made by Ras¸eev @30#, has shown
that, on combining a general method for construction
variational principles described by Gerjuoy, Rau, and Spr
@43# ~cf. also Refs.@44, 45#! with the operator formulation of
the R-matrix theory@4–7#, all the finite-volume variational
principles that have already been known, and also some n
may be derived in a systematic way@46#.

Recent years have seen a rapid growth of interes
analysis of relativistic effects in atomic processes@47,48#. In
view of the conspicuous success of the nonrelativistic va
tional R-matrix methods in describing atomic phenome
@3,34#, it is natural to expect that their relativistic counte
parts should be equally helpful when the relativity has to
taken into account. The need for the relativistic versions
variational R-matrix methods has been recently articulat
by Aymar, Greene, and Luc-Koenig@3#. In response to this
request, in the present paper we attempt to generalize
results of Ref.@7# to the case when the wave equation go
erning dynamics of a system is a Dirac equation. For
sake of brevity and aiming to keep the presentation as sim
as possible, we restrict our considerations to the case of
tential scattering. In Sec. II, the relativisticR-matrix theory

is formulated in terms of integral operatorsR̂(6)(E) and

B̂(6)(E), which on the surfaceS link upper and lower com-
ponents of those wave spinorsC which in the volumeV
enclosed byS satisfy a Dirac equation at energyE. The

operatorsR̂(1)(E) andB̂(1)(E) are, in some sense, the an

logs of the operatorsR̂(E) andB̂(E), respectively, encoun
tered in the nonrelativistic theory. The specific feature of

relativistic case is that two other operatorsR̂(2)(E) and

B̂(2)(E) appear in the course of development of the the
4351 © 1998 The American Physical Society
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4352 57RADOSŁAW SZMYTKOWSKI
and these operators must be treated on an equal foot with

operatorsR̂(1)(E) andB̂(1)(E). After analysis of properties

of the operatorsR̂(6)(E) andB̂(6)(E) and their integral ker-
nels, in Sec. III we apply the general powerful approach
Gerjuoy, Rau, and Spruch@43# and derive variational prin-
ciples for eigenvalues and matrix elements of the opera

R̂(6)(E) and B̂(6)(E). In particular, we rederive a varia

tional principle for ~common! eigenvalues ofR̂(2)(E) and

B̂(1)(E) found, in an alternative way, several years ago
Hamacher and Hinze@49#. The variational principles derived
in Sec. III are unrestricted, which means that no particu
constraints need to be imposed on trial wave functions u
In some cases it may be desirable, however, to use trial fu
tions that are subjected to some subsidiary conditions. Th
fore, in Sec. IV we present constrained forms of the va
tional principles found in Sec. III. The principles derived
Secs. III and IV are linear, bilinear, or fractional bilinear
trial functions and therefore are ideally suited for the u
with linear trial functions of the Rayleigh-Ritz form. Ex
amples of applications of such functions to variational pr
ciples constructed in Sec. III are presented in Sec. V. T
paper concludes with a brief discussion of the results p
sented in Sec. VI.

II. THE OPERATORS B̂„6…

„E… AND R̂„6…

„E…

We shall be concerned with a Dirac particle of a giv
real energyE moving in a real, local, in general noncentr
potentialV(r). The wave equation governing the dynami
of the particle is

@Ĥ2E#C~E,r!50, ~1!

whereĤ is the Dirac Hamiltonian

Ĥ52 ic\a•“1bmc21V~r! ~2!

with the Hermitian 434 matricesa andb defined as usua
@50#.

As in all R-matrix treatments, we restrict our conside
ations to a finite volumeV enclosed by a surfaceS. We wish
to find a homogeneous boundary condition satisfied onS by
solutions of Eq.~1!. In what follows,r is a position vector of
a point in the volumeV. If the point r lies on the surfaceS,
we denote this using the symbolr instead ofr. To denote
volume and surface integrals containing products of t
spinor functions, we shall use the following notation:

^FuF8&[E
V
d3r F†~r!F8~r!,

~FuF8![E
S
d2r F†~r!F8~r!, ~3!

where the dagger denotes the matrix Hermitian conjugat
Hered3r is an infinitesimal volume element around the po
r and d2r is an infinitesimalscalar surface element aroun
the pointr. We define also a surface delta functiond (2)(r
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2r8) such that for any reasonable four-component spi
function F~r! defined on the surfaceS one has

E
S
d2r8d~2!~r2r8!F~r8!5F~r!,

E
S
d2r8d~2!~r2r8!F†~r8!5F†~r!. ~4!

Let C(E,r) and C8(E,r) be two particular solutions to
the Dirac equation~1! corresponding to the same real ener
E. Applying the Gauss divergence theorem we obtain

^ĤC8uC&2^C8uĤC&5~C8u ic\anC!. ~5!

Herean(r) is the 434 Hermitian matrix defined as

an~r!5n~r!•a, ~6!

wheren~r! is an outward unit vector normal to the surfaceS
at the pointr. In virtue of the reality ofE the left-hand side
of Eq. ~5! vanishes yielding

~C8u ianC!50 ~7!

~for reasons that should become clear shortly, we have
tained in Eq.~7! the imaginary uniti !. To proceed further we
define matrices

b~6 !5
I 6b

2
, an

~6 !~r!5b~6 !an~r!, ~8!

whereI is the unit 434 matrix. Obviously, one has

b~1 !1b~2 !5I , an
~1 !~r!1an

~2 !~r!5an~r!. ~9!

The matricesb (6) are Hermitian while

an
~6 !†~r!5an

~7 !~r!. ~10!

For the sake of later applications we notice the followi
properties of the matricesb (6) andan

(6)(r):

b~6 !b~6 !5b~6 !, b~6 !b~7 !50, an
~6 !~r!an

~6 !~r!50,

an
~6 !~r!an

~7 !~r!5b~6 !, ~11!

an
~6 !~r!b~6 !50, b~6 !an

~6 !~r!5an
~6 !~r!,

b~6 !an
~7 !~r!50, an

~6 !~r!b~7 !5an
~6 !~r!, ~12!

which may be easily derived from the definitions~8! and the
anticommutation relations satisfied by the matricesa andb
@50#. With the matricesan

(6)(r) the relation~7! may be re-
written in two equivalent forms:

~ ian
~1 !C8uC!5~C8u ian

~1 !C!,

~ ian
~2 !C8uC!5~C8u ian

~2 !C!, ~13!

where it may be interpreted that the matricesian
(1)(r) and

ian
(2)(r), considered as operators acting on solutions of
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Dirac equation~1! at fixed energyE, are Hermitian with
respect to the surface scalar product~u!.

With the matricesian
(6)(r) one may associate linear He

mitian integral operatorsB̂(6)(E) such that

ian
~6 !~r!C~E,r!56B̂~6 !~E!C~E,r! ~14!

for any solution of Eq.~1! at energyE. The operators

B̂(6)(E) are represented by their integral kerne
B(6)(E,r,r8) and Eq.~14! may be equivalently rewritten in
the form

ian
~6 !~r!C~E,r!56E

S
d2r8B~6 !~E,r,r8!C~E,r8!

~15!

@notice that the kernelsB(6)(E,r,r8) are the 434 matrices#.
Since the left-hand side of this equation remains invari
after premultiplication withb (6), this restricts a class of ad
missible kernelsB(6)(E,r,r8) to such that

B~6 !~E,r,r8!5b~6 !B~6 !~E,r,r8!. ~16!

Further constraints follow from the fact that, to represent

Hermitian operatorsB̂(6)(E), the kernelsB(6)(E,r,r8)
must be Hermitian themselves, i.e.,

B~6 !~E,r,r8!5B~6 !†~E,r8,r!. ~17!

Equations~16! and ~17! imply

B~6 !~E,r,r8!5b~6 !B~6 !~E,r,r8!b~6 !. ~18!

It must be emphasized that the operatorsian
(6)(r) and

6B̂(6)(E) are not identical and for an arbitrary four
component spinor functionF~r! in general one has

ian
~6 !~r!F~r!Þ6B̂~6 !~E!F~r! ~19!

unlessF~r! obeys inV the Dirac equation~1! at energyE.
In applications it will be convenient to use the Hermitia

integral operatorsR̂(6)(E) defined by

b~6 !C~E,r!56R̂~6 !~E!ian
~6 !~r!C~E,r! ~20!

for any solution to Eq.~1! at energyE. In terms of the
associated 434 matrix kernelsR(6)(E,r,r8) Eq. ~20! may
be rewritten as

b~6 !C~E,r!56E
S
d2r8R~6 !~E,r,r8!ian

~6 !~r8!C~E,r8!.

~21!

The operatorsR̂(6)(E) and B̂(6)(E) are reciprocal in the
sense of

R̂~6 !~E!B̂~6 !~E!5B̂~6 !~E!R̂~6 !~E!5b~6 !. ~22!

The corresponding reciprocity relation for the kerne
R(6)(E,r,r8) andB(6)(E,r,r8) is
t

e

E
S
d2r9R~6 !~E,r,r9!B~6 !~E,r9,r8!

5E
S
d2r9B~6 !~E,r,r9!R~6 !~E,r9,r8!

5d~2!~r2r8!b~6 !. ~23!

The kernelsR(6)(E,r,r8) are Hermitian,

R~6 !~E,r,r8!5R~6 !†~E,r8,r!, ~24!

and possess the property@cf. Eq. ~18!#

R~6 !~E,r,r8!5b~6 !R~6 !~E,r,r8!b~6 !. ~25!

Consider now those particular solutions$C i(E,r)% to the
Dirac equation~1! that on the surfaceS satisfy the relation

ian
~1 !~r!C i~E,r!5bi~E!b~1 !C i~E,r!. ~26!

By utilizing Eq. ~14! we may rewrite this relation in the form

B̂~1 !~E!C i~E,r!5bi~E!b~1 !C i~E,r!. ~27!

It follows that the surface functions$C i(E,r)% may be in-

terpreted as eigenfunctions of the operatorB̂(1)(E) with the
singular weightb (1). The constants$bi(E)% are correspond-

ing eigenvalues. Since the operatorsB̂(1)(E) and b (1) are
Hermitian, the eigenvalues$bi(E)% are real and eigenfunc-
tions associated with different eigenvalues are orthogo
with respect to the weightb (1) over the surfaceS

~C i ub~1 !C j !50, bi~E!Þbj~E!. ~28!

Without loss of generality we shall assume that eigenfu
tions associated with degenerate eigenvalues~if there are
any! are also mutually orthogonal over the surfaceS and that
all eigenfunctions are normalized to unity in the sense of

~C i ub~1 !C i !51. ~29!

Then for two arbitrary eigenfunctions of the operat

B̂(1)(E) one has

~C i ub~1 !C j !5d i j . ~30!

The functions$b (1)C i(E,r)% form a complete set on the
surfaceS in the subspace ofupper components~this is a
consequence of singularity of the weightb (1)! and the cor-
responding closure relation is

(
all i

b~1 !C i~E,r!C i
†~E,r8!b~1 !5d~2!~r2r8!b~1 !.

~31!

We have defined the functions$C i(E,r)% as those solu-
tions to the Dirac equation~1! that on the surfaceS are

eigenfunctions of the operatorB̂(1)(E) with the weightb (1)

@cf. Eq. ~27!#. It appears that the surface function
$C i(E,r)% are simultaneously eigenfunctions of the opera
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B̂(2)(E) with the weightb (2). Indeed, upon premultiplying
both sides of Eq.~26! with the matrixan

(2)(r) one has

ian
~2 !~r!C i~E,r!52bi

21~E!b~2 !C i~E,r!, ~32!

which, after utilizing Eq.~14!, may be rewritten as

B̂~2 !~E!C i~E,r!5bi
21~E!b~2 !C i~E,r!. ~33!

This proves the conjecture and shows also that eigenva

of the operatorB̂(2)(E) are $bi
21(E)%. With the normaliza-

tion ~29! adopted above one finds the orthogonality relati

~C i ub~2 !C j !5bi
2~E!d i j ~34!

and the corresponding closure relation in the subspac
lower components

(
all i

b~2 !C i~E,r!bi
22~E!C i

†~E,r8!b~2 !5d~2!~r2r8!b~2 !.

~35!

For the sake of completeness of our discussion, we pre

eigenvalue equations for the operatorsR̂(6)(E):

R̂~1 !~E!C i~E,r!5bi
21~E!b~1 !C i~E,r!, ~36!

R̂~2 !~E!C i~E,r!5bi~E!b~2 !C i~E,r!. ~37!

It is to be noticed that the operatorsB̂(1)(E) and R̂(2)(E)
have a common set of eigenvalues as do the opera

B̂(2)(E) andR̂(1)(E).
Given the eigenfunctions$C i(E,r)% and the eigenvalue

$bi(E)%, one may reconstruct the kernelsB(6)(E,r,r8) and
R(6)(E,r,r8). By combining Eqs.~15!, ~26!, and ~32! one
obtains integral eigenvalue equations for the surface fu
tions $C i(E,r)%:

E
S
d2r8B~1 !~E,r,r8!C i~E,r8!5bi~E!b~1 !C i~E,r!,

~38!

E
S
d2r8B~2 !~E,r,r8!C i~E,r8!5bi

21~E!b~2 !C i~E,r!.

~39!

By virtue of the relations~30!, ~31!, ~34!, and ~35! these
eigenvalue equations imply spectral representations of
kernelsB(6)(E,r,r8):

B~1 !~E,r,r8!5(
all i

b~1 !C i~E,r!bi~E!C i
†~E,r8!b~1 !,

~40!

B~2 !~E,r,r8!5(
all i

b~2 !C i~E,r!bi
23~E!C i

†~E,r8!b~2 !.

~41!

Similarly, the integral eigenvalue equations
es

of

nt

rs

c-

e

E
S
d2r8R~1 !~E,r,r8!C i~E,r8!5bi

21~E!b~1 !C i~E,r!,

~42!

E
S
d2r8R~2 !~E,r,r8!C i~E,r8!5bi~E!b~2 !C i~E,r!,

~43!

stemming from Eqs.~36! and~37!, imply the spectral repre-
sentations of the kernelsR(6)(E,r,r8):

R~1 !~E,r,r8!5(
all i

b~1 !C i~E,r!bi
21~E!C i

†~E,r8!b~1 !,

~44!

R~2 !~E,r,r8!5(
all i

b~2 !C i~E,r!bi
21~E!C i

†~E,r8!b~2 !.

~45!

Notice the asymmetry between the representations~40!–~41!
and ~44!–~45!.

We have seen that the operatorsB̂(1)(E) and R̂(2)(E)
have a common set of eigenvalues$bi(E)%. Similarly, a

common set of eigenvalues of the operatorsB̂(2)(E) and

R̂(1)(E) is $bi
21(E)%. Moreover, the four operators have

common set of eigenfunctions$C i(E,r)%. This suggests tha
the kernelsB(1)(E,r,r8) andR(2)(E,r,r8) should be re-
lated as should be the kernelsB(2)(E,r,r8) and
R(1)(E,r,r8). To obtain the desired relations we operate
Eqs.~40! and ~41! from the left withan

(2)(r) andan
(1)(r),

respectively, and then on the resulting equations from
right with an

(1)(r8) andan
(2)(r8), respectively. Upon utiliz-

ing the properties of the matricesan
(6)(r) andb (6), making

use of the eigenvalue equations~26! and~32! and comparing
the results with the spectral representations~44! and~45! one
finds

R~6 !~E,r,r8!5an
~6 !~r!B~7 !~E,r,r8!an

~7 !~r8!. ~46!

III. CONSTRUCTION OF VARIATIONAL PRINCIPLES

A. Variational principles for eigenvalues

of B̂„6…

„E… and R̂„6…

„E…

In this subsection we shall derive variational principl

for eigenvalues of the operatorsB̂(6)(E) andR̂(6)(E). @We

recall that the operatorsB̂(1)(E) and R̂(2)(E) and the op-

eratorsB̂(2)(E) and R̂(1)(E) have common sets of eigen
values, respectively. Also, eigenvalues of the operat

B̂(2)(E) and R̂(1)(E) are reciprocals of eigenvalues of th

operatorsB̂(1)(E) and R̂(2)(E).# For the sake of brevity,
throughout this subsection we shall omit all indices label
eigenvalues and corresponding eigenfunctions.

Following the ideas of Gerjuoy, Rau, and Spruch@43# ~cf.
also Refs.@44,45#!, we treat the defining Eqs.~1!, ~26!, and
~32! as constraints and consider the functionals
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F ~6 !@b61,l̄~6 !,L̄~6 !,C̄#

5b611~ l̄~6 !u ian
~6 !C̄7b61b~6 !C̄ !

1^L̄~6 !u@Ĥ2E#C̄&. ~47!

Here b11[b̄ and b21 are numbers~possibly complex!,

l̄ (6)(r) are regular functions defined on the surfaceS, while

L̄ (6)(r) and C̄(r) are regular functions defined in the vo

umeV. The functionsl̄ (6)(r) andL̄ (6)(r) are the Lagrange
functions for the problem discussed and are responsible
incorporation of the constraints~26! and ~1! ~if the upper
superscripts are chosen! or the constraints~32! and~1! ~if the
lower superscripts are chosen!, respectively.

The functionals~47! possess an important property. If th

numberb̄ equals some eigenvalue, sayb(E), of the opera-

tors B̂(1)(E) andR̂(2)(E) and if simultaneouslyC̄(r) coin-
cides with a corresponding eigenfunctionC(E,r), the value
of the functional F (1) is b(E) irrespective of particular

forms of the Lagrange functionsl̄ (1)(r) andL̄ (1)(r). Simi-

larly, if b215b21(E) andC̄(r)5C(E,r), then the value of
the functionalF (2) is b21(E) regardless of forms of the

functionsl̄ (2)(r) andL̄ (2)(r). According to Gerjuoy, Rau
and Spruch@43#, this property may be exploited and it
possible to find such optimal forms of the Lagrange fun
tions, we shall denote them byl (6)(r) andL (6)(r), that the
functionals~47! will be stationary subject to small and oth

erwise arbitrary variations ofb61, l̄ (6)(r), L̄ (6)(r), and

C̄(r) aroundb61(E), l (6)(r), L (6)(r), and C(E,r), re-
spectively. To find the functionsl (6)(r) and L (6)(r), we
vary Eq.~47! obtaining

dF ~6 !@b61,l~6 !,L~6 !,C#

5db611~dl~6 !u ian
~6 !C7b61b~6 !C!

7db61~l~6 !ub~6 !C!1~l~6 !u ian
~6 !dC

7b61b~6 !dC!1^dL~6 !u@Ĥ2E#C&

1^L~6 !u@Ĥ2E#dC& ~48!

@heredb61 meansd(b61) andnot (db)61#. Because of Eqs
~1!, ~26!, and ~32!, the terms containing the variation
dl (6)(r) anddL (6)(r) vanish and Eq.~48! takes the form

dF ~6 !@b61,l~6 !,L~6 !,C#

5db61@17~l~6 !ub~6 !C!#1~l~6 !u ian
~6 !dC

7b61b~6 !dC!1^L~6 !u@Ĥ2E#dC&. ~49!

The right-hand side of Eq.~49! may be conveniently trans
formed by utilizing the Gauss divergence theorem, whi
applied to the volume integral in Eq.~49!, states that

^L~6 !u@Ĥ2E#dC&5^@Ĥ2E#L~6 !udC&

2~L~6 !u ic\andC!. ~50!
or

-

,

This gives

dF ~6 !@b61,l~6 !,L~6 !,C#

5db61@17~l~6 !ub~6 !C!#1~ ic\anL~6 !2 ian
~7 !l~6 !

7b61b~6 !l~6 !udC!1^@Ĥ2E#L~6 !udC&. ~51!

We see that to make the functionals~47! stationary, which is
equivalent to

dF ~6 !@b61,l~6 !,L~6 !,C#50, ~52!

it is necessary to impose the conditions

17~l~6 !ub~6 !C!50, ~53!

@Ĥ2E#L~6 !~r!50 in V ~54!

and

ic\an~r!L~6 !~r!2 ian
~7 !~r!l~6 !~r!7b61~E!b~6 !l~6 !~r!

50 on S. ~55!

We may conveniently split Eq.~55! premultiplying it by suit-
ably chosen matrices. Operating from the left withb (6) we
obtain

ic\an
~6 !~r!L~6 !~r!7b61~E!b~6 !l~6 !~r!50 ~56!

while operating withan
(6)(r) we get

ic\b~6 !L~6 !~r!2 ib~6 !l~6 !~r!50. ~57!

Hence the boundary conditions satisfied by the functio
L (6)(r) on the surfaceS follow

ian
~6 !~r!L~6 !~r!7b61~E!b~6 !L~6 !~r!50. ~58!

Comparison of this result with Eqs.~26! and~32! shows that
the Lagrange functionsL (6)(r) satisfy on the surfaceS the
same homogeneous boundary condition as the eigenfunc
C(E,r). Moreover, in virtue of Eqs.~1! and ~54! the func-
tions C(E,r) and L (6)(r) are solutions of the same differ
ential equations. This implies that the functionsL (6)(r) may
be chosen@43# as

L~6 !~r!5g~6 !C~E,r!, ~59!

where the proportionality factorsg (6) are to be determined
This is done with the aid of Eq.~57! and the condition~53!.
One obtains

g~6 !56
1

c\

1

~Cub~6 !C!
~60!

and consequently

L~6 !~r!56
1

c\

1

~Cub~6 !C!
C~E,r!. ~61!

Furthermore, Eqs.~57! and ~61! give
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b~6 !l~6 !~r!56
1

~Cub~6 !C!
b~6 !C~E,r!. ~62!

It may seem distressing that the construction presented a
does not provide the lower component of the spin
l (1)(r) and the upper component of the spinorl (2)(r) but
we shall see in a moment that this does not cause any p
lems.

The relations ~61! and ~62! between the functions
L (6)(r) andl (6)(r) and the eigenfunctionC(E,r) suggest
that in variational calculations it should be convenient
choose the trial Lagrange functions as

L̄~6 !~r!56
1

c\

1

~C̄ub~6 !C̄ !
C̄~r!, ~63!

b~6 !l̄~6 !~r!56
1

~C̄ub~6 !C̄ !
b~6 !C̄~r!. ~64!

On substituting these particular forms ofL̄ (6)(r) and

b (6)l̄ (6)(r) to the functionals~47! and utilizing the relation

~ l̄~6 !uan
~6 !C̄ !5~b~6 !l̄~6 !uan

~6 !C̄ !, ~65!

following from the properties of the matricesan
(6)(r) and

b (6) @the relation~65! shows that we do not need to kno

anything about the lower component of the spinorl̄ (1)(r)

and the upper component of the spinorl̄ (2)(r), which may
be arbitrary#, we find the functionals

F ~6 !@C̄#56
~C̄u ian

~6 !C̄ !

~C̄ub~6 !C̄ !
6

1

c\

^C̄u@Ĥ2E#C̄&

~C̄ub~6 !C̄ !
~66!

with the desirable property

F ~6 !@C̄#5F ~6 !* @C̄# ~67!

~the asterisk denotes the complex conjugation!. The sought
variational principles, the analogs of the nonrelativis
variational principles~52! and ~76! of Ref. @7#, are

b~E!5statH ~C̄u ian
~1 !C̄ !

~C̄ub~1 !C̄ !
1

1

c\

^C̄u@Ĥ2E#C̄&

~C̄ub~1 !C̄ !
J ,

~68!

b21~E!5statH 2
~C̄u ian

~2 !C̄ !

~C̄ub~2 !C̄ !
2

1

c\

^C̄u@Ĥ2E#C̄&

~C̄ub~2 !C̄ !
J .

~69!

The principle ~68!, the relativistic counterpart of the ce
ebrated Kohn variational principle@12#, has been found ear
lier in a different way by Hamacher and Hinze@49#.
ve
r

b-

B. Variational principles for matrix elements

of R̂„6…

„E… and their reciprocals

In this subsection we shall derive variational principl

for matrix elements (FuR̂(6)F8) and their reciprocals,

(FuR̂(6)F8)21, where R̂(6)(E) are the integral operator
defined in Sec. II whileF~r! and F8(r) are sufficiently
regular spinor functions defined on the surfaceS. For
this purpose, we shall need auxiliary spinor functio
C (6)(E,r) andC8(6)(E,r) defined as those particular solu
tions of the relativistic wave equation~1!, which on the en-
closing surfaceS satisfy inhomogeneous boundary cond
tions

ian
~6 !~r!C~6 !~E,r!56b~6 !F~r!,

ian
~6 !~r!C8~6 !~E,r!56b~6 !F8~r!. ~70!

The conditions~70! are the analogs of the inhomogeneo
Neumann boundary conditions used in the nonrelativis
theory @7#. Since the functionsC (6)(E,r) and C8(6)(E,r)
satisfy the Dirac equation~1!, we may utilize Eq.~20! and
rewrite the conditions~70! in the form containing the opera

tors R̂(6)(E):

b~6 !C~6 !~E,r!5R̂~6 !~E!F~r!,

b~6 !C8~6 !~E,r!5R̂~6 !~E!F8~r!. ~71!

At first we shall construct functionals whose stationa

values are (FuR̂(6)F8). To this end, we treat Eqs.~1!, ~70!,
and ~71! as constraints and consider the functionals

F ~6 !@F,F8;RC ~6 !,x̄~6 !,l̄~6 !,L̄~6 !,C̄8~6 !#

5~FuRC ~6 !F8!1~ x̄~6 !ub~6 !C̄8~6 !2RC ~6 !F8!

1~ l̄~6 !u ian
~6 !C̄8~6 !7b~6 !F8!

1^L̄~6 !u@Ĥ2E#C̄8~6 !&. ~72!

HereRC (6) are some~possibly non-Hermitian! linear integral
operators acting on functions defined on the surfaceS,

x̄ (6)(r) and l̄ (6)(r) are sufficiently regular functions de

fined onS, while L̄ (6)(r) andC̄8(6)(r) are sufficiently regu-
lar functions defined in the volumeV. The functions

x̄ (6)(r), l̄ (6)(r), and L̄ (6)(r) are the Lagrange function
incorporating the constraints~71!, ~70!, and~1!, respectively.
We seek such functionsx (6)(r), l (6)(r), andL (6)(r) that
the first variations of the functionals~72! due to small varia-

tions of RC (6), x̄ (6)(r), l̄ (6)(r), L̄ (6)(r), and C̄8(6)(r)

around R̂(6)(E), x (6)(r), l (6)(r), L (6)(r), and
C8(6)(E,r), respectively, vanish. We have

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

5~FudR̂~6 !F8!1~x~6 !ub~6 !dC8~6 !2dR̂~6 !F8!

1~l~6 !u ian
~6 !dC8~6 !!1^L~6 !u@Ĥ2E#dC8~6 !&,

~73!
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where we have utilized the fact that terms containing
variationsdx (6)(r), dl (6)(r), anddL (6)(r) vanish due to
the constraints~71!, ~70!, and~1!. Application of the Gauss
theorem to the volume integral transforms Eq.~73! to the
form

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

5~F2x~6 !udR̂~6 !F8!1~b~6 !x~6 !2 ian
~7 !l~6 !

1 ic\anL~6 !udC8~6 !!1^@Ĥ2E#L~6 !udC8~6 !&.

~74!

On stipulating

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#50 ~75!

we find

@Ĥ2E#L~6 !~r!50 in V, ~76!

F~r!2x~6 !~r!50 on S, ~77!

and

b~6 !x~6 !~r!2 ian
~7 !~r!l~6 !~r!1 ic\an~r!L~6 !~r!50

on S. ~78!

Premultiplying Eq.~78! by b (6) and utilizing the relations
~11! and ~12! we have

b~6 !x~6 !~r!1 ic\an
~6 !~r!L~6 !~r!50 ~79!

while premultiplying byan
(6)(r) we obtain

2 ib~6 !l~6 !~r!1 ic\b~6 !L~6 !~r!50. ~80!

From Eq.~77! it follows that

x~6 !~r!5F~r! ~81!

while Eqs.~79! and ~81! imply

ian
~6 !~r!L~6 !~r!52

1

c\
b~6 !F~r!. ~82!

Comparison of Eqs.~76! and ~82! with Eqs. ~1! and ~70!
shows that the Lagrange functionsL (6)(r) satisfy the same
differential equation inV as the functionsC (6)(E,r) do and
obey onS the inhomogeneous boundary conditions that d
fer from those satisfied byC (6)(E,r) only by the multipli-
cative factors71/c\ in inhomogeneous terms. This implie
that we may choose

L~6 !~r!57
1

c\
C~6 !~E,r! ~83!

and consequently@cf. Eq. ~80!#

b~6 !l~6 !~r!57b~6 !C~6 !~E,r!. ~84!

The relations~81!, ~83!, and ~84! between the functions
x (6)(r), l (6)(r), andL (6)(r) and the functionsF~r! and
e

-

C (6)(E,r) suggest that we may restrict our considerations
the following trial forms of the Lagrange functions:

x̄~6 !~r!5F~r!, ~85!

b~6 !l̄ ~6 !~r!57b~6 !C̄~6 !~r! ~86!

and

L̄~6 !~r!57
1

c\
C̄~6 !~r!. ~87!

Substitution of these particular forms ofx̄ (6)(r), l̄ (6)(r),

andL̄ (6)(r) to the definition~72! gives the variational func-
tionals

F ~6 !@F,F8;C̄~6 !,C̄8~6 !#5~Fub~6 !C̄8~6 !!

1~b~6 !C̄~6 !uF8!

7~C̄~6 !u ian
~6 !C̄8~6 !!

7
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&.

~88!

By applying the Gauss divergence theorem to the volu
integral appearing on the right-hand side of this equation
may be easily shown that the functionals~88! possess a sym
metry property

F ~6 !@F,F8;C̄~6 !,C̄8~6 !#5F ~6 !* @F8,F;C̄8~6 !,C̄~6 !#.
~89!

The functionals~88! are stationary for small, smooth, an

otherwise arbitrary variations ofC̄ (6)(r) and C̄8(6)(r)
aroundC (6)(E,r) and C8(6)(E,r), respectively, and their

stationary values are (FuR̂(6)F8). We have thus the varia
tional principles

~FuR̂~6 !F8!5statH ~Fub~6 !C̄8~6 !!1~b~6 !C̄~6 !uF8!

7~C̄~6 !u ian
~6 !C̄8~6 !!

7
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&J , ~90!

which are the counterparts of the nonrelativistic variatio
principle ~96! of Ref. @7#.

Next we shall derive variational principles for reciproca

of the matrix elements of the operatorsR̂(6)(E), i.e., for

(FuR̂(6)F8)21. To this end we construct the functionals
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F ~6 !@F,F8;RC ~6 !,x̄~6 !,l̄~6 !,L̄~6 !,C̄8~6 !#

5
1

~FuRC ~6 !F8!
1~ x̄~6 !ub~6 !C̄8~6 !2RC ~6 !F8!

1~ l̄~6 !u ian
~6 !C̄8~6 !7b~6 !F8!

1^L̄~6 !u@Ĥ2E#C̄8~6 !&. ~91!

We seek such formsx (6)(r), l (6)(r), andL (6)(r) of the

Lagrange functionsx̄ (6)(r), l̄ (6)(r), andL̄ (6)(r) @incorpo-
rating the subsidiary conditions~71!, ~70!, and ~1!, respec-
tively# that the functionals~91! are stationary for small varia

tions of RC (6), x̄ (6)(r), l̄ (6)(r), L̄ (6)(r), and C̄8(6)(r)

around R̂(6)(E), x (6)(r), l (6)(r), L (6)(r), and
C8(6)(E,r). Varying Eq.~91! we obtain

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

52
~FudR̂~6 !F8!

~FuR̂~6 !F8!2
1~x~6 !ub~6 !dC8~6 !2dR̂~6 !F8!

1~l~6 !u ian
~6 !dC8~6 !!1^L~6 !u@Ĥ2E#dC8~6 !&.

~92!

To simplify this equation, we use the Gauss theorem

transfer the operation@Ĥ2E# on dC8(6)(r) to L (6)(r).
This yields

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

52F ~FudR̂~6 !F8!

~FuR̂~6 !F8!2
1~x~6 !udR̂~6 !F8!G

1~b~6 !x~6 !2 ian
~7 !l~6 !1 ic\anL~6 !udC8~6 !!

1^@Ĥ2E#L~6 !udC8~6 !&. ~93!

To ensure that

dF ~6 !@F,F8;R̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#50 ~94!

holds for essentially arbitrarydR̂(6) and dC8(6)(r), we
must require

@Ĥ2E#L~6 !~r!50 in V, ~95!

1

~R̂~6 !F8uF!2
F~r!1x~6 !~r!50 on S ~96!

and

b~6 !x~6 !~r!2 ian
~7 !~r!l~6 !~r!1 ic\an~r!L~6 !~r!50

on S. ~97!

Operating on Eq.~97! from the left withb (6) gives

b~6 !x~6 !~r!1 ic\an
~6 !~r!L~6 !~r!50 ~98!
d

and withan
(6)(r) gives

2 ib~6 !l~6 !~r!1 ic\b~6 !L~6 !~r!50. ~99!

We deduce from Eq.~96! that

x~6 !~r!52
1

~R̂~6 !F8uF!2
F~r! ~100!

and from Eqs.~98! and ~100! that

ian
~6 !~r!L~6 !~r!5

1

c\

1

~R̂~6 !F8uF!2
b~6 !F~r!.

~101!

Utilizing the boundary conditions~71! and the Hermicity

property of the operatorsR̂(6)(E), it is convenient to rewrite
Eqs.~100! and ~101! in the forms

x~6 !~r!52
1

~b~6 !C8~6 !uF!~R̂~6 !F8uF!
F~r!,

~102!

ian
~6 !~r!L~6 !~r!5

1

c\

1

~F8ub~6 !C~6 !!~b~6 !C8~6 !uF!

3b~6 !F~r!. ~103!

Comparison of Eqs.~95!, ~103!, ~1!, and~70! shows that we
may choose

L~6 !~r!56
1

c\

1

~F8ub~6 !C~6 !!~b~6 !C8~6 !uF!
C~6 !~E,r!

~104!

and consequently@cf. Eq. ~99!#

b~6 !l~6 !~r!56
1

~F8ub~6 !C~6 !!~b~6 !C8~6 !uF!

3b~6 !C~6 !~E,r!. ~105!

It is then natural to choose trial estimates ofx (6)(r),
l (6)(r), andL (6)(r) as

x̄~6 !~r!52
1

~b~6 !C̄8~6 !uF!~RC ~6 !F8uF!
F~r!,

~106!

b~6 !l̄~6 !~r!56
1

~F8ub~6 !C̄~6 !!~b~6 !C̄8~6 !uF!
,

3b~6 !C̄~6 !~r!, ~107!

and

L̄~6 !~r!56
1

c\

1

~F8ub~6 !C̄~6 !!~b~6 !C̄8~6 !uF!
C̄~6 !~r!,

~108!

which leads us to the symmetric@in the sense of Eq.~89!#
functionals
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F ~6 !@F,F8;C̄~6 !,C̄8~6 !#56
~C̄~6 !u ian

~6 !C̄8~6 !!

~Fub~6 !C̄8~6 !!~b~6 !C̄~6 !uF8!
6

1

c\

^C̄~6 !u@Ĥ2E#C̄8~6 !&

~Fub~6 !C̄8~6 !!~b~6 !C̄~6 !uF8!
. ~109!

The resulting variational principles

~FuR̂~6 !F8!215statH 6
~C̄~6 !u ian

~6 !C̄8~6 !!

~Fub~6 !C̄8~6 !!~b~6 !C̄~6 !uF8!
6

1

c\

^C̄~6 !u@Ĥ2E#C̄8~6 !&

~Fub~6 !C̄8~6 !!~b~6 !C̄~6 !uF8!
J ~110!
le

es

-
e

ns

o
tic

ts
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of

med
are the analogs of the nonrelativistic variational princip
~115! of Ref. @7#.

C. Variational principles for matrix elements

of B̂„6…

„E… and their reciprocals

In this subsection we shall derive variational principl

for matrix elements (FuB̂(6)F8) and their reciprocals

(FuB̂(6)F8)21, whereB̂(6)(E) are the integral operators de
fined in Sec. II whileF~r! and F8(r) are any reasonabl
spinor functions defined on the surfaceS. As in the preced-
ing subsection, we introduce auxiliary spinor functio
C (6)(E,r) and C8(6)(E,r) satisfying inV the wave equa-
tion ~1!. This time, however, the functionsC (6)(E,r) and
C8(6)(E,r) are enforced to satisfy on the surfaceS the in-
homogeneous boundary conditions

b~6 !C~6 !~E,r!56b~6 !F~r!,

b~6 !C8~6 !~E,r!56b~6 !F8~r!, ~111!

which may be viewed as the analogs of the inhomogene
Dirichlet boundary conditions used in the nonrelativis
theory@7#. By virtue of Eq.~14!, the conditions~111! may be
rewritten in the form

ian
~6 !~r!C~6 !~E,r!5B̂~6 !~E!F~r!,

ian
~6 !~r!C8~6 !~E,r!5B̂~6 !~E!F8~r!. ~112!

To derive variational principles for the matrix elemen

(FuB̂(6)F8), we start with the functionals

F ~6 !@F,F8;BC ~6 !,x̄~6 !,l̄~6 !,L̄~6 !,C̄8~6 !#

5~FuBC ~6 !F8!1~ x̄~6 !u ian
~6 !C̄8~6 !2BC ~6 !F8!

1~ l̄~6 !ub~6 !C̄8~6 !7b~6 !F8!

1^L̄~6 !u@Ĥ2E#C̄8~6 !&. ~113!

The notation used in Eq.~113! is similar to that used in Sec
III B and should be self-explanatory. The first variation
Eq. ~113! is
us

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

5~FudB̂~6 !F8!1~x~6 !u ian
~6 !dC8~6 !2dB̂~6 !F8!

1~l~6 !ub~6 !dC8~6 !!1^L~6 !u@Ĥ2E#dC8~6 !&

~114!

and, making use of the Gauss theorem, may be transfor
to the form

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

5~F2x~6 !udB̂~6 !F8!1~2 ian
~7 !x~6 !1b~6 !l~6 !

1 ic\anL~6 !udC8~6 !!1^@Ĥ2E#L~6 !udC8~6 !&.

~115!

To make the right-hand side of Eq.~115! vanish for arbitrary

dB̂(6) anddC8(6)(r),

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#50,
~116!

it is necessary to require

@Ĥ2E#L~6 !~r!50 in V, ~117!

F~r!2x~6 !~r!50 on S, ~118!

and

2 ian
~7 !~r!x~6 !~r!1b~6 !l~6 !~r!1 ic\an~r!L~6 !~r!50

on S. ~119!

Equation~119! implies

b~6 !l~6 !~r!1 ic\an
~6 !~r!L~6 !~r!50 on S,

~120!
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2 ib~6 !x~6 !~r!1 ic\b~6 !L~6 !~r!50 on S ~121!

and from Eqs.~118! and ~121! we find

x~6 !~r!5F~r!, ~122!

b~6 !L~6 !~r!5
1

c\
b~6 !F~r!. ~123!

Eqs.~117!, ~123!, ~1!, and~111! give

L~6 !~r!56
1

c\
C~6 !~E,r! ~124!

and consequently@cf. Eq. ~120!#

b~6 !l~6 !~r!57 ian
~6 !~r!C~6 !~E,r!. ~125!

Choosing trial forms of the Lagrange functions as

x̄~6 !~r!5F~r!, ~126!

b~6 !l̄~6 !~r!57 ian
~6 !~r!C̄~6 !~r!, ~127!

L̄~6 !~r!56
1

c\
C̄~6 !~r! ~128!

and substituting these estimates to Eq.~113! yields the func-
tionals

F ~6 !@F,F8;C̄~6 !,C̄8~6 !#5~Fu ian
~6 !C̄8~6 !!

1~ ian
~6 !C̄~6 !uF8!

7~ ian
~6 !C̄~6 !uC̄8~6 !!

6
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&,

~129!

possessing the symmetry property~89!. The sought varia-
tional principles are

~FuB̂~6 !F8!5statH ~Fu ian
~6 !C̄8~6 !!1~ ian

~6 !C̄~6 !uF8!

7~ ian
~6 !C̄~6 !uC̄8~6 !!

6
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&J ~130!

and are akin to the nonrelativistic stationary principle~135!
of Ref. @7#.

Finally, we shall construct variational principles for th

reciprocals of the matrix elements (FuB̂(6)F8). The starting
points are the functionals
F ~6 !@F,F8;BC ~6 !,x̄~6 !,l̄~6 !,L̄~6 !,C̄8~6 !#

5
1

~FuBC ~6 !F8!
1~ x̄~6 !u ian

~6 !C̄8~6 !2BC ~6 !F8!

1~ l̄~6 !ub~6 !C̄8~6 !7b~6 !F8!

1^L̄~6 !u@Ĥ2E#C̄8~6 !&. ~131!

Varying Eq.~131! we obtain

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

52
~FudB̂~6 !F8!

~FuB̂~6 !F8!2
1~x~6 !u ian

~6 !dC8~6 !2dB̂~6 !F8!

1~l~6 !ub~6 !dC8~6 !!1^L~6 !u@Ĥ2E#dC8~6 !&

~132!

and, after application of the Gauss theorem,

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#

52F ~FudB̂~6 !F8!

~FuB̂~6 !F8!2
1~x~6 !udB̂~6 !F8!G

1~2 ian
~7 !x~6 !1b~6 !l~6 !1 ic\anL~6 !udC8~6 !!

1^@Ĥ2E#L~6 !udC8~6 !&. ~133!

Demanding

dF ~6 !@F,F8;B̂~6 !,x~6 !,l~6 !,L~6 !,C8~6 !#50 ~134!

yields

@Ĥ2E#L~6 !~r!50 in V, ~135!

1

~ B̂~6 !F8uF!2
F~r!1x~6 !~r!50 on S, ~136!

2 ian
~7 !~r!x~6 !~r!1b~6 !l~6 !~r!1 ic\an~r!L~6 !~r!50

on S. ~137!

Premultiplying Eq.~137! by b (6) or an
(6)(r) gives, respec-

tively,

b~6 !l~6 !~r!1 ic\an
~6 !~r!L~6 !~r!50, ~138!

2 ib~6 !x~6 !~r!1 ic\b~6 !L~6 !~r!50. ~139!

Hence, we find

x~6 !~r!52
1

~ B̂~6 !F8uF!2
F~r!, ~140!
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b~6 !L~6 !~r!52
1

c\

1

~ B̂~6 !F8uF!2
b~6 !F~r!. ~141!

The Hermicity of the operatorsB̂(6)(E) and Eq.~112! al-
lows us to rewrite these relations in the more conveni
forms

x~6 !~r!52
1

~ ian
~6 !C8~6 !uF!~ B̂~6 !F8uF!

F~r!,

~142!

b~6 !L~6 !~r!52
1

c\

1

~F8u ian
~6 !C~6 !!~ ian

~6 !C8~6 !uF!

3b~6 !F~r!. ~143!

Comparison of Eqs.~135!, ~143!, ~1!, and~111! yields

L~6 !~r!57
1

c\

1

~F8u ian
~6 !C~6 !!~ ian

~6 !C8~6 !uF!

3C~6 !~E,r! ~144!

and consequently@cf. Eq. ~138!#
re
he
n

vo

n-

ri

to
fy
t

b~6 !l~6 !~r!56
1

~F8u ian
~6 !C~6 !!~ ian

~6 !C8~6 !uF!

3 ian
~6 !~r!C~6 !~E,r!. ~145!

Choosing

x̄~6 !~r!52
1

~ ian
~6 !C̄8~6 !uF!~BC ~6 !F8uF!

F~r!,

~146!

b~6 !l̄ ~6 !~r!56
1

~F8u ian
~6 !C̄~6 !!~ ian

~6 !C̄8~6 !uF!

3 ian
~6 !~r!C̄~6 !~r!, ~147!

L̄~6 !~r!57
1

c\

1

~F8u ian
~6 !C̄~6 !!~ ian

~6 !C̄8~6 !uF!
C̄~6 !~r!

~148!

we get the symmetric@in the sense of Eq.~89!# functionals
F ~6 !@F,F8;C̄~6 !,C̄8~6 !#56
~ ian

~6 !C̄~6 !uC̄8~6 !!

~Fu ian
~6 !C̄8~6 !!~ ian

~6 !C̄~6 !uF8!
7

1

c\

^C̄~6 !u@Ĥ2E#C̄8~6 !&

~Fu ian
~6 !C̄8~6 !!~ ian

~6 !C̄~6 !uF8!
~149!

and arrive at the variational principles

~FuB̂~6 !F8!215statH 6
~ ian

~6 !C̄~6 !uC̄8~6 !!

~Fu ian
~6 !C̄8~6 !!~ ian

~6 !C̄~6 !uF8!
7

1

c\

^C̄~6 !u@Ĥ2E#C̄8~6 !&

~Fu ian
~6 !C̄8~6 !!~ ian

~6 !C̄~6 !uF8!
J ~150!
oes.
the
ay
s-
rin-

Eq.
on
analogous to the nonrelativistic principle~154! of Ref. @7#.

IV. VARIATIONAL PRINCIPLES
WITH CONSTRAINED TRIAL FUNCTIONS

The variational principles derived in Sec. III areuncon-
strained, which means that trial functions used are not
quired to satisfy any restrictive conditions apart from t
reasonable requirement of continuity of their upper a
lower components across any surface subdividing the

ume V. In particular, the approximating functionsC̄ (6)(r)

and C̄8(6)(r) used in the variational principles~90! and
~110! do not need to satisfy the ‘‘Neumann’’ boundary co
ditions ~70! obeyed on the enclosing surfaceS by the exact
solutions C (6)(E,r) and C8(6)(E,r). Similarly, it is not
necessary that approximating functions used in the va
tional principles~130! and~150! should satisfy the ‘‘Dirich-
let’’ boundary conditions~111!.

In actual applications, however, it may be profitable
restrict a class of admissible trial functions to those satis
-

d
l-

a-

-

ing the same boundary condition as the exact solution d
The advantages may be twofold. First, this may facilitate
optimal choice of trial functions. Second, the restriction m
lead to a simpler form of a functional varied. We shall illu
trate the second advantage considering the variational p
ciples ~90! and ~130!.

Consider at first the variational principle~90!. If the trial

functionsC̄ (6)(r) andC̄8(6)(r) are forced to satisfy on the
surfaceS the ‘‘Neumann’’ boundary conditions@cf. Eq.~70!#

ian
~6 !~r!C̄~6 !~r!56b~6 !F~r!,

ian
~6 !~r!C̄8~6 !~r!56b~6 !F8~r!, ~151!

the second and the third terms on the right-hand side of
~90! cancel yielding the analog of the nonrelativistic Jacks
variational principle†cf. Eq. ~160! of Ref. @7#‡
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~FuR̂~6 !F8!5statH ~Fub~6 !C̄8~6 !!

7
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&J . ~152!

Similarly, if in the variational principle~130! the approxi-

mating functionsC̄ (6)(r) andC̄8(6)(r) are restricted to sat
isfy the ‘‘Dirichlet’’ boundary conditions@cf. Eq. ~111!#

b~6 !C̄~6 !~r!56b~6 !F~r!,

b~6 !C̄8~6 !~r!56b~6 !F8~r!, ~153!

this yields the constrained variational principle

~FuB̂~6 !F8!5statH ~Fu ian
~6 !C̄8~6 !!

6
1

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&J ~154!

analogous to the nonrelativistic principle~162! of Ref. @7#.

V. APPLICATION OF LINEAR TRIAL FUNCTIONS

Analysis of the variational principles derived in Secs.
and IV shows that trial functions enter them in a linear,
linear, or fractional bilinear way. This implies that the
variational principles are ideally suited for approximate co
putations of actual eigenvalues and matrix elements with
use of the Rayleigh-Ritz linear trial functions. While partic
lar steps in the derivation of the variational principles in t
relativistic theory presented in Sec. III differ in details fro
their counterparts in the nonrelativistic theory, the details
the use of the Rayleigh-Ritz trial functions are nearly ide
tical in both cases. Therefore, we shall omit these details h
~an interested reader is referred to Ref.@7# for a thorough
description of all necessary movements! and present only
final results with relevant definitions.

We begin with the variational principle~68! for common

eigenvalues of the operatorsB̂(1)(E) and R̂(2)(E). Choos-
ing a trial function in the form

C̄~r!5(
i 51

N

ci
~1 !f i~r!, ~155!

where $f i(r)% are given basis spinor functions and$ci
(1)%

are variational parameters and substituting Eq.~155! into the
principle ~68! one finds that approximations to the eigenv

ues ofB̂(1)(E) andR̂(2)(E), we shall denote them asb̃, are
eigenvalues of the generalized matrix eigenproblem

S~1 !c~1 !5M~1 !c~1 !b̃. ~156!

HereS(1) andM(1) are squareN3N matrices with elements

Si j
~1 !5~f i u ian

~1 !f j !1
1

c\
^f i u@Ĥ2E#f j& ~157!
-

-
e

f
-
re

-

and

Mi j
~1 !5~f i ub~1 !f j !, ~158!

respectively andc(1) is anN-dimensional column eigenvec

tor with elements$ci
(1)% corresponding to the eigenvalueb̃.

Similarly, the use of the trial function

C̄~r!5(
i 51

N

ci
~2 !f i~r! ~159!

in the variational principle~69! yields estimates of the eigen

values ofB̂(2)(E) andR̂(1)(E). Any such estimate,b21̃, is
an eigenvalue of the generalized matrix eigenproblem

S~2 !c~2 !5M~2 !c~2 !b21̃, ~160!

where S(2) and M(2) are squareN3N matrices with ele-
ments

Si j
~2 !52~f i u ian

~2 !f j !2
1

c\
^f i u@Ĥ2E#f j&, ~161!

Mi j
~2 !5~f i ub~2 !f j !, ~162!

andc(2) is a corresponding eigenvector.
To find variational estimates of the matrix elemen

(FuR̂(6)F8) and (FuB̂(6)F8) one may employ trial func-
tions

C̄~6 !~r!5(
i 51

N

ci
~6 !f i~r!, C̄8~6 !~r!5(

i 51

N

ci8
~6 !f i~r!.

~163!

The use of these functions in the principles~90! and ~110!

gives approximate values of (FuR̂(6)F8):

~FuR̂̃~6 !F8!5f~6 !†@S~6 !#21f8~6 !

[ (
i , j 51

N

~Fub~6 !f i !~@S~6 !#21! i j ~b~6 !f j uF8!.

~164!

Here f(6)† are N-dimensionalrow vectors with elements
$ f i

(6)* 5(Fub (6)f i)%, f8(6) areN-dimensionalcolumnvec-
tors with elements$ f i8

(6)5(b (6)f i uF8)%, and S(6) are
squareN3N matrices with elements defined by Eqs.~157!
and ~161!, respectively. Analogously, the use of the tri
functions~163! in the principles~130! and~150! gives varia-

tional estimates of (FuB̂(6)F8):

~Fu B̂̃~6 !F8!5g~6 !†@T~6 !#21g8~6 !

[ (
i , j 51

N

~Fu ian
~6 !f i !~@T~6 !#21! i j ~ ian

~6 !f j uF8!,

~165!
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where g(6)† are N-dimensionalrow vectors with elements
$gi

(6)* 5(Fu ian
(6)f i)%, g8(6) are N-dimensional column

vectors with elements$gi8
(6)5( ian

(6)f i uF8)%, andT(6) are
squareN3N matrices with elements

Ti j
~6 !56~ ian

~6 !f i uf j !7
1

c\
^f i u@Ĥ2E#f j&. ~166!

VI. CONCLUDING REMARKS

In this paper we have achieved two goals. Firstly, we h
succeeded in formulating theR-matrix theory for the Dirac
equation~cf. Refs.@51,52#! in the language of integral opera
tors rather than matrices. Such a generalization facilita
further development of the theory. This has been shown
the course of achieving the second goal of the paper: a d
vation of a variety of stationary principles for eigenvalu

and matrix elements of the integral operatorsR̂(6)(E) and

B̂(6)(E) playing a central role in the theory. The principle
have been constructed ina systematic manner~which is in
marked contrast with a common procedure ofguessingvaria-
ys

d

m.
e

s
in
ri-

tional principles! by using the general approach described
Gerjuoy, Rau, and Spruch@43# ~cf. also Refs.@44,45#!. Our
success illustrates the power of the Gerjuoy-Rau-Spruc
procedure, which is not sufficiently appreciated yet.

The variational principles derived in the present wo
may serve as a starting point for developing numerical co
suitable for the use for the relativistic description of atom
processes. Currently we are working on the application
the variational principles~68! and~69! to analysis of relativ-
istic effects in low-energy electron–atom collisions.
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