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Antiproton-hydrogen annihilation at subkelvin temperatures
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The main properties of the interaction of ultralow-energy antiprotons (E<1026 a.u.! with atomic hydrogen
are established. They include the elastic and inelastic cross sections and protonium~Pn! formation spectrum.

The inverse Auger process (Pn1e→H1 p̄) is taken into account in the framework of a unitary coupled-
channel model. The annihilation cross section is found to be several times smaller than the predictions made by

the black sphere absorption models. A family ofp̄H near-threshold metastable states is predicted. The depen-
dence of protonium formation probability on the position of such near-thresholdS-matrix singularities is

analyzed. An estimation for the HH¯annihilation cross section is obtained.@S1050-2947~98!08505-9#

PACS number~s!: 03.65.Nk, 34.10.1x, 11.80.Jy, 36.10.Dr
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I. INTRODUCTION

The unique features of the LEAR~low-energy antiproton
ring! facility at CERN recently made possible the synthe
of a few antihydrogen atoms@1#. This effort was pursued by
the antiproton deccelerator~AD! project @2#, and made pos-
sible the storage of sensible amounts of antihydrogen. T
project reinforces the already active interest in investigat
several theoretical and experimental problems in the phy
of antimatter@3–7#.

In view of storing antimatter in traps, it would be inte
esting to have some theoretical calculations of the rate
which antiprotons (p̄) and antihydrogen (H̄) annihilate with
the residual gas. This process should be evaluated at
kelvin temperatures, the optimal energy domain for an eff
tive synthesis and trapping of antimatter.

From a theoretical standpoint, a specific feature of s
tems like H1 p̄ or H1H̄, containing pairs of unlike charge
heavy particles (p andp̄), is the possibility of rearrangemen
followed by protonium~Pn! formation. Indeed even at zerop̄
kinetic energy, protonium can be produced in states w
principal quantum numbern<30.

Since the pioneer work of Fermi and Teller@8# in 1947,
this problem has been treated by several authors@9–12# in
the energy range going from a fraction to tens a.u. The u
approach is based on the following two assumptions:~i! the
separation of electronic and nuclear motion, and~ii ! the clas-
sical treatment of the antiproton dynamics. The aim of
present work is to provide a correct description of t
ultralow-energy limit, i.e.,Tp̄,1026 a.u., an energy domain
in which the above-mentioned assumptions are no lon
valid. As a consequence, we are definitely faced with a qu
tum three- or four-body problem.

In what follows we will consider the annihilation of ul
traslow antiprotons with atomic hydrogen in the framewo
of a unitary coupled-channel approach. This process will
identified as the free Pn formation

p̄1H→Pn* 1e, ~1!
571050-2947/98/57~6!/4335~11!/$15.00
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as far as the direct annihilation at such low energies can
neglected, and since further evolution of Pn states will res
in annihilation.

In our treatment, the protonium formation as well as t
virtual rearrangement process, i.e., the inverse reaction
Eq. ~1!,

p̄1H→Pn* 1e→ p̄1H, ~2!

will be properly taken into account.
We will show that the energy dependence of the inela

reaction probability is determined by a rich spectrum of ne
thresholdS-matrix singularities, corresponding to Hp̄ near-
threshold metastable states generated by the long-ra
charge-dipole interaction. Finally we will give an estimatio
of the HH̄annihilation cross section in the energy range fro
1028 to 1024 a.u.

II. FORMALISM

An adequate formalism for the three-body problem can
found in the Faddeev equations@13#, according to which
three possible asymptotic clusters have to be explicitly
scribed. In the case of slow antiprotons scattering on hyd
gen, only two of them are physically important. The first o
is the (pe) p̄ cluster, which corresponds to the elastic chan
H1 p̄→H1 p̄. The second one is the (pp̄)e cluster, corre-
sponding to the protonium formation channels H1 p̄→Pn*
1e.

A direct solution of the Faddeev equations for such
problem is made difficult by the large number of open cha
nels containing fast oscillating asymptotics. In this secti
we will develop a formalism which enables us to take in
account the correct behavior of the three-body wave func
in both above-mentioned asymptotic clusters, and ben
from the small value of the electron-antiproton mass ra
We will show that this approach gives scattering observab
with an accuracy of the order of;10% by using a very
limited number of channels. At the same time, it provide
4335 © 1998 The American Physical Society
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4336 57A. YU. VORONIN AND J. CARBONELL
transparent physical understanding of the low-energy th
body dynamics in thep̄H reaction, which is the main aim o
our study.

A. Coordinate system

The Jacobi coordinates for the three-body problem
connected with the different possible asymptotic cluste
The coordinates corresponding to the elastic channel are
fined by

r5re2Rp , R5Rp̄2
mere1M pRp

me1M p
, ~3!

wherere , Rp, andRp̄ are, respectively, the electron, proto
and antiproton coordinates, andme andM p are the electron
and proton mass.

It turns out that this frame is also convenient for descr
ing the protonium production channels. Indeed, thep-p̄ dis-
tancer5Rp2Rp̄ , coincides withinr (me /M p) with R in Eq.
~3!. We will show that knowing the three-body wave fun
tion at r!r(M p /me… is enough to obtain a good approxim
tion of the scattering observables. Thus we can substitur
with R, and take into account, if necessary, the differen
betweenr andR in a perturbative way. Hereafter we will us
the unique coordinate system~3!.

B. Three-body wave function

The three-body wave function is represented as a sum
two components, corresponding to the two considered c
ters:

F~r ,R!5F1~r ,R!1F2~r ,R!. ~4!

ComponentF1 is supposed to describe the elastic chann
and can be written as

F1~r ,R!5(
a

fa~r !xa~R!, ~5!

wherea is the set of quantum numbers labeling the hyd
gen atomic statesfa as well as the corresponding antiproto
wave functionxa . From now on we will denote each term i
the three-body wave function expansion like Eq.~5! as a
‘‘channel.’’

For an incident antiproton energy much smaller than
first hydrogen excitation threshold, it is convenient to sel
from Eq. ~5! only the contributions which do not vanish i
the asymptotics. This gives the simple form

F1~r ,R!5f1s~r !x~R!. ~6!

It is useful to introduce a projection operatorP̂, which acts in
the three-body state space and projects on the subspa
hydrogen states corresponding to open channels:

P̂5(
nlm

ufnlm&^fnlmu ^ 1̂. ~7!

In our case, the sum is limited to the 1s state only. Compo-
nentF1 is then written
e-

e
s.
e-

-

e

of
s-

l,

-

e
t

of

F15 P̂F. ~8!

The second componentF2 describes all the remaining chan
nels, and can be written in the form

F25~ 1̂2 P̂!F. ~9!

This means that all the electron states except 1s contribute
into F2, ensuring the orthogonality of both components. T
F2 component contains terms which correspond to the p
tonium formation channels. In order to take the asympto
behavior of the cluster (pp̄)e into account explicitly,F2 is
expanded in a complete set of the (pp̄) eigenfunctions
f b(R):

F2~r ,R!5(
b

gb~r ! f b~R!, ~10!

wheregb(r ) are unknown expansion coefficients represe
ing the electron wave functions in the channels character
by protonium quantum numbersb.

Let us remark here that at this level no approximation h
been made. In particular, the truncation done in choice~6! of
F1 is balanced in the functionsgb of the second componen

C. Equations

The Schro¨dinger equation for a three-body vector sta
uF& reads

~Ĥep1Ĥpp̄
ex

1Ŵep̄
ex

2E!uF&50, ~11!

with

Ĥep52
1

2me
Dr2

1

r
~12!

the hydrogen Hamiltonian,

Ĥpp̄
ex

52
1

2M
DR2

1

uR1r ~me /M p!u
~13!

the protonium Hamiltonian, and

Ŵep̄
ex

5
1

uR2r ~12me /M p!u
~14!

the electron-antiproton interaction potential.M is the p̄H re-
duced mass which, neglectingme /M p terms, will be hereaf-
ter approximated by the protonium reduced massM
'M p/2; E5«B1Ep̄ is the total energy;«B is the hydro-
gen ground-state energy; andEp̄ is the center of mass energ
of incident antiproton. Note that all the spin degrees of fre
dom are neglected. We will first neglect the termr „me /M p),
and substitute the exactĤpp̄

ex andŴep̄
ex by the approximations

Ĥpp̄52
1

2M
DR2

1

R
, Ŵep̄5

1

uR2r u
.

Using Eqs.~8! and ~9!, we obtain the following coupled
equations for the componentsuF i&:
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57 4337ANTIPROTON-HYDROGEN ANNIHILATION AT . . .
~Ĥpp̄1 P̂Ŵep̄P̂2Ep̄!uF1&1 P̂Ŵep̄~12 P̂!uF2&50,

@Ĥep1Ĥpp̄1~12 P̂!Ŵep̄~12 P̂!2E#uF2&

1~12 P̂!Ŵep̄P̂uF1&50. ~15!

Here we used the fact thatP̂ commutes withĤep and Ĥpp̄ .
The corresponding equations for the antiprotonx(R) and

electron wave functionsgb(r ) could be obtained by subst
tuting Eqs.~6! and ~10! into Eq. ~15!. Due to the choice of
the wave-function components, the solution of such
coupled-equation system will correctly describe t
asymptotic behavior of the three-body system. This pro
dure will, however, remain formal, for it leads to an infini
set of coupled channels, including the closed ones, cha
terized by a continuouspp̄ momentum variable. To construc
an equation system suitable for practical calculations,
should first analyze the contribution of different channels
expansion~10!, in particular the one coming from the con
tinuous spectrum. For such a purpose we representF2 as a
sum of two components:

F25F2
d1F2

p , ~16!

where

F2
d~r ,R!5F̂F2~r ,R!5 (

b

nmax

gb~r ! f b~R!, ~17!

F2
p~r ,R!5~12F̂ !F2~r ,R!5 (

b5nmax

`

gb~r ! f b~R!, ~18!

and

F̂5 (
b

nmax

u f b&^ f bu. ~19!

nmax is a certain set of Coulomb quantum numbers cho
in such a way thatF2

d contains all the open channels an
eventually, a limited number of closed ones. The sum fr
nmax to infinity also includes the integration over the contin
ous p̄ momentum. TheF2

d component describes the dynam
ics of protonium formation, and includes the correspond
asymptotics of the three-body wave function:

lim
r→`

F2
d~r ,R!5(

b
f b~R!Sbhb

1~r !.

HereSb are theS-matrix elements for the protonium forma
tion, andhb

1(r ) are the outgoing electron waves in the cha
nel with quantum numbersb. The componentF2

p contains
only closed channels.

At large R the componentF2
d vanishes due to the Cou

lomb bound-state wave functionsf b . Conversely, the contri-
bution fromF2

p is essential as far as it contains nonvanish

terms coming from thepp̄ states in the continuum corre
sponding to the virtual excitations and breakup. It is sho
in the Appendix thatF2

p actually describes the effect of th
a

-

c-

e
n

n
,

g
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long-range polarization, which can be taken into account
introducing in the elastic channel the local potential

Vpol~R!5
1

2

a~R!

R4
, ~20!

with a(R) ensuring that forR@r B ~H Bohr radius! a(R)
→2ad the H dipole polarizability. The following approxi
mation @14# for a(R) was found to be suitable in practica
calculations:

a~R!5 2
3 @R51adR412adR31 3

2 ad~R21R1 1
2 !#e22R2ad .

It is qualitatively shown in the Appendix and proved b
numerical calculations that at distancesR'r B , F2

d domi-
nates, and the main contribution to the wave function com
from the channels withn526–40; thus we can choos
Vpol(R!r B)→0.

We will first consider the case of total Hp̄ angular mo-
mentumL equal to zero. The characteristic incidentp̄ en-
ergy, below which theS wave dominates in the elastic cha
nel, will be determined later.

It was shown in Ref.@15,16# that in theL50 case, pro-
tonium is primarily produced in states with angular mome
tum l 50 and 1. The physical reason for this is that for t
open channels withn526–30, which dominate the reactio
amplitude, the electron is ejected with rather small mom
tum ke , and the centrifugal barrier reduces the probability
find a slow electron~and consequently protonium! with high
angular momentum.

The preceding results enable us to construct a mo
which, including a limited number of channels, correctly d
scribes the asymptotic behavior of the three-body wave fu
tion. These channels dominate the reaction amplitude, w
closed channels corresponding to the continuous spectru
protonium states are taken into account by means of the
larization potential~20!. In practical calculations, we hav
included the protonium channels with principal quantu
numbern510–40 and angular momentuml 50 and 1. Nu-
merical checks showed the stability of the results when
creasing the number of included channels. The conside
equation system has the form

S 2
1

2M
]R

21
L~L11!

2MR2
1Vcs~R!1Vpol~R!2E1«BD x~R!

1(
n,l

E f1s~r !W0l~r ,R! f n,l~R!p̂gn,l~r !dr50, ~21!

(
n8 l 8

F S 2
1

2m
] r

22
1

r
1

l ~ l 11!

2mr2
1EnD dnn8,l l 8

1p̂Unn8,l l 8~r !p̂Ggn8,l 8~r !

1p̂f1s~r !E f n,l~R!Wl0~R,r !x~R!dR50. ~22!

Here
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Vcs~R!52S 11
1

RDe22R,

W0l~r ,R!5
r ,

l

r .
l 11

1

A2l 11
,

Unn8,l l 85E f n,l~R! f n8,l 8~R!
1

uR2r u
d3R, p̂512 P̂d0l ,

andEn52E1(M /2n2).

D. Effective potential method

The numerical solution of Eqs.~21! and ~22! is a rather
difficult task, as far as each of the coupled integrodifferen
equations includes fast oscillating functionsx and f n . A way
to overcome this difficulty is by means of the effective p
tential method. This approach turned to be an efficient t
for both a qualitative understanding and a precise numer
treatment of the problem. The Hp̄ scattering observables ar
given by the first equation for antiproton wavefunctionx
@Eq. ~21!#. The effects of the remaining coupled equatio
~22! are taken into account by transforming the system~21!–
~22! into one equation forx which contains a complex non
local effective potential

S 2
1

2M
]R

21
L~L11!

2MR2
1Vcs~R!1V̂eff

1Vpol~R!2E1«BD x~R!50, ~23!

with

V̂eff5 (
nn8,l l 8

u f n,l&^f1suW0l~r ,R!p̂K̂nn8
l l 8 ~r ,r 8!

3p̂Wl 80~r 8,R8!uf1s&^ f n8,l 8u. ~24!

Here K̂nn8
l l 8 (r ,r 8) is the Green matrix of coupled equatio

system for electron wave functions:

K̂nn8
l l 8 ~r ,r 8!5H S 2

1

2m
] r

21
l ~ l 11!

2mr2
1En2

1

r D dnn8
l l 8

1p̂Unn8
l l 8 p̂J 21

. ~25!

The whole problem is then split into two parts: to calcula
the effective potential, and to solve the one-channel prob
for antiproton scattering in a complex nonlocal potential.

The benefits of such an approach are varied. On the
hand, the Green function~25! is calculated by solving a
coupled equation system for smooth electron wave functio
while the fast oscillatingpp̄ wave functions are explicitly
introduced by the well-known Coulomb states. On the ot
hand, the effective potential~24! practically does not depen
on the p̄ incident energy in the domainEp̄!0.01 a.u.
@15,16#. The minimum energy of the ejected electron~from a
l

l
al

s

m

ne

s,

r

Pn state withn530) is about 0.02 a.u., and forp̄ energies
less than this value, the Green matrix~25! is not sensitive to
incident antiproton energy. This means that, once calcula
for Ep̄50, the effective potential can be used in the who
energy range of interest, and this radically simplifies the c
culations.

From a physical point of view, it also seems more natu
to analyze the properties of the Hp̄ system in terms of a
modified one-channel problem. The main features of the
fective potential as they appear from our calculations are
following.

~1! The imaginary part ofVeff vanishes at distanceR
'1.8r B , which corresponds to the mean radius of t
last protonium open channel (n530). In Fig. 1,
Im@Veff#(R,R8) for R85R is plotted as a function ofR.

~2! The imaginary part ofVeff(R,R8) is sharply peaked
around its diagonalR85R. Nevertheless, forR,r B , the
nonlocality range is of the same order as the antipro
wave function x(R) oscillation period. The profile of
Im@Veff#(R,R8) for R50.5 is shown in Fig. 2.

~3! The profile of the real part ofVeff is plotted in Fig. 3.
Its nonlocality range is larger than for the imaginary part.
vanishes atR'3r B , and dominates over the polarizatio
Vpol and the Coulomb screenedVcs potentials in the range
1,R,3r B.

III. RESULTS

In this section, we will present the main results obtain
in the coupled-channel model, and discuss the physical
sons of certain scattering observables behavior.

A. Scattering observables

The Hp̄ complex scattering length is found to be

a5~27.82 i11.5!r B .

FIG. 1. Imaginary part of the effective potentialVeff(R,R8
5R).
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The corresponding elastic cross section at zero energy i

sel52426.4r B
2 .

We remark on the relatively large value, on the atomic sc
of the scattering length imaginary part. Such a value i
consequence of the long-range polarization forces.
switching offVpol in Eq. ~23!, the value obtained is substan
tially reduced to Im(a)50.2r B . The capital role of the po-
larization forces in the low-energy Hp̄ dynamics will be dis-
cussed in Sec. III B.

We have calculated the energy dependence of the ine
ticity Sr

2 for several partial waves. The results are shown

Fig. 4 for p̄ incident energies in the range from 0 to 1026 a.u.

FIG. 2. Imaginary part of the effective potentialVeff(R
50.5,R8).

FIG. 3. Real part of the effective potentialVeff(R50.5,R8).
e,
a
y

s-
n

The inelasticity turns to be less than 0.1 forEp̄,1028 a.u.,
and does not become greater than 0.5 in the energy dom
of interest. One can also see in this figure that the scatte
length approximation is valid for energies less than 1028 a.u.
The results forlÞ0 have been calculated under the assum
tion that the effective potential~24! depends weakly on tota
angular momentumL in the energy range of interest. As on
can see, theS wave dominates forEp̄,1028 a.u.

The total annihilation cross section is shown in Fig. 5.
follows the 1/v law for Ep̄,1028 a.u., and decreases non
monotonously forEp̄.1028 a.u. Such nonmonotonic behav
ior is originated by the contribution of nonzero angular m
mentum partial waves, which is explicitly seen in Fig. 4. It
interesting to compare this cross section with a semiclass
calculation@11# obtained under the following assumption
~i! the p̄ motion can be treated classically, and~ii ! the anni-

FIG. 4. InelasticitySr512uSu2 for the H1 p̄→Pn* 1e reac-
tion.

FIG. 5. Annihilation cross section for H1 p̄→Pn* 1e.
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4340 57A. YU. VORONIN AND J. CARBONELL
hilation takes place with unit probability as soon as thep̄-H
distance is smaller than a critical radiusRc50.64r B . The
semiclassical cross section, shown in Fig. 5, is approxima
2.5 times larger than our values forEp̄,1028 a.u. This in-
dicates that the low-energyp̄H annihilation is sensitive to the
quantum dynamics of protonium formation, and could har
be reproduced with models in which the details of such
namics are not taken into account.

The population of different protonium states, calculat
for energiesEp̄,1028 a.u. is shown in Fig. 6. Protonium i
produced primary in theS states, with principal quantum
number 26,n,30. TheP-states population does not exce
15% of the whole captured fraction of antiprotons. The
results confirm our qualitative estimation concerning
channels which make the main contribution to the react
amplitude in the low-energy limit. It is worth to mention th
the protoniumS-states population dominates only forp̄ en-
ergies less than 1028 a.u., while the population of states wit
higher l should increase with increasing energy@17#.

We conclude this paragraph by emphasizing that thep̄
scattering observables significantly change their behavio
Ep̄;1028 a.u., a characteristic energy for the reaction. W
will demonstrate that this behavior is determined by the pr
ence of near-threshold Hp̄ bound and virtual states generate
by the polarization potential.

B. Near-threshold metastable states

The polarization potential is known to modify the low
energy cross sections of atomic reactions significantly
plays an essential role in the Hp̄ scattering. This potentia
produces a rich spectrum of Hp̄ weakly bound and virtual
states@18#, which results from the long-range character
the polarization forces and the heavy~in atomic scale! anti-
proton mass. Such states, being near-thresholdS-matrix sin-

FIG. 6. Protonium formation probabilities in states with diffe
ent quantum numbers.
ly

y
-

d

e
e
n

at

s-

It

f

gularities, determine the energy dependence of the Hp̄ scat-
tering cross section. The main properties of such states
their relation with the observables are discussed in this s
section.

We first remark that the polarization potentialVpol alone
generates severalp̄ weakly bound states. The energy leve
and mean radii of several nearest to the thresholdS states
produced byVpol alone are shown in Table I~values marked
by subscript II!. These states are extremely prolonged, a
have very small binding energies. By switching on the sho
range part of the interaction, i.e., the complex nonlocal
fective potentialVeff and the screened CoulombVcs, the
spectrum is modified and inelastic widths appear. Nevert
less, the main features, small binding energy (1028,Ebound

,1023 a.u.! and large radius (4, x̄,27)r B , remain.
In the threshold vicinity, the elasticS matrix for L50 is

dominated by its singularities, and can be written in the fo

uSu~k!5)
i

uk1zi u
uk2zi u

, ~26!

where zi are the S-matrix poles with Re(zi),0 due to
Im(Veff),0. In Fig. 7 are shown the trajectories of seve
S-matrix poles (Pi) and corresponding zeros (Zi) as a func-
tion of the strength of theVeff imaginary part. As can be
seen, the presence of the negative imaginary part in the
fective potential results in shifting theS-matrix zeros to the
right into the IV and I quadrants, with the correspondi
symmetrical shift ofS-matrix poles into the II and III quad-

TABLE I. Energies, Auger widths, and mean radii~a.u! of L50

Hp̄ states. We denote by index I the results inVpol alone, and by
index II those obtained with the full interaction (Vpol1Vcs1Veff).

EI EII x̄II

25.1310281 i731029

24.231027 22.5310262 i0.231027 27.0
23.631025 27.0310252 i8.431026 11.3
22.631024 24.1310242 i3.231025 7.3
29.231024 21.5310232 i8.631025 5.3
22.331023 24.2310232 i2.031024 4.2

FIG. 7. S matrix near-threshold zeros (Zi) and poles (Pi).
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57 4341ANTIPROTON-HYDROGEN ANNIHILATION AT . . .
rants. The position of theS-matrix zero~and pole! nearest to
the origin corresponds to an energy ofEc;1028 a.u., and
plays the role of characteristic energy for reaction~1!. We
notice, however, that thisS-matrix singularity nearest to th
threshold lies on the nonphysical sheet, i.e., Re(k),0 and
Im(k),0, and corresponds to a virtual state. Its wave fu
tion has an exponentially increasing asymptotic, and does
represent a physical state.

As the usual definition of effective range cannot be a
plied to the 1/R4 polarization potential@14#, we introduce the
characteristic range of Hp̄ interaction asRA51/uk0u, where
k0 corresponds to the position of theS-matrix singularity
nearest to the threshold. One can see that, fork>k0, the
scattering length approximation is no longer valid, a
higher-order terms in the scattering amplitude expans
should be taken into account. With the result in Table I, o
obtainsRA;103 a.u.

It is seen from Eq.~26! that for antiproton incident ener
giesEp̄!1028 a.u.,uk1zi u'uk2zi u and souSu→1. This ex-
plains why the inelasticitySr

2 for Ep̄!1028 a.u. turns to be
much less than unity. ForEp̄>1028 a.u., and because ther
are severalS-matrix zeros situated to the right from2z1,
one hasuk1zi u,uk2zi u, and the reaction probability in
creases.

To illustrate how the position of the near-thresho
S-matrix singularities determines the low-energy scatteri
we have calculated the inelasticity as a function of the dip
polarizabilityad for a fixed energy (Ep̄51028 andE51026

a.u.! This function is plotted in Fig. 8. The strong oscillation
between its maximum and minimum values with decreas
ad correspond to the motion of anS-matrix pole from the II
to the III k-plane quadrant, while the symmetricS-matrix
zero moves from the IV quadrant to the I quadrant. T
means that a weakly bound state becomes virtual. As
seen from Eq.~26!, the inelasticity reaches its maximum
value when anS-matrix zero crosses the realk axis.

This last result shows that sufficiently high accuracy

FIG. 8. Inelasticity for reaction H1 p̄→Pn* 1e as a function of
the dipole polarizabilityad .
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calculations is required to obtain the scattering length va
At the same time, the reaction amplitude for energiesEp̄
@1028 a.u. is less sensitive to the exact position of the ne
threshold singularities, and can be more easily calcula
We estimate our accuracy in the scattering length result
be about 30%. This uncertainty appears mainly from the
proximation used forVpol at short distances. To obtain mor
precise results, one should increase the number of accou
closed channels, and take into account the difference
tweenr and R in Eq. ~3!. Such corrections seem not to b
important for understanding the physics of the treated p
cess, and are beyond the scope of the present paper.

We would like to emphasize that the near-threshold ch
acter of the above-mentionedS-matrix poles and zeros is
determined by the long-range polarization potential. At t
same time, their exact position in complexk plane cannot be
obtained without a proper treatment of the protonium form
tion dynamics. In particular, the semiclassical black sph
condition does not hold in the energy domainEp̄<1026 a.u.
In terms ofS-matrix analytical properties, the coupling wit
protonium production channels produces comparatively la
~for the energy domain of interest! shifts of the real part of
the S-matrix zeros, and reduces the inelasticity.

C. Local approximation of the effective potential

It was shown that the energy dependence of the reac
probability is determined by the existence of several ne
threshold states generated mainly by the long-range pola
tion forces. This suggests the possibility of obtaining a lo
complex potential which would be equivalent to the full Hp̄
interaction in the energy range of interest. By ‘‘equivalent
we mean not only to reproduce the same reaction proba
ties but to support the same near-threshold spectral struc
as well.

We search for such an equivalent local complex poten
as a sum of three different terms

Vloc~R!5Vs~R!1Vcs~R!1Vpol~R!,

Vcs(R) and Vpol(R) being, respectively, the Coulom
screened and polarization potential used in Sec. III B, andVs
a local short-range part to be determined. It was assume
have the form

Vs~R!5H 2V1e2a1~R/r B!2 iW1e2b1~R/r B! if R,Rc

2 iW2e2b2~R/r B! if R>Rc ,
~27!

and a satisfactory fit is obtained with the following parame
values: V150.572, W15W250.040, a151.20, b1
5b253.20, andRc52r B .

In Table II, the results of calculations in the nonloc
effective potential and abovementioned local approximat
are compared. They agree within a few percent accurac
the energy range 0.531029–0.531026 a.u.

D. Hydrogen-antihydrogen interaction

The results obtained for Hp̄ interaction can be used for a
qualitative treatment of different atom-antiproton (Ap̄) and
atom-antiatom (AĀ) system.
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It is of particular interest to estimate the HH¯annihilation
cross section, and thus to examine the reaction:

H1H̄→Pn* 1~e1e2! ~28!

The HH̄system interacts at long distances via a dipole-dip
potentialVdd;26.5/R6. This potential also generates a spe
trum of near-threshold states. Some of them, withL50, are
shown in Table III. In analogy with the case of Eq.~1!, one
can expect that the correspondingS-matrix singularities will
determine the reaction dynamics of Eq.~28!.

A qualitative estimation of the HH¯ potential can be ob-
tained by adding to the same short-range part as in Hp̄ case
the dipole-dipole long-range tailVdd. The reaction~28! cross
section calculated in such a way is shown in Fig. 9. T
characteristic energy for this reaction was found to
;1025 a.u., corresponding to the position of theS-matrix
singularity nearest to the threshold~virtual state with energy
27.831026 a.u.!.

A similar treatment can be used to estimate the inelas
ity energy dependence for differentAp̄or AĀsystems in the
low-energy limit. For such a purpose, one has to find
S-matrix singularity nearest to the threshold, generated
polarization potential. The necessary condition for the va
ity of such a qualitative approach is that the characteri
rangeRA of the Ap̄ or AĀ long-range interaction should be
much greater than the inelastic ranger A .

As seen from Eq.~24!, the inelastic range is mainly de
termined by the mean radius of the last protonium state o
channel, and thus given by

MA

2n2
5I A , r A'

2n2

MA
5

1

I A
,

TABLE II. Inelasticity (Sr
2) andS-matrix (S) values calculated

in the full effective potential~index I! and in its local approximation
~index II! at different energies (Ep̄).

Ep̄ ~a.u.! Sr
2(I) Sr

2(II) S(I) S(II)

0.531029 0.043 0.043 0.9781 i0.01 0.9781 i0.014
0.531028 0.12 0.122 0.9371 i0.013 0.9361 i0.021
0.531027 0.266 0.266 0.8362 i0.185 0.8362 i0.177
0.531026 0.42 0.425 0.0232 i0.756 0.0342 i0.757

TABLE III. Energies, Auger widths, and mean radii~a.u! of L

50HH̄ states. We denote by index I the results inVpol alone, and
by index II those obtained with the full interaction (Vpol1Vcs

1Veff).

EI EII x̄II

27.831026 26.1310261 i1.831025

21.931024 24.3310242 i2.231024 4.6
22.931023 25.2310232 i1.231023 2.8
21.131022 22.9310222 i8.431023 1.5
23.331022 25.8310232 i9.231023 1.3
e
-

e
e

c-

e
y
-
ic

n

where MA and I A are theAp̄ reduced mass and the firs
ionization potential, respectively, andn is the principal quan-
tum number of the last open channel. A similar estimat
for theAĀ inelastic ranger AĀ can be obtained if we take into
account that Positronium is produced in this collision:

MAĀ

2n2
52I A2«Ps

«Ps5I H/2,

r A'
2n2

MAĀ

5
1

~2I A2I H/2!
.

HereMAĀ is the reduced mass of the AA¯system,«Ps is the
Positronium ground state energy.

As in the Hp̄ case, the presence of near-threshold virtu
states may considerably increase the characteristic rang
Ap̄ or AĀ interaction. However, it can be interesting to hav
a simple approximation of this range in the aim of compa
son with preliminary estimations~see also Ref.@12#!. This is
provided by the semiclassical condition for the numberN of
states:

E A2MAVpol
A ~R!dR'pN.

This condition may be rewritten as follows:

RA

r B
'pN.

For theAp̄ case, we obtain

RA;HA2MAC4
A if L50

A2MAC4
A/L~L11! if L.0,

~29!

while for AĀ one has

FIG. 9. Probability of reaction H1H̄→Pn* 1(e1e2).
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RA;HA4 2MAĀC6
A if L50

A4 2MAĀC6
A/L~L11! if L.0,

~30!

C4
A and C6

A being the atom charge-dipole and dipole-dipo
van der Waals constants. Finally, we obtain the followi
ratio of inelastic and polarization range:

r A

RA

55
1

I AA2MAC4
A

if L50

AL~L11!

I AA2MAC4
A

if L.0

~31!

for atom-antiproton, and

r A

RA
55

1

~2I A2I H/2!A4 2MAĀC6
A

if L50

A4 L~L11!

~2I A2I H/2!A4 2MAĀC6
A

if L.0

~32!

for atom-antiatom interaction.
Ratios~31! and ~32!, calculated for a wide range of dif

ferent atoms, turn out to be much smaller than unity in
caseL50. In particular, for He, the less polarizable ato
they are;0.02 for Hep̄, and;0.05 for HeHē. The polariza-
tion range dominates over the inelastic one in the par
waves up toL;10 for Hep̄, and L;4 for HeHē. These
values ofL characterize the maximum angular momentu
which makes possible the existence of extended polariza
states.

IV. CONCLUSION

A coupled-channel model describing the Hp̄ system at
energies less than 1026 a.u. has been developed. The resu
thus obtained substantially differ from the low-energy e
trapolations of the black sphere model and other classica
semiclassical approaches. They show that such a low-en
requires a quantum-mechanical treatment in which the
namics of the protonium formation is properly taken in
account.

The effective Hp̄ optical potential has been calculated
the framework of the coupled-channel model. In this fram
work, the Hp̄ scattering length and zero-energy elastic cro
section were found to bea5(27.82 i11.5)r B and sel

52426.4r B
2 , respectively. The Hp̄ inelastic cross section ha

been calculated in the energy range from 1029 to 1026 a.u. It
follows the 1/v behavior up to energies;1028 a.u., where
the scattering length approximation is valid. The inelastic
turned out to be much smaller than the black sphere mo
predictions.

The protonium formation spectrum for energies less th
1028 a.u. has been calculated. We have shown that the p
lation of S states with a principal quantum number from
to 30 acounts for 75% of the total captured fraction.

The reaction dynamics is found to be determined by
existence of several near-threshold states. Such state
e
,

l

,
n

s
-
or
gy
y-

-
s

y
el

n
u-

e
are

produced by the long-range polarization potential, and
shifted in the complex momentum plane by the coupli
with protonium formation channels. The Hp̄ scattering
length appears to be very sensitive to the position of
above-mentioned singularities, and requires accurate calc
tions.

A local approximation of the effective potential has be
proposed for further applications. It reproduces the scatte
observables in the considered energy range, and has the
near-threshold spectral properties. A qualitative extension
this approach to more general systems~atom-p̄ and atom-
antiatom! has been discussed.

The results discussed in this work have been obtai
within an approximate model. In view of these, and mo
vated by the future project of storing antimater at CERN
would be interesting to check the validity of the differe
approximations by developing more accurate treatments
cluding an exact solution of the three-body problem.
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APPENDIX A

The aim of this appendix is to find the dominant chann
in expansion~10! of the three-body wave function. We firs
analyze the behavior of the componentF2

p at distancesR
@r B . The equation system forF2

d andF2
p , in terms of the

projection operatorsP̂ @Eq. ~7!# and F̂ @Eq. ~19!# reads

~Ĥpp̄1 P̂Ŵep̄P̂2Ep̄!uF1&1 P̂Ŵep̄~12 P̂!F̂uF2
d&

1 P̂Ŵep̄~12 P̂!~12F̂ !uF2
p&50, ~A1!

@Ĥep1Ĥpp̄1F̂~12 P̂!Ŵep̄~12 P̂!F̂2E#uF2
d&

1F̂~12 P̂!Ŵep̄~12 P̂!~12F̂ !uF2
p

1~12 P̂!F̂Ŵep̄P̂uF1&50, ~A2!

@Ĥep1Ĥpp̄1~12F̂ !~12 P̂!Ŵep̄~12 P̂!~12F̂ !2E#uF2
p&

1~12F̂ !~12 P̂!Ŵep̄P̂F̂uF2
d

1~12 P̂!~12F̂ !Ŵep̄P̂uF1&50. ~A3!

By taking into account that at largeR the projection op-
eratorF̂ vanishes, Eqs.~A1!–~A3! simplify into the follow-
ing system, valid forR@r B :

~Ĥpp̄1 P̂Ŵep̄P̂2Ep̄!uF1&1 P̂Ŵep̄~12 P̂!uF2
p&50,

~A4!

@Ĥpp̄1Ĥep1~12 P̂!Ŵep̄~12 P̂!2E#uF2
p&

1~12 P̂!Ŵep̄P̂uF1&50. ~A5!
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This system can be solved with respect toF2
p , and for the

componentF1 gives

~Ĥpp̄1 P̂Ŵep̄P̂2Ep̄!uF1&1 P̂Ŵep̄~12 P̂!Ĝpol

3~12 P̂!Ŵep̄P̂uF1&50, ~A6!

in which

Ĝpol52@Ĥpp̄1Ĥep1~12 P̂!Ŵep̄~12 P̂!2E#21.
~A7!

The last term in Eq.~A6! is the polarization long-range
interaction

V̂pol5^f1suŴep̄~12 P̂!Ĝpol~12 P̂!Ŵep̄uf1s&. ~A8!

The asymptotics of the Green functionĜpol at R,R8@r B is

Gpol~R,R8,r ,r 8!5(
a

1

2pa
~e2pauR2R8u

2Sae2pa~R1R8!!fa~r !fa~r 8!,

wherepa5A2M (uE2«au), anda is a set of spherical Cou
lomb quantum numbers. If we take into account that at la
R, V̂pol acts on the very slowly changing functionx(R) ~the
oscillation period ofx for R@r B is indeed much greater tha
r B), we can substituteGpol in Eq. ~A8! by the following
expression:

Gpol~R,R8,r ,r 8!5d~R2R8!(
a

fa~r !fa~r 8!

E2«a
.

By keeping terms up to 1/R4, we obtain the well-known
charge-dipole potential asymptotic behavior

Vpol~R@r B!52
ad

2R4
,

ad522 (
aÞ~1s!

^f1sud̂ufa&
1

«B2«a
^faud̂uf1s&. ~A9!

Here d̂ stands for the dipole momentum operator. In E
~A9! one recognizes the expression for the hydrogen dip
N
a

J

94
e

.
le

polarizability, ad5 9
2. We can thus conclude that the contr

bution of F2
p at large distancesR can be taken into accoun

by introducing, in the elastic channel, the polarizati
charge-dipole potential.

To estimate the contribution of different channels at d
tancesR'r B qualitatively, we first obtain the solution of Eq
~A1! in the distorted-wave approximation. ComponentF1s

0 ,
obtained by neglecting the coupling to other components
F1

05f1sx
0, with x0 satisfying the equation

S 2
1

2M
]R

21Vcs~R!2E1«BDx050.

The contributions of componentsF2
d andF2

p are character-
ized by the integrals

^x0P̂uŴep̄~12 P̂!uF̂, ^x0P̂uŴep̄~12 P̂!u~12F̂ !.
~A10!

An estimation of integrals~A10! can be obtained if we
take into account the semiclassical character of the w
function x0 and the Coulomb wave functions atR'r B in
expansions~17! and~18!. We are dealing with an integral o
fast-oscillating functions which has significant values only
there exist stationary phase points inside the integration
gion. The equation for such stationary phase points is

S 1

R
11De22R5

1

R
2

M

2n2
.

It can be shown that there are no stationary phase points
F2

p , while the contribution ofF2
d at the distanceR'r B is

mainly exhausted by protonium states with principal qua
tum number 26,n,40 ~see Refs.@15,16#!.

We have, in conclusion, that in the energy domain
interest and large internucleon distances the contribution
F2

p is the only important one, and can be taken into acco
by introducing the polarization potential~A8!, while at the
distancesR'r B the componentF2

d dominates, and can b
described by a limited number of channels. These qualita
arguments are important for a construction of the first
proximation, and should be proved by further numerical c
culations.
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