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Antiproton-hydrogen annihilation at subkelvin temperatures
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The main properties of the interaction of ultralow-energy antiprotéis 10~ ° a.u) with atomic hydrogen
are established. They include the elastic and inelastic cross sections and prot@nidformation spectrum.
The inverse Auger process (Pe—H-+p) is taken into account in the framework of a unitary coupled-
channel model. The annihilation cross section is found to be several times smaller than the predictions made by
the black sphere absorption models. A faminEH near-threshold metastable states is predicted. The depen-
dence of protonium formation probability on the position of such near-thresBatdtrix singularities is
analyzed. An estimation for the Henhnihilation cross section is obtaind®1050-294{®8)08505-9

PACS numbgs): 03.65.Nk, 34.10+x, 11.80.Jy, 36.10.Dr

[. INTRODUCTION as far as the direct annihilation at such low energies can be
neglected, and since further evolution of Pn states will result
The unique features of the LEARbw-energy antiproton in annihilation.
ring) facility at CERN recently made possible the synthesis In our treatment, the protonium formation as well as the
of a few antihydrogen atonid]. This effort was pursued by virtual rearrangement process, i.e., the inverse reaction of
the antiproton decceleratéAD) project[2], and made pos- Eq. (1),
sible the storage of sensible amounts of antihydrogen. This

project reinforces the already active interest in investigating E+ H— Pr¥ +e—>ﬁ+ H, 2
several theoretical and experimental problems in the physics
of antimatter{3—7]. will be properly taken into account.

In view of storing antimatter in traps, it would be inter-  We will show that the energy dependence of the inelastic
esting to have some theoretical calculations of the rate agaction probability is determined by a rich spectrum of near-
which antiprotons |§) and antihydrogen (Hannihilate with  thresholdS-matrix singularities, corresponding topHear-
the residual gas. This process should be evaluated at sutfreshold metastable states generated by the long-range
kelvin temperatures, the optimal energy domain for an effeccharge-dipole interaction. Finally we will give an estimation
tive synthesis and trapping of antimatter. of the HHannihilation cross section in the energy range from

From a theoretical standpoint, a specific feature of sys10-8 to 104 a.u.
tems like H+p or H+H, containing pairs of unlike charged
heavy particles|§ andp), is the possibility of rearrangement Il. FORMALISM
followed by protoniumPn) formation. Indeed even at zepo
kinetic energy, protonium can be produced in states witl}0
principal quantum number<30.

Since the pioneer work of Fermi and Tellgd] in 1947,
this problem has been treated by several auth®«sl2| in

An adequate formalism for the three-body problem can be
und in the Faddeev equation&3], according to which

three possible asymptotic clusters have to be explicitly de-
scribed. In the case of slow antiprotons scattering on hydro-

the energy range going from a fraction to tens a.u. The usuzgen’ only wo of them are physically important. The first one
approach is based on the following two assumptigisthe IS thE (pe) p cluster, which corresponds to the elastic channel

separation of electronic and nuclear motion, &icthe clas- H+p—H+p. The second one is thepp)e cluster, corre-
sical treatment of the antiproton dynamics. The aim of thesponding to the protonium formation channels- p— P
present work is to provide a correct description of the+e.
ultralow-energy limit, i.e..T;< 10" ® a.u., an energy domain A direct solution of the Faddeev equations for such a
in which the above-mentioned assumptions are no longegproblem is made difficult by the large number of open chan-
valid. As a consequence, we are definitely faced with a quamels containing fast oscillating asymptotics. In this section,
tum three- or four-body problem. we will develop a formalism which enables us to take into
In what follows we will consider the annihilation of ul- account the correct behavior of the three-body wave function
traslow antiprotons with atomic hydrogen in the frameworkin both above-mentioned asymptotic clusters, and benefit
of a unitary coupled-channel approach. This process will bérom the small value of the electron-antiproton mass ratio.

identified as the free Pn formation We will show that this approach gives scattering observables
o with an accuracy of the order of 10% by using a very
p+H—Pr* +e, (8] limited number of channels. At the same time, it provides a
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transparent physical understanding of the low-energy three- D= PP ®)
body dynamics in thgH reaction, which is the main aim of
our study. The second componedt, describes all the remaining chan-

nels, and can be written in the form

A. Coordinate system PN

. . O,=(1-P)D. 9
The Jacobi coordinates for the three-body problem are 2=( ) ©
connected with the different possible asymptotic clustersThis means that all the electron states exceptantribute

The coordinates corresponding to the elastic channel are dgso ¢, ensuring the orthogonality of both components. The

fined by ®, component contains terms which correspond to the pro-
mor.+M-R tonium formation channels. In order to take the asymptotic
r=re—R,, R=R,— %Mppp 3 behavior of the clustergp)e into account explicitly ®, is

expanded in a complete set of thepﬁ eigenfunctions

wherer,, R,, andR; are, respectively, the electron, proton, fs(R):
and antiproton coordinates, ant, and M, are the electron
and proton mass. ®,(r,R)= N AR (10)
It turns out that this frame is also convenient for describ- 2l % 96(NT4(R)

ing the protonium production channels. Indeed, php dis-
tancep=R,— Ry, coincides withirr (mg/M ) with R in Eq.
(3). We will show that knowing the three-body wave func- ;

by protonium quantum numbeg.

tion atr <<p(M,/me) is enough to obtain a good approxima Let us remark here that at this level no approximation has

tion of the scattering observables. Thus we can substjtute been made. In particular, the truncation done in chégef
with R, and take into account, if necessary, the difference -np ’

betweerp andR in a perturbative way. Hereafter we will use @, is balanced in the functiorg of the second component.
the unique coordinate systefB).

wheregg(r) are unknown expansion coefficients represent-
ing the electron wave functions in the channels characterized

C. Equations
B. Three-body wave function The Schrdinger equation for a three-body vector state
The three-body wave function is represented as a sum (#D ) reads
twi t ding to the t idered clus- " " -
ter(;:componen s, corresponding to the two considered clus (Flop+ H?)XEJFV\CXB_ E)|d)=0, (11)
O(r,R) =Dy (r,R)+ Py R). (4 With
Componenthllis supposed to describe the elastic channel, ﬂep: — iAr— E (12)
and can be written as 2me r
the hydrogen Hamiltonian,
O1(r,R)=2 Balr)xa(R), 5
“ " ex 1
- - Hop™ ~ M 2R R r(mo/M (13
where « is the set of quantum numbers labeling the hydro- [R+1(Me/Mp)|
gen atomic stateg, as well as the corresponding antiproton the protonium Hamiltonian. and
wave functiony, . From now on we will denote each term in P '
the three-body wave function expansion like Ef) as a 1
“channel.” X (14)

For an incident antiproton energy much smaller than the P [R=r(1-m/My)|

first hydrogen excitation threshold, it is convenient to select . . ) o —
from Eq. (5) only the contributions which do not vanish in the electron-antiproton interaction potentisl.is the pH re-

the asymptotics. This gives the simple form duced mass which, neglectimg./M, terms, will be hereaf-
ter approximated by the protonium reduced mades
D(r,R)=d1(r)x(R). (6) ~M,/2; E=eg+E;is the total energygg is the hydro-

gen ground-state energy; aggis the center of mass energy

It is useful to introduce a projection operatorwhich acts in ~ of incident antiproton. Note that all the spin degrees of free-
the three-body state space and projects on the subspace @fm are neglected. We will first neglect the ter(m./M ),

hydrogen states corresponding to open channels: and substitute the exakt”-and\WZ by the approximations
~ ~ “ 1 1 “ 1
P= ® 1 7 = — —_— =
;m | rim){ Driml (7 Hop oM Agr R’ Wep Ro1|"

In our case, the sum is limited to thes $tate only. Compo- Using Egs.(8) and (9), we obtain the following coupled
nentd, is then written equations for the component®;):
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(|:|p5+ ﬁ’WeBIS— E§)|CI>1)+ ﬁweﬁl— |5)|q)2>:0' !ong-ran_ge polarization_, which can be taken into account by
introducing in the elastic channel the local potential
[Hept Hppt (1= P)We(1—P) —E]|Dy) 1 a(R)

+(1- P)WegP| @) =o0. 15 Vool R)= 3 i 20

Here we used the fact th& commutes withH,, andH,,.  Wwith @(R) ensuring that foR>rg (H Bohr radiug a(R)
The corresponding equations for the antiprojgiR) and  — — ag4 the H dipole polarizability. The following approxi-

electron wave functiong(r) could be obtained by substi- mation[14] for a(R) was found to be suitable in practical

tuting Eqgs.(6) and(10) into Eq. (15). Due to the choice of calculations:

the wave-function components, the solution of such a

coupled-equation system will correctly describe the@(R)= 3[R+ aqR*+2a¢R*+  ay(R*+ R+ 3)]e” R~ ay.

asymptotic behavior of the three-body system. This proce- o _ _

dure will, however, remain formal, for it leads to an infinite It is qualitatively shown in the Appendix and proved by

set of coupled channels, including the closed ones, charagumerical calculations that at distancBs-rg, D domi-

terized by a continuousp momentum variable. To construct Nates, and the main contribution to the wave function comes

an equation system suitable for practical calculations, wd'om the channels witm=26-40; thus we can choose

should first analyze the contribution of different channels inVpol(R<rs) —0. _

expansion(10), in particular the one coming from the con- ~ We will first consider the case of totalgHangular mo-

tinuous spectrum. For such a purpose we repredgnas a mentumL equal to zero. The characteristic incidgnen-

sum of two components: ergy, below which the& wave dominates in the elastic chan-
nel, will be determined later.
®,= g+ DY, (16) It was shown in Ref[15,16] that in theL=0 case, pro-
tonium is primarily produced in states with angular momen-
where tum =0 and 1. The physical reason for this is that for the

open channels witih=26-30, which dominate the reaction
amplitude, the electron is ejected with rather small momen-
tumk, , and the centrifugal barrier reduces the probability to
find a slow electrorfand consequently protoniyrwith high

Nmax

@%(r,R>=ﬁ<bz<r,R)=§ 9s(Dfg(R), (17

) * angular momentum.
®OE(r,R)=(1-F)Dy(r,R)= > gs(rfs(R), (18 The preceding results enable us to construct a model
B="Nmax which, including a limited number of channels, correctly de-

scribes the asymptotic behavior of the three-body wave func-
tion. These channels dominate the reaction amplitude, while
N closed channels corresponding to the continuous spectrum of
E— 2 1 5)(F . (19 protonium states are taken into account by means of the po-
Z BIATE larization potential(20). In practical calculations, we have
included the protonium channels with principal quantum
NmaxiS a certain set of Coulomb quantum numbers chosemumbern=10-40 and angular momentuin+0 and 1. Nu-
in such a way thatbg contains all the open channels and, merical checks showed the stability of the results when in-
eventually, a limited number of closed ones. The sum frontreasing the number of included channels. The considered
Nmax tO infinity also includes the integration over the continu- €quation system has the form

ousp momentum. Th€£I>‘2j component describes the dynam-

and

ics of protonium formation, and includes the corresponding |~ 1 L(L+1) _
asymptotics of the three-body wave function: M RT 2MR2 FVed R+ Vipo(R) =B+ 25 | X(R)
|imq>g(r,R):2ﬁ fs(R)Sghj(r). +; f¢1s(r)Wou(r,R)fn,|(R)%gn,|(r)dr=0, (21)
r—o ,
HereS; are theS-matrix elements for the protonium forma- 1, 1 I(+1
tion, andh;(r) are the outgoing electron waves in the chan- ZI, - ﬁfﬁ Y + W +En | Snnai
n

nel with quantum numberg. The componentb) contains

only closed channels. R R
At large R the componentb§ vanishes due to the Cou- T aUpp (1)

lomb bound-state wave functioig. Conversely, the contri-

bution from®? is essential as far as it contains nonvanishing .

terms coming from thepp states in the continuum corre- +7T¢)1S(I’)f fri(R)Wo(R,r) x(R)dR=0. (22)

sponding to the virtual excitations and breakup. It is shown

in the Appendix thatb? actually describes the effect of the Here

gnHV(r)
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D. Effective potential method r
The numerical solution of Eq$21) and (22) is a rather 0.6 7] Im V (R,R'=R) -
difficult task, as far as each of the coupled integrodifferential [
equations includes fast oscillating functiopandf,. A way 0.7 . . . .
to overcome this difficulty is by means of the effective po- o 05 ; 15 2 25
tential method. This approach turned to be an efficient tool
for both a qualitative understanding and a precise numerical R (au.)

treatment of the problem. Thegscattering observables are FIG. 1.
given by the first equation for antiproton wavefunctign =R).
[Eqg. (21)]. The effects of the remaining coupled equations

(22) are taken into account by transforming the syst@m—

(22) into one equation foy which contains a complex non- Pn state withn=30) is about 0.02 a.u., and fgrenergies
local effective potential less than this value, the Green matf26) is not sensitive to

incident antiproton energy. This means that, once calculated

Imaginary part of the effective potentid.«(R,R’

1, L(L+1) . for E;=0, the effective potential can be used in the whole
oM Rt Soms T Ved R+ Ver energy range of interest, and this radically simplifies the cal-
2MR ;
culations.
From a physical point of view, it also seems more natural
+Vpo(R)—E+eg | x(R)=0, (23 to analyze the properties of theptbystem in terms of a
modified one-channel problem. The main features of the ef-
with fective potential as they appear from our calculations are the
following.
R o (1) The imaginary part ofV vanishes at distanc®
Ver= 2 |fa (b1 Woi(r,RITR] (") ~1.85, which corresponds to the mean radius of the
nn”, 1Y last protonium open channel n€30). In Fig. 1,
X';TWI’O(r,vR,)lgﬁls)(fn’,l’l- (24) Im[Vex](R,R") for R"=R is plotted as a function oR.

(2) The imaginary part oV.4(R,R’) is sharply peaked
around its diagonaR’=R. Nevertheless, foR<rg, the
nonlocality range is of the same order as the antiproton
wave function y(R) oscillation period. The profile of

1 1(1+1) 1 Im[Ves](R,R") for R=0.5 is shown in Fig. 2.
R“',(r,r’)=[ ( 24 +E,— _) o (3) The profile of the real part 0¥ is plotted in Fig. 3.
nn 2m" " omy? r)onn Its nonlocality range is larger than for the imaginary part. It
vanishes atR~3rg, and dominates over the polarization
Vo @and the Coulomb screeneds potentials in the range
1<R<3rg.

Here R'n'r;,(r,r’) is the Green matrix of coupled equation
system for electron wave functions:

-1
+%U2,;,%] . (25)

The whole problem is then split into two parts: to calculate
the effective potential, and to solve the one-channel problem . RESULTS

for antiproton scattering in a complex nonlocal potential. In this section, we will present the main results obtained

The benefits of SUCh. an ap_proach are varied. Or] the ONR the coupled-channel model, and discuss the physical rea-
hand, the Green functio25) is calculated by solving & g4nq of certain scattering observables behavior.
coupled equation system fgr smooth electron wave functions,
while the fast oscillatingpp wave functions are explicitly .
introduced by the well-known Coulomb states. On the other A. Scattering observables
hand, the effective potenti@4) practically does not depend The I-Bcomplex scattering length is found to be
on the p incident energy in the domaift,;<0.01 a.u.
[15,16. The minimum energy of the ejected electf@mom a a=(—7.8-i11.9rp.
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FIG. 4. InelasticityS,=1—|S|? for the H+p—Pr¥ +e reac-

FIG. 2. Imaginary part of the effective potentialeu(R tion.
=0.5R").
The inelasticity turns to be less than 0.1 fg< 1078
The corresponding elastic cross section at zero energy is and does not become greater than 0.5 in the energy domain
of interest. One can also see in this figure that the scattering
Oei=2426.45 . length approximation is valid for energies less than®a.u.
The results fol # 0 have been calculated under the assump-
We remark on the relatively large value, on the atomic scaleijon that the effective potentidR4) depends weakly on total
of the scattering length imaginary part. Such a value is @ngular momenturh in the energy range of mterest As one
consequence of the long-range polarization forces. Byan see, th& wave dominates foE:: <10
switching off Vo in Eq. (23), the value obtained is substan-  The total annihilation cross section is shown in Fig. 5. It
tially reduced to Im@)=0.2rg. The capital role of the po- follows the 14 law for E;<10 % a.u., and decreases non-
larization forces in the low-energyg-tlynamics will be dis-  monotonously folE;> 10* a.u. Such nonmonotonic behav-
cussed in Sec. Il B. ior is originated by the contribution of nonzero angular mo-
We have calculated the energy dependence of the inelasaentum partial waves, which is explicitly seen in Fig. 4. It is
ticity S,2 for several partial waves. The results are shown ininteresting to compare this cross section with a semiclassical
Fig. 4 for pincident energies in the range from 0 to fa.u,  calculation[11] obtained under the following assumptions:
(i) the p motion can be treated classically, afid the anni-

L ) l 11 1 1 I 1t 1 1 I 1t il l | T | I i1 11
2 p L Il L Il i 'l
: 30 -
1 N B )
1 25 R
—~ i \ Semiclassical
3 i ,
« - - |
0 20 | |
o~ o 0
2 [ S ;
S | (0' |‘
< 1 L - 154 Total ' =
T - = ‘
o o ©o
L 10 . -
.2 L
L 5 L
Re V(R=0.5,R")
- 3 1T 1T | T 1T 17T | LI I TT T I LI I LI ] o .
0.2 0.3 0.4 05 06 07 0.8 s
R'(a.u.)

FIG. 3. Real part of the effective potentil;(R=0.5R’). FIG. 5. Annihilation cross section forHE—» Pr* +e.
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0.35 1 1 1 ! 1 1 L - TABLE I. Energies, Auger widths, and mean ragiiu of L=0
] ) i [ Hastates. We denote by index | the resultsvy, alone, and by
03 - Protonium formation spectrum " index Il those obtained with the full interactioV {o+ Vst Ver).
] i = Ey X
0.25 7 r
] [ —5.1x10 8+i7x10°°
02 - . —4.2x10°7 —2.5x107°~i0.2x10" ' 27.0
] f —3.6x10°° —7.0x10°°-i8.4x10°® 11.3
015 ] s —2.6x107% —4.1x10 %-i3.2x10°° 7.3
] ‘ -9.2x10°4 —1.5x10 %-i8.6x10°® 5.3
o4 - 3 —-2.3x10°3 —4.2x10%-i2.0x10°* 4.2
0.05 ] L=t F gularities, determine the energy dependence of tﬁebﬁt-
] [ tering cross section. The main properties of such states and
0 T T their relation with the observables are discussed in this sub-
22 23 24 25 26 27 28 29 30 section.
We first remark that the polarization potential, alone
n (principal quantum number) generates severgl weakly bound states. The energy levels

_ _ o o and mean radii of several nearest to the threst®ktates

FIG. 6. Protonium formation probabilities in states with differ- produced by, alone are shown in Table(Values marked
ent quantum numbers. by subscript 1). These states are extremely prolonged, and
have very small binding energies. By switching on the short-
range part of the interaction, i.e., the complex nonlocal ef-

fective potentialVy; and the screened Coulom¥.g, the
pectrum is modified and inelastic widths appear. Neverthe-

ess, the main features, small binding energy G0Epoung

hilation takes place with unit probability as soon as phid
distance is smaller than a critical radit&s=0.645. The
semiclassical cross section, shown in Fig. 5, is approximatel
2.5 times larger than our values 1‘Eg<10*8 a.u. This in-

i —3 i i
dicates that the low-energyH annihilation is sensitive to the <10* a.u) and Iarg_e _ra_ldlus (4X<2.7)r5’ remai. :
guantum dynamics of protonium formation, and could hardly In_ the thres_hold_ vicinity, the elasti matrix for L.ZO IS
be reproduced with models in which the details of such dy_domlnated by its singularities, and can be written in the form
namics are not taken into account. lk+z|

The population of different protonium states, calculated Isl(k) =11 k—' (26)
for energiesE,< 10 8 a.u. is shown in Fig. 6. Protonium is k=2
produced primary in theS states, with principal quantum _ )
number 26<n<30. TheP-states population does not exceedWhere z; are the S-matrix poles with Re£)<0 due to
15% of the whole captured fraction of antiprotons. ThesdM(Ver) <0. In Fig. 7 are shown the trajectories of several
results confirm our qualitative estimation concerning theS-matrix poles @;) and corresponding zerog; as a func-
channels which make the main contribution to the reactiofion of the strength of thé/.« imaginary part. As can be
amplitude in the low-energy limit. It is worth to mention that Seen, the presence of the negative imaginary part in the ef-

the protoniumS-states population dominates only fﬁren- fective potential results in shifting th&-matrix zeros to the

ergies less than 1@ a.u., while the population of states with right into the IV and | quadrants, with the corresponding
higher| should increasé with increasing eneidy] symmetrical shift ofS-matrix poles into the Il and Il quad-

We conclude this paragraph by emphasizing that tBe H

4 1 1 1 L 1 i
scattering observables significantly change their behavior at ] 70— K . s
. — 8 . e . ] - plane r
p—10"° a.u., a characteristic energy for the reaction. We 3 E
will demonstrate that this behavior is determined by the pres- » E 3
ence of near-thresholdg-bound and virtual states generated
by the polarization potential. ERR P, o
- " z !
[ 1
= ° m By v
B. Near-threshold metastable states % 1 ] -z, -
The polarization potential is known to modify the low- 2 4 -
energy cross sections of atomic reactions significantly. It 3
plays an essential role in thepHscattering. This potential "2 2
produces a rich spectrum ofpHveakly bound and virtual <a ] . . . ' m——
-4 -3 -2 -1 o] 1 2 3 4

states[18], which results from the long-range character of
the polarization forces and the heafiy atomic scalg anti-
proton mass. Such states, being near-thres8atthtrix sin- FIG. 7. S matrix near-threshold zeroZ,) and poles P;).

Re(k) (10 °a.u.)
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el b b b e Lo calculations is required to obtain the scattering length value.

1 I At the same time, the reaction amplitude for enerdigs
>10 8 a.u. is less sensitive to the exact position of the near-
threshold singularities, and can be more easily calculated.
We estimate our accuracy in the scattering length results to
be about 30%. This uncertainty appears mainly from the ap-
proximation used foW at short distances. To obtain more
precise results, one should increase the number of accounted
closed channels, and take into account the difference be-
tweenp andR in Eq. (3). Such corrections seem not to be
important for understanding the physics of the treated pro-
cess, and are beyond the scope of the present paper.

We would like to emphasize that the near-threshold char-
acter of the above-mentione®matrix poles and zeros is
determined by the long-range polarization potential. At the
same time, their exact position in compleylane cannot be

(U I A I A MM I obtained without a proper treatment of the protonium forma-
065 07 075 08 08 09 09 1 tion dynamics. In particular, the semiclassical black sphere
condition does not hold in the energy domé&pg< 10" % a.u.
agle In terms of S-matrix analytical properties, the coupling with

protonium production channels produces comparatively large

FIG. 8. Inelasticity for reaction H p—Prt +e as a function of ~ (for the energy domain of intergsshifts of the real part of
the dipole polarizabilitye . the S-matrix zeros, and reduces the inelasticity.

rants. The position of th&-matrix zero(and pole nearest to
the origin corresponds to an energy Bf~10 8 a.u., and .
plays the role of characteristic energy for reactiah We It was shown that the energy dependence of the reaction
notice, however, that thiS-matrix singularity nearest to the Probability is determined by the existence of several near-
threshold lies on the nonphysical sheet, i.e., k&0 and t_hreshold states generated mainly by_t_he Iong-ra_nge polariza-
Im(k) <0, and corresponds to a virtual state. Its wave funclion forces. This suggests the possibility of obtaining a_local
tion has an exponentially increasing asymptotic, and does n@omplex potential which would be equivalent to the fulpH
represent a physical state. interaction in the energy range of interest. By “equivalent,”
As the usual definition of effective range cannot be ap-we mean not only to reproduce the same reaction probabili-
plied to the 1R* polarization potentigl14], we introduce the ties but to support the same near-threshold spectral structure

characteristic range of plinteraction asR,=1/ko|, where &S well.

C. Local approximation of the effective potential

ko corresponds to the position of tH&matrix singularity We search for suph an equivalent local complex potential
nearest to the threshold. One can see thatkfek,, the &S & sum of three different terms
scattering length approximation is no longer valid, and

g crahn app J Vioe(R) = V(R) + Ved R)+ Vpo(R),

higher-order terms in the scattering amplitude expansion
should be taken into account. With the result in Table I, oney.(R) and V,,(R) being, respectively, the Coulomb
obtainsRA~103 a.u. screened and polarization potential used in Sec. 11l B,\and

It is seen from Eq(26) that for antiproton incident ener- 4 |ocal short-range part to be determined. It was assumed to
giesE;<10 8 a.u., |k+z|~|k—z| and sqS|—1. This ex-  have the form
plains why the inelasticit)Sr2 for E;<1078 a.u. turns to be

much less than unity. Fd€,>10° a.u., and because there —~V e 1Rl _jyw, e AR jf R<R,
are severalS-matrix zeros situated to the right from z,, Vs(R)= —iW,e A2(Rire) if R=R
one has|k+z]|<|k—z]|, and the reaction probability in- °&27)
creases.

To illustrate how the position of the near-thresholdand a satisfactory fit is obtained with the following parameter
S-matrix singularities determines the low-energy scatteringyalues:  V;=0.572, W;=W,=0.040, «;,=1.20, B,
we have calculated the inelasticity as a function of the dipole= 8,=3.20, andR.=2rg.
polarizability a4 for a fixed energy E,= 10 8 andE=10"6 In Table II, the results of calculations in the nonlocal
a.u) This function is plotted in Fig. 8. The strong oscillations effective potential and abovementioned local approximation
between its maximum and minimum values with decreasingire compared. They agree within a few percent accuracy in

ay correspond to the motion of @matrix pole from the Il the energy range 0:610 °-0.5<10"° a.u.
to the Ill k-plane quadrant, while the symmetr&matrix
zero moves from the IV quadrant to the | quadrant. This D. Hydrogen-antihydrogen interaction

means that a weakly bound state becomes virtual. As it is Th its obtained for Bi . b df
seen from Eq.(26), the inelasticity reaches its maximum e results obtained for interaction can be used for a

value when arS-matrix zero crosses the relalaxis. qualitative treatment of different atom-antiprotoAf) and
This last result shows that sufficiently high accuracy ofatom-antiatom AA) system.
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TABLE Il. Inelasticity (S,Z) and S-matrix (S) values calculated t } } }
in the full effective potentia(index l) and in its local approximation
(index 1I) at different energiesHy).

3000 =

Ep (au) SAORESA()) S(1) S() 25004 T
05x10°° 0043 0.043 00978i0.01 0.978i0.014 2000
05x10°® 012 0122 0.937i0.013 0.936-i0.021 - T
05x1077  0.266 0.266 0.836i0.185 0.836-i0.177 5
05x10°® 042 0425 0.023i0.756 0.034i0.757 915001 +
bm
1000 - -+

It is of particular interest to estimate the Hirnihilation
cross section, and thus to examine the reaction:

500 -4 S-wave

H+H—Prt+(ete) (28

P-wave

The HHsystem interacts at long distances via a dipole-dipole
potentialV 4~ — 6.5/R®. This potential also generates a spec-
trum of near-threshold states. Some of them, WithO, are
shown in Table Ill. In analogy with the case of H4), one
can expect that the correspondiBgmatrix singularities will

Logm(E) au.
FIG. 9. Probability of reaction H H— Pr +(eten).

where M, and |, are theAp reduced mass and the first

determine the reaction dynamics of Eg8).
A qualitative estimation of the Higotential can be ob-
tained by adding to the same short-range part asgrcase

ionization potential, respectively, amds the principal quan-
tum number of the last open channel. A similar estimation

for the AAinelastic range 5 can be obtained if we take into

the dipole-dipole long-range taily4. The reactior(28) cross
section calculated in such a way is shown in Fig. 9. The
characteristic energy for this reaction was found to be
~10° a.u., corresponding to the position of tBematrix
singularity nearest to the threshdhdrtual state with energy
—7.8x10 % a.u).

A similar treatment can be used to estimate the inelastic-
ity energy dependence for differefip or AAsystems in the
low-energy limit. For such a purpose, one has to find the
S-matrix singularity nearest to the threshold, generated by
polarization potential. The necessary condition for the valid-

rA%

account that Positronium is produced in this collision:

Maa
FZZlA_SPS

Epg— | H/2!

2n? - 1
M an (21—

H2)

ity of such a qualitative approach is that the characteristiéF:|
rangeR, of the Ap or AAlong-range interaction should be

much greater than the inelastic range
As seen from Eq(24), the inelastic range is mainly de-

ereM 4 is the reduced mass of the_Asﬂystem,spS is the
ositronium ground state energy.

As in the Hp case, the presence of near-threshold virtual
states may considerably increase the characteristic range of

termined by the mean radius of the last protonium state opeﬁpor AAinteraction. However, it can be interesting to have

channel, and thus given by

2n?

1

Ma
_:IA! rA | y
A

2n? M

TABLE lll. Energies, Auger widths, and mean ra¢é.u of L
=0HH states. We denote by index I the resultsvig, alone, and
by index Il those obtained with the full interactionV(;+ Vs
+ V).

E| E|| X

—7.8x10°° —6.1x10°5+i1.8x10°°

-1.9x10* —4.3x104-i2.2x10°* 4.6
—-2.9x10°3 —-52x107%-i1.2x10°3 2.8
-1.1x107? —2.9x107%-i8.4x 1073 15
—3.3x10°? —5.8x107%-i9.2x10°3 1.3

a simple approximation of this range in the aim of compari-
son with preliminary estimationsee also Ref.12]). This is
provided by the semiclassical condition for the numieof
states:

f V2MAVh,(R)dR~7N.

This condition may be rewritten as follows:
R
—A%WN.
s
For theAp case, we obtain
[ V2MACh

V2MACH/L(L+1)

if L=0
if L>0,

(29

while for AA one has
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MZMAZCQ if L=0 pr(_)duce_d by the long-range polarization potential, and_are
Ra~1., . ) (30) shifted in the complex momentum plane by the coupling
\/ZMA7\C6/L(L+1) if L>0, with protonium formation channels. The pHscattering
length appears to be very sensitive to the position of the
above-mentioned singularities, and requires accurate calcula-
tions.
A local approximation of the effective potential has been
proposed for further applications. It reproduces the scattering

C4 andC5 being the atom charge-dipole and dipole-dipole
van der Waals constants. Finally, we obtain the following
ratio of inelastic and polarization range:

! if L=0 observables in the considered energy range, and has the same
A | AN 2MACh near-threshold spectral properties. A qualitative extension of
—= — (31)  this approach to more general systetagomp and atom-
Ra L(L+1) i 0 antiaton) has been discussed.
| \2M .CA it L> The results discussed in this work have been obtained
A A~4 within an approximate model. In view of these, and moti-
for atom-antiproton, and vated by the future project of storing antimater at CERN, it
would be interesting to check the validity of the different
1 approximations by developing more accurate treatments in-
if L=0 cluding an exact solution of the three-body problem.
ra | (21a=14/2)32Ma2C8 ’ ’F
Ra AL(L+1) (32 ACKNOWLEDGMENTS
if L>0 ) _
(21 5—1 H/Z)A‘/ZMAKCE\ The authors would like to thank I. S. Shapiro for suggest-
ing the problem. One of the autho(4.V.) would like to
for atom-antiatom interaction. thank D. Morgan for useful discussions.
Ratios(31) and (32), calculated for a wide range of dif-
ferent atoms, turni out to be much smaller than unity in the APPENDIX A
caseL=0. In particular, for He, the less polarizable atom,
they are~0.02 for Hep, and~0.05 for HeHeThe polariza- The aim of this appendix is to find the dominant channels

tion range dominates over the inelastic one in the partialn €xpansion(10) of the three-body wave function. We first
waves up toL~10 for qu and L~4 for HeHe These analyze the behavior of the componeb} at distanceR

values ofL characterize the maximum angular momentum,>"e- The equation system fab$ and®5, in terms of the
which makes possible the existence of extended polarizatioprojection operator® [Eq. (7)] andF [Eq. (19)] reads
states.
(Fpp+ PWe P —Ep)| 1) + PWe(1— P)F|®9)
IV. CONCLUSION o R R
_ _ Py —

A coupled-channel model describing thep ldystem at T PWe(1=P)(1 Plez=0, (A1)
energies less than 16 a.u. has been developed. The results . . . A .. d
thus obtained substantially differ from the low-energy ex- [Hept Hppt F(1=P)Weg(1-P)F —E]|®3)
trapolations of the black sphere model and other classical or A A A N S
semiclassical approaches. They show that such a low-energy +R(1-P)Weg(1-P)(1-F)[®3
requires a quantum-mechanical treatment in which the dy-
namics of the protonium formation is properly taken into
account. R A . L A A

The effective Fp optical potential has been calculated in  [Hept Hppt (1—F)(1—P)We(1-P)(1-F)—E]|®5)
the framework of the coupled-channel model. In this frame- 1—EV(1— PW-PE|Dd
work, the Ho scattering length and zero-energy elastic cross * A YWep |3

+(1-P)FW,,P|®,)=0, (A2)

section were found to bea=(—7.8-i11l.5)z and oy +(1—|5)(l—|3)\7Ve95|q’1>=0- (A3)
=2426.42, respectively. The Hinelastic cross section has
been calculated in the energy range from 1€ 10 ¢ a.u. It By taking into account that at largR the projection op-

; ; -8 .

follows the. 15 behavior up t_o energies 1(.) au., wher(_a . eratorF vanishes, Eq9A1)—(A3) simplify into the follow-
the scattering length approximation is valid. The melastlcnying system, valid foR>rg:
turned out to be much smaller than the black sphere model ' B

predictions. N VA o .

The protonium formation spectrum for energies less than  (Hpp™ PWepP —Ep)[®1) + PWep(1-P)[d5) =0,
10 8 a.u. has been calculated. We have shown that the popu- (A4)
lation of S states with a principal quantum number from 26
to 30 acounts for 75% of the total captured fraction. [Hpp+ Hept (1—P)We(1—P)—E]| DY)

The reaction dynamics is found to be determined by the o
existence of several near-threshold states. Such states are +(1—P)WegP|CI>1>=O. (A5)
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This system can be solved with respectitd, and for the  polarizability, ay= 2. We can thus conclude that the contri-
component®; gives bution of ®5 at large distanceR can be taken into account
by introducing, in the elastic channel, the polarization
O — PW P —E> P\A —P\C charge-dipole potential.
(Fop+ PWepP Ep)|®l>+ PWed1~P)Cpo Tg esti?natepthe contribution of different channels at dis-
X (1—P)We,P|®,)=0, (A6)  tancesR~rg qualitatively, we first obtain the solution of Eq.
. ) (A1) in the distorted-wave approximation. Compondr},,
in which obtained by neglecting the coupling to other components, is
A o o A D= ¢,x°, with x° satisfying the equation
Gpo= —[HpptHept (1-P)W(1-P)—E] . A7)

1
— 2 _ 0_
The last term in Eq(A6) is the polarization long-range 2M JrtVedR)~E+eg|x"=0.

interaction

N n L. o a The contributions of components$ and @ are character-
Vo= {15 We(1=P)Gpo(1-P)Wep d15).  (AB)  ized by the integrals

The asymptotics of the Green functié})m atR,R'>rg is . A R R R
(X°PIWey(1=P)[F,  (X°PIWe(1-P)|(1-F).
1 (A10)

5 (e PalR-R'|
Pa An estimation of integral§A10) can be obtained if we
—S,e PRTR)Y g (1) (1), take into account the semiclassical character of the wave
function x° and the Coulomb wave functions Rt=rg in
wherep,=+v2M(|[E—¢,|), anda is a set of spherical Cou- expansiong17) and(18). We are dealing with an integral of
lomb quantum numbers. If we take into account that at largdast-oscillating functions which has significant values only if
R, Vyo acts on the very slowly changing functigrR) (the there exist stationary phase points inside the integration re-
oscillation period ofy for R>r is indeed much greater than 9i0n- The equation for such stationary phase points is
rg), we can substitutés,, in Eq. (A8) by the following
expression:

Gpol(RR/, 1,1 )=

1

2n?’

1
- —-2R_
R+1 e

! 4 ' ¢a(r)¢a(r’)
Gpa(R,.R',r,r")=68(R—R )% e
‘ It can be shown that there are no stationary phase points for

By keeping terms up to B*, we obtain the well-known @5, while the contribution of®$ at the distancR~rg is

charge-dipole potential asymptotic behavior mainly exhausted by protonium states with principal quan-
tum number 26:n<40 (see Refs[15,16]).
We have, in conclusion, that in the energy domain of

o
Vpo(R>T1g) = — —dA, interest and large internucleon distances the contribution of
2R ®? is the only important one, and can be taken into account
by introducing the polarization potentigh8), while at the
~ 1 ~ distancesR~rg the componentbg dominates, and can be
@™ 2,1;(:13) (¢15ld|de) sB—aa<¢“|d| $15)- (A9) described by a limited number of channels. These qualitative

. arguments are important for a construction of the first ap-
Here d stands for the dipole momentum operator. In Eq.proximation, and should be proved by further numerical cal-
(A9) one recognizes the expression for the hydrogen dipoleulations.
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