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Another way to calculate the Lamb shift in two-electron systems

A. K. Bhatia and Richard J. Drachman
Laboratory for Astronomy and Solar Physics, NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771

~Received 21 October 1997!

We present a calculation of the two-electron Bethe logarithm, the main part of the theoretical expression for
the Lamb shift of the atomic ground state. The basic method uses Hylleraas pseudostates to approximate the
intermediate states in the slowly convergent sum defining the quantity of interest. Three tricks improve the
convergence in our method. First, we choose the nonlinear parameters of the pseudostates by a variational
method. Second, we extend the energy sum analytically, beyond the last pseudoenergy. Finally, we extrapolate
the result using a physically reasonable parameter as the independent variable. The extrapolation proves to be
remarkably linear. Results are given for helium and several two-electron ions and compared with previous
calculations. The hydrogen system is also considered.@S1050-2947~98!10206-8#

PACS number~s!: 31.15.Ar, 31.30.Jv
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I. INTRODUCTION

One of the most difficult parts of the two-electron Lam
shift calculation is the Bethe logarithm:

ln~K !5

(
n

^0uVun&^nuVu0&~En2E0!3 ln~En2E0!

(
n

^0uVun&^nuVu0&~En2E0!3

[
N

D
, ~1!

where V5r 1 cosu11r2 cosu2. The main difficulty is the
slow convergence of the sums, especially the numera
with intermediate-state basis size. In fact, the sum in
denominator would diverge if the energy difference we
raised to the fourth power, rather than the third. Thus,
numerator is just on the edge of divergence due to the lo
rithmic factor. Several different techniques have been
vented in an attempt to circumvent these problems@1–3#.
For helium, the published results range from a low of 4.33
to a high of 4.3701, and they are all surprisingly close to
value obtained @3# without interelectronic correlation
4.3704. Some of the cited papers give estimates of the
certainties in the calculations; these vary from 131026 in
the unpublished work of Bakeret al. to the conservative es
timate of Kabir and Salpeter of 0.2.

This paper describes a method that is quite simple in c
cept, although it involves several tricks and requires a s
nificant amount of computer time. We do not claim it
necessarily the most accurate; when the calculation of Ba
et al. is published it may turn out to be definitive. We belie
the method is interesting, independent, and of accuracy c
parable to most of those in the literature. So far, we h
applied the method only to the ground state, but we see
reason why it could not be used for excited states equ
well.

In principle, the intermediate statesun& should be the
complete set ofL51 eigenstates, both bound and co
tinuum, of the Hamiltonian describing the two-electron sy
571050-2947/98/57~6!/4301~5!/$15.00
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tem. Instead, we usually use the pseudostate summa
method, replacing this difficult set of functions with a larg
finite set of normalizable functions. For simpler cases, l
calculations of polarizabilities@4# or van der Waals coeffi-
cients@5#, the method works extremely well, largely becau
the convergence is aided by the appearance of negative p
ers of the energy differences. In the present case, howe
the energy differences make the convergence very slow,
the usefulness of the pseudostate summation techniqu
questionable.

To overcome the problem, we will use some spec
tricks. In Sec. II we will examine the denominator of Eq.~1!
and will use it to make an optimum choice of the form of t
pseudostates to be employed. In Sec. III we will improve
convergence by using a standard method to approximate
form of the terms corresponding to excitation energies ab
the last pseudoenergy included. In Sec. IV a physically r
sonable linear extrapolation method will be introduced a
used to obtain quite an accurate value for ln(K), and our
results for various two-electron ions will be compared w
previous results. An Appendix will apply the method to th
case of atomic hydrogen, which should be simpler but tu
out to be puzzling.

The Hamiltonian~in reduced Rydberg units! for the two-
electron system with a single nucleus of chargeZ is the
following:

H52¹1
22¹2

22K¹1•¹22
2Z

r1
2

2Z

r2
1

2

r12
, ~2!

whereK52/(M11), M is the mass of the nucleus in uni
of the electron mass,rW i5@M /(M11)#(rW i2rWM), and rW 12
5rW 12rW 2 . The two-electron ground-state functionu0& has the
form

C05e2a~r11r2! (
l ,m,n50

V0

Cl ,m,nr1
l r2

mr12
n 1@1�2#. ~3!

~Our best ground-state energy was obtained with the Pek
numberV0516, corresponding to a total of 525 terms.! The
intermediate statesun& also have the Hylleraas form, but wit
L51:
4301 © 1998 The American Physical Society
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Cn52cos~u12/2!~ f 1 f̃ !D1
112sin~u12/2!~ f 2 f̃ !D1

12 ,

where

f ~r1 ,r2 ,r12!5e2g~r11r2!r1 (
i , j ,k50

Vp

Ci , j ,kr1
i r2

j r12
k , ~4!

and

f̃ ~r1 ,r2 ,r12!5 f ~r2 ,r1 ,r12!.

The rotational harmonicsD used here are those defined
Bhatia and Temkin@6#. For each expansion length (Vp) and
nonlinear parameter~g!, a set of functions (Cn) and corre-
sponding energies (En) are obtained variationally, to be in
serted in the summations shown in Eq.~1!.

II. THE DENOMINATOR

It is simple to transform the denominatorD of Eq. ~1! to
an equivalent form—one in which the intermediate sum
been removed—which should make its evaluation b
easier and more accurate. We use the commutator relat

^nu@H,V#u0&5^nuVu0&~En2E0! ~5!

three times, in order to remove the factor depending onEn :

D5
2

3
~21K !2$^0u@H,~¹11¹2!#•~¹11¹2!u0&

2^0u~¹11¹2!•@H,~¹11¹2!#u0&%. ~6!

Since the only parts ofH that do not commute with¹1
1¹2 are the nuclear potential terms, this expression fina
can be put in the form

Dex5
16pZ~11K !

3
^0ud~rW 1!1d~rW 2!u0&, ~7!

where closure over the set of intermediate states has
invoked, Poisson’s equation has been used to introduce
convenientd functions, and we have dropped the small te
of orderK2. The only uncertainty in the value of this expre
sion forD comes from the variational approximation used
evaluateu0& @Eq. ~3!#, and this error can be made negligib
small by using a high enough value ofV0 . In effect, in the
derivation of Eq.~7! we have inserted a complete set of exa
intermediate states and assumed that the initial state is
an exact eigenstate ofH.

But since it is not possible to reduceN to a similar simple
form ~because of the logarithm! it is important to know how
well the pseudostate sum has converged. We expect tha
convergence of the pseudostate expansion ofD will be simi-
lar to that ofN, and since we know the ‘‘exact’’ value ofD
we have a measure of the error inN ~for each value ofVp)
as well. But we still need some criterion for choosing t
nonlinear parameterg appearing in the trial functions of Eq
~4!.

If, instead of using the commutator relation@Eq. ~5!# three
times we employ it four times, twice in each matrix eleme
of Eq. ~1!, the following ~acceleration! form is obtained:
s
h
n

y

en
he

t
lso

the

t

Dacc528Z2~11K !(
n

^0uUun&^nuUu0&
E02En

,

where

U5
cosu1

r1
2 1

cosu2

r2
2 . ~8!

This expression forD looks like the second-order energ
shift induced by the potentialU, and it is a variational bound
in the following sense. Let us apply the Rayleigh-Ritz var
tional method to the following trial function:

uCT&5u0&1(
n

Cnun& ~9!

assuming thatH85H1U is the Hamiltonian and thatU is
so small that only the leading order inU must be kept. Then
the sum in Eq.~8! gives the variationally correct value fo
the total energy, and we chooseg to maximizeDacc as cal-
culated from Eq.~8!. In Fig. 1 we show the behavior ofDacc
as g is varied, for several different values ofVp ; the ‘‘ex-
act’’ value is also shown.

Now that we have set up a good way to specify the fo
of the intermediate states, using the ‘‘acceleration’’ form
the matrix elements shown in Eq.~8!, we must calculate the
corresponding value ofNacc, as a function ofVp . This sim-
ply involves repeating the computation that led to the var
tional value ofDacc but with the logarithm included. Then
ln(K) can be evaluated at each stage of the expansion
Table I we display the results forV0516 ~525 terms! with
Vp<13 ~560 terms!. The slow convergence can be seen.

III. EXTENDING THE UPPER LIMIT

In using this kind of pseudostate expansion, it is usua
assumed that the contribution of each term is almost ex
and that the remaining error in the total is due to the fact t
the sum does not extend to high enough energies. In
section we use a method due to Dalgarno and Stewart@2# to

FIG. 1. Behavior ofDacc for helium as a function of the nonlin
ear parameterg. The crosses are forVp53, and the plus signs are
for Vp54. The dotted line is the ‘‘exact’’ value, obtained from E
~7!.
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57 4303ANOTHER WAY TO CALCULATE THE LAMB SHIFT IN . . .
account for the remainder of the sums beyond the high
pseudoenergy. They used experimental values of oscill
strength up to some maximum energy and used
asymptotic formula from there onward. For high energ
they used the following simplified form:

Cn,kW~rW1 ,rW2!5
1

2p S k

2D 1/2

@un~rW1!eikW•rW21un~rW2!eikW•rW1#

~10!

to represent singly ionized states in the expression tha
places the discrete one used in Eq.~8!:

Fn~e![~ I n1e!2
d fn

de

5
16Z2~11K !

3~ I n1e!
U^C0uF rW1

r 1
31

rW2

r 2
3G uCn,kW&U2

. ~11!

Here e5k2, I n is the ionization-excitation potential of th
two-electron system, andun is the wave function of the one
electron system left after single ionization. Integrating E
~11! overde from some lower limite0 to ` gives the desired
high-energy correction. For convenience, and without los
accuracy, we fitted Fn(e) to the form @An
1(Bn /k)tan21(Cn /k)#e23/2 and includeds states up ton
54. Highers states were included approximately by an e
pression falling like 1/n4.

In Ref. @2# the lower limit e0 is just the last experimenta
value of the oscillator strength available, but in our metho
is not clear that the last pseudoenergy plays that role.
stead, we adjuste0 so that

Dex5Dacc1E
e0

`

de(
n

Fn~e!. ~12!

The critical step is now to correctN using the same value o
e0 as for the denominator, modifying the integral by t
inclusion of the appropriate logarithmic factor. In Table

TABLE I. Uncorrected values of numerator, denominator, a
Bethe logarithm of helium asVp increases. The value of the non
linear parameterg @Eq. ~4!# that maximizesDacc is also shown.
~The last value ofg was obtained by extrapolation from thos
above, since computer time at these large expansions is quite l!
The exact valueDex5121.335 143 is obtained from Eq.~7!.

Vp g Dacc Nacc ln(K)

3 3.644 529 94.114 569 301.053 261 3.198 79
4 4.080 394 101.216 416 346.195 202 3.420 34
5 4.425 096 104.957 668 373.513 205 3.558 70
6 4.849 542 108.413 460 399.676 322 3.686 59
7 5.179 484 110.403 345 416.057 508 3.768 52
8 5.588 226 112.320 411 432.319 315 3.848 98
9 5.888 226 113.508 976 442.840 189 3.901 36

10 6.305 080 114.676 534 453.744 402 3.956 37
11 6.623 156 115.446 146 461.125 678 3.994 29
12 7.004 813 116.207 693 468.586 094 4.032 31
13 7.3 116.735 692 473.876 067 4.059 39
st
or
n
s

e-

.

f

-

it
n-

we show this improved value of ln(K); the convergence with
increasingVp is significantly improved.

IV. EXTRAPOLATION AND RESULTS

Although inclusion of the integral accounting for most
the asymptotic contribution to the numerator has improv
the convergence of ln(K), an accurate result is still not a
hand, and it will be necessary to use some method of
trapolation. To do this we need to find some reasonable
dependent parameter, not necessarilyVp itself, on which to
base the procedure. That parameter should measure
close to convergence we have come at each stage.

An obvious choice is the deviationDD of the denomina-
tor from its exact value:

DD[Dex2Dacc. ~13!

This quantity approaches zero asVp increases and it should
represent, at least approximately, the degree of complete

FIG. 2. ln(K) for helium as a function ofDD. The plus signs
show the uncorrected values, using the data from Table I, and
crosses are the corrected values from Table II. Linear fits have b
made in both cases, and the improved convergence of the corre
values is clear.

g.

TABLE II. Corrected values of numerator and Bethe logarith
of helium asVp increases. The exact value of the denominator
used in each case. The lower limite0 of the correction integral is
also shown.

Vp e0 Ncorr ln(K)

3 361.0613 520.267 518 4.287 855
4 724.0096 521.248 382 4.295 939
5 1143.441 523.110 217 4.311 284
6 1912.977 524.085 779 4.319 324
7 2734.433 525.086 045 4.327 568
8 4108.808 525.799 439 4.333 447
9 5524.324 526.334 777 4.337 859

10 7729.503 526.911 785 4.342 614
11 9964.945 527.307 234 4.345 874
12 13 253.52 527.650 177 4.348 700
13 16 564.86 527.870 611 4.350 517
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4304 57A. K. BHATIA AND RICHARD J. DRACHMAN
of the set of intermediate pseudostates. In Fig. 2 we h
plotted the values of ln(K) from the tables withDD as the
abscissa and have fitted straight lines to the calculated po
both corrected and uncorrected. The slope of the line fitte
the corrected points is 12 times smaller than the uncorre
slope, indicating the improved convergence we expec
The extrapolated result for helium is ln(K)54.367 58(46),
where the uncertainty in parentheses is due to the linea
gression analysis.

In Table III we show the values of ln(K), obtained by this
method, for a range of atomic numbersZ. Goldman and
Drake @3# have used an expansion in 1/Z to derive an ap-
proximate expression for the Bethe logarithm:

ln~K !5 ln@19.769 266 9~Z20.006 15!2#, ~14!

which is exact in the limit of largeZ. We have included the
results of Eq.~14! in Table III for comparison.~But notice
that the mass polarization term was not included in@3#; this
should make a difference in the fourth decimal place.! We
have also fitted our four values to obtain the following fo
mula:

ln~K !5 ln@19.705 61Z220.000 42Z10.002 10#. ~15!

This is not in the same factored form as Eq.~14!, but a good
fit is also obtained in that form:

ln~K !5 ln@19.705 541~Z11.3531025!2#. ~16!

Since neither of these expressions goes exactly to the kn
~hydrogenic! high-Z limit, neither one can be completely sa
isfactory for allZ, but the present results may represent
two-electron ground-state Bethe logarithm well over t
range 2<Z<10.
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APPENDIX

Although the main point of this paper is to calculate t
ground-state Lamb shift for two-electron systems, it is
obviously interesting question to see how well the meth

TABLE III. Results for a series of two-electron systems.

System Z ln(K) ln(K)a

He 2 4.367 578 4.364 263
Li1 3 5.177 763 5.177 249
Be12 4 5.753 615 5.753 640
Ne18 10 7.586 072 7.588 068

aFrom Eq.~14! ~Ref. @3#!.
e

ts
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works for the simpler and better known one-electron~atomic
hydrogen! case. We replace the Hylleraas function of Eq.~3!
by the exact hydrogen ground-state eigenfunction and Eq~4!
by a simple one-electron form:

C05
e2r

p1/2, Cn5e2gr P1~u!(
j 51

Vp

Cj r
n. ~A1!

Again, the denominator can be transformed into a form l
that of Eq.~7! and can be evaluated exactly:D516/3. All
the other steps described above are carried out, simplifie
apply to the one electron system.

In Fig. 3 we show the unexpected results. In place of
linear relation found in the two-electron cases treated ab
and illustrated in Fig. 2, we obtain an alternating conv
gence pattern. AsVp increases from an odd value to the ne
even value the numerator increases significantly while
denominator remains unchanged to 7 or 8 significant figu
With the next increase inVp the increase inD resumes. This
effect produces the two distinct lines seen on the graph.
were able to carry the calculation up toVp522, at which
point D is about 1% from the exact value (DD50.057). It
seems reasonable to extrapolate each of the two curves
pendently toDD50 and obtain the two estimates ln(K)
52.987 125~from odd values ofVp) and ln(K)52.978 329
~from even values!. Combining these two values we can r
port a ‘‘best’’ value of ln(K)52.982760.0044, where the
indicated error measures the discrepancy between the
extrapolations. This should be compared with the accu
value @7# ln(K)52.984 129; our generous error does inclu
this value.

We have not been able to understand this irregular c
vergence, but we suspect that it involves some symm
obeyed by hydrogen and not by the more complicated tw
electron systems. This remains an interesting unansw
question.

FIG. 3. ln(K) for hydrogen as a function ofDD. The alternating
convergence pattern discussed in the text leads to two distinct li
crosses are for even values and plus signs are for odd values ofVp .
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