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Another way to calculate the Lamb shift in two-electron systems
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We present a calculation of the two-electron Bethe logarithm, the main part of the theoretical expression for
the Lamb shift of the atomic ground state. The basic method uses Hylleraas pseudostates to approximate the
intermediate states in the slowly convergent sum defining the quantity of interest. Three tricks improve the
convergence in our method. First, we choose the nonlinear parameters of the pseudostates by a variational
method. Second, we extend the energy sum analytically, beyond the last pseudoenergy. Finally, we extrapolate
the result using a physically reasonable parameter as the independent variable. The extrapolation proves to be
remarkably linear. Results are given for helium and several two-electron ions and compared with previous
calculations. The hydrogen system is also considdi®t050-294{08)10206-§

PACS numbd(s): 31.15.Ar, 31.30.Jv

[. INTRODUCTION tem. Instead, we usually use the pseudostate summation
method, replacing this difficult set of functions with a large,
One of the most difficult parts of the two-electron Lamb finite set of normalizable functions. For simpler cases, like
shift calculation is the Bethe logarithm: calculations of polarizabilitie§4] or van der Waals coeffi-
cients[5], the method works extremely well, largely because
the convergence is aided by the appearance of negative pow-

>, (0|VIn)(n|V|0)(E,—Eq)® IN(E,—Ey) ers of the energy differences. In the present case, however,
In(K)= " the energy differences make the convergence very slow, and
_[E\3 the usefulness of the pseudostate summation technique is

En: (OIVIm/(n[V|0)(En—Eo) questionable.

To overcome the problem, we will use some special
(1) tricks. In Sec. Il we will examine the denominator of Ed))
and will use it to make an optimum choice of the form of the
pseudostates to be employed. In Sec. Il we will improve the
where V=r; cos#,+r,cos6,. The main difficulty is the convergence by using a standard method to approximate the
slow convergence of the sums, especially the numeratoform of the terms corresponding to excitation energies above
with intermediate-state basis size. In fact, the sum in théhe last pseudoenergy included. In Sec. IV a physically rea-
denominator would diverge if the energy difference weresonable linear extrapolation method will be introduced and
raised to the fourth power, rather than the third. Thus, theised to obtain quite an accurate value forklp(and our
numerator is just on the edge of divergence due to the logaesults for various two-electron ions will be compared with
rithmic factor. Several different techniques have been infrevious results. An Appendix will apply the method to the
vented in an attempt to circumvent these probldhs3]. case of atomic hydrogen, which should be simpler but turns
For helium, the published results range from a low of 4.3313ut to be puzzling.
to a high of 4.3701, and they are all surprisingly close to the The Hamiltonian(in reduced Rydberg unitdor the two-
value obtained [3] without interelectronic correlation, electron system with a single nucleus of chaijds the
4.3704. Some of the cited papers give estimates of the urfollowing:
certainties in the calculations; these vary fronx 10 ° in
the unpublished work of Bakeat al. to the conservative es- He —V2-V2_KV,.V,— 2_Z_ 2_Z n i @)
timate of Kabir and Salpeter of 0.2. ror2 Y2 o pr prd
This paper describes a method that is quite simple in con- ) ) )
cept, although it involves several tricks and requires a sighereK=2/(M +1), M is the mass of the nucleus in units
nificant amount of computer time. We do not claim it is of the electron massp;=[M/(M+1)](fi—fy), and g,
necessarily the most accurate; when the calculation of Baker 1~ f2- The two-electron ground-state functif) has the
et al.is published it may turn out to be definitive. We believe form

Il
ol z

the method is interesting, independent, and of accuracy com- 2

parable to most of those in the literature. So far, we have _ a—a(p1+po) I mon e

applied the method only to the ground state, but we see no Vo=e |,m%:o Cimnp1p2p127[152]. (3)
reason why it could not be used for excited states equally

well. (Our best ground-state energy was obtained with the Pekeris

In principle, the intermediate statés) should be the number{),=16, corresponding to a total of 525 tern$he
complete set ofL=1 eigenstates, both bound and con-intermediate statd®) also have the Hylleraas form, but with
tinuum, of the Hamiltonian describing the two-electron sys-L=1:
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W= —cog 0,42)(f+T)D}" —sin(0142) (- T)D] ", 10
where 1207
Q 1101

p . .
f(p1.p2.p10=€" ’”‘“pz)pli P CijkP1pbpse, (D) 100]
and S
w_

f(p1,p2:p12 =F(p2.p1.p12)- -

The rotational harmonicB used here are those defined by

Bhatia and Temkiri6]. For each expansion lengtii)() and 601
nonlinear parametery), a set of functions¥,) and corre-

sponding energiesH,) are obtained variationally, to be in- 1 2 3 4 5 6 7 8
serted in the summations shown in Eg).

FIG. 1. Behavior oD .. for helium as a function of the nonlin-
Il. THE DENOMINATOR ear parametey. The crosses are fd2,=3, and the plus signs are

o ) for ,=4. The dotted line is the “exact” value, obtained from Eqg.
It is simple to transform the denominatbrof Eq. (1) to (7).

an equivalent form—one in which the intermediate sum has

been removed—which should make its evaluation both (0lu|n)(n|U|0)

easier and more accurate. We use the commutator relation Doe= —8Z3(1+K) > —E_g
n 0" bEn

n|[H,V]|0)=(n|V|0)(E,— E 5

(nl[H,V110)=(n|V|0)(E\—Eo) ®) e

three times, in order to remove the factor dependindegn
P Ee _ Cosf; cosb,

7t —>. (8)

2 2 P1 P2

D=3 (2+K) {{O|[H,(V1+V3)]-(V1+V7)[0)

This expression foD looks like the second-order energy

—(0[(V1+V,)-[H,(V,+V,)]|0)}. (6)  shiftinduced by the potentidl, and it is a variational bound

in the following sense. Let us apply the Rayleigh-Ritz varia-

Since the only parts oH that do not commute witV,  tional method to the following trial function:

+V, are the nuclear potential terms, this expression finally

can be put in the form |‘I’T>:|0>+E c.ln) ©

167Z(1+K) "

Do=—""7—"—(0|8(py)+ 8(p,)|0), 7 . . . . .
ex 3 (0]0(p)+ 8(p2)[0) @ assuming thatl’ =H+U is the Hamiltonian and thatl is

so small that only the leading order th must be kept. Then
where closure over the set of intermediate states has beghe sum in Eq(8) gives the variationally correct value for
invoked, Poisson’s equation has been used to introduce thfie total energy, and we chooseto maximizeD . as cal-
convenients functions, and we have dropped the small termcylated from Eq(8). In Fig. 1 we show the behavior & ,..
of orderK?2. The only uncertainty in the value of this expres- a5 y is varied, for several different values 6, ; the “ex-
sion forD comes from the variational approximation used togct” value is also shown.
evaluate{0) [Eq. (3)], and this error can be made negligibly  Now that we have set up a good way to specify the form
small by using a high enough value 8f,. In effect, in the  of the intermediate states, using the “acceleration” form of
derivation of Eq(7) we have inserted a complete set of exactthe matrix elements shown in E€B), we must calculate the
intermediate states and assumed that the initial state is alg@rresponding value dfl ., as a function of),. This sim-
an exact eigenstate éf. ply involves repeating the computation that led to the varia-

But since it is not possible to redudeto a similar simple  tional value ofD . but with the logarithm included. Then

form (because of the logarithnit is important to know how  |n(K) can be evaluated at each stage of the expansion. In
well the pseudostate sum has converged. We expect that theyble | we display the results fd,=16 (525 terms with

convergence of the pseudostate expansidn &fill be simi- 0,=13 (560 terms. The slow convergence can be seen.
lar to that ofN, and since we know the “exact” value @

we have a measure of the errorNh(for each value of)

as well. But we still need some criterion for choosing the

nonlinear parametey appearing in the trial functions of Eq. In using this kind of pseudostate expansion, it is usually

(4). assumed that the contribution of each term is almost exact,
If, instead of using the commutator relatigeq. (5)] three  and that the remaining error in the total is due to the fact that

times we employ it four times, twice in each matrix elementthe sum does not extend to high enough energies. In this

of Eq. (1), the following (accelerationform is obtained: section we use a method due to Dalgarno and Std@atb

I1l. EXTENDING THE UPPER LIMIT
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TABLE I. Uncorrected values of numerator, denominator, and TABLE Il. Corrected values of numerator and Bethe logarithm
Bethe logarithm of helium a8, increases. The value of the non- of helium asQ), increases. The exact value of the denominator is

linear parametery [Eqg. (4)] that maximizesD .. is also shown.
(The last value ofy was obtained by extrapolation from those also shown.

above, since computer time at these large expansions is quit¢ long

used in each case. The lower ling§ of the correction integral is

The exact valud® = 121.335 143 is obtained from E(}). Q, €0 Neorr In(K)
Q, y D acc Nace In(K) 3 361.0613 520.267 518 4.287 855
4 724.0096 521.248 382 4.295 939
3 3.644 529 94.114 569 301.053 261 3.198 796 5 1143.441 523.110 217 4.311 284
4 4.080 394 101.216 416 346.195 202 3.420 346 6 1912.977 524.085 779 4.319 324
5 4.425 096 104.957 668 373.513205  3.558 703 7 2734.433 525.086 045 4.327 568
6 4849542  108.413460 399.676322  3.686 593 8 4108.808 525.799 439 4.333 447
7 5.179484  110.403345 416.057 508  3.768 523 9 5524.324 526.334 777 4.337 859
8 5.588 226 112.320411  432.319315  3.848 983 10 7729.503 526.911 785 4.342 614
9 5.888 226 113.508 976  442.840 189 3.901 367 11 9964.945 527.307 234 4.345 874
10 6.305080 114.676534  453.744402  3.956 373 12 13 253.52 527.650 177 4.348 700
11 6.623156 115446146  461.125678  3.994 293 13 16 564.86 527.870 611 4.350 517
12 7.004813 116.207 693  468.586 094  4.032 316
13 7.3 116.735692  473.876 067  4.059 393

we show this improved value of IKJ; the convergence with

increasin

account for the remainder of the sums beyond the highest
pseudoenergy. They used experimental values of oscillator
strength up to some maximum energy and used an

asymptotic formula from there onward. For high energies Although inclusion of the integral accounting for most of

they used the following simplified form:

1

‘I’n,ﬁ(r*l,?z):E

to represent singly ionized states in the expression that r

2

places the discrete one used in E8):

df

Fn(E)E(In+5)2 d_:

16Z%(1+K)
3(l,te)

r{ I
PR
1 2

Wl

.

[Wnk)

k 1/2 L -
(—) [un(Fp)e™ "2+ up(Fp)e'* ]

(10

. (1)

Here e=k?, |, is the ionization-excitation potential of the
two-electron system, ang, is the wave function of the one-

electron system left after single ionization. Integrating Eq.

(112) overde from some lower limiteq to oo gives the desired
high-energy correction. For convenience, and without loss of

accuracy, we

fitted F,(e)

to the

form [A,

+(B,/k)tan ¥(C,/k)Je *? and includeds states up ton

=4. Highers states were included approximately by an ex-

pression falling like 1%,
In Ref.[2] the lower limit g is just the last experimental

value of the oscillator strength available, but in our method it

IV. EXTRAPOLATION AND RESULTS

g}, is significantly improved.

the asymptotic contribution to the numerator has improved
the convergence of IK(), an accurate result is still not at
hand, and it will be necessary to use some method of ex-
trapolation. To do this we need to find some reasonable in-
dependent parameter, not necessdilyitself, on which to
base the procedure. That parameter should measure how

%lose to convergence we have come at each stage.

An obvious choice is the deviatiahD of the denomina-

tor from its exact value:

AD=Dg— Dy

(13

This quantity approaches zero &g increases and it should

represent, at least approximately, the degree of completeness

log(K)

is not clear that the last pseudoenergy plays that role. In-
stead, we adjus¢; so that

4.4

4.3+

3.6

%

o AD
Dex=Dacct J de> F(e). (12 , , ,
e N FIG. 2. InK) for helium as a function oAD. The plus signs
show the uncorrected values, using the data from Table |, and the
The critical step is now to corre®t using the same value of crosses are the corrected values from Table II. Linear fits have been
€y as for the denominator, modifying the integral by the made in both cases, and the improved convergence of the corrected

inclusion of the appropriate logarithmic factor. In Table Il values is clear.
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TABLE lll. Results for a series of two-electron systems. 3.4
3.35 1
System z In(K) In(K)2
3.3
He 2 4.367 578 4.364 263
Li* 3 5.177 763 5.177 249 5257
Be'? 4 5.753 615 5.753 640 o 321
Ne*® 10 7.586 072 7.588 068 g
<315

%From Eq.(14) (Ref.[3]). -
3.05 1
of the set of intermediate pseudostates. In Fig. 2 we have
plotted the values of Ii{) from the tables withAD as the
abscissa and have fitted straight lines to the calculated points 2957 o - s " " " o
both corrected and uncorrected. The slope of the line fitted to ’ ) T ap ‘ ’ )
the corrected points is 12 times smaller than the uncorrected _ _
slope, indicating the improved convergence we expected. F'C: 3. InK) for hydrogen as a function afD. The alternating
The extrapolated result for helium is Kj=4.367 58(46), convergence pattern discussed in the ’Fext leads to two distinct lines:
where the uncertainty in parentheses is due to the linear rgfosses are for even values and plus signs are for odd val#s.of
gression analysis.

In Table 11l we show the values of IK{, obtained by this
method, for a range of atomic humbefs Goldman and
Drake [3] have used an expansion inZlto derive an ap-
proximate expression for the Bethe logarithm:

works for the simpler and better known one-electtatomic
hydrogen case. We replace the Hylleraas function of E3).
by the exact hydrogen ground-state eigenfunction and4xq.
by a simple one-electron form:

In(K) =In[19.769 266 6Z—0.006 152], (14) .
. o
which is exact in the limit of larg&. We have included the \Ifoze—l,i, T,=e "Py( 0)2 Cyr. (AL)
results of Eq.(14) in Table Il for comparison(But notice 7T =1
that the mass polarization term was not included3dh this
should make a difference in the fourth decimal plagde  Again, the denominator can be transformed into a form like
have also fitted our four values to obtain the following for- that of Eq.(7) and can be evaluated exact®:=16/3. All

mula: the other steps described above are carried out, simplified to
apply to the one electron system.
In(K)=In[19.705 6Z%—0.000 4Z+0.002 1Q. (15 In Fig. 3 we show the unexpected results. In place of the

linear relation found in the two-electron cases treated above
This is not in the same factored form as Etd), but a good  and illustrated in Fig. 2, we obtain an alternating conver-
fit is also obtained in that form: gence pattern. A, increases from an odd value to the next
even value the numerator increases significantly while the
In(K)=In[19.705 541Z+1.35<10 °)?].  (16)  denominator remains unchanged to 7 or 8 significant figures.

. . . With the next increase i), the increase i> resumes. This
Since neither of these expressions goes exactly to the knowé’ffect produces the two distinct lines seen on the graph. We
(hydrogenig high-Z limit, neither one can be completely sat-

. were able to carry the calculation up £b,=22, at which
isfactory for allZ, but the present results may represent thepoint D is about 1% from the exact valué\D =0.057). It
two-electron ground-state Bethe logarithm well over thegeems reasonable to extrapolate each of the two curves inde-
range 2=z=10. pendently toAD=0 and obtain the two estimates Kj(
=2.987 125(from odd values of)p) and InK)=2.978 329
ACKNOWLEDGMENTS (from even values Combining these two values we can re-

This work was supported by NASA—RTOP Grant No. Port @ “best” value of InK)=2.9827-0.0044, where the
344-12-53-14. Numerical results were obtained with thghdicated error measures the discrepancy between the two

Cray Y-MP computer of the NASA Center for Computa- extrapolations. This should be compared with the accurate
tional Science. value[7] In(K)=2.984 129; our generous error does include

this value.
We have not been able to understand this irregular con-
vergence, but we suspect that it involves some symmetry
Although the main point of this paper is to calculate theobeyed by hydrogen and not by the more complicated two-
ground-state Lamb shift for two-electron systems, it is anelectron systems. This remains an interesting unanswered
obviously interesting question to see how well the methodjuestion.

APPENDIX
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