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Hyperspherical analysis of doubly and triply excited states of Li
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A computational method for calculating the hyperspherical adiabatic potential curves for three-electron
atomic systems is presented. This method allows us to obtain accurate potential curves for any symmetries
more efficiently. The potential curves for the %) symmetry are analyzed. For the ground state, the energy
calculated using the single channel adiabatic approximation is in good agreement with experiment. For doubly
excited states, in the region of small and medium hyperradius the potential curves are similar to those for the
doubly excited states of two-electron atoms and these curves can be classified using the saieKearnd
A quantum numbers. For triply excited states, the potential curves are used to show the different Rydberg
series that converge to the doubly excited states bf We also illustrate the rotor structure in the energies of
triply excited states of Li[S1050-294{©8)05806-5

PACS numbgs): 31.10+z, 31.15.Ja, 31.25.Jf

I. INTRODUCTION curves for any symmetries can be calculated. Some results

In recent years the hyperspherical approach has been efqr the H~ system has been reported elsewr{drg where
y yperspneri PP We showed that no resonances exist f8r Hn contradiction

tensively gsed in many areas of few-body systems in. physic% the recent predictiongl8,19. In Sec. IV we show the
and chemlstryfl_—ﬂ. While the mathematical formulation of .- |ated hyperspherical potential curves for 88 states
the hyperspherical method for the general few-body systemgs | j \we then identify the curves that support singly excited
has been addressed by many auth@s10, most of the  giates, the family of curves that support doubly excited states
practical and accurate calculations have been limited to thgng triply excited states. The potential curves that support
three-body systems. For the special case of the restrictefkp|n| 2s® doubly excited states are then analyzed. These
four-body systems, i.e., the three-electron atomic systemgyrves are compared to thén2 13° potential curves of He
where one of the particles is very heavy and can be consitp show the similarities at small and intermediate range of
ered fixed in space, early calculations used hypersphericgéhe hyperradius. At large hyperradius, we also show that
harmonics as basis functions to expand the wave function ahese curves are described by the independent particle ap-
the three electrongl1,12. While such a method is rigorous proximation. Proceeding to even higher potential curves we
in principle, the convergence in general is very slow suctthen analyze curves that support triply excited states of Li.
that little useful quantitative information can be obtained. ToThe qualitative behavior of these curves will be addressed
achieve high numerical accuracy and to be able to deal withut the nature of electron correlation of the three electrons in
multiply excited states, more flexible basis functions such athese states remains to be investigated in the future. To illus-
those generated from the Slater-type orbitdlsS], the trate the fact that triply excited states indeed exhibit collec-
B-spline functiong14,15 and the discrete variable represen- tive modes as in doubly excited states, we also show poten-
tation (DVR) basis function$16] have been used. [14,16, tial curves for different symmetries that can be viewed as the
the hyperspherical channel functions have been analyzed foetational excitation of a symmetric top made of the three
the (s°) model where the angular correlation among theelectrons. These potential curves will be compared to the
three electrons is neglected. For the atomic system undéptor structure of doubly excited states of LiA short sum-
study each state has well-defined spin and orbital angulanary and future direction are given in Sec. IV to conclude
momentum quantum numbers and the parity. Furthermordhis paper.
the wave function must satisfy the Pauli exclusion principle.
To reduce the size of the Hamiltonian matrix, Yaapal.
[14,15 constructed basis functions from the primitive
B-spline functions that have the correct quantum symmetry.
However, the calculation of the matrix elements cannot be starting with the radial distances, r,, andrs of the
evaluated accurately and efficiently because the hyperspheghree electrons from the nucleus, we define the hyperralius
cal variables are not invariant under particle permutations fopnq the two hyperangles, and a, as
the three-electron systems.

In this paper we employ a method of calculating atomic

II. HYPERSPHERICAL COORDINATES
FOR THREE-ELECTRON ATOMS

three-electron systems in hyperspherical coordinates. The ri=Rsina; cosay,
theoretical method is outlined in Sec. Il. We employ the
adiabatic approach where the hyperspherical radius is used as r,=R sin a, sin ay, 1)

an adiabatic parameter. The major steps of the computational
method are outlined in Sec. lll. The method has been imple-
mented now in a suite of computer codes and potential rs=R cosa,.
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Together with the spherical anglés(i =1,2,3) of each elec- s s s.s ) S
tron, the hyperspherical coordinates for the three-electron at- 4 _Eﬂl Fu(R) % e, 12(Q'R)X512 ' (@)

oms are R,ay,a,,l1,15,f3). Thus in the laboratory fixed

frame (where the nucleus is stationanthe spatial coordi- where <I>M is the adiabatic channel function an@ﬁu
nates of the three electrons are given by the hyperraius —[{x(1)x(2)}512x(3)]8 is the total spin function with inter-
and the eight angles where we shall us® e jiate spirs,,. The adiabatic channel functichi’Sl2 and

={ay,a,,l1,[2,I3} to denote all the angles collectively. . . : S, .
2" 3 . its associated potential energ}f‘ R) are defined as solu-
The hyperradius is the only coordinate that can extend to. P u (R)

infinity. Its magnitude measures the size of the atom. How-'0"ns of the hyperspherical adiabatic eigenvalue problem
ever, at largeR, one can have one electron far away while H.(O'R) —U (RYI® (Q:R)=0 8
the other two remain close to the nucleus. Examples of such [Had ©:R) U, (R, (LR)=0. ®
states are singly exgited states. _Qne can also have two elegy ine functions® 2 are among solutions to this equation.
trons farther out while the remaining one stays close to th‘?—|owever not all f[Lhe solutions of Ed8) satisfy the Pauli
nucleus—these are doubly excited states. Last but not leaséxolusior{ principle. For quartet stat&s= 3/2, the sum over

one can also have all the three electrons far away from th ., in Eq. (7) contains only one term. The spin part is totally

nucleus. These are examples of triply excited states. Atomg mmetric while the spatial componed®®®! correspond-
in triply excited states have been called hollow atoms, which y . P pOnew, P
ng to a triplet parent, is totally antisymmetric. For doublet

have been studied recently using third-generation synchrd _
tron light source$20,21] Sk 9 YN tatess=1/2 there are two spatial componeriks’”° and
o 12,1 s : : . .

From the theoretical viewpoint, all three types of excited P which multlply singlet anql triplet parent spin func-
states discussed above are obtainable from the solution of ti§lons, respectively. These functions form the basis of the
Schralinger equation for the three-electron system two-dimensional representation of the permutation gréyp

and they have degenerate eigenvalukiE'O(R)zu t’Z,l(R)

for all the values oR. Besides the antisymmetric solutions,
V=0, (20 Eq.(8) also contains totally symmetric solutions that do not
satisfy the Pauli exclusion principle and must be omitted.

In Eq. (7), Fi(R) is the radial function. Substituting Eq.
¢/ into Eq.(3) and integrating over the angular functions, a
system of coupled differential equations for the radial func-
tions can be obtained. However, the adiabatic approximation
allows us to draw much insightful information on the physi-
=0, ©)) cal system without even solving the hyperradial equation.

S,S1o

1 3
{——i; V2+V-E

whereV is the Coulomb potential energy due to electron-
nucleus and electron-electron interactions. If we rescale th
total wave functioryy=Rryr,r3W, then Eq.(2) reads

(92

1
5 o T Had QiR -E

. . . . . . I1l. NUMERICAL PROCEDURE
where the adiabatic Hamiltonid#,(();R) is an operator in

Q) which depends parametrically ¢t and its explicit form In order to construct the channel functions satisfying ap-
is propriate symmetries, we adopt a two-step numerical proce-
dure that is based on the decomposition of the effective Cou-
A2Q) C(Q) lomb chargeC(() into two parts,
Had QR == ———+—(— (4)
2R C(Q)=Czdas, )+ Ced ) ©)

Here, A%(Q) is the square of the rescaled grand angulamith
momentum operator

1 1 1
Colay,ap)=—2ZR| —+ —+ = 10
- 1 9 . 9 1 9 zel @1, @) ry r, frs (10
RoAO) = sinays ————
sin Qp 0 a S”"l2 a) z9a1 and
. SR S— Cod )=R| =+ —+ (11)
S|n2 oy C0§ aq S|n2 ay S|n2 aq COSZ az, ee B li2 Tz I3 .

©) In the first step we solve the eigenvalue problem for the
operator that contains only the nucleus-electron attractive po-

andC(Q1)=RV is the effective charge tential,

1 1 1 1 1 1
—+—+—)+ —+—+—”, (6)

C(Q)=R
r{ Iz frj lio Ta3 T3z

—Z

A2(Q) | Cadar,ar)

(12

whereZ is the charge of the nucleus. ) ) )
In the adiabatic picture, the total wave function for the Since the attractive potentid@lz¢(ay,a;) does not depend
state with total spir§ can be written in the form on the angles; (i=1,2,3), the operatoH,{(;R) com-



4270 TORU MORISHITA AND C. D. LIN 57

mutes with individual angular momenté(i =1,2,3). Thus
the eigenfunctions of this operator can be written ingepa-
rable form

BUQR)=g) (g, a2 RV (T T3), (19

where y={l115l3l 12}, and YM(ry,ra.r3)
=[{Y, (r)Y,,(r2)}22Y, (r3)]"M is the coupled angular mo-
mentum of the three electrons. The functiol{ @, ,a,;R)
satisfies the two-dimensional eigenvalue problem with re-
spect toa; and a, L

U, ® (auw)

[hy(al,az;R)—DZ(R)]gZ(al,aZ;R)zo, (14) 0 25 5 7;(10 1)2.5 15 175 20
au.

where FIG. 1. Hyperspherical potential curves ft8° states of Li. The

lowest curve labeled | supports the ground state and #f@sl

B — /M| T M
h"(al’az’R)_O}; |Hady; ) singly excited states. The group of potential curves labeled Il sup-
1 / 1 P P 1 P port doubly excited statesshin’l’ while the group of curves la-
= _ sSin a,— — - beled Il support triply excited states. The lower curves of Il and of
ZRZ\ Sina; day day  sir? as aai Il are shown in more detail in Fig. 2 and Fig. 3, respectively.
Wlatd) | llletd) (B PIB ) =(IPlal AP (X2 JpIxE,)-
Sir? a, o a;  Sir? a, Sire a; (19
I3(l3+1) Crdlay,ay) The matrix elements with respect to the spin functions and
cof a, + R ' (15 the spherical harmonics are well knowhl,23. The action

of the projection operator on the functi@j(«y,a,;R) is

We solve the two-dimensional eigenvalue problem, ®¢),  carried out numerically by applying the permutation opera-
numerically using a variational procedure with direct producttors directly on the configuration space defined byd¢hend
of discrete variable representatidBVR) basis set§22]. a, variables. In this manner, we sort out a quartet and two

The functionsfi)Z form a complete and orthogonal set in ProPer components of the doublet bq3|s functions. The po-
the () space at eacR, and are used as the basis functions in'“:fntlal curves and the_ channel functions are generated by
the second step diagonalization to obtain adiabatic potentieﬂ'agon"’lIIZIng the matrix
_cu_rves._Since the operatEraq in the first step as well ad o4 <a)l§,312|Had|("1’)3,,5112>:DF(R) P
is invariant under permutation of all three electrons, we can v Iy Y
find the functionsﬁ)f’slz that also form the basis of the irre-
ducible representation of tH& group from linear combina-

tions of the functionsb?, namely,

S,S;

1 e -
+§<¢)Fv 12|Cee|(bl"rvr

, (20)
for well-defined total orbital and spin angular momentum
~ _ quantum numbers and parity.
dpe=3 ¢y, (16)

7 IV. RESULTS AND DISCUSSION

where the summation is taken over degenerate states with the We have developed the computer codes to calculate the

same eigenvalubl,, i.e., the sum is only over all permuta- hyperspherical potential curves for any symmetries of the

tions of the set,|,l; and the allowed values df,. HereS  three-electron systems. In the following a subset of such re-

andS,, are used as indices for the symmettyjs an index  syits are shown to illustrate how the properties of a three-

that distinguishes antisymmetric functions. To find appropri-e|ectron system are revealed in the hyperspherical approach.

ate coefficients we apply the antisymmetrization operator

2qe

A=pe+Pa2ytPasa—Pazy— Py~ Pay. (17 A. The °S" states

In Fig. 1 we present the adiabatic potential curves for the

namely, for each numerically obtained soluti&ﬁi we cal- 2S°® states of Li. These curves are calculated using
culate the matrix element (I4,1,,13)=(0,0,0),(0,1,1, and(1,1,2. There are basically
5 _ three groups of curves. The first group consists of a single
(DIXSJAIDIXS)- (18)  curve—the lowest curve, labeled “I” in Fig. 1. This curve

supports the ground state and the’ris 2S°® (n=2) singly
Because of the separability of the spatial functions, the maexcited Rydberg states. A%— o, this curve approaches the
trix elements of each component Afcan be separated into Li*(1s? !S°) state. The second group, labeled “II” in Fig.
three parts, 1, consists of potential curves that support doubly excited
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series and the series limits ares2k 3S?, 1s2s!S?
/1s2p;P: 1s2p®P°, and 1s2p*P?, in increasing order of energy of the
<i§§'§1§ Li* ions. While one may be tempted to assign the resulting
rac’se Rydberg series associated with these four curves as
1s2s(3S°)ns,  1s2s(!S®)ns,  1s2p(®P°)np,  and
1s2p(*P°)np series, using the independent particle approxi-
mation, we emphasize that such a designation is inappropri-
# Li (’S°) ate since each adiabatic curve consists of basis functions of
all the (,.1,,13)=(0,0,0),(0,1,, and (1,1,2 included in
0 25 5 15 10125 15 7S 20 this calculation. From the traditional spectroscopic view-
L point, we expect that the four Rydberg series to have rather
S RPN strong configuration mixing.
-06 R e The fact that doubly excited states cannot be described
A using the independent electron model is well known now. In
fact the nature of the four potential curves displayed in Fig. 2
is best understood when compared to the potential curves for
the doubly excited states of He. Unlike the doubly excited
states of alkali earth atoms, where several analyses have been
done by treating a pair of two electrons outside a closed shell
core [25—31], here, we study the influence of thes bpen
shell core on the doubly excited states of three-electron at-
FIG. 2. Comparison of hyperspherical potential curves foroms. In Fig. 2b) we display the hyperspherical potential
1s2Inl 2s° doubly excited states of Li with thel@l %35° doubly  curves for the'S® and 3S° states of He that converge to the
excited states of He. Note that in the inner region the two sets oHe"(N=2) limits. These curves are labeled using the
potential curves are nearly identical. The potential curves for He arQK,T)A guantum numbers[1,32-34 as (1,0Y 1se
designated aa=(1,0)" 'S°, b=(-1,0)" 'S, c=(1,0)" °S, and  (—1,0)" 1S and (1,0) 3S°, and (—1,0)" 3S°. By compar-
d=(—1,0)" °S". These designations can be used for labeling douing to Fig. Za) it is very clear that the two sets of curves are
bly excited states of Li, as indicated. We have assumed that thgery similar except in the largR region. Thus the potential
avoided crossing betweemand c in the upper figure can be ap- cyryes for doubly excited states can be labeled approxi-
proximated as a diabatic crossing. mately using the quantum numbers used for the doubly ex-
cited states of He, at least in the region where the potential
states. These curves approach teall(n=2) singly excited curves are near the minima. Watanael. [13,35 shows a
states of L at largeR. The third group, labeled “lll,”  similar feature of the potential curves for doubly excited
consists of potential curves that support triply excited statesstates of He and of H . Many properties of the doubly
These curves approach thén’l’ (n,n’=2) doubly excited excited states of two-electron atoms can be directly trans-
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-0.7
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He (’s®)

0 25 5 75 10 125 15 175 20
Hyperradius (a.u.)

states of Li at largeR. lated to understand the properties of doubly excited states of
three-electron atoms—a subject that will be further elabo-
1. Ground state and singly excited states rated on in the future.

The binding energy of the ground state and singly excited The similarities and the differences between the potential
states of Li can be evaluated approximately using the adig€!Tves in Fig. 2a) and Fig. Zb) can be understood qualita-
batic approximation. If the second-order diagonal couplind'vely' The lowest state associated with each potential curve

term is included in the potential, the binding energy of the!S located near the minimum of thez potential curve and
ground state calculated from a single adiabatic channel i§!'ghtly beyond. Thus the so-called:ds state is associated
~7.466 a.u., which is to be compared to the experimentalVith the lowest (1,0) *S* curve, while the so-calleds2p

value of —7.478 a.u[24]. More accurate results can be ob- Stat€ IS associated with th&a’g) s curve. For doubly
tained if one includes the coupling with the higher channel€Xcited states of Li such ass2s® and 1s2p?, the coupling

and basis functions from higher orbital angular momentunPtween the twa=2 electrons is larger than the coupling
components are included. Since the basic properties dtetween the & and % or 1s and 2p electrons. Therefore
ground state and singly excited states of Li are well knowrsuch doubly excited states can be visualized as consisting of

from other theoretical approaches, the hyperspherical methd¥’€ 15 electron and a pair of doubly excited electrons. The
just serves as a new method of reproducing known resultdWo excited electrons are classified like the doubly excited

Thus no more discussion on this potential curve will beStates of He since the innerslelectron can almost fully
given. screen the nucleus. In Fig(é2 the potential energy contains

the energy of the 4 electron, which is—4.5 a.u. Removing
this difference we can see that the two sets of potential
curves are also quite close in magnitude.

The second group of potential curves support doubly ex- The two sets of potential curves do show distinct differ-
cited states of Li. To study these states in more detail, wences in the larg® region. In Fig. 2a) we drew the curves
display the lowest four curves of this group in FigaR  adiabatically such that in the asymptotic region the curves
These four curves are to supports2bns?S® and are labeled as 2s(3S®)ns, 1s2s(!S*)ns, 1s2p(3P°)np,
1s2pnp 2S° doubly excited states. There are four Rydbergand 1s2p(*P°)np from below, respectively. Such labelings

2. Doubly excited states
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designation is approximate only since configuration mixing
is expected to be rather large. In the future a new set of
approximate quantum numbers will be used to label these
channels after the nature of correlation among the three elec-
trons is understood.

Among the five curves only the lowest curve has a deep
well at smallR near 3.0 a.u. This curve supports the oAS?
intrashell state, which is designated conventionally as
2s2p? 2s°. All the other four 2S® curves do not have in-
trashell states. The location of the potential minima of these
-4 other curves is shifted further out and the potential well is

=22

Adiabatic Potentials (a.u.)

g By shallower. Since electron correlation among the three elec-
= ’ trons is inherently contained in the multivariable channel
e _1s functions, full information on each channel will become
2 available only after the wave function is analyzed. The full
i‘, -2 characterization of triply excited states remains one of the
% major tasks in the future study of three-electron atomic sys-
A -22 b tem.

0 25 5 75 10 125 15 175 20
R (a.u) B. The rotor structure of triply excited states

FIG. 3. (a) Potential curves that support triply excited states of To study the collective motion of the three electrons in

Li, shown with numerous avoided crossings with curves that supifiPly excited states, it is natural to examine first the in-
port doubly excited stateg) The five potential curves that support trashell states. In these states the three electrons are at about

2121"nl"” 2S° triply excited states, with the coupling to doubly ex- the same distances from the nucleus. Like doubly excited
cited curves removed. states, we then ask if the energies of some triply excited
states can be understood as the rotational excitation of a
symmetric top formed by the three electrons. Such a question
has been addressed previou$B3,36 in a model study

where the three electrons are restricted to the surface of a
Rydberg electrorfor 2p andnl). In Fig. 2a) we drew the sphere with t_he nuc_leus at _the center. A more restricted
potential curves adiabatically such that the (1,85° curve model assuming equilateral trlangu!ar geometry for the three
at smallR evolves into 52s(3S°)ns at largeR. How valid is electrans has been addressgd previously by Mat\&gvTo

such an adiabatic description has to be checked in futurtraeduce the electronic repulsion, the_ most favorable geometry
numerical calculations with and without including the cou- ould be that the three electrons distribute about an equilat-
pling of these curves. We comment that if the Rydberg serie ral triangle with the nucleus at the center. However, not all

that converges to thesPs(3s®) limit is supported by an e intrashell states can take such a geometry due to the
. . . L . symmetry constraints on the wave functions imposed by the
adiabatic potential curve as shown in Figaj2 the autoion-

ization width of the series is expected to be rather broaé’rb'taI and spin quantum numbers, the parity and the Pauli

when compared to other series since in the inner region it i r;g#:;g;f”f;plzebg 2?3 ZbDeoegtgggtg;endtfgitngn;sztéga as
clearly a “+" series for the two excited electrons. Thus the ' ’ '

hyperspherical approach provides a nice way to un derstantge rotational excitation of a symmetric prolati top where the
the doubly excited states of Li in terms of the known resultsener%y levels can be approxmate_d @_[L(I‘."'l)
of He. —2_T ]/_(2|) wherel is th_e moment of inertia and is the
projection of L perpendicular to the norm of the plane

formed by the three electrons. Thdor the four states above
are 1, 0, 2, and 1, respectively. In Figawe show the four

In Fig. 3@ the first few potential curves that support potential curves for these four states. Indeed the curves look
triply excited states of Li are shown in more detail. Thesesimilar to the potential curves for the (1,0yotor series of
curves display numerous avoided crossings with potentiali* (or He), as shown in Fig. &) where the three intrashell
curves that support doubly excited states. The couplings dtates are & 1S°, 2s2p 3P°, and 2? D¢ states according
potential curves are responsible for the autoionization of trito the independent electron notation. Their rotational excita-
ply excited states into ground and singly excited states ofion energy is given by the same formula wil=0.
Li ™ where an autoionized electron will be ejected. To study For the other foun=2 intrashell triply states it has been
the general properties of triply excited states we first neglecshown that their energies are higher due to the existence of a
such couplings. By isolating only triply excited states, wenodal surface in one of the internal coordinaf@8,36], in
redrew these curves as shown in Figh)3 The five curves contrast to the four states mentioned in the previous para-
shown in Fig. 8b) support 221'nl" triply excited states. graph where the wave functions have no internal nodal sur-
Using notations from the independent electron approximafaces. These four state$S?, 4S°, 2P®, and 2P°, are sup-
tion, the five Rydberg series ares?2'S°ns, 2s2p *P°np,  ported by the potential curves shown in Figby Note that
2p? 'D®nd, 2s2p P°np, and P? 'S°ns. Note that such these potential curves are not as deep as the curves shown in

are good for describing high-lying doubly excited states
wheren>2. In these states the coupling of &and X (or 1s
and 2p) is much stronger than the coupling of @ith thenl

3. Triply excited states
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point emphasizes the elementary internal normal modes of
the system as a whole. This viewpoint can be extended to
situations where the independent particle model fails. How-
ever, our analysis so far has not accounted for the radial
motion of the electrons. When such analysis is available, we
would be able to distinguish the nature of all the potential

22 curves for triply excited states.

-24

V. SUMMARY AND CONCLUSIONS

In this paper we present the revised numerical approach
-2 @ | 2 ® for computing the adiabatic hyperspherical potential curves
0 5 A4 e 3 1o 2T 6 0 5 a4 e 3 0 T of a three-electron atom. The new method is numerically
more accurate and computationally more efficient. Among
the results available, in this paper we concentrated on the
-1 1. results for Li CS°) states. We show that the ground-state
energy can be obtained with reasonable accuracy using just
one adiabatic channel. We also show that doubly excited
-13 states can be understood and classified similar to the doubly
excited states of two-electron atoms, at least in the region
near the minimum of each potential curve. This implies that

Hyperspherical Potentials (a.u.)

2 'se many properties of doubly excited states of Li can be under-
stood based on the doubly excited states of He. We also

-2 show the potential curves for the triply excited states. While
© the separation of different Rydberg series into different po-

=25

tential curves has been achieved, the nature of electron cor-
relation in triply excited states remains to be resolved. For
Hyperradius (a.u.) intrashell states, we showed that a subset of them display
) _ o de behavior similar to the rotational excitation of a rigid rotor,

FIG. 4. (a) Potential curves that support intrashé®°, *P°,  while others have higher excitation energies due to the exci-

2De®, and ?D° triply excited states(These states have configura- tation of other internal degrees of freedom

; 20 2 24 22 3 2no i ; . . . L

tions 25°2p “P°, 2s2p® "P*, 2s2p” °D® 2p” “D° in the indepen-  jith the present numerical implementation, the calcula-

dent particle picturg.These states have no nodal surfaces in thelrti n of adiabatic potential curves for three-electron systems

internal coordinates and can be understood as the rotational excit longer posts a big hurdle. However, there remains a great

states of a symmetric tofh) The potential curves of the other four deal of work to be done Oﬁ the one ,hand it would be de-

H 3 4 2 2pe 2 2 3 2po . ’

intrashell statescalled 2% °S°, 2s2p® °P?, 2s2p" °S, 2p” P sirable to implement the adiabatic expansion of the total

in the independent particle pictyrerhese states have a nodal sur- function t lculate th i f doubl ited
face in one of the internal coordinates; they do not form a rotorVaV€ function o caiculate the properties ot doubly excite

series.(c) Potential curves for the three intrashell doubly states Ofstates of Li and He such that the Spegtroscqpy of tﬁlese
Li* in then=2 manifold that form a rotor series. systems can be understood to the details as in He and H

[2,4]. This should be possible since the basic physics and the

) ) ) o _ numerical method can be directly carried over from those for
Fig. 4(_a) since the existence of a nodal surface implies highegne two-electron systems. On the other hand, triply excited

energies. _ o states are different. We need to find a method to map the
We summarize that among the eight intrashell states fofaye functions to extract information of electron correlation
the N=2 manifold, the >P° state is the ground state, the jn the channel function. This is not straightforward since

other three states in Fig(a&) are due to the rotational exci- gach channel function has five internal degrees of freedom

tation, while the other four states in Figib} are due to the  5ng we are at most able to visualize two degrees of freedom
excitation of one internal nodal surface as well as rotationaggch time.

excitations. This viewpoint deviates from the conventional

independent electron model where the eight njtrashlell states ACKNOWLEDGMENT

are made out of &€2p, 2s2p?, and 2° configurations.
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