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Photoassociative spectroscopy of highly excited vibrational levels of alkali-metal dimers:
Green-function approach for eigenvalue solvers

Eite Tiesinga,* Carl J. Williams,† and Paul S. Julienne
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Received 18 December 1997!

Understanding high-precision photoassociative spectroscopy of laser-cooled alkali-metal atoms involves
modeling an extremely dense level structure of weakly bound molecules in the region where coriolis and
hyperfine interactions become comparable to electronic interactions. We describe an iterative eigenvalue solver
suitable for resolving these bound states that is based on finding eigenvalues of the shifted inverse or Green-
function operator. Nonlinear coordinate transformations applied to the nuclear motion are introduced to mini-
mize the dimensionality of the discretized Hamiltonian. The formalism is applied to resolve the hyperfine
structure of rovibrational levels of the Na(2P)1Na(2S) dimer. @S1050-2947~98!05306-2#

PACS number~s!: 33.15.Pw, 33.20.Wr, 02.60.Dc, 02.70.2c
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I. INTRODUCTION

In recent years laser cooling has made samples of u
cold atoms routinely available. Stored in magneto-opti
~MOT! or pure magnetic traps the study of collisional pr
cesses between two trapped atoms, either via direct mea
ments of cross sections or via photoassociation is a log
course of action@1–3#. The temperatures in the various tra
are so low, below 1 mK for MOT’s and even in th
nanokelvin range for magnetic traps, that many of the m
surable collision quantities are dominated by long-ran
forces. For example, the shape of the macroscopic w
function of a Bose-Einstein condensate of a magnetic
stored sample of2S alkali-metal atoms@4–6# is determined
to a large extent by the scattering length, the effective ha
sphere radius of a zero-energy atom-atom collision. Sign
cant contributions to the scattering length arise from the
dial region where the2C6 /R6 van der Waals interaction
dominates the atom-atom interaction.

In photoassociation spectroscopy@7–15# a laser photon is
used to excite a pair of free2S alkali-metal atoms to a vi-
brational level of the electronicP1S manifold. This vibra-
tional state is then detected by either looking for fluoresce
or by detecting ions after absorption of another photon.
the small collision energies prevailing in a MOT the Franc
Condon principle predicts the formation of long-range m
ecules, with outer turning points around internuclear sep
tions of 10 nm and inner turning points of the vibration
motion as small as 0.2 nm. Therefore this process is not o
sensitive to the van der Waals potential between the
colliding atoms but also to the6C3 /R3 resonant-dipole in-
teraction of the excited molecule.

Recently in an experimental collaboration we have
tracted the long-rangeC3 coefficient for Na2P1Na 2S from
binding energies of rovibrational levels of the purely lon
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range 0g
2 potential close to the2P3/21

2S dissociation limit
@13#. The extraction of theC3 coefficient, which provides the
most accurate measurement to date of the Na2P atomic
lifetime, is based on a precise knowledge of the dynamics
the long-range2P12S molecule. We have shown that th
finite speed of the photon, which is resonantly exchang
between the two Na atoms, is observable in the photoa
ciation spectra as a retardation correction. In addition, a
tailed knowledge of the influence of atomic hyperfine a
coriolis interactions on the 0g

2 rotational-vibrational levels is
essential@16#. An understanding of these weak interactio
terms lead to simplifying models of the 0g

2 state@13,16#.
For the measurement of the NaC3 coefficient from the

experimental 0g
2 spectra hyperfine corrections were n

glected. This approximation was justified by comparing w
numerical eigenvalues and eigenfunctions of the ex
Hamiltonian of the dimer as well as from a comparison w
simplifying models@16#. In this paper we provide a concis
description of the numerical procedures used in the ex
calculations. The procedures are not limited to the Na dim
but can be used in understanding hyperfine resolved spe
of all other alkali species. The discretization of the Hamilt
nians, which involves a large number of spins degrees
freedom as well as a large number collocation points to
scribe the radial coordinate, leads to a large-scale eigenv
problem. In fact, minimizing the size of the matrices is e
sential to successfully solving the eigenvalue problem a
warrants a detailed discussion. Moreover, the eigenvalue
interest are in the middle of the spectral range as well as
region where the eigenvalues are most densely packed,
near a dissociation limit. The numerical methods for solvi
these type of problems are actively discussed in the litera
@17–20#. These numerical methods are based on an itera
eigenvalue solver where a matrix-vector multiplication of t
discretized Hamiltonian with an arbitrary vector~wave func-
tion! and a filtering process, that makes the solver conve
to eigenfunctions near the eigenvalues of interest, mus
provided by the user. The filter is based upon an approxim
tion to the full problem that can be handled by more conv
tional means. In this paper we describe our experience u
the iterative eigenvalue solver proposed in Ref.@20# as well

ry,

.
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4258 57TIESINGA, WILLIAMS, AND JULIENNE
as discuss the physical approximations valid forP1S sys-
tems that enable the construction of a practical filter.
though we focus onP1S systems where we can identif
strong and weak interactions and therefore can const
~much! smaller subproblems, many quantum-mechan
systems have such a division and similar iterative eigenva
solvers can be applied.

Previous work on theoretical modeling of photoassoc
tion spectroscopy is restricted to a description of the vib
tional levels of the long-range 0g

2 state in the last hundre
GHz below the2P3/21

2S dissociation limit. However, the
experimental photoassociation spectra show a far richer
ture. Other vibrational series, like the so-called 1g and 0u

1

series, interleave with the rovibrational series of the 0g
2 state.

Unlike the 0 states, which have no hyperfine structure
their own, the 1g series has a marked hyperfine structu
which becomes comparable to and even larger than the
tional spacing. The resulting density of state suggests
approximately 10% of the Na2P1Na 2S bound states are in
the last hundred GHz below dissociation. In addition to
0g

2 states the iterative eigenvalue solver also finds th
states, which opens up the study of these states as well
study of their mixing very close to the dissociation limit.

This paper is divided into four sections. In Sec. II w
discuss the discretization of the radial coordinate. Section
describes coordinate transformations that dramatically
duce the number of collocation points that are needed for
accurate description of the vibrational motion. Section
gives a description of the eigenvalue solver and discusse
requirements on the nature of the filter in our implementat
of the eigenvalue solver. The section also discusses s
parallel programming issues. Finally in Sec. V the iterat
eigenvalue solver is used to perform a state-of-the-art ca
lation of the bound states ofP1S Na2 dimers. The effec-
tiveness of the coordinate transformation is demonstrated
investigating the convergence of the bound-state binding
ergies for a single potential with respect to the number
collocation points. A practical filter for the eigenvalue solv
is also constructed and some results from exact calculat
are presented and discussed.

II. DISCRETIZATION

The structure of the Hamiltonian for diatomics is typic
for a large class of quantum mechanical systems. It cons
of a kinetic energy termT52(\2/2m)d2/dR2, whereR is
the distance between two nuclei andm is the reduced atomic
mass, and an interaction termV. The kinetic energy operato
introduces coupling between different internuclear sepa
tions and the interaction potentialV represents a set o
coupled potential surfaces at eachR. Each potential surface
is labeled by a set of spin quantum numbers or symm
labels. The multichannel eigenstatesuC& of the Hamiltonian
are given by(a*dRCa(R)uRa&, where thea ’s label the
spin degrees of freedom. A discrete variable representa
~DVR! @21# of the Hamiltonian inherits the simple structu
of T and V and is a natural choice for discretization of th
Hamiltonian. That is, the numerical calculations use the b
uRia j& where the indicesi and j count the radial points and
spin states, respectively, so that the Hamiltonian is rep
sented by
-
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H $ i j %,$ i 8 j 8%5Tii 8d j j 81d i i 8Vi j j 8,

where the quantityVi j j 8 is short forVj j 8(Ri). The DVR rep-
resentation is closely related to the more familiar finite ba
representation~FBR!.

The simplest DVR is the Fourier grid representation@22#,
which was, for example, employed in Ref.@23# to study
nonadiabatic effects in the dynamics of the alkali-me
dimers, and is based on the eigenfunctions of a particle
box. The DVR has equidistant collocation pointsRi and an
analytic expression for the kinetic energy operator. In
interval (R0 ,RN) with N21 collocation the points have th
form

Ri5R01~RN2R0!i /N, i 51 to N21

the kinetic energy operator is given by

Tii 85
\2

2m

p2~21! i 2 i 8

2~RN2R0!2H 1

sin2@p~ i 2 i 8!/2N#

2
1

sin2@p~ i 1 i 8!/2N#
J ~1!

for iÞ i 8 and

Tii 5
\2

2m

p2

2~RN2R0!2H 2N211

3
2

1

sin2~p i /N!
J ~2!

for i 5 i 8.

III. COORDINATE TRANSFORMATION

For the weakly bound long-range dimers produced in
ultracold photoassociation experiment the typical values
R0 andRN are 0.2 and 20 nm, although in some casesRN can
be much larger. These values are roughly determined by
inner and outer turning points of the vibrational wave fun
tions. The minimum step sizeDRmin5(RN2R0)/N is deter-
mined by the kinetic energy at the internuclear separa
where the potentialV is most deep. In fact, the value fo
DRmin must be smaller than local de Broglie wavelength
the wave function near this internuclear separation. For al
dimers this internuclear separation is around 0.4 nm v
close toR0 where the depth of the potentials is typical
about 105 GHz and hence the number of radial collocati
points needed betweenR0 and RN can easily exceed 104.
Moreover, this number must be multiplied with the numb
of spin statesa in order to obtain the total dimension of th
Hamiltonian matrix. This quickly leads to unmanageable
genvalue problems.

For large internuclear separations the local de Brog
wavelength is much larger than near the deepest point of
potential, which implies that for those regions the grid
unnecessarily dense. Two approaches to reduce the nu
of collocation points suggest themselves. The first possib
is based on a more complex DVR, such as the Gau
Hermite DVR based on the eigenfunctions of the harmo
oscillator or the Sturmian DVR based on orthonormal St
mian polynomials@17,21#. In both cases the grid is inhomo
geneous and the step size grows roughly linearly with in
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57 4259PHOTOASSOCIATIVE SPECTROSCOPY OF HIGHLY . . .
nuclear separation. Unlike the Fourier grid DVR the kine
energy operator has to be calculated numerically, but th
DVR’s do lead to a significant reduction of the number
collocation points.

A second approach, based on nonlinear coordinate tr
formations, is adopted for this work and leads to the smal
possible matrix dimensions. The transformation is given
y5u(R) where u is a monotonic invertible function ofR
with a derivative that decreases with increasingR. Therefore,
by defining a homogeneous grid in the transformedy coor-
dinate the distance between two collocation points in
original coordinate grows with increasingR. For example,
the logarithmic transformationy5 ln R, often used in atomic
electronic structure calculations, gives a step size that gr
linearly with R. Therefore a logarithmic transformation lea
to a grid that has features similar to the Gauss-Hermite
Sturmian DVR. However, unlike these complex DVR’
which are based on the existence of a suitable orthog
polynomial, coordinate transformations are more flexible
they can be chosen to reflect a physical problem m
closely.

The coordinate transformation promises to be a good c
didate for minimizing the matrix dimensions but will als
modify the kinetic energy operator of the Hamiltonian. B
low it is shown that this transformed differential operator c
be discretized without sacrificing the advantages of a disc
variable representation. The kinetic-energy operator tra
forms into

T52
\2

2m

d2

dR2
52

\2

2mH p~y!
d2

dy2
1q~y!

d

dyJ ~3!

with

p~y!5
1

@U8~y!#2
and q~y!52

U9~y!

@U8~y!#3
, ~4!

whereU(y) is the inverse transformation ofu. It is conve-
nient to introduce a simultaneous wave-function transform
tion that has the property that it preserves the normalizat
That is we introducef(y) with

C~R!5
f~y!

AU8~y!
, ~5!

and therefore ifC is normalized with respect toR the trans-
formed wave functionf is normalized with respect toy. The
total HamiltonianT1V is finally given by

F \2

2m H 2
1

U8~y!

d2

dy2

1

U8~y!
2

1

2

U ~3!~y!

@U8~y!#3

1
3

4

@U9~y!#2

@U8~y!#4 J 1Ṽ~y!Gf~y!5Ef~y!, ~6!

whereṼ(y)5V„U(y)…. The first term on the left-hand sid
of this equation can be interpreted as the new kinetic ene
operator and the second and third terms behave as addit
spin-independent potentials. These potentials are analo
se
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to the ‘‘centrifugal term’’ of the untransformed Schro¨dinger
equation. For example, ifu(R)}Rb for R→` with b<1,
these new potentials are proportional to 1/R2. The Fourier
grid DVR, as defined in Eqs.~1! and ~2!, can be used to
discretized2/dy2 but now on the homogeneous gridyi5y0
1(yN2y0) i /N. The terms containing derivatives ofU and
the potential termṼ are diagonal inyi .

The nonlinear coordinate transformation has been in
duced as a means of reducing the number of colloca
points at largeR. A different perspective on the transforma
tion suggests a way of determining the optimal transform
tion. The WKB solution of a bound state for a single pote
tial surface in the classically allowed region is given by

C~R!5
1

A4 uE2V~R!u
sinS ER

dxA2m/\2@E2V~x!# D , ~7!

whereE is the binding energy. The phase of this wave fun
tion in the transformed coordinatey is given by

Ey

dyU8~y!A2m/\2@E2Ṽ~y!#. ~8!

By equatingU8(y)51/A2m/\2@E2Ṽ(y)# the phase of the
wave function isy2z0, wherez0 is an arbitrary phase tha
depends on the details of the potential and we find that
transformed wave functionf(y) is proportional to
U8(y)sin(y2z0). The wave functionf is a fast oscillating
sine with a single frequency times a slowly varying envelo
U8(y) and therefore a homogeneous grid iny will provide a
suitable grid for all internuclear separations.

The transformationu(R)}*RdxAE2V(x) is therefore
ideal for reducing the number of collocation points needed
determine bound states near the energyE for single potential.
In a multichannel environment, with many coupled potent
surfaces, the deepest curve is a natural choice forV(x).
However, the transformation is often impractical as its
verse is not easily found or even nonexistent. An analy
alternative is based on the long-range dependenceCn /Rn of
the potentials and usingE'0 for bound states near the dis
sociation limit. In that limit the transformation is

u~R!5E
R

`dx

R0
AS R0

x1Rs
D n

52
1

n/221S R0

R1Rs
D n/221

,

~9!

where then is the leading polynomial degree of the lon
range tail of the potentials andR0 and Rs are free param-
eters, althoughR0'(2mCn /\2)1/(n22) is a good initial
guess. The transformation ensures that for large internuc
separations the step size in the untransformed basis wil
crease at the same rate as the local de Broglie wavelen
For a resonant dipole interaction (n53) the step size in-
creases as (R1Rs)

3/2. Deviations from a pure 1/Rn behavior
at smaller internuclear separation, the position of the dee
part of the potentials, and specific multichannel effects s
as multiple values ofCn determine the best values ofR0 and
Rs .
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4260 57TIESINGA, WILLIAMS, AND JULIENNE
In order to understand the discussion in the next sect
it is useful to briefly mention realistic values for the matr
size. For the Na dimer the use of a coordinate transforma
limits the number of collocation points for the nuclear m
tion to ;500 and there are approximately 100 spin chann
leading to a total matrix size of 53104. A discussion and
justification of these numbers is found in Sec. V.

IV. FILTERING

For a large eigenvalue problem, with dimension of
3104 or larger, the use of iterative methods is inevitab
However, these methods are best suited for finding extre
eigenvalues that are not too closely packed, which is in c
trast with the requirements for vibrational levels near
dissociation limit. These conflicting requirements are met
solving for the lowest or highest eigenvalues of the ‘‘Gree
function’’ filter G51/(E2H) where the energyE determines
the spectral region in which eigenvalues are found. An
genvalues solver such as the implicitly restarted Lanczos
gorithm @24# can then be used to find the eigenvectors ofG
iteratively. This algorithm requires the calculation of the m
trix vector multiplicationGx wherex is some arbitrary vec-
tor. This does not imply that the filter has to be form
explicitly. It suffices to construct an iterative means to so
for Gx. In fact, the matrix-vector multiplication is equivalen
to solving for the linear system (E2H)z5x, which can be
solved iteratively@25#. However, the initial difficulty of con-
verging the iterative eigenvalue solvers when there is a h
density of states nearE, is still present. Convergence for th
iterative linear system solver can only be obtained if
linear system is multiplied with a so-called precondition
(G0). That is we need to solve the linear system

G0~E2H !z5G0x. ~10!

The purpose of the preconditioner is to transform the ope
tor on the left hand side of the equation into an operator
is as close as possible to the unit operator but at the s
time remains easy to compute. In fact,G0 behaves like an
approximation ofG since Eq.~10! can be rewritten as

z5@11G0H11~G0H1!21•••#G0x, ~11!

where H0 is an approximation ofH, G051/(E2H0), and
H15H2H0 is the ‘‘potential.’’ This connects Eq.~10! with
the ‘‘physical’’ Lippmann-Schwinger equation for boun
states. In fact Eq.~11! can be used to evaluate Eq.~10!.
Convergence of this Neumann polynomial, however, is o
guaranteed if the productG0H1 is small in terms of some
matrix norm. The generalized minimal residual~GMRES!
method@25# is a good alternative to the Neumann polyn
mial and has the fastest convergence characteristic o
known linear system solvers. GMRES of ordern is based on
finding the best solutionz within the subspace spanned b
the basis set$zi5@G0(E2H)# ix, i 51, . . . ,n% by minimiz-
ing the length of the residual vectorG0(E2H)z2G0x
within this basis. This feature also demonstrates the m
drawback of GMRES that all vectorszi need to be stored
Again the ability to construct a good preconditionerG0 is
essential as it keeps the value ofn needed to reach conve
gence as small as possible.
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To help construct a suitable preconditioner for the alka
metal dimer problem we have taken advantage of a new c
of parallel computers that use communication libraries l
PVM ~Parallel Virtual Machine!, MPL ~Message Passing Li
brary!, or MPI ~Message Passing Interface!, which allow the
user to construct their own communication pattern betw
the independent processors of any networked computer c
ter. In order to use some of the parallel capabilities of th
libraries we assume that the preconditionerG0 has a block
structure, i.e., has independent subspaces. This is a m
restriction since in many physical problems with both we
and strong interactions the neglect of the weak interacti
often reduces the HamiltonianH to a block diagonal struc-
ture H0. The different subspaces/blocks need not have
same dimensionality and can be distributed over the node
the virtual machine, which in our case is a loosely connec
set of UNIX workstations. Each node is responsible for c
culatingG0 for one or more subspaces. This can be done
calculating 1/(E2H0) for each small block via direct inver
sion or diagonalization@26#. The advantage of this procedur
is that sophisticated approximations can be chosen that
erwise would quickly lead to storage requirements that
too large for a single computer. For the bound states of
Na dimer there are approximately 30 blocks where e
block is of the order 150031500. A detailed discussion o
these components ofG0 is given in the following section.

The Lanczos eigenvalue solver and the GMRES softw
are standard serial codes that run on a single computer n
Therefore, the parallelism is limited to the evaluation ofG0
and the formation of the matrix-vector multiplicationG0x
using a ‘‘master-slave’’ communication protocol. The mas
node runs the two serial codes while the slaves store
different blocks that buildG0. Moreover, the master continu
ously asks the slaves to multiply their part ofG0 with a
vectorx. At the end of the calculation the extreme eigenv
ues f i and the corresponding eigenvectors ofG are returned
by the Lanczos eigenvalue solver and the eigenvalues oH
are constructed usingEi5E11/f i . The accuracy of the nor
malized eigenvectorsC i of the Hamiltonian are checked us
ing

D5Au^C i uH2uC i&2~^C i uHuC i&!2u. ~12!

This quantity is a conservative upper bound to the accur
of each eigenvalue and reflects the contamination of the
proximate numerical eigenvector with nearby lying ma
ematical eigenstates. The error that follows from Eq.~12!
describes the ability of the eigenvalue solver to converge
eigenvalue for a given radial grid. It should not be confus
with the convergence with respect to the radial step size
length of the grid. Those issues are discussed in Sec.
and the last paragraph of Sec. V B.

V. THE SODIUM DIMER

We apply the Green-function code to find the hyperfi
resolved rovibrational bound states of a sodium dimer n
the 2P12S dissociation limit. These molecules can b
formed from a laser-cooled sample of2S atoms by absorp-
tion of a single photon, a photoassociation experiment@2#.
Typically these molecules have an outer vibrational turn
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57 4261PHOTOASSOCIATIVE SPECTROSCOPY OF HIGHLY . . .
point between 2.5 and 20 nm depending on the detunin
the photon from dissociation. At these internuclear sepa
tions chemical effects, due to electron cloud overlap betw
the individual atoms, are negligible. In fact, it is convenie
to describe these molecules as the collision between two
oms.

For the 2P atom the atomic Hamiltonian involves th
strong spin-orbit interaction and the hyperfine interacti
The former couples the electron mechanical angular mom
tum, l a , to the electron spin,sa , and forms the electron

angular momentumjWa5 lWa1sWa while the hyperfine interac
tion couples the electron angular momentum to the nuc
spin, i a . The 2S atom has zero electron mechanical angu
momentum,l b , and the atomic Hamiltonian only include
the atomic hyperfine interaction where the electron spin,sb ,
couples to the nuclear spin,i b . The subscripta5a andb for
spin degrees of freedom will always denote the2P and 2S
atom, respectively. The two atoms are allowed to rot
around their center of mass generating the interac
\2 lW2/2mR2, where the operatorlW is the mechanical angula
momentum between the two nuclei. By definitionl has a
zero projection onto the internuclear axis. In this manne
complete basis is constructed usingu l j a( f af b) f ;FM ,p&,
where fWa5 jWa1 ıWa , and fW5 fWa1 fWb . These kets form state
with total angular momentumFW , the vector sum of
lW,sWa , ıWa , lWa ,sWb , and ıWb , and have a definite parityp
5PaPb(21)l wherePa(Pb) are the parity of atoma (b),
respectively. In our casePa51 andPb521. Note thatl b
50 for the 2S atom has been omitted for convenience and
the absence of external fields bothF50,1,2,. . . , M , and the
parity are conserved. This is the atomic or Hund’s case~e!
basis set.

The fine structure and hyperfine interaction are diago
in the atomic basis. Since2S and 2P Na have an electron
spin of 1/2 and a nuclear spin of 3/2, twelve distin
asymptotic energies for the dimer exist as is shown in Fig
The fine structure splitting gives a 513-GHz separation
tween j a51/2 and 3/2 states. The hyperfine splitting of t
2S atom separates thef b51 and 2 states by 1.8 GHz, whil
the hyperfine interaction of the2P atom is'0.2 GHz and
splits states withf a51 or 2 for the 2Pj a51/2 atom andf a

50, 1, 2, or 3 for the2Pj a53/2 atom. Quadrupole effects fo

the 2P3/2 atom, which are on the order of 1 MHz, may al
be included. Each asymptote is degenerate with respe
the projections of f a and f b . For example, the limit
2P3/2( f a53)12S( f b51) is 73332542-fold degenerate
The extra factor of two comes from homonuclear symme
zation, which accounts for the fact thatP1S states are de
generate with those ofS1P. In total there are 384 state
however, for a givenF and parity at most 96 spin channe
are interacting. These values for fine and hyperfine splitti
are meant as guidelines. Calculations in the remainder of
paper use the accurate values of Ref.@27#.

In addition to the atomic interactions, the two atoms u
dergo molecular-type interactions caused by the residua
fect of all Coulombic interactions between the particles.
large internuclear separations these reduce to the reso
dipole interaction@28#, which couples the electric dipole mo
ment of both atoms to the internuclear axis and has a ra
of
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dependence given by 1/R3. The resonant dipole interactio
conserves the projectionL of the spinLW 5 lWa1 lWb onto the
internuclear axis and conserves the total electron spiSW

5sWa1sWb , the total nuclear spinIW5 ıWa1 ıWb , and for homo-
nuclear dimers the symmetry of the electronic part of
wave function under inversion around the center of ma
i.e.,g/u symmetry. This results in four nondegenerate pot
tial surfaces corresponding to theL51 (P) states with an
6C3 /R3 radial dependence and theL50 (S) states with a
62C3 /R3 dependence. For internuclear separations wh
the electron clouds of the two atoms overlap the excha
interaction splits each of the four surfaces into two, lead
to eight distinct ~nonrelativistic! adiabatic Born-
Oppenheimer~ABO! potentials labeled by2S11Lg/u . The
natural basis for the resonant dipole interaction is a mole
lar basis, labeled asuLSSI iFM ,p&s , wheres5g/u, S and
i are the projections ofS and I on the internuclear axis
respectively. This basis is the so-called Hund’s case~a! basis
and for homonuclear diatomics only includes states withp
5r(21)I and with r51 or 21 for g or u states, respec
tively. The inset of Fig. 2 shows the eight ABO potentials f
small internuclear separations where they control the dyn
ics of the vibrational motion of the dimer.

The molecular Hund’s case~a! and atomic Hund’s case
~e! bases provide a diagonal representation of the molec
and atomic contributions to the Hamiltonian, respective
The two bases are connected via an unitary transforma
such that the multichannel vibrational eigenfunctions can
expressed and calculated in either basis. The unitary tr
formation is evaluated in a manner similar to Refs.@29,30#.
The remainder of this paper is devoted to the evaluation

FIG. 1. The twelve distinct asymptotic limits of a Na(2P)
1Na(2S) collision. The zero of energy is set at the2P3/2( f a53)
12S( f b52) asymptote. All multichannel eigenvalues in this pap
are quoted with respect to this asymptote.
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the eigenpairs. In Sec. V A the eigenpairs of a single AB
are evaluated in order to test the effectiveness of the ra
transformation. In Sec. V B the full calculations are pr
sented. This section also involves a discussion of useful
proximations of the dynamics of the dimer as this allows
the construction of a preconditionerG0 to the eigenvalue
problem.

A. Convergence for a single ABO

The effectiveness of the nonlinear coordinate transform
tion is most dramatically shown by the convergence of
bound state energies for a single potential surface. The
genvalue problem for a single potential is small compared
multichannel eigenvalue problem and can be solved w
noniterative means. The convergence test is performed
the deepest Na ABO potential. This potential has bound-s
wave functions with the largest and most rapid change
size of the local de Broglie wavelength of all the Na ABO
when going from small to large internuclear separation a
hence its convergence should ensure convergence of the
tichannel bound states of the Na dimer.

For Na the deepest potential is the3Pu adiabatic Born-
Oppenheimer potential~see the inset of Fig. 2!. The long-
range behavior of this ABO is proportional to 1/R3 and
therefore following Eq. ~10! the transformation u(R)
52AR0 /(R1RS) is used. We have usedRS53a0 (1a0
50.0529 177 nm!, R050.5a0, and 3a0 and 550a0 for the
first and last point of the grid, respectively, with differe
numbers of collocation pointsN. A doubling of the number
of collocation points implies that the local step size inR
space decreases by a factor of two. The results of this s
are shown in Fig. 3. The error as a function of vibration
level is defined as the difference in binding energy with
energies obtained from the finest grid. ForN5428 the local
step sizeDr varies from 0.08a0 at 10a0, 1.0a0 at 70a0, to

FIG. 2. The long-range adiabatic Movre-Pichler potential cur
near the twoS1P3/2 asymptotes. The labeling follows the Hund
case~c! coupling case. The inset shows the ABO potentials in
radial region where they are the dominant interaction. The la
used in the inset are Hund’s case~a! labels. (1 eV52.417 988 35
105 GHz, 1a050.052 9177 nm.!
ial
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21a0 at 550a0. The convergence rate withN is dramatic as
one might expect for a high-order DVR approximation of t
kinetic energy operator. The largest error occurs around
brational level 80, which is bound by218 000 GHz and has
an outer turning point of 14a0. This is a short-range mol
ecule, since at these internuclear separations the electr
clouds overlap. The levelsv.130 close to the dissociatio
limit converge fastest because the coordinate transforma
is optimized for the vibrational motion at large internucle
separations. Moreover, the wave functions of the m
weakly bound states forRN5550a0 and N5428 have on
average two to three points per local de Broglie waveleng

By using RN5550a0 we obtained well converged
eigenenergies of the3Pu potential for the 163 vibrationa
levels which are bound by more than 0.2 GHz. To obt
more weakly bound states (;1 MHz! would require chang-
ing RN from 550a0 to 20 000a0. However, the nonlinear co
ordinate transformation ensures that the binding energy
these extremely long-range molecules can be converge
adding no more than 100 collocation points. Even thou
increasingRN is feasible we focused onRN5550a0 as all the
bound states of experimental interest can already be obta
accurately.

For the calculations in the remainder of this paper
choseN5428 as the uncertainties in the calculation of t
binding energy for long-range molecules lies well below t
cited experimental accuracies@13#, which are on the order o
several MHz.

B. Multichannel calculations

The single-channel results of the previous section sh
that the radial coordinate, which is of infinite dimensionali
is discretized satisfactorily with only a few hundred colloc
tion points. Since Na has a maximum of 96 spin states,
discretized HamiltonianH can have a dimension as large
40 000340 000. This matrix can only be diagonalized iter
tively, and constructing a suitable preconditioningG0 re-
quires a knowledge of the weak and strong coupling for
between spin channels.

s

e
ls

FIG. 3. The convergence of the3Pu bound states as a functio
of the number of collocation points. The radial grid runs from 3a0

to 550a0 with an inhomogeneous grid discussed in the text. T
binding energies of the run usingN51717 collocation points are
assumed to be converged.
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TABLE I. GMRES(n)-convergence statistics as a function of binding energy, total angular momentuF,
and preconditioning. The vibrational energy is with respect to theP3/2( f a53)1S( f b52) asymptote and
DOS stands for density of states. Note that the lowest vibrational level is at233105 GHz from dissociation
and the acronym NC stands for not converged.

Energy F55 DOS Gave G0

~GHz! (GHz21) F50 F53 F55 F56 F50 F53 F55 F56

21000 1 8 16 18 NC 7 15 17 19
250 8 10 18 34 NC 9 16 33 41
225 16 10 21 30 NC 10 20 30 34
25 48 23 77 85 NC 20 71 75 71
23 75 39 147 239 NC 36 137 138 125
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For deeply bound vibrational levels the eight ABO pote
tials provide a good first-order picture of the physics. Ho
ever, these potentials dissociate to the barycenter energ
the 2P12S atomic limit and not to the2P1/21

2S or 2P3/2
12S fine-structure asymptotes and so the ABO’s form a p
description for long-range molecule. Movre and Pichler@28#
showed that the adiabatic potentials constructed by diago
izing at eachR, the resonant dipole interaction and th
atomic fine structure of the2P atom, form a good descrip
tion of the long-range behavior. The adiabatic potentials,
sociating to the2P3/21

2S asymptote, are shown in Fig. 2. I
this model up to three Hund’s case~a! states mix to form
adiabatic potentials with symmetryVs

6 whereV5L1S is a

projection ofj ( jW5 jWa1 jWb) onto the internuclear axis and th
6 describe symmetry with respect to reflection of the el
tronic coordinates through a plane containing the inter
clear axis. TheVs

6 symmetry follows the Hund’s case~c!
coupling scheme. For example, within the 0g

2 symmetry the
coupling between the3Sg and 3Pg ABO’s lead to two adia-
batic potentials: A purely long-range potential dissociating
the P3/21S asymptote and a chemically bound potential d
sociating to theP1/21S asymptote. The former potential i
extensively studied in the literature@8,13,15# and is a purely
long-range potential@31#, which possesses inner turnin
points outside the chemical interaction region and hence o
depends on atomic properties such as the fine structure s
ting and the atomic2S to 2P transition probability.

The Movre-Pichler model describes the avoided crossi
between ABO potentials for internuclear separations wh
the potential energies are on the order of the2P atomic
spin-orbit interaction. The Movre-Pichler adiabatic appro
mation to the electronic Hamiltonians are valid for any of t
alkali-metal dimers and could be used to construct a prec
ditioner for the full eigenvalue problem. However, the mod
breaks down at small internuclear separations, becaus
those separations, crossings between the ABO’s contribu
to a Hund’s case~c! symmetry can be diabatic as well. Fo
example, the crossing between the3Pu and 1Su potentials
around 7a0 changes its character from diabatic for a lithiu
or sodium dimer to adiabatic for a cesium dimer@23#. There-
fore a preconditioner based on the multichannel Hund’s c
~c! Hamiltonians is preferable. Hence, each block ofH0 is
composed of the kinetic-energy operator, the ABO potent
and the2P spin-orbit interaction of up to three spin channe
depending on theVs

6 symmetry. The Green’s functionG0

51/(E2H0) for each subspace is found by ‘‘direct’’ mean
-
-
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on a single computer, i.e., by inversion or constructed from
direct diagonalization@26#. For example, for the 0g

2 symme-
try the interaction between the two ABO’s will be include
exactly.

The HamiltonianH0 for each subspaceVs
6 of the precon-

ditioner is set up in the Hund’s case~a! basis. These sub
spaces are not uniquely labeled withVs

6 but have as addi-
tional labels the nuclear spinI and its projectioni. The
Hamiltonians of eachVs

6 ,I ,i subspace differ due to slightly
different contributions from the mechanical rotation and h
perfine interactions. This suggests a simplerH0 and G0,
where allI ,i with Vs

6 symmetry are replaced by an ‘‘ave
age’’ Hamiltonian. Denoting the HamiltonianH0(Vs

6 ,I ,i)
as that part of the total HamiltonianH that lies within the
subspaceVs

6 ,I ,i, the averaged Hamiltonian is

Have~Vs
6!5

1

M(
I i

H0~Vs
6 ,I ,i !, ~13!

where M is the number of allowedI ,i combinations. The
corresponding average preconditionerGave(Vs

6) contains
identical blocks for differentI ,i components. Compared t
H0(Vs

6 ,I ,i) this approximation breaks down when the to
angular momentumF becomes larger and for eigenvalu
near the dissociation limits. For largeF the molecule starts to
spin faster and the nuclear spin loses its locking to the in
nuclear axis while near the dissociation limits the to
nuclear spinI labeling ceases to be a good approxima
quantum number. The coupling between the initially wea
coupledH(Vs

6 ,I ,i) becomes important and the precond
tioning, although still converging, is less efficient. In the r
mainder of the paper we will callG0 the preconditioner
given by H(Vs

6 ,I ,i) and Gave the preconditioner given by
Have(Vs

6).
The two preconditioners are compared in Table I. T

energyE is given in the first column and is with respect
the P3/2( f a53)1S( f b52) asymptote. At eachE approxi-
mately 30 eigenvectors of the Green function 1/(E2H) are
evaluated. The density of states for total angular momen
F55 is given in the second column. It increases rapidly w
decreasing binding energy and hence indicates the increa
complexity of the problem. All other entries in the table co
tain the number of vectorsn GMRES requires to solve Eq
~10! with residuals smaller than 10212. Both preconditioners
work equally well with the exception ofF56 and higher
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whereGave does not converge and onlyG0 can be used. The
number of GMRES vectors increases as the binding ene
decreases because hyperfine interactions start to coupl
Hund’s case~c! symmetries strongly. On the other hand, th
table shows that the Hund’s case~c! representation of the Na
dimer is still sufficient for preconditioning the exact Ham
tonian. The increase ofn is not a strictly monotonic function
of energyE but fluctuates on a finer energy scale. This is a
due to the approximations made in constructing the prec
ditioner. The poles of the preconditioner as a function oE
are shifted relative to the exact poles ofG and the precondi-
tioner works best if this shift is small. However, choosingE
too close to an eigenvalue ofH0 or H causes large deviation
and hence fluctuations inn. Of course near the dissociatio
limits where the density of states is large this is unavoida

The run-time performance of the iterative eigenva
solver is a complex issue. TheG0 preconditioning is more
expensive computationally than theGave preconditioner.
However, the choice of preconditioner does not solely de
mine the run-time performance. The subspaces are dis
uted over several computers and with the current genera
of computers communication overhead in passing mess
quickly dominates. For Na it was found empirically that t
best strategy is to use as small a number of computer n
as possible. This number is mainly determined by the stor
of the blocks of the preconditionerG0. Memory require-
ments in storing the preconditioner can therefore be imp
tant.

The iterative eigenvalue solver returns not only eigenv
ues but also eigenfunctions. This allows us to characte
and label the bound states both with exact and approxim
quantum numbers. The only exact labels are the total ang
momentumF and parity. There are several approximate
bels. Each wave function is labeled according to its Hun
case~c! symmetry. In addition, the levels correspond to on
one adiabatic Movre-Pichler potential: in essence, a labe
identical to the labeling of the potentials of Fig. 2. This d
scription is approximate and in most cases the domin
symmetry is used to label the state. For states near the at
hyperfine limits the labeling is somewhat arbitrary. In pra
tice the labeling is not obtained by looking at the wave fun
tion directly but by evaluating expectation values of sp
and projection operators for a symmetry, i.e.,Vs

6 . For ex-
ample, the expectation value of the electron spinS in the
Hund’s case~a! representation is

^S2&5(
a

E
0

`

dR Sa~Sa11!uCa~R!u2

5(
a

E dy Sa~Sa11!ufa~y!u2,

where a is a sum over all spin degrees of freedom. T
vibrational quantum number of a level cannot be easily
tained from a multichannel wave function. The vibration
quantum numbers are instead obtained from eigenvalue
the single-channel adiabatic potentials as defined in Fig
This procedure is valid when the Hund’s case~c! coupling
scheme is valid.

As an example of our calculations, Fig. 4 shows the m
tichannel eigenenergies for total angular momentumF55,
gy
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and parityp51 about 5 GHz below theP3/2( f a53)1S( f b
52) hyperfine asymptote. The2S hyperfine splitting is ap-
proximately 1.8 GHz and hence strong hyperfine recoupl
is expected. The binding energies are converged to a
MHz. The panels of the figure contain levels with the sa
approximate Hund’s case~c! symmetry. The 0u

1 and 1g sym-
metries have merged due to strong hyperfine mixing.
additional example and a more detailed discussion of
mixing is discussed later. The labeling is obtained using
procedure described above. At these binding energies
vibrational spacing that follows from diagonalizing the ad
batic potentials of Fig. 2 is on the order of 1 GHz. For t
long-range 0g

2 state the figure shows the four rotationa
hyperfine levels ofv514 and 15 and it also shows eight o
the ten rotational-hyperfine levels of 1u v50. Two vibra-
tional levels of the 2u symmetry are shown, each having 1
rotational-hyperfine features. For the 0u

1/1g mixture the situ-
ation is more complex. In the absence of coupling betwe
the two Hund’s case~c! symmetries there are six and te
rotational-hyperfine levels per vibrational level for the 0u

1

and 1g symmetry, respectively. However, these sixteen le
els have merged where the figure shows at least two vi
tional levels of the two symmetries.

Figure 5~a! shows the radial density of a state with pr
dominantly 1g symmetry about 10 GHz below theP3/21S
asymptote as a function of the radial coordinateR. The radial
density describes the probability of finding the nuclei at
ternuclear separationR, that is

r~R!5(
a

uCa~R!u2,

wherea is a sum over all spin degrees of freedom. ThisF
51,p521 wave function has 53 spin components and
bound by approximately six times the2S hyperfine splitting.
The outer turning point of the vibrational motion is ne
190a0 such that the rotational energŷ1gu\2l ( l 11)/
(2mR2)u1g& is smaller than its hyperfine energy^1guHhfu1g&,
with Hhf the hyperfine contribution to the total Hamiltonia

The interference pattern of the radial density indicates t
this level is a truly multichannel~or nonadiabatic! wave

FIG. 4. A stick graph of the NaP1S F55, p51 vibrational
levels. The binding energies are with respect to theP3/2( f a53)
1S( f b52) asymptote. Note that the hyperfine splitting for the2S
atom is 1.8 GHz. The Hund’s case~c! labeling is only approximate
where the 0u

1 and 1g symmetries are fully broken by the hyperfin
mixing.
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function. In an adiabatic picture a bound state is describe
terms of a single potential and the wave functions hav
nodal pattern. The absence of a zero density in Fig. 5~a!
therefore implies nonadiabaticity. Figure 5~b! shows the de-
composition of this radial density in terms of the releva
Hund’s case~c! symmetries. The contributions from the 1g

and 0u
1 symmetries dominate, with about 30% of the pro

ability distribution in theu state. The strong mixing can b
understood from the Movre-Pichler adiabatic potentials
Fig. 2. The attractive 1g and 0u

1 potentials run nearly paralle
and therefore any nonadiabatic coupling between the
Movre-Pichler potentials is enhanced. In this instance
nonadiabaticity is due to the hyperfine mixing of the 1g and
0u

1 symmetries. The vibrational motion on each of the ad
batic Hund’s case~c! potentials on the other hand is adiaba
and corresponds to a bound state of the potentials show
Fig. 2. The hyperfine mixing of 1g and 0u

1 symmetries is not
accidental and observable for neighboring vibrational lev
as well because the vibrational level spacing is compara
to the hyperfine mixing energy.

Figures 6 and 7 show the 53 component wave function
two nearly degenerateF51 levels that have predominantl
0g

2 character. The states are again bound by approxima
10 GHz but are separated by only 30 MHz. They belong
the hyperfine structure of thev510,J52 (JW5 lW1SW 1LW )
rovibrational level of the long-range 0g

2 potential dissociat-
ing to theP3/21S limit. The wave functions in Figs. 6 and
are nuclear spinI'1 and 3 states, respectively. Note thatJ
and I are only approximately good quantum numbers. T
wave functions are expressed in the molecular Hund’s c
~a! representation where the largest components are show
separate panels. The upper panel shows the Hund’s cas~a!
components with 0g

2 Hund’s case~c! symmetry and follow-
ing the Movre-Pichler model the 0g

2 wave function is an
adiabatic mixture of the3Sg and 3Pg molecular symmetry.
Hence, the radial waves of these components have the s
zeros. The middle and bottom panels show that the mot
of these levels are not purely adiabatic. A 2u ,I 52 level that

FIG. 5. ~a! The radial density of a predominantly 1g state near
theS1P3/2 atomic limit as a function of the internuclear separati
R. The beating pattern is indicative of nonadiabaticity.~b! The ra-
dial density of the same 1g state separated into the dominant Hund
case~c! symmetries. This 1g state has 30% 0u

1 character.
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lies in between the two levels has a strong influence on
0g

2 wave functions. However, at a binding energy of210
GHz strong mixing of the 0g

2 and 2u symmetries is still
accidental. The 0g

2 and 2u curves have nearly identical long
range behavior, which enhances any nonadiabatic correc
but direct coupling between 0g

2 and 2u , due to quadrupole
hyperfine interactions of theP3/2 atom, is too small to ex-
plain the observed mixing. The nonadiabatic mixing is due
an indirect process where the 1g symmetry acts as the inter
mediate. In fact, coriolis forces mix the 1g and 0g

2 symmetry
and the 1g and 2u symmetries are mixed via the hyperfin
interactions.

Eigenstates between theP3/21S and P1/21S asymptotes
are not bound states in the strictest sense of the word.
levels are resonances predissociating into theP1/21S con-
tinuum. In a DVR representation of the dimer these re
nances are approximated as bound states by virtue of
zero-boundary condition atRN . However, as long as a reso
nance interacts weakly with the continuum the DV
eigenenergies approximate the position of these resona
well. Independent multichannel close-coupling calculatio
as a function of the collision energy of aS Na atom colliding
with a P1/2 Na atom show resonance structures in the co

FIG. 6. A F51, p521 multichannel wave function in the
molecular Hund’s case~a! basis. This is a 53 component/chann
wave function with a predominantlyJ52, 0g

2 character. The top
panel shows all components with 0g

2 Hund’s case~c! symmetry, the
middle panel shows the 2u components, while the bottom pane
shows the remaining components. In addition, the top panel sh
components with3Sg Hund’s case~a! symmetry with full lines and
those with3Pg symmetry with dashed lines. There is about 8%u
character.
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sional cross sections near the predicted DVR eigenener
For the 1g and the 0u

1 symmetry the resonances are a fe
MHz wide consistent with our inability to converge DV
energies with step and box size to better than a few M
The predissociation widths of the purely long-range 0g

2 and
1u states are negligible.

VI. CONCLUSIONS

We have developed a practical means to evaluate num
cally the long-range vibrational wave functions and bindi
energies of the excited2P12S Na2 dimer including fine,
hyperfine, and rotational structure. The numerical techniq
for solving the underlying eigenvalue problem have be
described and an impression of the complexity of the eig
value spectrum in a region of experimental interest has b
given. Near the dissociation limits the bound states form
extremely dense and complex pattern. For those st
atomic hyperfine interactions significantly modify the m
lecular level structure. Moreover, multichannel wave fun
tions with marked nonadiabatic character have been

FIG. 7. A secondF51, p521 multichannel wave function in
the molecular Hund’s case~a! basis. The panels are the same
those described in Fig. 6. This wave function is also aJ52, 0g

2

level but has about 25% 2u character but a slightly different bindin
energy compared to the wave function in Fig. 6.
es.

z.

ri-

s
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en
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tained. Deviations from adiabatic behavior prove that
conventional long-range picture of the excited dimer
Movre and Pichler@28# starts to break down near the diss
ciation limits.

The success of the eigenvalue solver is based on effor
minimize the size of the discretized Hamiltonian. A nonli
ear coordinate transformation of the radial coordinate
combination with a discrete variable representation is imp
mented to minimize the number of the collocation poin
The transformation allows for a smooth transition from sm
to large step sizes in going from small to large internucl
separations. Since the Na dimer problem involves
coupled spins that generate up to 96 coupled potential
faces we find that, even with a coordinate transformati
matrix sizes are still too large for using direct diagonalizati
procedures. An iterative eigenvalue solver with a precon
tioner has been implemented. The software is not restric
to the Na dimer but can be used for other alkali-metal dim
as well.

Approximate solutions to the Na2 bound state problem ar
essential in constructing a suitable preconditioner for the
erative eigenvalue solver. Good preconditioners can impr
the convergence characteristics of the solver dramatica
The effectiveness of two preconditioners has been discu
in detail. The effect of a nonlinear coordinate transformat
is investigated in detail using the convergence characteris
of the bound states of a single potential surface.

These computer codes developed for solving the bo
state problem have already led to an improved understan
of the Na dimer. The effect of the hyperfine interaction
the rovibrational structure of the purely long-range 0g

2 po-
tential has been quantified@16#, enabling the extraction o
the most accurateC3 coefficient and thus the measureme
of an accurate2P atomic lifetime@13#. Moreover, we were
able to prove that retardation has a sizable effect on the l
positions. Further analysis of the data will enable us to i
prove the current value ofC3 in the near future.

Using the codes described in this paper in combinat
with a close-coupling calculation of the ultracold2S12S
collision and a knowledge of the transition dipole moment
theoretical model of the photoassociation line shape has b
constructed for comparing synthetic spectra with experim
tal photoassociation line shapes. A concise description of
calculation will be given in a future paper. The excelle
agreement between theoretical and experimental line sh
made it possible to extract scattering lengths of the2S12S
collision @14#. We have also applied the programs towar
the understanding of the hyperfine effects on the 1g potential
of 87Rb @32# and the purely long-range 1u potential of 39K
@33#.
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