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Photoassociative spectroscopy of highly excited vibrational levels of alkali-metal dimers:
Green-function approach for eigenvalue solvers
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Understanding high-precision photoassociative spectroscopy of laser-cooled alkali-metal atoms involves
modeling an extremely dense level structure of weakly bound molecules in the region where coriolis and
hyperfine interactions become comparable to electronic interactions. We describe an iterative eigenvalue solver
suitable for resolving these bound states that is based on finding eigenvalues of the shifted inverse or Green-
function operator. Nonlinear coordinate transformations applied to the nuclear motion are introduced to mini-
mize the dimensionality of the discretized Hamiltonian. The formalism is applied to resolve the hyperfine
structure of rovibrational levels of the Na) +Na(S) dimer.[S1050-294798)05306-4

PACS numbsgs): 33.15.Pw, 33.20.Wr, 02.60.Dc, 02.7&

. INTRODUCTION range Q potential close to théPy,+ S dissociation limit
[13]. The extraction of th€; coefficient, which provides the
In recent years laser cooling has made samples of ultranost accurate measurement to date of the Iaatomic
cold atoms routinely available. Stored in magneto-opticalifetime, is based on a precise knowledge of the dynamics of
(MOT) or pure magnetic traps the study of collisional pro-the long-range?P+2S molecule. We have shown that the
cesses between two trapped atoms, either via direct measufinite speed of the photon, which is resonantly exchanged
ments of cross sections or via photoassociation is a logicadetween the two Na atoms, is observable in the photoasso-
course of actio1-3]. The temperatures in the various traps ciation spectra as a retardation correction. In addition, a de-
are so low, below 1 mK for MOT's and even in the tailed knowledge of the influence of atomic hyperfine and
nanokelvin range for magnetic traps, that many of the meacoriolis interactions on the Drotational-vibrational levels is
surable collision quantities are dominated by long-rangessential[16]. An understanding of these weak interaction
forces. For example, the shape of the macroscopic wWavgrms lead to simplifying models of the; Ostate[13,16].
function of a Bose-Einstein condensate of a magnetically kg the measurement of the NBy coefficient from the
stored sample ofS aIkaIi-metaI.atom$4—6] is detern_\ined experimental § spectra hyperfine corrections were ne-
to a large extent by the scattering length, the effective hardg ecteq. This approximation was justified by comparing with
sphere radius of a zero-energy atom-atom collision. Signifi merical eigenvalues and eigenfunctions of the exact
cant contributions to the scattering length arise from the rapgmijltonian of the dimer as well as from a comparison with
dial region where the-Cq/R® van der Waals interaction sjmplifying models[16]. In this paper we provide a concise
dominates the atom-atom interaction. description of the numerical procedures used in the exact
In photoassociation spectroscoy-15 a laser photon is  calculations. The procedures are not limited to the Na dimer
used to excite a pair of freéS alkali-metal atoms to a vi- but can be used in understanding hyperfine resolved spectra
brational level of the electroni®+ S manifold. This vibra-  of all other alkali species. The discretization of the Hamilto-
tional state is then detected by either looking for fluorescenceians, which involves a large number of spins degrees of
or by detecting ions after absorption of another photon. Fofreedom as well as a large number collocation points to de-
the small collision energies prevailing in a MOT the Franck-scribe the radial coordinate, leads to a large-scale eigenvalue
Condon principle predicts the formation of long-range mol-problem. In fact, minimizing the size of the matrices is es-
ecules, with outer turning points around internuclear separasential to successfully solving the eigenvalue problem and
tions of 10 nm and inner turning points of the vibrational warrants a detailed discussion. Moreover, the eigenvalues of
motion as small as 0.2 nm. Therefore this process is not onlinterest are in the middle of the spectral range as well as in a
sensitive to the van der Waals potential between the tweegion where the eigenvalues are most densely packed, i.e.,
colliding atoms but also to the: C;/R® resonant-dipole in- near a dissociation limit. The numerical methods for solving
teraction of the excited molecule. these type of problems are actively discussed in the literature
Recently in an experimental collaboration we have ex{17-20. These numerical methods are based on an iterative
tracted the long-rang@; coefficient for Na?’P+Na 2Sfrom  eigenvalue solver where a matrix-vector multiplication of the
binding energies of rovibrational levels of the purely long- discretized Hamiltonian with an arbitrary vectavave func-
tion) and a filtering process, that makes the solver converge
to eigenfunctions near the eigenvalues of interest, must be
*Permanent address: Department of Chemistry and Biochemistrgrovided by the user. The filter is based upon an approxima-

University of Maryland, College Park, MD 20742. tion to the full problem that can be handled by more conven-
"Permanent address: Institute for Defense Analysis, 1801 Ntional means. In this paper we describe our experience using
Beauregard St., Alexandria, VA 22311-1772. the iterative eigenvalue solver proposed in R&0] as well
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as discuss the physical approximations valid Rot S sys- Hyiygiriny=Tii S+ 8 Vijj s

tems that enable the construction of a practical filter. Al-

though we focus orP+S systems where we can identify where the quantity/;;;, is short forV;; (R;). The DVR rep-

strong and weak interactions and therefore can construcesentation is closely related to the more familiar finite basis

(much smaller subproblems, many gquantum-mechanicatepresentatioiFBR).

systems have such a division and similar iterative eigenvalue The simplest DVR is the Fourier grid representatigg],

solvers can be applied. which was, for example, employed in RdR3] to study
Previous work on theoretical modeling of photoassocia-nonadiabatic effects in the dynamics of the alkali-metal

tion spectroscopy is restricted to a description of the vibradimers, and is based on the eigenfunctions of a particle in a

tional levels of the long-range Ostate in the last hundred box. The DVR has equidistant collocation poiftsand an

GHz below the?P5,+2S dissociation limit. However, the analytic expression for the kinetic energy operator. In the

experimental photoassociation spectra show a far richer pidnterval (Ry,Ry) with N—1 collocation the points have the

ture. Other vibrational series, like the so-callegiand qf ~ form

series, interleave with the rovibrational series of thedBate. . .

Unlike the 0 states, which have no hyperfine slatructure on Ri=Rot(Ry=Rp)i/N, i=1 to N-1

the_ir own, the ] series has a marked hyperfine structureihe kinetic energy operator is given by

which becomes comparable to and even larger than the rota-

tional spacing. The resulting density of state suggests that X 7T2(_1)i—i’[ 1

approximately 10% of the N&P+ Na 2S bound states are in Tiir=5— 51 = —

the last hundred GHz below dissociation. In addition to the 21 2(Ry—Ro) l3|n2[77(| —i")2N]

0, states the iterative eigenvalue solver also finds these 1

states, which opens up the study of these states as well as a — } (1)
study of their mixing very close to the dissociation limit. sin[a(i+i’)/2N]

This paper is divided into four sections. In Sec. Il we
discuss the discretization of the radial coordinate. Section I1for i#i’ and
describes coordinate transformations that dramatically re- ) 5 )
duce the number of collocation points that are needed for the _ht [2n2+1 1 @
accurate description of the vibrational motion. Section IV "2, Z(RN_RO)ZL 3 sirf(ari/N)
gives a description of the eigenvalue solver and discusses the
requirements on the nature of the filter in our implementatiorfor i =i’.
of the eigenvalue solver. The section also discusses some

parallel programming issues. Finally in Sec. V the iterative Ill. COORDINATE TRANSFORMATION
eigenvalue solver is used to perform a state-of-the-art calcu- _ _
lation of the bound states d?+S Na, dimers. The effec- For the weakly bound long-range dimers produced in an

tiveness of the coordinate transformation is demonstrated byltracold photoassociation experiment the typical values for
investigating the convergence of the bound-state binding erRo andRy are 0.2 and 20 nm, although in some caBgsan
ergies for a single potential with respect to the number ofe much larger. These values are roughly determined by the
collocation points. A practical filter for the eigenvalue solverinner and outer turning points of the vibrational wave func-
is also constructed and some results from exact calculatiori#ns. The minimum step siz&R ;= (Ry—Rg)/N is deter-

are presented and discussed. mined by the kinetic energy at the internuclear separation
where the potentiaV/ is most deep. In fact, the value for
Il. DISCRETIZATION ARyin must be smaller than local de Broglie wavelength of

the wave function near this internuclear separation. For alkali

The structure of the Hamiltonian for diatomics is typical dimers this internuclear separation is around 0.4 nm very
for a large class of quantum mechanical systems. It consisidose toR, where the depth of the potentials is typically
of a kinetic energy ternT=—(%%/2u)d?/dR?, whereR is  about 16 GHz and hence the number of radial collocation
the distance between two nuclei apds the reduced atomic points needed betweeR, and Ry can easily exceed 10
mass, and an interaction teivh The kinetic energy operator Moreover, this number must be multiplied with the number
introduces coupling between different internuclear separaef spin statesy in order to obtain the total dimension of the
tions and the interaction potentidl represents a set of Hamiltonian matrix. This quickly leads to unmanageable ei-
coupled potential surfaces at eaRhEach potential surface genvalue problems.
is labeled by a set of spin quantum numbers or symmetry For large internuclear separations the local de Broglie
labels. The multichannel eigenstatds) of the Hamiltonian  wavelength is much larger than near the deepest point of the
are given by= ,[dR¥ ,(R)|Ra), where thea's label the potential, which implies that for those regions the grid is
spin degrees of freedom. A discrete variable representationnnecessarily dense. Two approaches to reduce the number
(DVR) [21] of the Hamiltonian inherits the simple structure of collocation points suggest themselves. The first possibility
of T andV and is a natural choice for discretization of theis based on a more complex DVR, such as the Gauss-
Hamiltonian. That is, the numerical calculations use the basislermite DVR based on the eigenfunctions of the harmonic
|Ria;) where the indice$ andj count the radial points and oscillator or the Sturmian DVR based on orthonormal Stur-
spin states, respectively, so that the Hamiltonian is repremian polynomiald17,21. In both cases the grid is inhomo-
sented by geneous and the step size grows roughly linearly with inter-
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nuclear separation. Unlike the Fourier grid DVR the kineticto the “centrifugal term” of the untransformed Scliiager
energy operator has to be calculated numerically, but thesequation. For example, ii(R)=xR? for R—o with <1,
DVR’s do lead to a significant reduction of the number ofthese new potentials are proportional t&R41/ The Fourier
collocation points. grid DVR, as defined in Eq91) and (2), can be used to

A second approach, based on nonlinear coordinate transtiscretized?/dy? but now on the homogeneous grg=y,
formations, is adopted for this work and leads to the smallest- (yy—y,)i/N. The terms containing derivatives of and
possible matrix dimensions. The transformation is given bythe potential ternV are diagonal iry; .

y=u(R) whereu is a monotonic invertible function oR The nonlinear coordinate transformation has been intro-
with a derivative that decreases with increadii@ herefore,  qyced as a means of reducing the number of collocation
by defining a homogeneous grid in the transforngedoor-  points at largeR. A different perspective on the transforma-

dinate the distance between two collocation points in th&jon suggests a way of determining the optimal transforma-
original coordinate grows with increasirfg. For example, tijon. The WKB solution of a bound state for a single poten-

the logarithmic transformatiop=In R, often used in atomic  tja| surface in the classically allowed region is given by
electronic structure calculations, gives a step size that grows

linearly with R. Therefore a logarithmic transformation leads 1 R

to a grid that has features similar to the Gauss-Hermite or  (R)= —SinU dx
Sturmian DVR. However, unlike these complex DVR's, YEe-V(R)|

which are based on the existence of a suitable orthogonal

polynomial, coordinate transformations are more flexible agyneres is the binding energy. The phase of this wave func-
tf|1ey Ican be chosen to reflect a physical problem morgqy in the transformed coordinajeis given by
closely.

The coordinate transformation promises to be a good can- y
didate for minimizing the matrix dimensions but will also f dyU’ (y)V2ult[E-V(y)]. (8)
modify the kinetic energy operator of the Hamiltonian. Be-
low it is shown that this transformed differential operator can
be discretized without sacrificing the advantages of a discretgy equatingU’ (y) = 1/v2u/h3[£—V(y)] the phase of the
variabl_e representation. The kinetic-energy operator transyave function isy— ¢o, Where{, is an arbitrary phase that
forms into depends on the details of the potential and we find that the
s ) ) transformed wave functiong(y) is proportional to
fic d fi d d g U'(¥)sing—L). The wave functiong is a fast oscillating
p(y) d_yz +acy) @ ®) sine with a single frequency times a slowly varying envelope
U’(y) and therefore a homogeneous gridyimill provide a
with suitable grid for all internuclear separations.
The transformationu(R) o fRdx\E—V(x) is therefore
1 u”(y) ideal for reducing the number of collocation points needed to
m m (4) determine bound states near the enefdgr single potential.

In a multichannel environment, with many coupled potential
whereU(y) is the inverse transformation af. It is conve-

surfaces, the deepest curve is a natural choiceVipr).
nient to introduce a simultaneous wave-function transformaHoweV.er’ the tra'?siormztlon is often |mpractlcaLas |ts||n'-
tion that has the property that it preserves the normalization/S'S€ IS not easily found or even nonexistent. An analytic
That is we introducep(y) with alternative is based on the long-range depend€hd®" of

the potentials and using§~0 for bound states near the dis-

V2ulh?[E=V (]|, (1)

2u dr2 2p

p(y)= qly)=-—

sociation limit. In that limit the transformation is
V(R = P(y) 5
VU (Y) (R) focdx RO n 1 RO n/2—1
uR=| ==\l m| =~ ,
and therefore if¥ is normalized with respect t8 the trans- RRo ¥V IX+Rs n/2—1\R+Rs
formed wave functionp is normalized with respect tp. The 9)

total HamiltonianT +V is finally given by
where then is the leading polynomial degree of the long-

h? 1 d®> 1 1 UGy range tail of the potentials anél, and R are free param-
= — -5 ~ 2y1(n-2) j initi
2 u’ dv2 U’ 21y’ 3 eters, althoughRy~(2uC,/%%) is a good initial
(y) dy V) [U')] guess. The transformation ensures that for large internuclear
3 [U"(y)]2 separations the step size in the untransformed basis will in-
+Z LW +V(y)| p(y)=Ea(y), (6)  crease at the same rate as the local de Broglie wavelength.
4 [U'(y)]* For a resonant dipole interactiom£3) the step size in-

creases asR+ R,)¥2 Deviations from a pure R" behavior
whereV(y)=V(U(y)). The first term on the left-hand side at smaller internuclear separation, the position of the deepest
of this equation can be interpreted as the new kinetic energpart of the potentials, and specific multichannel effects such
operator and the second and third terms behave as additiora$ multiple values o€,, determine the best values Bf and
spin-independent potentials. These potentials are analogo&s .
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In order to understand the discussion in the next sections To help construct a suitable preconditioner for the alkali-
it is useful to briefly mention realistic values for the matrix metal dimer problem we have taken advantage of a new class
size. For the Na dimer the use of a coordinate transformationf parallel computers that use communication libraries like
limits the number of collocation points for the nuclear mo- PVM (Parallel Virtual Maching MPL (Message Passing Li-
tion to ~500 and there are approximately 100 spin channel®rary), or MPI (Message Passing Interfacahich allow the
leading to a total matrix size of $10%. A discussion and user to construct their own communication pattern between

justification of these numbers is found in Sec. V. the independent processors of any networked computer clus-
ter. In order to use some of the parallel capabilities of these
IV. FILTERING libraries we assume that the preconditio&y has a block

structure, i.e., has independent subspaces. This is a minor
For a large eigenvalue problem, with dimension of 5restriction since in many physical problems with both weak

X 10" or larger, the use of iterative methods is inevitable.and strong interactions the neglect of the weak interactions
However, these methods are best suited for flndlng eXtremeten reduces the Hamiltonidd to a block diagona| struc-
eigenvalues that are not too closely packed, which is in congyre H,,. The different subspaces/blocks need not have the
trast with the requirements for vibrational levels near thesame dimensionality and can be distributed over the nodes of
dissociation limit. These conflicting requirements are met bythe virtual machine, which in our case is a loosely connected
solving for the lowest or highest eigenvalues of the “Green-set of UNIX workstations. Each node is responsible for cal-
function” filter G=1/(£—H) where the energy determines  cylatingG,, for one or more subspaces. This can be done by
the spectral region in which eigenvalues are found. An eicalculating 1/6—H,) for each small block via direct inver-
genvalues solver such as the implicitly restarted Lanczos akjon or diagonalizatiofi26]. The advantage of this procedure
gorithm[24] can then be used to find the eigenvector$sof s that sophisticated approximations can be chosen that oth-
iteratively. This algorithm requreS the calculation of the ma-erwise would qu|ck|y lead to Storage requirements that are
trix vector muItipIicationGx wherex is some arbitrary VeC- too |arge for a sing|e Computer_ For the bound states of the
tor. This does not Imply that the filter has to be formed Na dimer there are approximate|y 30 blocks where each
explicitly. It suffices to construct an iterative means to solvep|ock is of the order 1500 1500. A detailed discussion of
for Gx. In raCt, the matrix-vector multiplication is equivalent these Components @O is given in the fo”owing section.
to solving for the linear system&{-H)z=x, which can be The Lanczos eigenvalue solver and the GMRES software
solved iteratively{ 25]. However, the initial difficulty of con-  are standard serial codes that run on a single computer node.
verging the iterative eigenvalue solvers when there is a hightherefore, the parallelism is limited to the evaluationGaf
density of states nedf, is still present. Convergence for the and the formation of the matrix-vector multiplicatic®ox
iterative linear system solver can only be obtained if theysing a “master-slave” communication protocol. The master
linear system is multiplied with a so-called preconditionernode runs the two serial codes while the slaves store the
(Go). That is we need to solve the linear system different blocks that builds,. Moreover, the master continu-

ously asks the slaves to multiply their part 6f, with a

Go(£—-H)z=Gox. (10 vectorx. At the end of the calculation the extreme eigenval-

The purpose of the preconditioner is to transform the operal:IeSfi and the corresponding eigenvectorsfre returned

tor on the left hand side of the equation into an operator thay the Lanczos eigenvalue solver and the eigenvaluds of

is as close as possible to the unit operator but at the sanf® constructed usin; = £+ 1/f; . The accuracy of the nor-
time remains easy to compute. In fa&, behaves like an malized eigenvectord; of the Hamiltonian are checked us-

approximation ofG since Eq.(10) can be rewritten as Ing

z=[1+GoH;+(GoHp)?+ - - - 1Gox, 11 A=VI(WiHZ W) — (Wi H[P))?. (12)

where Hg is an approximation oH, Go=1/(€—Hp), and  This quantity is a conservative upper bound to the accuracy
H;=H—H, is the “potential.” This connects Eq10) with of each eigenvalue and reflects the contamination of the ap-
the “physical” Lippmann-Schwinger equation for bound proximate numerical eigenvector with nearby lying math-
states. In fact Eq(11) can be used to evaluate E(0). ematical eigenstates. The error that follows from EtR)
Convergence of this Neumann polynomial, however, is onlydescribes the ability of the eigenvalue solver to converge the
guaranteed if the producyH; is small in terms of some eigenvalue for a given radial grid. It should not be confused
matrix norm. The generalized minimal residU8MRES  with the convergence with respect to the radial step size and
method[25] is a good alternative to the Neumann polyno-length of the grid. Those issues are discussed in Sec. V A
mial and has the fastest convergence characteristic of adind the last paragraph of Sec. V B.

known linear system solvers. GMRES of orateis based on
finding the best solutioz within the subspace spanned by
the basis sefz;=[Gy(E—H)]'%x, i=1,... n} by minimiz-
ing the length of the residual vectdBy,(E—H)z—Ggx We apply the Green-function code to find the hyperfine
within this basis. This feature also demonstrates the majoresolved rovibrational bound states of a sodium dimer near
drawback of GMRES that all vectos need to be stored. the 2P+2S dissociation limit. These molecules can be
Again the ability to construct a good preconditior®g is  formed from a laser-cooled sample &8 atoms by absorp-
essential as it keeps the valueroheeded to reach conver- tion of a single photon, a photoassociation experini&ht
gence as small as possible. Typically these molecules have an outer vibrational turning

V. THE SODIUM DIMER



57 PHOTOASSOCIATIVE SPECTROSCOPY OF HIGHLY ... 4261

point between 2.5 and 20 nm depending on the detuning of 1 P3/2(fa)
the photon from dissociation. At these internuclear separa-
tions chemical effects, due to electron cloud overlap between 1 S(fb=2) E:g
the individual atoms, are negligible. In fact, it is convenient

to describe these molecules as the collision between two at-
oms.

For the 2P atom the atomic Hamiltonian involves the
strong spin-orbit interaction and the hyperfine interaction. 154
The former couples the electron mechanical angular momen- S(t,=1) —
tum, I,, to the electron spinsa, and forms the electron . b ~0
angular momentun]a J +sa while the hyperfine interac-
tion couples the electron angular momentum to the nuclear /\/
spin,i,. The 2S atom has zero electron mechanical angular T Pl/g(fa)
momentum,l,, and the atomic Hamiltonian only includes ] 2
the atomic hyperfine interaction where the electron sgjn, S(fb=2) _
couples to the nuclear spiiy,. The subscripte=a andb for 5164
spin degrees of freedom will always denote e and °S

atom, respectively. The two atoms are allowed to rotate
around their center of mass generating the interaction

#212/2uR?, where the operator is the mechanical angular -517
momentum between the two nuclei. By definitibrhas a S¢,=1)
zero projection onto the internuclear axis. In this manner a ]
complete basis is constructed usinl (fafy)f;FM,p),

wheref,=j,+1,, andf=f,+f,. These kets form states o S
FIG. 1. The twelve distinct asymptotic limits of a N&)

\iVIEh ﬁtOt?l 9angu|ar InomentumF, the vector sum of +Na(®S) collision. The zero of energy is set at tR@;,(f,=3)
l.Sa.la:la.Sp, and 1,, and have a definite parityp  +25(f,=2) asymptote. All multichannel eigenvalues in this paper
=I1,IT,(—1)" wherell,(I1,) are the parity of atona (b),  are quoted with respect to this asymptote.

respectively. In our casH,=1 andIl,=—1. Note thatl,

—0 for the 2S atom has been omitted for convenience and independence given by RY. The resonant dipole interaction
the absence of external fields bdtk=0,1,2,..., M, and the  conserves the projectioh of the spinL=1,+1, onto the

parity are conserved. This is the atomic or Hund's c@e internuclear axis and conserves the total electron pin

baﬁ'lflesitne structure and hyperfine interaction are diagonal [Sat Sy, the total nuclear spifi=1a+ 1y, and for homo-

in the atomic basis. Sinc&S and 2P Na have an electron nuclear dimers the symmetry of the electronic part of the

spin of 1/2 and a nuclear spin of 3/2, twelve distinct Vave function under inversion around the center of mass,
i.e.,g/u symmetry. This results in four nondegenerate poten-

asymptotic energies for the dimer exist as is shown in Fig. 1tlal surfaces corresponding to the=1 (IT) states with an
The fine structure splitting gives a 513-GHz separation be+C3/R3 radial dependence and the=0 (3) states with a

t%e:tgﬁ;iéi;r:gsi/ﬁ%sztalteasn dTgestg)tlger;i sspgt;[l'r;g vs;:itlzeiz%/ R® dependence. For internuclear separations where
the hyperfine interaction of théP atom is~o'2 GHz’ and _the elegtron c!ouds of the two atoms overllap the excha_nge
splits states withf,—1 or 2 for the 2P, a.tom andf,, interaction splits each of the four surfaces into two, leading
Ja=112 to eight distinct (nonrelativistiQ adiabatic Born-
=0, 1, 2, or 3 for the? Pj, -3 atom. Quadrupole effects for Oppenheimer(ABO) potentials labeled by?S*1A gu- The
the 2P, atom, which are on the order of 1 MHz, may also natural basis for the resonant dipole interaction is a molecu-
be included. Each asymptote is degenerate with respect far basis, labeled g\ S21.FM,p),, whereoc=g/u, ¥ and
the projections off, and f,. For example, the limit . are the projections of and| on the internuclear axis,
2Py (fa=3)+2S(f,=1) is 7x3x2=42-fold degenerate. respectively. This basis is the so-called Hund's das®asis
The extra factor of two comes from homonuclear symmetri-and for homonuclear diatomics only includes states pith
zation, which accounts for the fact that+ S states are de- =p(—1)' and withp=1 or —1 for g or u states, respec-
generate with those db+ P. In total there are 384 states, tively. The inset of Fig. 2 shows the eight ABO potentials for
however, for a giverF and parity at most 96 spin channels small internuclear separations where they control the dynam-
are interacting. These values for fine and hyperfine splitting&s of the vibrational motion of the dimer.
are meant as guidelines. Calculations in the remainder of the The molecular Hund’'s cas@) and atomic Hund's case
paper use the accurate values of R&f]. (e) bases provide a diagonal representation of the molecular
In addition to the atomic interactions, the two atoms un-and atomic contributions to the Hamiltonian, respectively.
dergo molecular-type interactions caused by the residual effhe two bases are connected via an unitary transformation
fect of all Coulombic interactions between the particles. Atsuch that the multichannel vibrational eigenfunctions can be
large internuclear separations these reduce to the resonamtpressed and calculated in either basis. The unitary trans-
dipole interactiorj 28], which couples the electric dipole mo- formation is evaluated in a manner similar to R¢f9,30.
ment of both atoms to the internuclear axis and has a radidlhe remainder of this paper is devoted to the evaluation of

-05 -

E/h (GHz)

—




4262 TIESINGA, WILLIAMS, AND JULIENNE 57

80

40

—40-

-80 -

By N~Eq Nerrrd GHE)

V/h (GHz)

—120

].0_5 1 1 'I 1 1 T 1 1 T T
0 20 40 60 80 100 120 140 160 180 =200
vibrational level

-160 ]

FIG. 3. The convergence of thd], bound states as a function
2001 - T o 00 of the number of collocation points. The radial grid runs froey 3
R (units of a) to 55, with an inhomogeneous grid discussed in the text. The
binding energies of the run using=1717 collocation points are
FIG. 2. The long-range adiabatic Movre-Pichler potential curvesassumed to be converged.
near the twoS+ P, asymptotes. The labeling follows the Hund'’s
case(c) coupling case. The inset shows the ABO potentials in the21aO at 55Q,.

radial region where they are the dominant interaction. The label The convergence rate witl is dramatic as
used in the inset are Hund’s ca&® labels. (1 e\+2.417 988 35 dne might expect for a high-order DVR approximation of the

_ kinetic energy operator. The largest error occurs around vi-
10° GHz, 1a,=0.052 9177 nn). _ o
2 o " brational level 80, which is bound by 18 000 GHz and has

the eigenpairs. In Sec. V A the eigenpairs of a single ABO™" outer turning point of Ia. This is a short-range mol-

are evaluated in order to test the effectiveness of the radiaﬁCUIe' since at these internuclear separations .the gleptronic
transformation. In Sec. V B the full calculations are pre-CIOUdS overlap. The levels>130 close to the dissociation

sented. This section also involves a discussion of useful adi-mit converge fastest because the coordinate transformation
proximations of the dynamics of the dimer as this allows forls optimized for the vibrational motion at !arge internuclear
the construction of a precondition@, to the eigenvalue Separations. Moreover, the wave functions of the most
problem. weakly bound states foRy=550a, and N=428 have on
average two to three points per local de Broglie wavelength.
By using Ry=550a, we obtained well converged
eigenenergies of théll, potential for the 163 vibrational
The effectiveness of the nonlinear coordinate transformatevels which are bound by more than 0.2 GHz. To obtain
tion is most dramatically shown by the convergence of thq'nore Weak|y bound stategv(l MHz) would require Chang_
bound state energies for_ a single ppte_ntial surface. The ejng Ry from 5508, to 20 00Gy,. However, the nonlinear co-
genvalue problem for a single potential is small compared tQy ginate transformation ensures that the binding energy of

multichannel eigenvalue problem and can be solved withpege extremely long-range molecules can be converged by
noniterative means. The convergence test is performed oly4ing "no more than 100 collocation points. Even though

the deepest Na ABO potential. This potential has bound'Sta.tl‘?‘lcreasing?N is feasible we focused dRy =550, as all the

wave functions with the !argest and most rapid changes: "ound states of experimental interest can already be obtained
size of the local de Broglie wavelength of all the Na ABO S@ccurately

when going from small to large internuclear separation an

hence its convergence should ensure convergence of the mulﬁ Forl\;[rle42cglculziﬂons n tth(_e tr_em{iln:jher Ofl th:st.papefr t\fl1ve
tichannel bound states of the Na dimer. choselN= as the uncertainties in the caiculation ot the

For Na the deepest potential is tH&l, adiabatic Born- b_inding energy for Iong-ran_ge molepules lies well below the
Oppenheimer potentidkee the inset of Fig.)2 The long- cited experimental accuracigk3], which are on the order of
range behavior of this ABO is proportional toRE/ and several MHz.
therefore following Eg. (10) the transformationu(R)

A. Convergence for a single ABO

=—Ro/(R+Ry) is used. We have useRs=3a, (1a, B. Multichannel calculations
=0.0529 177 nm Ry=0.584, and 3, and 55@, for the The single-channel results of the previous section show

first and last point of the grid, respectively, with different that the radial coordinate, which is of infinite dimensionality,
numbers of collocation pointd. A doubling of the number s discretized satisfactorily with only a few hundred colloca-
of collocation points implies that the local step sizeRn tion points. Since Na has a maximum of 96 spin states, the
space decreases by a factor of two. The results of this studyiscretized Hamiltoniatd can have a dimension as large as
are shown in Fig. 3. The error as a function of vibrational40 000< 40 000. This matrix can only be diagonalized itera-
level is defined as the difference in binding energy with thetively, and constructing a suitable preconditionifgg re-
energies obtained from the finest grid. Fd+= 428 the local quires a knowledge of the weak and strong coupling forces
step sizeAr varies from 0.08, at 1(ay, 1.0a7 at 7y, to  between spin channels.
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TABLE I. GMRES(n)-convergence statistics as a function of binding energy, total angular momé&ntum
and preconditioning. The vibrational energy is with respect toRhg(f,=3)+ S(f,=2) asymptote and
DOS stands for density of states. Note that the lowest vibrational leveH8at10° GHz from dissociation
and the acronym NC stands for not converged.

Energy F=5 DOS Gave Gy

(GH2) (GHz™ Y F=0 F=3 F=5 F=6 F=0 F=3 F=5 F=6
—1000 1 8 16 18 NC 7 15 17 19
—-50 8 10 18 34 NC 9 16 33 41
—-25 16 10 21 30 NC 10 20 30 34
-5 48 23 77 85 NC 20 71 75 71
-3 75 39 147 239 NC 36 137 138 125

For deeply bound vibrational levels the eight ABO poten-on a single computer, i.e., by inversion or constructed from a
tials provide a good first-order picture of the physics. How-direct diagonalizatioi26]. For example, for the ) symme-
ever, these potentials dissociate to the barycenter energy ¥ the interaction between the two ABO’s will be included
the 2P+2S atomic limit and not to the?P,,+2S or ?P5,  exactly.
+2Sfine-structure asymptotes and so the ABO’s form a poor The HamiltoniarH, for each subspac@ . of the precon-
description for long-range molecule. Movre and Pichi®8]  ditioner is set up in the Hund’s cage) basis. These sub-
showed that the adiabatic potentials constructed by diagonaépaces are not unique]y labeled Wmﬁ but have as addi-
izing at eachR, the resonant dipole interaction and the tional labels the nuclear spih and its projection:. The
atomic fine structure of théP atom, form a good descrip- Hamiltonians of eacif ,1,« subspace differ due to slightly
tion of the long-range behavior. The adiabatic potentials, disgjtferent contributions from the mechanical rotation and hy-
sociating to the?P,+ 2S asymptote, are shown in Fig. 2. In perfine interactions. This suggests a simpiy and Gy,
this model up to three Hund'’s case) states mix t0 form \ypere aii1, ¢ with O symmetry are replaced by an “aver-
ad'?ba.t'c pot.en;ualf W'Eh symmetfylg WhereQ:ATLE ISa age” Hamiltonian. Denoting the HamiltoniaHO(Qlf )
projection ofj (j=ja+]j,) onto the internuclear axis and the as that part of the total Hamiltonia that lies within the
+ describe symmetry with respect to reflection of the e|eC'subspaC(-Qj 1,1, the averaged Hamiltonian is
tronic coordinates through a plane containing the internu-
clear axis. The(); symmetry follows the Hund's casg) Lo 1 N
coupling scheme. For example, within thg 8ymmetry the Had25) = M; Ho(Q . 1,0),
coupling between théig and 3Hg ABO'’s lead to two adia-
batic potentials: A purely long-range potential dissociating to

the Pg»+ S asymptote and a chemically bound potential dis-Where M 'Z. the number of aIIovxégq,;@(:omglgatlons. The
sociating to theP,,,+ S asymptote. The former potential is corresponding average precondition€r,d(},) contains

extensively studied in the literatuf8,13,19 and is a purely |dent|cial block.s for dlffgren!,L components. Compared to
long-range potentia[31], which possesses inner turning Ho(Q, ,1,¢) this approximation breaks down Whgn the total
points outside the chemical interaction region and hence oningular momentuni becomes larger and for eigenvalues
depends on atomic properties such as the fine structure splft€ar the dissociation limits. For largethe molecule starts to
ting and the atomi@S to 2P transition probability. spin faster and the nuclear spin !oses_ |t§ Iock_lng to the inter-
The Movre-Pichler model describes the avoided Crossingguclear axis while near the dissociation limits the total
between ABO potentials for internuclear separations wher8uclear spinl labeling ceases to be a good approximate
the potential energies are on the order of #e atomic ~ duantum nurrlber. The coupling between the initially weakly
spin-orbit interaction. The Movre-Pichler adiabatic approxi-coupledH(Q ,1,¢) becomes important and the precondi-
mation to the electronic Hamiltonians are valid for any of thetioning, although still converging, is less efficient. In the re-
alkali-metal dimers and could be used to construct a precorimainder of the paper we will cal, the preconditioner
ditioner for the full eigenvalue problem. However, the modelgiven by H(€; ,1,:) and G, the preconditioner given by
breaks down at small internuclear separations, because B, {2 ).
those separations, crossings between the ABO’s contributing The two preconditioners are compared in Table I. The
to a Hund’'s caséc) symmetry can be diabatic as well. For energy€ is given in the first column and is with respect to
example, the crossing between tAH, and 13, potentials  the Py(f,=3)+S(f,=2) asymptote. At eaclf approxi-
around &y changes its character from diabatic for a lithium mately 30 eigenvectors of the Green functionfHH) are
or sodium dimer to adiabatic for a cesium dini28]. There-  evaluated. The density of states for total angular momentum
fore a preconditioner based on the multichannel Hund'’s case =5 is given in the second column. It increases rapidly with
(c) Hamiltonians is preferable. Hence, each blockHyfis  decreasing binding energy and hence indicates the increasing
composed of the kinetic-energy operator, the ABO potentialgomplexity of the problem. All other entries in the table con-
and the?P spin-orbit interaction of up to three spin channelstain the number of vectons GMRES requires to solve Eq.
depending on th€) symmetry. The Green’s functioB,  (10) with residuals smaller than 162 Both preconditioners
=1/(€—H,) for each subspace is found by “direct” means work equally well with the exception of =6 and higher

(13
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whereG,, does not converge and on@y, can be used. The
number of GMRES vectors increases as the binding energy | lg | | || || | | | | | | |||||
decreases because hyperfine interactions start to couple the

Hund's casdc) symmetries strongly. On the other hand, this 0-

table shows that the Hund’s ca&® representation of the Na | | | |
dimer is still sufficient for preconditioning the exact Hamil-
tonian. The increase af is not a strictly monotonic function 1 | | | | | | |
of energy€ but fluctuates on a finer energy scale. This is also

0 &

due to the approximations made in constructing the precon- | 2, | || ||| | | " Ill
ditioner. The poles of the preconditioner as a functior€of

are shifted relative to the exact poles®fand the precondi- 55 = -5  _45  _a
tioner works best if this shift is small. However, choosifig Binding Energy/h (GHz)

too close to an eigenvalue Bify or H causes large deviations
and hence fluctuations in. Of course near the dissociation  FIG. 4. A stick graph of the N®&+S F=5, p=1 vibrational
limits where the density of states is large this is unavoidablelevels. The binding energies are with respect to Ehg(f,=3)

The run-time performance of the iterative eigenvalue+S(f,=2) asymptote. Note that the hyperfine splitting for fi&
solver is a complex issue. THg, preconditioning is more atomis 1.8 GHz. The Hund's case) labeling is only approximate
expensive computationally than th@,,. preconditioner. Wwhere the ¢ and J; symmetries are fully broken by the hyperfine
However, the choice of preconditioner does not solely deter™Xing.
mine the run-time performance. The subspaces are distrib- )
uted over several computers and with the current generaticf"d Parityp=1 about 5 GHz below th&®;(f,=3)+S(f,
of computers communication overhead in passing messagés2) Nyperfine asymptote. TheS hyperfine splitting is ap-
quickly dominates. For Na it was found empirically that the Proximately 1.8 GHz and hence strong hyperfine recoupling
best strategy is to use as small a number of computer nodd$ expected. The binding energies are converged to a few
as possible. This number is mainly determined by the storagiHZ- The panels of the figure contain levels with the same
of the blocks of the preconditiona®,. Memory require- @PProximate Hund's cage) symmetry. The § and 1, sym-
ments in storing the preconditioner can therefore be imporinetries have merged due to strong hyperfine mixing. An
tant. additional example and a more detailed discussion of the

The iterative eigenvalue solver returns not only eigenval/nixing is discussed later. The labeling is obtained using the
ues but also eigenfunctions. This allows us to characterizBrocedure described above. At these binding energies the
and label the bound states both with exact and approximatébrational spacing that follows from diagonalizing the adia-
quantum numbers. The only exact labels are the total anguld¥atic potentials of Fig. 2 is on the order of 1 GHz. For the
momentumF and parity. There are several approximate la-long-range q state the figure shows the four rotational-
bels. Each wave function is labeled according to its Hund'dyperfine levels ob =14 and 15 and it also shows eight of
case(c) symmetry. In addition, the levels correspond to onlythe ten rotational-hyperfine levels of, b=0. Two vibra-
one adiabatic Movre-Pichler potential: in essence, a labelingonal levels of the 2 symmetry are shown, each having 10
identical to the labeling of the potentials of Fig. 2. This de-rotational-hyperfine features. For théﬂg mixture the situ-
scription is approximate and in most cases the dominaration is more complex. In the absence of coupling between
symmetry is used to label the state. For states near the atorrtice two Hund’'s cas€c) symmetries there are six and ten
hyperfine limits the labeling is somewhat arbitrary. In prac-rotational-hyperfine levels per vibrational level for thg O
tice the labeling is not obtained by looking at the wave func-and 1, symmetry, respectively. However, these sixteen lev-
tion directly but by evaluating expectation values of spinsels have merged where the figure shows at least two vibra-
and projection operators for a symmetry, i8., . For ex- tional levels of the two symmetries.

ample, the expectation value of the electron siin the Figure %a) shows the radial density of a state with pre-
Hund’s casda) representation is dominantly 1, symmetry about 10 GHz below tHez,+ S
asymptote as a function of the radial coordindtél he radial
2\ _ “ 2 density describes the probability of finding the nuclei at in-
(89 ; J;, AR S(Se+DIV(R)| ternuclear separatioR, that is

=3 [dy s(s.+vlsm2 p(RI=S [V R2

where « is a sum over all spin degrees of freedom. Thewherea is a sum over all spin degrees of freedom. This
vibrational quantum number of a level cannot be easily ob=1,p=—1 wave function has 53 spin components and is
tained from a multichannel wave function. The vibrational bound by approximately six times tH& hyperfine splitting.
guantum numbers are instead obtained from eigenvalues dihe outer turning point of the vibrational motion is near
the single-channel adiabatic potentials as defined in Fig. 2190, such that the rotational energ{(19|hzl(l+1)/
This procedure is valid when the Hund’s casg coupling (2,uR2)|1g) is smaller than its hyperfine energ¥y|Hd 14),
scheme is valid. with H,; the hyperfine contribution to the total Hamiltonian.
As an example of our calculations, Fig. 4 shows the mul- The interference pattern of the radial density indicates that
tichannel eigenenergies for total angular momenfam5,  this level is a truly multichannelor nonadiabatic wave
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FIG. 5 The radial density of dominantly, ktat > ' R L
.5.(a e radial density of a predominantly, state near 010 other components
the S+ P, atomic limit as a function of the internuclear separation
R. The beating pattern is indicative of nonadiabaticity. The ra- 0.05
dial density of the sameglstate separated into the dominant Hund’s 0.00 -
case(c) symmetries. This { state has 30%3) character. ’
—0.05 1
function. In an adiabatic picture a bound state is described ir —0.10
terms of a single potential and the wave functions have a —————————
nodal pattern. The absence of a zero density in Fi@ 5 0 50 100 150 200

therefore implies nonadiabaticity. Figurébb shows the de-
composition of this radial density in terms of the relevant
Hund'’s case(c) symmetries. The contributions from thg 1

i i i 0, -
and Qf symmetries dominate, with about 30% of the prob molecular Hund’s caséa) basis. This is a 53 component/channel

ability distribution in theu state. The strong mixing can be oo finction with a predominantly=2, 0. character. The top

; ) . . g
understood from the Movre-Pichler adiabatic potentials Ofpanel shows all components witly GHund’s casdc) symmetry, the

Fig. 2. The attractive dand Q; potentials run nearly parallel migdie panel shows the ,2components, while the bottom panel
and therefore any nonadiabatic coupling between the tw@hows the remaining components. In addition, the top panel shows
Movre-Pichler potentials is enhanced. In this instance th@omponents Witi?S, Hund’s casga) symmetry with full lines and
nonadiabaticity is due to the hyperfine mixing of theand  those with®1, symmetry with dashed lines. There is about 8% 2
0, symmetries. The vibrational motion on each of the adiacharacter.

batic Hund'’s caséc) potentials on the other hand is adiabatic

and corresponds to a bound state of the potentials shown ifes in between the two levels has a strong influence on the
Fig. 2. The hyperfine mixing of Jland Q] symmetries is not 0, wave functions. However, at a binding energy 6.0
accidental and observable for neighboring vibrational levelssHz strong mixing of the P and 2, symmetries is still

as well because the vibrational level spacing is comparablgecigental. The p and 2, curves have nearly identical long-
to the hyperfine mixing energy. range behavior, which enhances any nonadiabatic correction,

Figures 6 and 7 show the 53 component wave fun_ct|ons ofut direct coupling between0and 2,, due to quadrupole
tv!o nearly degenerate=1 levels t.hat have predomlngntly hyperfine interactions of th®;, atom, is too small to ex-
0y character. The states are again bound by approximatelyiain the observed mixing. The nonadiabatic mixing is due to
10 GHz but are separated by only 30 MHz. They belong 10, ingirect process where thg $ymmetry acts as the inter-
the hyperfine structure of the=10J=2 (J=1+S+L)  mediate. In fact, coriolis forces mix thg; Aand Q; symmetry
rovibrational level of the long-range Opotential dissociat- and the 1 and 2, symmetries are mixed via the hyperfine
ing to theP5,+ S limit. The wave functions in Figs. 6 and 7 interactions.
are nuclear spim~1 and 3 states, respectively. Note that Eigenstates between thigy,+ S and P4+ S asymptotes
and| are only approximately good quantum numbers. Theare not bound states in the strictest sense of the word. The
wave functions are expressed in the molecular Hund's casevels are resonances predissociating into Big+ S con-
(a) representation where the largest components are shown {fhuum. In a DVR representation of the dimer these reso-
separate panels. The upper panel shows the Hund’s(aase nances are approximated as bound states by virtue of the
components with § Hund's case(c) symmetry and follow-  zero-boundary condition &y . However, as long as a reso-
ing the Movre-Pichler model the Owave function is an nance interacts weakly with the continuum the DVR
adiabatic mixture of the"Eg and 31‘[g molecular symmetry. eigenenergies approximate the position of these resonances
Hence, the radial waves of these components have the samell. Independent multichannel close-coupling calculations
zeros. The middle and bottom panels show that the motionas a function of the collision energy ofSaNa atom colliding
of these levels are not purely adiabatic. §,P=2 level that with a Py, Na atom show resonance structures in the colli-

R (units of a )

FIG. 6. A F=1, p=—1 multichannel wave function in the
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— tained. Deviations from adiabatic behavior prove that the
0.10 1 Og components conventional long-range picture of the excited dimer by
Movre and Pichlef28] starts to break down near the disso-

ciation limits.

The success of the eigenvalue solver is based on efforts to
minimize the size of the discretized Hamiltonian. A nonlin-
ear coordinate transformation of the radial coordinate in
combination with a discrete variable representation is imple-

Q mented to minimize the number of the collocation points.
T o 010 2u components The transformation allows for a smooth transition from small
® 0.05 to large step sizes in going from small to large internuclear
B separations. Since the Na dimer problem involves six
§2 0.00 coupled spins that generate up to 96 coupled potential sur-
= —0.05 faces we find that, even with a coordinate transformation,
3 -010- matrix sizes are still too large for using direct diagonalization
procedures. An iterative eigenvalue solver with a precondi-
> L L tioner has been implemented. The software is not restricted
010 other components to the Na dimer but can be used for other alkali-metal dimers
0.05 4 as well.
Approximate solutions to the Ndound state problem are
0007 ] essential in constructing a suitable preconditioner for the it-
—0.05 erative eigenvalue solver. Good preconditioners can improve
—0.10 ] the convergence characteristics of the solver dramatically.
The effectiveness of two preconditioners has been discussed
L L L i i i i i
0 50 100 150 200 in detail. The effect of a nonlinear coordinate transformation

. is investigated in detail using the convergence characteristics
R (units of ao) of the bound states of a single potential surface.
These computer codes developed for solving the bound
FIG. 7. A second=1, p=—1 multichannel wave function in state problem have already led to an improved understanding
the molecular Hund's cas@) basis. The panels are the same asof the Na dimer. The effect of the hyperfine interaction on
those described in Fig. 6. This wave function is alsd=a2, 0y the rovibrational structure of the purely Iong-rangg po-
level but has about 25%,Zharacter b_utqslig_htly different binding tential has been quantifidd 6], enabling the extraction of
energy compared to the wave function in Fig. 6. the most accurat€; coefficient and thus the measurement

of an accurate’P atomic lifetime[13]. Moreover, we were

sional cross sections near the predicted DVR eigenenergiegy e 1o prove that retardation has a sizable effect on the level

For the 1; and the q symmetry the resonances are a few ysitions. Further analysis of the data will enable us to im-
MHz wide consistent with our inability to converge DVR prove the current value a5 in the near future.

energies with step and box size to better than a few MHZ. ysing the codes described in this paper in combination
The predissociation widths of the purely long-range&nd  \ith a close-coupling calculation of the ultracof&+2S

1, states are negligible. collision and a knowledge of the transition dipole moment, a
theoretical model of the photoassociation line shape has been
VI. CONCLUSIONS constructed for comparing synthetic spectra with experimen-

i tal photoassociation line shapes. A concise description of this
We have developed a practical means to evaluate numeriycylation will be given in a future paper. The excellent
cally the long-range vibrational wave functions and binding,greement between theoretical and experimental line shapes
energies of the excitedP+2S Na, dimer including fine, made it possible to extract scattering lengths of e S
hyperfine, and rotational structure. The numerical techniquegg)jision [14]. We have also applied the programs towards

for solving the underlying eigenvalue problem have beenpe ynderstanding of the hyperfine effects on theatential
described and an impression of the complexity of the eigengs s7gy, [32] and the purely long-range, Ipotential of 3K
value spectrum in a region of experimental interest has be !

given. Near the dissociation limits the bound states form an
extremely dense and complex pattern. For those states
atomic hyperfine interactions significantly modify the mo-
lecular level structure. Moreover, multichannel wave func- We acknowledge support from the Army Research Office
tions with marked nonadiabatic character have been oband the Office of Naval Research.
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