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Spectrally accurate numerical solution of the single-particle Schrdinger equation

P. F. Batcho
Continuum Dynamics Incorporated, P.O. Box 3073, Princeton, New Jersey 08543
(Received 10 March 1997

We have formulated a three-dimensional fully numerical, chemical basis-set fremethod and applied it
to the solution of the single-particle Schiinger equation. The numerical method combines the rapipt-
nential’ convergence rates of spectral methods with the geometric flexibility of finite-element methods and
can be viewed as an extension of the spectral element method. Singularities associated with multicenter
systems are efficiently integrated by a Duffy transformation and the discrete operator is formulated by a
variational statement. The method is applicable to molecular modeling for quantum chemical calculations on
polyatomic systems. The complete system is shown to be efficiently inverted by the preconditioned conjugate
gradient method and exponential convergence rates in numerical approximations are demonstrated for suitable
benchmark problems including the hydrogenlike orbitals of nitro§Bh050-294{©8)04006-2

PACS numbdps): 31.10+z

I. INTRODUCTION ian interpolants in the mapped space. The solution within
each quadrilateral is decomposed into a tensor product form
The primary computational tool foab initio quantum of Lagrangian interpolants, as done in the spectral element
chemical calculations has focused around the linear combimethod. In the case of the warped product form the matching
nation of atomic orbitalyLCAO) method and its need to of the pyramid and quadrilateral approximations is done by
derive, often exotic, chemical basis sets. Recent efforts haven interfacial variational statement that ensures overall con-
attempted to remove the need to employ these chemical basjgrgence; for the Lagrangian interpolants in the mapped
sets by developing a more local characterization of the soluspace aC° constraint is routinely applied. The global varia-
tion via methods such as finite elements and finite differtional formulation preserves the symmetry of the operator
ences. These methods remove the need to derive the glohahd allows efficient inversion by preconditioned conjugate
chemical basis sets for a specified problem by employingradient methods. In addition, the formulation of the varia-
universal approximations at local regions in physical spacetional statement and integral transformation for the singular-
For multicenter systems the potential fields are characterizeidy produces a method that can effectively deal with singu-
by Coulomb repulsive terms that contain® type singulari- |arities as high as ~P, p<3, in three dimensions.
ties at the nuclei locations in a three-dimensional space and Traditional methods for solving Eql) in solid-state ap-
the operator’s potential field are given as a function of theplications involve the use of plane-wave basis and pseudo-
molecular orbitals themselves, E@). Up to this point the potentials that tend to bypass the singularity and yield sig-
local space, fully numerical, methods have only been appliegificantly degraded convergence rates for the approximation
to atomic and diatomic problems where coordinate transfs]. For applications to molecular chemistry the linear com-
forms can remove the singularities associated with thévination of atomic orbitals, LCAO, method is traditionally
Schralinger type operators. Here a three-dimensional fullyused, where Gaussian basis sets, and their modifications, are
numerical(i.e., chemical basis-set fremethod is formulated the preferred global basis set. Issues involving singular inte-
and applied to the solution of such operators, grals are done analyticallp] for these basis sets. However,
the LCAO method suffers from slow “algebraic” conver-
gence with respect to the size of the basis set. Furthermore,
the construction of a global chemical basis set has evolved
into as much as an art as a science and much effort is focused
wherer?=x2+y?+ 2%, V(x) is the external potential field, on developing appropriate chemical basis sets for a specific
and Z is a constant. The numerical method combines themolecular structure. In the context of the LCAO method a
rapid “exponentidl convergence rates of spectral methods pseudospectral method has been applied to electronic struc-
with the geometric flexibility of finite-element methods and ture calculation$7]. The use of collocation has been shown
can be viewed as an extension of the spectral elemerd have advantages with regards to the computational com-
method[1-3]. Multicenter problems of arbitrary geometry plexity of the multi-centered integrals however it still suffers
and number of nuclei are easily dealt with by the numericafrom the drawbacks of slow convergence of the expansion
method discussed here. A variational formulation is appliedand optimal choice for a basis set. Here a somewhat univer-
to the operator and the singularity is efficiently captured bysal basis set is adopted in a local region of physical space and
an integral transformation. The physical space domain is derdapid convergence is guaranteed in terms of size of the ex-
composed into six pyramids around each singularity angbansion. The method is also readily applied to both applica-
patched to quadrilaterals in the remaining domain. Withintions in solid state physics and molecular chemistry with
each pyramid the solution is decomposed into either a wargeometrically complex nuclei distributiori§]. Attempts in
product form of selected Jacobi polynomifds, or Lagrang- the past to use finite-element methd®-12 have either

di(X)=¢eipi(x) in Q3 (1)
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dealt only with atomic or diatomic molecules, where the sin- 1 Z
gularity can be removed through a spherical or prolate sphe- > L} VU(X)-Vé(x)dx— fﬂ (F+V(x)
roidal coordinate system, or through a costly use of the Fou- k k

rier transform ofr 1. However, the advantages in using

local methods versus global expansions has been recognized - kaU(x)f(x)dx, @

by these previous studies. These include advantages in com-

putational scalings to large molecules and improved accuyhereU(x) is the chosen test function ariigix) is a forcing
racy of spatial momentgrP), and gradients. Applications of function, &;¢; in Eq. (1). Next the interpolation points are
local methods to multicenter systems have been addresseddRosen to define a basis set via the Lagrangian interpolants;
[13] where each nuclei is treated as a separate solution Witfy the standard spectral element formulation Gauss-Lobatto
its own spherical coordinate system and the individual SO'“Legendre(GLL) points are chosen. The solution is expanded
tions are added together by a somewhat arbitrary weighting, terms of high-order polynomial interpolants(¢), within
function. The individual treatment of nuclei and subsequeny cube that are related to the physical space subdomain

addition has obvious disadvantages in scalings to large numnrough an isoparameteric mapping for deformed elements,
bers of nuclei and is avoided by the present method. Eq. (3).

Here the singularity is dealt with in a systematic fashion
and numerical errors are a direct consequence of the degree d(7,£,0 = dihi(mh;(Hh () 3
of the polynomial used within the local domain as well as the
physical size of the local pyramid domains. This geometricThe test functions are also chosen as the interpolants, as in
flexibility is of particular interest for applications that have the traditional Galerkin formulation. In the case of deformed
solutions that are highly localized near the nuclei locationgyeometries the boundary is also expanded in GLL interpo-
and that may exhibit large gradients there. The method preants. Lastly, the type of numerical quadrature must be cho-
sented here has the geometric flexibility to deal with bothsen. The logical choice is GLL quadrature to coincide with
solutions that are localized near the nuclei and those thahe interpolation points; therefore the interpolants are defined
have a more diffuse character throughout the molecule. Ay h;(£)=4;; this gives the method a collocation type
heuristically optimal domain decomposition that is some-character. This choice of quadrature points and basis sets
what locally spherically symmetric around the nuclei andforms a discrete system of algebraic equations with a large
diffuse at far field regions is, in some sense, natural to thelegree of sparsene$&—3]. Standard Galerkin error esti-

U (X) p(x)dx

formulation. mates for the Laplacian predict
The formulation of the integral transformation and local
space approximation are given in Sec. Il for the solution of lp— | m=ch&|,,

Eq. (1). First the spectral element method is briefly discussed
and two formulations are presented that lead to numericavhere a=min(N+1—m,r—m), N is the polynomial degree
algorithms that efficiently integrate and approximate the sinappearing in the basis functions, amds a parameter related
gularity term. The resulting algebraic systems are presente the element size. The exponential convergence property,
and inversion methods are discussed for the numerical solassociated with polynomials from the singular Sturm-
tion. In Sec. Ill results are presented from chosen benchmarkiouville operators[14] gives the method a significant ad-
calculations for the solution of Eql). Solutions of Eq(1)  vantage over traditional finite element and finite difference
are presented fov(x) =0 and various different asymptotic methods. In large scale applications several orders of magni-
behaviors near the singularity. Exponential convergenceude less grid points are needed for the same accuracy when
rates are demonstrated for solutions with zero and nonzercompared to traditional low-order methods; and if needed
values at the location of the point singularity in a cubic do-highly accurate solutions can be obtained at relatively little
main. The hydrogenlike orbitals of nitrogen are also calcucost. The spectral element method has been used in three-
lated to demonstrate applications to infinite domains withdimensional solutions of fluid flow as well as large scale
cusps at the nuclei locations. The method is expected to yielgolutions of eigensystems of coupled partial differential
significant advances for accurate and robust all electron cakquationd15-17.
culations within the context of molecular orbital theory and  Although the spectral element method has proven to be a
particularly density functional theories. useful technique for the above applications; there are a num-
ber of obstacles that must be overcome in order to apply such
a method to Schitinger-type operators and electronic struc-
Il. FORMULATION ture computations. First, the presence of cusps at the singu-
larity locations destroys the smoothness of the solution
within the domain and the exponential convergence is lost.
The spectral element method is designed to solve elliptidhe discontinuity of the first derivative is likely to produce
boundary value problems in general complex domains byarge oscillation in the regions of the singularity, a Gibbs
partitioning the given domain into quadrilaterals, i.e., specphenomenon. Second, the presence of ithé singularity
tral elements. Within each element the solution is approxicannot be dealt with since the potential field must be finite at
mated by a Lagrangian interpolant basis, where tensor prodk given integration point due to the collocation character of
uct forms are used in multidimensions. The first step in théhe method. Lastly, the use of Gaussian quadrature for nu-
procedure is to employ a variational formulation of the prob-merical integration does not converge for integrands with
lem, end-point singularities of ~* or higher[18].

A. Spectral element method
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B. Molecular spectral element S
The molecular spectral element meth@dSE) is formu-

lated to deal with the numerical difficulties of a finite number w : 5 X

of arbitrary spaced cusps and point singularities. The combi- @

nation of geometric flexibility and exponential convergence
rates yields a well suited technique for solving Sclinger-
type operators. The first obstacle is the elimination of the
Gibbs phenomenon associated with discontinuous deriva- FIG. 1. lllustration of the pyramid decomposition of a cubic
tives at the singularity locations. The traditional spectral el-region around the singularity. The solutions within the pyramids are
ement method is basically capable of dealing with pointrepresented by warped product forms of Jacobi polynomials and
cusps if the location is knowa priori. By placing the corner their bases are patched to adjacent quadrilateral spectral elements.
of a given element at the singularity location the combination

of the piecewise variational statement and the imposition ofhe mapped spacexu,w) leads to integration points that
only a C° continuity constraint will allow the cusps to be can be used to form Lagrangian interpolants in a similar
accurately approximated. Convergence to the discontinuodg@shion as is done in a traditional spectral element scheme,
derivative will be automatically met by the convergence of #(X,XU,xW) = ¢;;chi(x)h;(y)hi(z). However, this would

the method since within each elemental domain the solutiofequire additional interpolation in the final formulation and
is smooth. The second obstacle is numerical integration ofas found to lead to a poorly conditioned numerical system
ther ~1 singularity. At first glance it may be suggested thatto invert. A second approximation scheme is to expand the
the integration scheme be changed to a Gauss-Radau verdygction into Lagrangian interpolants in the mapped space
the Gauss-Lobatto quadrature used above. This eliminateB(X,XU,xw) = ¢;;hi(x)h;(u)he(w) and formulate appropri-
the infinite potential value at an integration point sinceate operator transformations. Yet, a third method of approxi-
Gauss-Radau only uses one end point as an integration poifiiation is a warp product representation of the solufiéh

For solutions that decay to zero at the singularity locatior@nd was chosen as a suitable choic¢2@] for nonsingular

this adjustment does in fact work; however, this does nofperators, see Eg6).

solve the problem that in general Gaussian quadrature does

not converge for end-point singularities, of this order or B(X,y z)=?{$ xm+an<°v°>(z)q/<°v°>

higher, when solutions have nonzero values at the singularity b Imn moix/ "

location. This is of particular importance in electronic struc-

ture computations since several eigenfunctions will have >
nonzero values, e.g., atomgetype orbitals; and in general

their location in the spectrum is not knovenpriori.

The integration must be incorporated into the generallhe warped product representation leads to a separable prod-
method without any knowledge of the type of solution thatuct form for which efficient sum factorization techniques can
exists. This can be effectively handled by an integral transbe applied,
formation proposed by Duff{19]. Duffy proposed the inte- -
gration of vertex singularities by subdividing a cube into #(X,Y,2) = Py ¥ OO (U)W (0O (w)x™ N
square based pyramids and used the transformatioru
andz=xw. This reduces the integration over a pyramid

z
= q,(12m+2n—1,0)(x) in 03 (6)

Xq,(lZeranl,O)(X) |n Q3’ (7)

whereW{»%(x) are appropriately chosen Jacobi polynomi-

als and ¢, are the expansion coefficients for the three-
dimensional warp product representation. Similar approxi-

foldXJ_xxdyJ_Xxdz rlg(x,y,z) in Q3 @)

to the evaluation of integrals of the form mations have been used in the context of general tetrahedral
spectral elements proposed|R20] for solving the Helmholtz
1 1 1 X (X, XU, XW) equation. The connection between Duffy’s work and the
f dxf du f dw — in Q3. (5) warp product representation p4] to effectively deal with
0 -1 J-1 1+u?+w? r 1 singularities(up tor ~P; p<3 in three dimensionshas

apparently gone unnoticed up to this point. The second and
Thus we partition the volume around the singularity with athird methods are discussed below and both lead to numeri-
cube and subdivide the cube into six pyramids, see Fig. lcal approximations that are similar in scaling of the condition
The transformation removes the singularity and smooth inteaumber for the discrete system of Hd) when compared to
grands remain that can be efficiently integrated with producthe traditional spectral element methidi].
Gauss guadratures. This type of domain decomposition is For the warped product representation the application of
somewhat optimal for solutions that are asymptoticallyboundary conditions requires recasting the basis into bound-
spherically symmetric around the singularity and tends tcary conscious modes that contain surface modes and interior
reduce the number of elements needed to fill the remainingnodes(which vanish at the pyramid boundanie3he sur-

domain substantially. face modes include special expansions for the five corners,
The last aspect in the formulation is an efficient approxi-eight edges, and five faces. This allows @} continuous
mation scheme for the transformed functigrfx,xu,xw). boundary conditions to be applied across pyramid-pyramid

The use of Gauss-type quadrature over the cubic domain ibhoundaries. The optimal choice of Gaussian-type quadratures
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were GLL for theu andw components. For the direction it YA
was found that incorporation of theweight and choice of dion
an integration rule that did not include the vertex was the Imn

best method22]; similar types of quadrature rules are de- A similar representation is given for the diagonal singularity;
scribed in[20] as well as the application of boundary con- Ref. [20] presents a more detailed treatment of variable co-
tinuous modes. The matching of a given pyramid base to @fficient Hemholtz equations.
traditional spectral element face was done by the integral The second approximation method for the numerical so-
matching condition, lution is a tensor product form of Lagrangian interpolants in
the mapped spacdni(é)hj(u)hk(w). This formulation al-
h () — lows straightforwardC® matching if the order of pyramid
f Imnl SOLAMSIN (1)~ paBp(TS)]dr s, (8) base quadrature is equal to that of the adjacent quadrilateral.
] . . . In the above discussion for the warp product approximation
wheregn(r,s) is the two-dimensional boundary conscious the same discrete operatdk, above, was formulated. The

basis set associated with the base of the pyramid angse of theC® matching and Lagrangian interpolants was
®émn(r,S) are the expansion coefficients associated with théound to give favorable overall computational efficiencies
base modes of the three-dimensional boundary conscious e¥ersus the warp product form. The discrete operators are
pansion. This matching condition is nGf continuous at the  formulated easily by the variational formulation and mapped
interface but is minimizing in thé.?> norm and converges space derivatives are calculated in the same fashion as the

with the overall approximation scheme. The above minimiz-spectral element method, here theomponent contribution
ing statement leads to an algebraic system of equations that the Laplacian is given:
relates the collocation points of a GLL representation for a

Z' 0
0 |

traditional spectral element formulation to the expansion X _ d
modes of the warp product basis set, Imng Pijk = Ix [hi ) hm(u)hy(w)]
boq=Zbi; . 9 J
Pra=2 © X OO (Why(w)]
This allows the pyramid-based system to be equated with 5 ) 3
adjacent quadrilaterals of the spectral element method by a X gijxdx du dw in Q°.

standard direct stiffness summation The integrand is a smooth function within the mapped cube
The discrete Laplacian is formulated in a similar fashion granc . S A
of the pyramid domain and the remaining formulation and

?hsogle[zir?]tﬁgdrﬁ:ly ;Zesre;itéogSgtpggsllzilv\?ﬁa\?ﬁtﬂrgd'e”r::tstitgconvergence estimates follow the traditional spectral element
of the chain rulgpwe arr)rive at Eq&10—(12) .wherexp=px formulation for variable coefficient Helmholtz equations
The gradients in the mapped spacs ak,a/au,alow) are [21]. The warp product representation appears to add addi-

) ! . tional complexities to the formulation that are not apparently
formulated with the GLL mterpolan.ts in thec{u,w) space needed for three-dimensional variable coefficient Helmholtz
as in the spectral element formulation.

equations. The following section presents results that vali-
date both the warp product representation and the Lagrang-

J Jd ud wJd . . .

_—,— (10) ian interpolants of the mapped space as effective formula-

gx  IX X du X oW’ tions leading to exponentially converging numerical
methods.
J o J 11
gy xau’ lll. RESULTS
W g The resulting algebraic system was presented above and
I (12 efficient numerical methods must be established for its inver-

gz X W sion. Solutions of Eq(1) are presented fow(x)=0 and

) ) , various different asymptotic behaviors near the singularity.
We are then left with a representation of the discrete LaplaCExponential convergence rates are demonstrated for solu-
lan as tions with zero and nonzero values at the origin for the warp
product representation in a cubic domain and discontinuous
first derivatives, cusps, at the origin for an infinite domain.
All solutions are obtained with precisely the same numerical
. procedure. Several different domain decompositions are pre-
where ¢, are the expansion coefficients for the three-sented, including pure pyramid as well as combined
dimensional warp product basis set, not including the modepyramid-quadrilateral decompositions. For cases in elec-
connected to the base of the pyramid ahds the discrete tronic structure theory where the additional potenti&x),
Laplacian formulated in thex(u,w) space. With the addi- does not vanish an extra term is added to the algebraic sys-
tion of the pyramid to quadrilateral matching condition thetem; however, for a smooth potentials away from the singu-
algebraic system is no longer symmetric and a premultiplilarity the exponential convergence is maintained by the
cation with transpose d is performed giving the final sys- method[8].
tem for the discrete Laplacian as The first computational domain is a cube with edge di-

%‘;bij

A
¢Imn
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FIG. 2. The decay rate of the lggof the L? error norm versus FIG. 3. The decay rate of the lggof the L2 error norm versus

the number of quadrature points for the solution of the one electrothe number of quadrature points for the solution of the one-electron
operator is plotted here, where the solution is given by the functioroperator is plotted here, where the solution is given by the function
u(x) = sin(mx)sin(my)sin(z). The cubic domain was decomposed U(x)=exdg(x)]—1; g(x)=(1-x?)(1-y?(1-2z%. The cubic
into six pyramids(QO), seven quadrilateralg)), and six pyramids domain was decomposed into six pyrami@S), six pyramids
matched to six quadrilatera(gl). matched to six quadrilateralg\), and six pyramids matched to 12
guadrilateral§[). Exponential convergence is demonstrated with a

. . . . luti I t the singularit ion.
mension of 2 units[—1,1], andZ=1 in Eq. (1); for this nonzero solution value at the singularity location

domain the warped product form was used. The first solution

studied was u(x)=sin(mx)sin(my)sin(mz) with periodic ~decomposition included a pyramid heightf All solutions
boundary conditions applied in all three spatial directions;ggxhibited exponential convergence with respect to the poly-
this solution is smooth and vanishes at the singularity. Botthomial degree. The cosine dependent solution studied gave
traditional spectral elements and molecular spectral elemengmilar results; the results for a spectral element method are
can be used to solve this problem. Figure 2 plotsitherror  not presented since it is known to be incapable of converging
norm for the solution via the SEM, MSE, and matched meth+o the correct result. It should be noted that the six pyramid
ods; the matched MSE-SEM solution used six pyramids andtersus the pyramids plus 12 quadrilaterals have a five order
six quadrilateral where the pyramid height was taken to bef magnitude difference in their error norms for polynomials
0.5. The SEM solution used seven quadrilaterals in a spidesf degree eight and above. The added elements represented a
web decomposition of the cube; the interior cube had a halfactor of three in the spatial resolution that in principle
width of 0.5. The SEM and combined matched solutionsshould give only a factor of three decrease in error since the
perform equally as well in convergence. The solution withapproximation error has only a linear dependence on element
only six pyramids has roughly one-half the resolution andnumber; formally this demonstrates &np finite-element
therefore has slightly larger errors; however, all three domaimptimization. This sizable decrease in error is a demonstra-
decompositions exhibit exponential decay with respect to thé&ion of the power of spectral element methods once a suitable
degree of the polynomial used in the approximation. For theskeleton mesh is applied to a solution; in general once a
pyramids the degree of the approximation is taken to be thepectral method has an adequate resolution the method con-
highest degree polynomial used on the base. The next solwerges rapidly with comparatively little extra work.

tions are examined, which have nonzero values at the Next, the calculation of the hydrogenlike orbitals of nitro-
singularity. Two solutions are examined; the first having agen,Z=7 in Eq.(1), are presented as a demonstration of the
continuous first derivative at the singularityp(x) ability to solve an eigenproblem with characteristics relevant
=[1+cos@Xx)][1+cos@ry)][1+cos@z)]. The second solu- to chemical physics. The exact solution can readily be
tion exhibits an exponential decay at the singularity and ibtained analytically and the eigenvalues are givenchy
given by u(x)=exdg(x)]-1 where g(x)=(1—x?)(1  =Z2%2n2 The errors associated with the calculations of the
—y?)(1—2%); here homogeneous Dirichlet boundary condi-first two eigenvalues versus increasing polynomial order are
tions were applied in all three spatial directions. Figure 3plotted in Fig. 4. The spectral element skeleton mesh and
plots theL? error norm for the later function with respect to contour map of the 4 orbital are plotted in Fig. 5. The mesh
the degree of the highest polynomial used. Results are preonsisted of a spider web structure close to the nuclei loca-
sented for the six pyramid, six pyramid plus six quadrilater-tion with a cubic element that had a 0.08 a.u. edge length in
als, and the six pyramid plus twelve quadrilaterals; the lattewhich the pyramids were located. The domain radius was 9
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FIG. 5. The spectral element skeleton mesh used for the solution
r of the hydrogenlike orbitals of nitrogen is plotted here along with a
contour map of the first orbital. The spherical domain was decom-
posed into 206 spectral elements with six pyramids around the nu-
-6 = clei and the domain radius for practical infinity was chosen as 9 a.u.
The cubic subdomain at the center of mesh has an edge length of
i 0.08 a.u. and contains six pyramid spectral elements.

Lo v Lot e o b e b o )
6 7 8 9 10 11

Expansion Order

elements in the domain. Typically 100—700 preconditioned
conjugate gradients were necessary, depending on the order

FIG. 4. The decay rate of the error in the orbital energy versu®f the polynomial, for the inversion of the Sclinger-type
the number of quadrature points for the solution of the first twoOPerator. The eigenproblem was solved by an inverse sub-
hydrogenlike orbitals of nitrogen is plotted here. The spherical doSpace iteration method and fewer then ten iterations were
main was decomposed into 206 spectral elements with six pyramid@ecessary to converge the first two orbitals.
around the nuclei and the domain radius for practical infinity was
chosen as 9 a.u. Exponential convergence is demonstrated with a
cusp present at the singularity location, whérg indicates mode 1 IV. SUMMARY

and(A) indicates mode 2 convergence. ) ) )
A numerical formulation has been presented and applied

a.u. and this was taken as the practical infinity where théo the solution of the single-particle Schiinger equation.
homogeneous Dirichlet boundary condition was applied. Thdhe method exhibits exponential convergence rates in the
mesh demonstrates the geometric flexibility of designingdegree of the polynomial used in the spectral approximation.
higher resolution in high gradient regions of the solution andThe method can be universally applied to general multicenter
lower resolution(larger elementsin the far field region; the systems in the context of electronic structure calculations.
domain consisted of 207 elements. Recent calculations dbolutions of operators with point singularities as high as
triatomic molecules using a very similar mesh have used 208~ P, p<3, in three dimensions can be handled with spectral
elements and the number of elements is not strongly influaccuracy with this formulation. The method can be viewed
enced by slight increases in the number of nuclei. as an extension of the spectral element method developed to

Inversion of the global algebraic system was carried ousolve elliptical partial differential equations. Issues of com-
by a preconditioned conjugate gradient method. The precorputational complexity scale in overall agreement with the
ditioning was accomplished with the diagonal of the discreteraditional spectral element method. Successful numerical
Laplacian. This choice of preconditioner was found to leadapproximations of operators and integration of the point sin-
to scalings in the condition number of the overall system ingularities were accomplished with the use of a Duffy trans-
agreement with the traditional spectral element methodormation and suitable benchmark calculations were pre-
[3,21. The number of conjugate gradient iterations weresented, including the hydrogenlike orbitals of nitrogen.
found to be larger for the warp product representation versuépplications are currently being studied for large-scale mo-
that of the Lagrangian interpolants; however, overall effi-lecular structures in the context of density functional theory,
ciency is maintained. Computational complexity of the ma-and the incorporation of an efficient eigensolver for the sym-
trix vector multiply scales a&N* for the pyramid as well as metric operator presented above is the subject of current re-
the quadrilateral decompositions; whegeis the number of search.
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