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Spectrally accurate numerical solution of the single-particle Schro¨dinger equation

P. F. Batcho
Continuum Dynamics Incorporated, P.O. Box 3073, Princeton, New Jersey 08543

~Received 10 March 1997!

We have formulated a three-dimensional fully numerical~i.e., chemical basis-set free! method and applied it
to the solution of the single-particle Schro¨dinger equation. The numerical method combines the rapid ‘‘expo-
nential’’ convergence rates of spectral methods with the geometric flexibility of finite-element methods and
can be viewed as an extension of the spectral element method. Singularities associated with multicenter
systems are efficiently integrated by a Duffy transformation and the discrete operator is formulated by a
variational statement. The method is applicable to molecular modeling for quantum chemical calculations on
polyatomic systems. The complete system is shown to be efficiently inverted by the preconditioned conjugate
gradient method and exponential convergence rates in numerical approximations are demonstrated for suitable
benchmark problems including the hydrogenlike orbitals of nitrogen.@S1050-2947~98!04006-2#

PACS number~s!: 31.10.1z
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I. INTRODUCTION

The primary computational tool forab initio quantum
chemical calculations has focused around the linear com
nation of atomic orbitals~LCAO! method and its need to
derive, often exotic, chemical basis sets. Recent efforts h
attempted to remove the need to employ these chemical b
sets by developing a more local characterization of the s
tion via methods such as finite elements and finite diff
ences. These methods remove the need to derive the g
chemical basis sets for a specified problem by employ
universal approximations at local regions in physical spa
For multicenter systems the potential fields are character
by Coulomb repulsive terms that containr 21 type singulari-
ties at the nuclei locations in a three-dimensional space
the operator’s potential field are given as a function of
molecular orbitals themselves, Eq.~1!. Up to this point the
local space, fully numerical, methods have only been app
to atomic and diatomic problems where coordinate tra
forms can remove the singularities associated with
Schrödinger type operators. Here a three-dimensional fu
numerical~i.e., chemical basis-set free! method is formulated
and applied to the solution of such operators,

F1

2
¹21

Z

r
1V~x!Gf i~x!5« if i~x! in V3, ~1!

where r 25x21y21z2, V(x) is the external potential field
and Z is a constant. The numerical method combines
rapid ‘‘exponential’’ convergence rates of spectral metho
with the geometric flexibility of finite-element methods an
can be viewed as an extension of the spectral elem
method @1–3#. Multicenter problems of arbitrary geometr
and number of nuclei are easily dealt with by the numeri
method discussed here. A variational formulation is appl
to the operator and the singularity is efficiently captured
an integral transformation. The physical space domain is
composed into six pyramids around each singularity a
patched to quadrilaterals in the remaining domain. Wit
each pyramid the solution is decomposed into either a w
product form of selected Jacobi polynomials@4#, or Lagrang-
571050-2947/98/57~6!/4246~7!/$15.00
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ian interpolants in the mapped space. The solution wit
each quadrilateral is decomposed into a tensor product f
of Lagrangian interpolants, as done in the spectral elem
method. In the case of the warped product form the match
of the pyramid and quadrilateral approximations is done
an interfacial variational statement that ensures overall c
vergence; for the Lagrangian interpolants in the mapp
space aC0 constraint is routinely applied. The global varia
tional formulation preserves the symmetry of the opera
and allows efficient inversion by preconditioned conjuga
gradient methods. In addition, the formulation of the var
tional statement and integral transformation for the singu
ity produces a method that can effectively deal with sing
larities as high asr 2p, p,3, in three dimensions.

Traditional methods for solving Eq.~1! in solid-state ap-
plications involve the use of plane-wave basis and pseu
potentials that tend to bypass the singularity and yield s
nificantly degraded convergence rates for the approxima
@5#. For applications to molecular chemistry the linear co
bination of atomic orbitals, LCAO, method is traditional
used, where Gaussian basis sets, and their modifications
the preferred global basis set. Issues involving singular in
grals are done analytically@6# for these basis sets. Howeve
the LCAO method suffers from slow ‘‘algebraic’’ conver
gence with respect to the size of the basis set. Furtherm
the construction of a global chemical basis set has evol
into as much as an art as a science and much effort is foc
on developing appropriate chemical basis sets for a spe
molecular structure. In the context of the LCAO method
pseudospectral method has been applied to electronic s
ture calculations@7#. The use of collocation has been show
to have advantages with regards to the computational c
plexity of the multi-centered integrals however it still suffe
from the drawbacks of slow convergence of the expans
and optimal choice for a basis set. Here a somewhat uni
sal basis set is adopted in a local region of physical space
rapid convergence is guaranteed in terms of size of the
pansion. The method is also readily applied to both appli
tions in solid state physics and molecular chemistry w
geometrically complex nuclei distributions@8#. Attempts in
the past to use finite-element methods@9–12# have either
4246 © 1998 The American Physical Society
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57 4247SPECTRALLY ACCURATE NUMERICAL SOLUTION OF . . .
dealt only with atomic or diatomic molecules, where the s
gularity can be removed through a spherical or prolate sp
roidal coordinate system, or through a costly use of the F
rier transform of r 21. However, the advantages in usin
local methods versus global expansions has been recogn
by these previous studies. These include advantages in c
putational scalings to large molecules and improved ac
racy of spatial moments,^r p&, and gradients. Applications o
local methods to multicenter systems have been address
@13# where each nuclei is treated as a separate solution
its own spherical coordinate system and the individual so
tions are added together by a somewhat arbitrary weigh
function. The individual treatment of nuclei and subsequ
addition has obvious disadvantages in scalings to large n
bers of nuclei and is avoided by the present method.

Here the singularity is dealt with in a systematic fashi
and numerical errors are a direct consequence of the de
of the polynomial used within the local domain as well as
physical size of the local pyramid domains. This geome
flexibility is of particular interest for applications that hav
solutions that are highly localized near the nuclei locatio
and that may exhibit large gradients there. The method
sented here has the geometric flexibility to deal with b
solutions that are localized near the nuclei and those
have a more diffuse character throughout the molecule
heuristically optimal domain decomposition that is som
what locally spherically symmetric around the nuclei a
diffuse at far field regions is, in some sense, natural to
formulation.

The formulation of the integral transformation and loc
space approximation are given in Sec. II for the solution
Eq. ~1!. First the spectral element method is briefly discus
and two formulations are presented that lead to numer
algorithms that efficiently integrate and approximate the s
gularity term. The resulting algebraic systems are prese
and inversion methods are discussed for the numerical s
tion. In Sec. III results are presented from chosen benchm
calculations for the solution of Eq.~1!. Solutions of Eq.~1!
are presented forV(x)50 and various different asymptoti
behaviors near the singularity. Exponential converge
rates are demonstrated for solutions with zero and non
values at the location of the point singularity in a cubic d
main. The hydrogenlike orbitals of nitrogen are also cal
lated to demonstrate applications to infinite domains w
cusps at the nuclei locations. The method is expected to y
significant advances for accurate and robust all electron
culations within the context of molecular orbital theory a
particularly density functional theories.

II. FORMULATION

A. Spectral element method

The spectral element method is designed to solve elli
boundary value problems in general complex domains
partitioning the given domain into quadrilaterals, i.e., sp
tral elements. Within each element the solution is appro
mated by a Lagrangian interpolant basis, where tensor p
uct forms are used in multidimensions. The first step in
procedure is to employ a variational formulation of the pro
lem,
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2 E
Vk

¹U~x!•¹f~x!dx2E
Vk

S Z

r
1V~x! DU~x!f~x!dx

52E
Vk

U~x! f ~x!dx, ~2!

whereU(x) is the chosen test function andf (x) is a forcing
function, « if i in Eq. ~1!. Next the interpolation points are
chosen to define a basis set via the Lagrangian interpola
in the standard spectral element formulation Gauss-Lob
Legendre~GLL! points are chosen. The solution is expand
in terms of high-order polynomial interpolants,hi(j), within
a cube that are related to the physical space subdom
through an isoparameteric mapping for deformed eleme
Eq. ~3!.

f~h,j,z!5f i jkhi~h!hj~j!hk~z! ~3!

The test functions are also chosen as the interpolants, a
the traditional Galerkin formulation. In the case of deform
geometries the boundary is also expanded in GLL inter
lants. Lastly, the type of numerical quadrature must be c
sen. The logical choice is GLL quadrature to coincide w
the interpolation points; therefore the interpolants are defi
by hi(j j )5d i j ; this gives the method a collocation typ
character. This choice of quadrature points and basis
forms a discrete system of algebraic equations with a la
degree of sparseness@1–3#. Standard Galerkin error esti
mates for the Laplacian predict

if2fhim<chaifi r ,

wherea5min(N112m,r2m), N is the polynomial degree
appearing in the basis functions, andh is a parameter related
to the element size. The exponential convergence prope
associated with polynomials from the singular Stur
Liouville operators@14# gives the method a significant ad
vantage over traditional finite element and finite differen
methods. In large scale applications several orders of ma
tude less grid points are needed for the same accuracy w
compared to traditional low-order methods; and if need
highly accurate solutions can be obtained at relatively li
cost. The spectral element method has been used in th
dimensional solutions of fluid flow as well as large sca
solutions of eigensystems of coupled partial different
equations@15–17#.

Although the spectral element method has proven to b
useful technique for the above applications; there are a n
ber of obstacles that must be overcome in order to apply s
a method to Schro¨dinger-type operators and electronic stru
ture computations. First, the presence of cusps at the si
larity locations destroys the smoothness of the solut
within the domain and the exponential convergence is lo
The discontinuity of the first derivative is likely to produc
large oscillation in the regions of the singularity, a Gib
phenomenon. Second, the presence of ther 21 singularity
cannot be dealt with since the potential field must be finite
a given integration point due to the collocation character
the method. Lastly, the use of Gaussian quadrature for
merical integration does not converge for integrands w
end-point singularities ofr 21 or higher@18#.
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4248 57P. F. BATCHO
B. Molecular spectral element

The molecular spectral element method~MSE! is formu-
lated to deal with the numerical difficulties of a finite numb
of arbitrary spaced cusps and point singularities. The com
nation of geometric flexibility and exponential convergen
rates yields a well suited technique for solving Schro¨dinger-
type operators. The first obstacle is the elimination of
Gibbs phenomenon associated with discontinuous der
tives at the singularity locations. The traditional spectral
ement method is basically capable of dealing with po
cusps if the location is knowna priori. By placing the corner
of a given element at the singularity location the combinat
of the piecewise variational statement and the imposition
only a C0 continuity constraint will allow the cusps to b
accurately approximated. Convergence to the discontinu
derivative will be automatically met by the convergence
the method since within each elemental domain the solu
is smooth. The second obstacle is numerical integration
the r 21 singularity. At first glance it may be suggested th
the integration scheme be changed to a Gauss-Radau v
the Gauss-Lobatto quadrature used above. This elimin
the infinite potential value at an integration point sin
Gauss-Radau only uses one end point as an integration p
For solutions that decay to zero at the singularity locat
this adjustment does in fact work; however, this does
solve the problem that in general Gaussian quadrature
not converge for end-point singularities, of this order
higher, when solutions have nonzero values at the singula
location. This is of particular importance in electronic stru
ture computations since several eigenfunctions will ha
nonzero values, e.g., atomics-type orbitals; and in genera
their location in the spectrum is not knowna priori.

The integration must be incorporated into the gene
method without any knowledge of the type of solution th
exists. This can be effectively handled by an integral tra
formation proposed by Duffy@19#. Duffy proposed the inte-
gration of vertex singularities by subdividing a cube in
square based pyramids and used the transformationy5xu
andz5xw. This reduces the integration over a pyramid

E
0

1

dxE
2x

x

dyE
2x

x

dz r21f~x,y,z! in V3 ~4!

to the evaluation of integrals of the form

E
0

1

dxE
21

1

duE
21

1

dw
xf~x,xu,xw!

A11u21w2
in V3. ~5!

Thus we partition the volume around the singularity with
cube and subdivide the cube into six pyramids, see Fig
The transformation removes the singularity and smooth in
grands remain that can be efficiently integrated with prod
Gauss quadratures. This type of domain decompositio
somewhat optimal for solutions that are asymptotica
spherically symmetric around the singularity and tends
reduce the number of elements needed to fill the remain
domain substantially.

The last aspect in the formulation is an efficient appro
mation scheme for the transformed functionf(x,xu,xw).
The use of Gauss-type quadrature over the cubic domai
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the mapped space (x,u,w) leads to integration points tha
can be used to form Lagrangian interpolants in a sim
fashion as is done in a traditional spectral element sche
f(x,xu,xw)5f i jkhi(x)hj (y)hk(z). However, this would
require additional interpolation in the final formulation an
was found to lead to a poorly conditioned numerical syst
to invert. A second approximation scheme is to expand
function into Lagrangian interpolants in the mapped sp
f(x,xu,xw)5f i jkhi(x)hj (u)hk(w) and formulate appropri-
ate operator transformations. Yet, a third method of appro
mation is a warp product representation of the solution@4#
and was chosen as a suitable choice in@20# for nonsingular
operators, see Eq.~6!.

f~x,y,z!5f̃ lmnx
m1nCm

~0,0!S y

xDCn
~0,0!

3S z

xDC1
~2m12n21,0!~x! in V3. ~6!

The warped product representation leads to a separable p
uct form for which efficient sum factorization techniques c
be applied,

f~x,y,z!5f̃ lmnCm
~0,0!~u!Cn

~0,0!~w!xm1n

3C1
~2m12n21,0!~x! in V3 , ~7!

whereCm
(p,q)(x) are appropriately chosen Jacobi polynom

als andf̃ lmn are the expansion coefficients for the thre
dimensional warp product representation. Similar appro
mations have been used in the context of general tetrahe
spectral elements proposed in@20# for solving the Helmholtz
equation. The connection between Duffy’s work and t
warp product representation of@4# to effectively deal with
r 21 singularities~up to r 2p; p,3 in three dimensions! has
apparently gone unnoticed up to this point. The second
third methods are discussed below and both lead to num
cal approximations that are similar in scaling of the conditi
number for the discrete system of Eq.~1! when compared to
the traditional spectral element method@21#.

For the warped product representation the application
boundary conditions requires recasting the basis into bou
ary conscious modes that contain surface modes and int
modes~which vanish at the pyramid boundaries!. The sur-
face modes include special expansions for the five corn
eight edges, and five faces. This allows forC0 continuous
boundary conditions to be applied across pyramid-pyram
boundaries. The optimal choice of Gaussian-type quadrat

FIG. 1. Illustration of the pyramid decomposition of a cub
region around the singularity. The solutions within the pyramids
represented by warped product forms of Jacobi polynomials
their bases are patched to adjacent quadrilateral spectral elem
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57 4249SPECTRALLY ACCURATE NUMERICAL SOLUTION OF . . .
were GLL for theu andw components. For thex direction it
was found that incorporation of thex weight and choice of
an integration rule that did not include the vertex was
best method@22#; similar types of quadrature rules are d
scribed in@20# as well as the application of boundary co
tinuous modes. The matching of a given pyramid base
traditional spectral element face was done by the inte
matching condition,

E gmn~s,t !@f i j hi~s!hj~ t !2f̃pqgpq~r ,s!#dr ds, ~8!

wheregmn(r ,s) is the two-dimensional boundary conscio
basis set associated with the base of the pyramid
f̃mn(r ,s) are the expansion coefficients associated with
base modes of the three-dimensional boundary consciou
pansion. This matching condition is notC0 continuous at the
interface but is minimizing in theL2 norm and converges
with the overall approximation scheme. The above minim
ing statement leads to an algebraic system of equations
relates the collocation points of a GLL representation fo
traditional spectral element formulation to the expans
modes of the warp product basis set,

f̃pq5Zf i j . ~9!

This allows the pyramid-based system to be equated w
adjacent quadrilaterals of the spectral element method b
standard direct stiffness summation.

The discrete Laplacian is formulated in a similar fashi
as in@20# and only the relation of physical space gradients
those in the mapped space must be known. With applica
of the chain rule we arrive at Eqs.~10!–~12!, wherex5x.
The gradients in the mapped space (]/]x,]/]u,]/]w) are
formulated with the GLL interpolants in the (x,u,w) space
as in the spectral element formulation.

]

]x
5

]

]x
2

u

x

]

]u
2

w

x

]

]w
, ~10!

]

]y
5

u

x

]

]u
, ~11!

]

]z
5

w

x

]

]w
. ~12!

We are then left with a representation of the discrete Lap
ian as

AFZf i j

f̂ lmn
G ,

where f̂ lmn are the expansion coefficients for the thre
dimensional warp product basis set, not including the mo
connected to the base of the pyramid andA is the discrete
Laplacian formulated in the (x,u,w) space. With the addi-
tion of the pyramid to quadrilateral matching condition t
algebraic system is no longer symmetric and a premulti
cation with transpose ofZ is performed giving the final sys
tem for the discrete Laplacian as
e

a
al

d
e
x-

-
at

a
n

th
a

o
n

c-

-
s

i-

FZT

0
0
I GAFZf i j

f̂ lmn
G .

A similar representation is given for the diagonal singulari
Ref. @20# presents a more detailed treatment of variable
efficient Hemholtz equations.

The second approximation method for the numerical
lution is a tensor product form of Lagrangian interpolants
the mapped space,hi(x)hj (u)hk(w). This formulation al-
lows straightforwardC0 matching if the order of pyramid
base quadrature is equal to that of the adjacent quadrilat
In the above discussion for the warp product approximat
the same discrete operator,A above, was formulated. Th
use of theC0 matching and Lagrangian interpolants w
found to give favorable overall computational efficienci
versus the warp product form. The discrete operators
formulated easily by the variational formulation and mapp
space derivatives are calculated in the same fashion as
spectral element method, here thex component contribution
of the Laplacian is given:

Almni jk

x f i jk5E E E ]

]x
@hl~x!hm~u!hn~w!#

3
]

]x
@hi~x!hj~u!hk~w!#

3f i jkx2dx du dw in V3.

The integrand is a smooth function within the mapped cu
of the pyramid domain and the remaining formulation a
convergence estimates follow the traditional spectral elem
formulation for variable coefficient Helmholtz equation
@21#. The warp product representation appears to add a
tional complexities to the formulation that are not apparen
needed for three-dimensional variable coefficient Helmho
equations. The following section presents results that v
date both the warp product representation and the Lagra
ian interpolants of the mapped space as effective form
tions leading to exponentially converging numeric
methods.

III. RESULTS

The resulting algebraic system was presented above
efficient numerical methods must be established for its inv
sion. Solutions of Eq.~1! are presented forV(x)50 and
various different asymptotic behaviors near the singular
Exponential convergence rates are demonstrated for s
tions with zero and nonzero values at the origin for the w
product representation in a cubic domain and discontinu
first derivatives, cusps, at the origin for an infinite doma
All solutions are obtained with precisely the same numeri
procedure. Several different domain decompositions are
sented, including pure pyramid as well as combin
pyramid-quadrilateral decompositions. For cases in e
tronic structure theory where the additional potential,V(x),
does not vanish an extra term is added to the algebraic
tem; however, for a smooth potentials away from the sin
larity the exponential convergence is maintained by
method@8#.

The first computational domain is a cube with edge
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4250 57P. F. BATCHO
mension of 2 units,@21,1#, and Z51 in Eq. ~1!; for this
domain the warped product form was used. The first solu
studied was u(x)5sin(px)sin(py)sin(pz) with periodic
boundary conditions applied in all three spatial directio
this solution is smooth and vanishes at the singularity. B
traditional spectral elements and molecular spectral elem
can be used to solve this problem. Figure 2 plots theL2 error
norm for the solution via the SEM, MSE, and matched me
ods; the matched MSE-SEM solution used six pyramids
six quadrilateral where the pyramid height was taken to
0.5. The SEM solution used seven quadrilaterals in a sp
web decomposition of the cube; the interior cube had a
width of 0.5. The SEM and combined matched solutio
perform equally as well in convergence. The solution w
only six pyramids has roughly one-half the resolution a
therefore has slightly larger errors; however, all three dom
decompositions exhibit exponential decay with respect to
degree of the polynomial used in the approximation. For
pyramids the degree of the approximation is taken to be
highest degree polynomial used on the base. The next s
tions are examined, which have nonzero values at
singularity. Two solutions are examined; the first having
continuous first derivative at the singularity,u(x)
5@11cos(px)#@11cos(py)#@11cos(pz)#. The second solu-
tion exhibits an exponential decay at the singularity and
given by u(x)5exp@g(x)#21 where g(x)5(12x2)(1
2y2)(12z2); here homogeneous Dirichlet boundary con
tions were applied in all three spatial directions. Figure
plots theL2 error norm for the later function with respect
the degree of the highest polynomial used. Results are
sented for the six pyramid, six pyramid plus six quadrilat
als, and the six pyramid plus twelve quadrilaterals; the la

FIG. 2. The decay rate of the log10 of the L2 error norm versus
the number of quadrature points for the solution of the one elec
operator is plotted here, where the solution is given by the func
u(x)5sin(px)sin(py)sin(pz). The cubic domain was decompose
into six pyramids~s!, seven quadrilaterals~n!, and six pyramids
matched to six quadrilaterals~h!.
n
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decomposition included a pyramid height of1
3 . All solutions

exhibited exponential convergence with respect to the po
nomial degree. The cosine dependent solution studied g
similar results; the results for a spectral element method
not presented since it is known to be incapable of converg
to the correct result. It should be noted that the six pyram
versus the pyramids plus 12 quadrilaterals have a five o
of magnitude difference in their error norms for polynomia
of degree eight and above. The added elements represen
factor of three in the spatial resolution that in princip
should give only a factor of three decrease in error since
approximation error has only a linear dependence on elem
number; formally this demonstrates anh-p finite-element
optimization. This sizable decrease in error is a demons
tion of the power of spectral element methods once a suita
skeleton mesh is applied to a solution; in general onc
spectral method has an adequate resolution the method
verges rapidly with comparatively little extra work.

Next, the calculation of the hydrogenlike orbitals of nitr
gen,Z57 in Eq.~1!, are presented as a demonstration of
ability to solve an eigenproblem with characteristics relev
to chemical physics. The exact solution can readily
obtained analytically and the eigenvalues are given by«n
5Z2/2n2. The errors associated with the calculations of t
first two eigenvalues versus increasing polynomial order
plotted in Fig. 4. The spectral element skeleton mesh
contour map of the 1s orbital are plotted in Fig. 5. The mes
consisted of a spider web structure close to the nuclei lo
tion with a cubic element that had a 0.08 a.u. edge lengt
which the pyramids were located. The domain radius wa

n
n

FIG. 3. The decay rate of the log10 of the L2 error norm versus
the number of quadrature points for the solution of the one-elec
operator is plotted here, where the solution is given by the func
u(x)5exp@g(x)#21; g(x)5(12x2)(12y2)(12z2). The cubic
domain was decomposed into six pyramids~s!, six pyramids
matched to six quadrilaterals~n!, and six pyramids matched to 1
quadrilaterals~h!. Exponential convergence is demonstrated with
nonzero solution value at the singularity location.
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57 4251SPECTRALLY ACCURATE NUMERICAL SOLUTION OF . . .
a.u. and this was taken as the practical infinity where
homogeneous Dirichlet boundary condition was applied. T
mesh demonstrates the geometric flexibility of design
higher resolution in high gradient regions of the solution a
lower resolution~larger elements! in the far field region; the
domain consisted of 207 elements. Recent calculation
triatomic molecules using a very similar mesh have used
elements and the number of elements is not strongly in
enced by slight increases in the number of nuclei.

Inversion of the global algebraic system was carried
by a preconditioned conjugate gradient method. The prec
ditioning was accomplished with the diagonal of the discr
Laplacian. This choice of preconditioner was found to le
to scalings in the condition number of the overall system
agreement with the traditional spectral element meth
@3,21#. The number of conjugate gradient iterations we
found to be larger for the warp product representation ver
that of the Lagrangian interpolants; however, overall e
ciency is maintained. Computational complexity of the m
trix vector multiply scales asKN4 for the pyramid as well as
the quadrilateral decompositions; whereK is the number of

FIG. 4. The decay rate of the error in the orbital energy ver
the number of quadrature points for the solution of the first t
hydrogenlike orbitals of nitrogen is plotted here. The spherical
main was decomposed into 206 spectral elements with six pyram
around the nuclei and the domain radius for practical infinity w
chosen as 9 a.u. Exponential convergence is demonstrated w
cusp present at the singularity location, where~s! indicates mode 1
and ~n! indicates mode 2 convergence.
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elements in the domain. Typically 100–700 precondition
conjugate gradients were necessary, depending on the o
of the polynomial, for the inversion of the Schro¨dinger-type
operator. The eigenproblem was solved by an inverse s
space iteration method and fewer then ten iterations w
necessary to converge the first two orbitals.

IV. SUMMARY

A numerical formulation has been presented and app
to the solution of the single-particle Schro¨dinger equation.
The method exhibits exponential convergence rates in
degree of the polynomial used in the spectral approximat
The method can be universally applied to general multicen
systems in the context of electronic structure calculatio
Solutions of operators with point singularities as high
r 2p, p,3, in three dimensions can be handled with spec
accuracy with this formulation. The method can be view
as an extension of the spectral element method develope
solve elliptical partial differential equations. Issues of co
putational complexity scale in overall agreement with t
traditional spectral element method. Successful numer
approximations of operators and integration of the point s
gularities were accomplished with the use of a Duffy tran
formation and suitable benchmark calculations were p
sented, including the hydrogenlike orbitals of nitroge
Applications are currently being studied for large-scale m
lecular structures in the context of density functional theo
and the incorporation of an efficient eigensolver for the sy
metric operator presented above is the subject of curren
search.

FIG. 5. The spectral element skeleton mesh used for the solu
of the hydrogenlike orbitals of nitrogen is plotted here along with
contour map of the first orbital. The spherical domain was deco
posed into 206 spectral elements with six pyramids around the
clei and the domain radius for practical infinity was chosen as 9
The cubic subdomain at the center of mesh has an edge leng
0.08 a.u. and contains six pyramid spectral elements.
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