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The contracted Schdinger equatiofCSE) technique through its direct determination of the two-particle
reduced density matri@RDM) without the wave function may offer a fresh alternative to traditional many-
body quantum calculations. Without additional information the CSE, also known as the density equation,
cannot be solved for the 2RDM because it also requires a knowledge of the 4RDM. We provide theoretical
foundations through a reconstruction theorem for recent attempts at generating higher RDMs from the 2RDM
to remove the indeterminacy of the CSE. With Grassmann algebra a more concise representation for
Valdemoro’s reconstruction functiondlg. Colmenero, C. Perez del Valle, and C. Valdemoro, Phys. Rev. A
47,971 (1993] is presented. From the perspective of the particle-hole equivalence we obtain Nakatsuji and
Yasuda's correction for the 4RDM formul&l. Nakatsuji and K. Yasuda, Phys. Rev. Lét, 1039(1996] as
well as a corrective approach for the 3RDM functional. A different reconstruction strategy, the ensemble
representability methoERM), is introduced to build the 3- and 4-RDMs by enforcing four-ensemble repre-
sentability and contraction conditions. We derive the CSE in second quantization without Valdemoro’s matrix
contraction mapping and offer the first proof of Nakatsuji’s theorem for the second-quantized CSE. Both the
functional and ERM reconstruction strategies are employed with the CSE to solve for the energies and the
2RDMs of a quasispin model without wave functions. We elucidate the iterative solution of the CSE through
an analogy with the power method for eigenvalue equations. Resulting energies of the CSE methods are
comparable to single-double configuration-interacliS®CI) energies, and the 2RDMs are more accurate by
an order of magnitude than those from SDCI. While the CSE has been applied to systems with 14 electrons, we
present results for as many as 40 particles. Results indicate that the 2RDM remains accurate as the number of
particles increases. We also report a direct determination of excited-state 2RDMs through the CSE. By cir-
cumventing the wave function, the CSE presents new possibilities for treating electron correlation.
[S1050-2947@8)02406-8

PACS numbdss): 31.10+2z, 31.25-v

[. INTRODUCTION differential equation in the works of Cohen and Frishberg
[21] and Nakatsuji22]. Harriman[23] presented in 1979 a
Knowledge of the two-particle reduced density matrix matrix version of the CSE in terms of contraction operators,
(2RDM) allows one to calculate the energy and other observand in 1985 Valdemoro obtained a matrix formulation of the
ables for atomic and molecular systems with an arbitraryCSE by contracting the Schdimger equation to the two-
numberN of electrons. For a quantum system, fully charac-patrticle space in second quantizati@4|. Just as the Schro
terized by a singléN-particle wave function, thél-particle  dinger equation describes the relationship between the
density matrix\D is the kernel of the wave function’s pro- N-particle Hamiltonian and its wave functiofor density
jection operator. By integrating the density matf® over — matrix ND), the CSE connects the two-particle reduced
(N—2) particles, we obtain the 2RDM which contains Hamiltonian and the 2RDM. However, because the CSE also
enough information to calculate the expectation values fodepends on the 4RDM, it is indeterminate without additional
any operator with only two-particle interactions like the elec-constraint{23]. We will derive a matrix formulation of the
tronic Hamiltonian 1-3]. Although a direct determination of CSE in second quantization without Valdemoro’s general-
the 2RDM would avoid the difficult calculation of the ized contraction mappingl8,25,28. The derivation empha-
N-particle wave function and yet still provide us with the sizes a test function approach which easily generates the con-
most relevant electronic structure information for atoms andracted equation from the matrix form of the Sofirmger
molecules, variation of the 2RDM elements to minimize theequation. Nakatsujj22] proved in 1976 that with the as-
energy has not been possible because a simple set séimption of pureN representability[3] a 2RDM and a
N-representability conditions to ensure that the 2RDM rep4RDM will satisfy the integro-differential version of the
resents a realistibl-particle system has not been foupt-  CSE if and only if they correspond to ad-particle wave
13]. Recent theoretical and computational results, howevefunction that satisfies the corresponding Sclimger equa-
involving the contracted Schadinger equation(CSE), also  tion. We provide a proof of Nakatsuji's theord@2] for the
known as the density equation, rekindle the possibility of arsecond-quantized CSE.
accurate method for generating the 2RDM without the wave Employing the particle-hole equivalence, Valdemoro has
function[14-20. derived formulas for reconstructing the 3- and 4RDMs from
The CSE was initially derived in 1976 as an integro-the 2RDM to remove the indeterminacy of the CSE
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[14,15,27. Recently, Nakatsuji and Yasuda have added arthe solution of the CSE by Valdemoro’s reconstruction for-
additional term to each of these formulas by considering thenulas with corrections.

decoupling diagrams for Green’s functiofi®]. Nakatsuji's Both ERM and functional reconstruction techniques for
correction for the 3RDM, involving the solution of a system solving the CSE will be illustrated through a quasispin
of equations, requires the Hartree-Fock 1RDM. We achieve gnodel, originally used by Lipkin as a benchmark to compare
significantly simpler representation for Valdemoro's formu- Several many-body methods for studying correlation in fer-
las through the notation of Grassmann algd2@,29. Fur-  mionic systems[33,34]. _Results indicate that thg methods
thermore, we derive Nakatsuji's corrective term for theProduce energies equivalent to those from single-double

4RDM within the framework of the particle-hole equivalence Onfiguration-interaction'SDC)) calculations, and 2RDMs

and a new corrective 3RDM term, different from Nakatsuji's th_at are an order of magnitude more accurate than those ob-

but also consistent with the accuracy of the improvedtarmte(lzI blyrSDCri]I.rx\ée rp;ess?trrrﬁisurits of t\t]ve”methrod f(l)tr mﬂd'
4RDM. Valdemoro and co-workeld 6,20 have employed erately farge numbersi ot Termions as well as resuits o

. . ; . ; xcited states. Unlike most traditional quantum methods
the reconstruction formulas to achieve iterative solutions of

X which truncate the number of excitations beyond the
the CSE for atoms and molecules with around 4-6 eIeCtronﬁ-*Iartree—Fock reference state, this method works within a re-

and more r_ecently, Nakat;uu and Yas\jd8] have used the duced particle space which is equivalent to the full-Cl basis.
formulas with Fhelr corrections to solve the CSE for mOIecu'N-representability is approximated for a direct determination
lar systems with four to 14 elegtrons. . of the density matrix.

The CSE approach emphasizes the connections between
the problems of reconstruction ardtrepresentability. We .
investigate the reasons why the 2RDM has enough informa- !l CONTRACTED SCHRO DINGER EQUATION
tion_to build hig_her RDMS. If the Harr_liltonian for an elgc- A quantum system d¥l fermions may be characterized by
tronic problem is explicitly employed in the reconstruction, the Schidinger equation(SE)
the 1-density alone is theoretically sufficient to determine the
wave function and hence the higher RDMs through the theo- H ) = E.| ) 1)
rem of Hohenberg and Koh(HK) [30,31]. However, the n nvn/e
reconstruction functionals, employed here as well as in pre- ) . )
vious work, involve only the 2RDM without any explicit in Which the wave function, depends on the coordinates
references to the Hamiltonian. Therefore the HK theorenfOr the N particles. In this section we show that within an
does not directly apply to the reconstruction problem inN-répresentable space we may solve for the 2RDM directly
which we are interested. To demonstrate that the 2RDM i£hrough a contraction of the SE to the two-particle space.
sufficient, we instead will prove and extend an important/Vhile the resulting contracted Schiiager equation cannot
theorem, originally demonstrated by Rosif@2]. Rosina be dlreqtly sc_)Ived for the 2RDM withoutl-representability
showed that the ground-state 2RDM for a quantum systerfionstraints since the CSE also depends on the 4RDM, ap-
completely determines the exa®i-particle ground-state Proximations of the 4RDM in terms of the 2RDM have re-
wave functionwithout any specific information about the Cently produced promising resulfl6,19,20. Beginning
Hamiltonian other than it must have no more than two- With the SE, we will obtain Valdemoro's form of the CSE in
particle interactions. A consequence of this theorem is thafcond quantization in a fashion which does not require a

any ground-state electronic 2RDM exactly determines within<"owledge of the generalized matrix contraction mapping

the ensemblél-representable space a unique series of highefMCM) [16,24-26. The derivation emphasizes the use of

p-RDMs where 2 p<N. These results provide important test functions for performing the contraction of the SE to the
justification for the functional description of the higher lOWer particle space. We will also present a proof of Nakat-

RDMs in terms of the 2RDM suji's theorem 22] for the CSE in second quantization.
With the theoretical basis of Rosina’s theorem, we pro-
pose a new reconstruction scheme, which we call the en- A. Derivation in second quantization

semble representability meth@gRM), in which thep-RDM

is generated from the 2RDM by imposing contraction and
p-ensemble representability conditions. Fop-&DM to be
p-representable it must be Hermitian, antisymmetric, and

positive semidefinite. Unlike the functional approach that H=3 > 2KPfalalaas, 2
yields a single approximate solution, this method generates a p.g;st

family of solutions that contains the exact solution. Just as

the reconstruction functionals act likhl-representability where the elements of the two-particle reduced Hamiltonian
conditions, the ensemble representability conditions can alséK are given by

be used to achieve an approximate reconstruction. The ERM

will produce more accurate reconstructionspaapproaches 1

N, and whenp=N, the reconstruction becomes exact by 2KPI=(p,s;q,t) + m(%,tfp,# Sps€qt).  (3)
Rosina’s theorem. The ERM results fo=4 are comparable

to those from the functional approach. Moreover, the result-

ing solutions of the CSE with four-ensemble representabilityThe two-electron repulsion integrals are represented by the
are equivalent in accuracy to the 2RDMs produced througtMulliken symbol (p,s;q,t),

Within second quantizatiof85] the Hamiltonian operator
may be expressed as
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1 Evaluation of the first term in the above equation involves
(p,s;q,t)= < ¢p(l)¢q(2)r_‘ ¢s(1)¢t(2)> (4 multiplying matrices?K and 2D and then selecting the ele-
12 ment of the resulting matrix, specified by the indices. We
while one-electron portions of the Hamiltonian are includedhave derived the 2,4-CSE through test functions rather than
in the matrixe, the generalized MCM. A 1,3-CSE may also be produced by
replacing the doubly excited test functions in Ef) with
Vf Z test functions formed by single excitations of the ground-
€ps= | Pp(D)| 5 T 1 ds(D) ). (5  state wave function. Similarly, a 3,5-CSE and a 4,6-CSE
! may be created with test functions using triple and quadruple
Because thé\-particle Hamiltonian H) contains only two- excitations, respectively. Since the 2,4-CSE is the focus of
electron excitations, the expectation value-bfjields a for-  this paper, we will simply refer to it as the CSE.
mula for the energy involving just the 2RDM,
B. Nakatsuji's theorem

E= > 2KPA2DPA=Tr(2K?D), (6) While previous work[16,19 on the CSE has assumed
paisit that Nakatsuji's theorem, proven in 1976 for the integro-
differential form of the CSE, remains valid for tlsecond-
quantizedCSE, we present a formal proof. Nakatsuji's theo-
1 rem is the following: if we assume that the density matrices
2D2;ﬁ=§(z/f|agagatas| ). (7)  are pureN-representable, then the CSE may be satisfied by a
' 2D and “D if and only if the preimage density matriXD
satisfies the Schdinger equation. The above derivation
clearly proves that the SE implies the CSE. We only need to
S 1 prove that the CSE implies the SE. The SE equation can be
PO = —(ylalal--al aj & vay[¢), (8)  satisfied if and only if
, p p 1 '2 p Ip-1 1

i
P
2|\ 2_
and the normalization i&l!/[p!(N—p)!]. Variation of 2D (YIH) = (4l g)*=0, (13
to produce the lowest energy will generate the ground-statg,,n as the dispersion conditidis6]. Multiplying both
energy of the reduced Hamiltonig which will usually be sides of the CSE in Eq11) by the reduced Hamiltonian

much lower than the energy of the many-particle Hamil-g o ont?kii and summing over the remaining indices pro-
. . Kl
tonianH. To obtain the correct enerdy of the N-electron duces
¢>

Hamiltonian H, we must impose additionaN-represent-
(14

where

In general, thep-RDM in second quantization is defined as

ability constraints on the 2RDM to ensure that it is derivable 1 N
from an antisymmetrid\N-particle wave function) through <z,/f‘ (52 ZKI('",afra;ra|ak
the integration of its associated density matrix. RES

To derive the CSE rather than the expectation value, we
define functiong®}| to test the two-electron space = E(

1
S 2kPaaTal
= ajajaa
2pqst >R s)

2 2myiLi
E Kk,l Dk,l :
i,j5K,l

) = Taf
(Pkil=(vlajajaa. © By Eq. (6) the sum on the right-hand side of the above equa-

Taking the inner product of the test functions with the SEtion is equal to the enerdy, and from Eq(2) we realize that

produces the sums on the left-hand side are just Hamiltonian operators
- in the second-quantized notation. Hence, when the 2RDM
(ylalafaaHy)=E(ylalalaay)=2E Dy} . corresponds to ah-particle wave functiony, Eq. (14) im-

(10) plies Eq.(13), and the proof of Nakatsuji's theorem is ac-
complished. Because the Hamiltonian is defined in second
If we substitute for the Hamiltonian operator in E&), we  quantization, the proof of Nakatsuji's theorem is also valid
obtain the relation when the one-particle basis set is incomplete. Recall that the
SE with a second-quantized Hamiltonian corresponds to a
2 ZKQ’tq(lM arafra|aka£agatas| Y)=4E 2Dik,jI . (11 Hamiltonia.n eigenvalue equation with the gi\_/en one-patrticle
t ' ’ basis. Unlike the SE, the CSE only requires the 2- and
_ _ _ 4RDMs in the given one-particle basis rather than the full
Using a graphical rulg26] to rearrange the creation and N-particle wave function. While Nakatsuji's theorem holds
annihilation operators on the left-hand side to producger the 2,4-CSE, it is not valid for the 1,3-CSE. This fore-
RDMs, we generate Colmenero and Valdemoro's 2,4-CSEhadows the advantage of reconstructing from the 2RDM
[16] instead of the 1RDM which we will discuss in the context of
Rosina’s theorem.
(*K 2D)f+3 2 (PKPE *DR +2KP °DP)
pat Ill. THEORY OF RECONSTRUCTION

+6 E (2KP:9 4pPAi) = E 2D (12) Both Valdemoro and co-workerfsl6,20 and Nakatsuiji
st ot stk k! and Yasudd19] have recently solved the CSE by approxi-
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mating the 4RDM as a functional of the 2RDM. In the first to the definition of thep-HRDM in second quantization to
section we derive Valdemoro's approximate reconstructiorconvert it to thep-RDM. Taking the expectation value of the
functionals for the first time in the notation of Grassmannabove relation, we obtain the linear relationship between the
algebrg[28,29. Furthermore, we derive Nakatsuji and Yasu- elements of the 1RDM and the 1HRDM,

da’s recent corrective term for the 4RDM functional through
the particle-hole equivalence rather than with Green'’s func-
tion decoupling diagrams and provide a corrective approach . i
for the 3RDM. A central question of the reconstruction prob-Converting the 2HRDM into a 2RDM produces the expres-
lem is whether knowledge of the 2RDM conveys enoughs'On

information to generate the 4RDM. In the second section we ,—. ; iy o i o iy o P igi

will answer this question through a theorem by Rodi32) ZD:i,ijzzz(gjiaji_ 512151'2)/2_ 1D115ji+ 1D125ﬁ+ ZDjll,Jzz'

and an extension of the theorem for excited states. We also (20)
introduce an approach to reconstruction, the ensemble repre-

o : : o hich contains a sum of three different kinds of terms that
sentability method, in which ensemble 4-representability an . . S
contraction conditions are employed to build the 4RDM ave(i) one 2RDM,(ii) one 1RDM multiplying ones, and

from the 2RDM without an approximate functional. (iii ) two 8s. Equation(20) is just the expectation value of the
commutation relation for two fermion particles. The com-

plexity of Eq. (20), compared to Eq(19), reflects the fact
that composite particles do not obey the simple fermion an-
Valdemoro’s derivation of the 3RDM and 4RDM func- ticommutation relatior{18). The deviation of composite par-
tionals relies on the relationship between particles and holedicles from Fermi statistics helps to explain why the
Traditionally, many-body quantum-mechanical systems ar®-representability problem is much more difficult for the
described in terms of their particles because there are usualBRDM than the 1IRDM40-43.
many fewer particles than holes. Within second quantization As p increases beyond 2, the derivation becomes un-
or Grassmann algebra, however, the Hamiltonian for avieldy in second quantization, and Valdemoro relies upon a
many-particle system may also be expressed in terms of thgictorial approach to simplify the presentatifitb]. The re-
holes. When computing the energy of BiRparticle Hamil-  lations may be expressed more concisely with wedge
tonian expressed in holes, we must multiply the hole Hamil-Grassmannproducts from the theory of Grassmann algebra.
tonianH by the ¢ —N)-hole matrix " ~ND before taking Additional information about the definition and evaluation of
the trace Grassmann products is available in Appendix A. Written
completely in this notation, the formula for the 2HRDM will
have only three terms

Ipi+1Dl="1t, (19

A. Reconstruction functionals

E=Tr(H "\D)=Tr(H "~ND), (15)

2ni1sd2_ 2yl o ipnitlyiz g 2nis

wherer is the rank of the one-patrticle basis §8f], and the Dii,i;_ lji,jzz 2 Djim Ij§+ Dji,jzz’ (21
general definition for thep-hole reduced density matrix
(p-HRDM) is where

o =) @2

PDILI2 b= ~yla a --a; alal--al |¢). (16) v

i1, Ip pl 1172 Jp 11715 |p and
Normalization of thep-HRDM in second quantization is ( 2|;1~‘jz:1|}151|;2_ (23)
1412 1 2

—N)!/[p!(r—N—p)!]. Asin the particle case, if we use the
two-hole reduced HamiltoniadK, we can express the ex-
pectation value with the 2HRDMD,

For convenience indices will often be omitted. Similarly, the
p-HRDM may be expressed as a sumpof 1 wedge prod-
ucts that also correspond to the numberdfunctions in

E=Tr(H "~ND)=Tr(?K 2D). (17)  each term. FoPD and “D we have

3y _3 1M 2 2yl 3
To directly minimize the energy with respect to parameters D="1-3"DUI+3°DUI-"D (24
in the 2HRDM, we would need to restrict the 2HRDM to the
. . and
family of (r —N)-ensemble representable matrices.
Mathematically, the particle-hole equivalence manifests D=4-41DPI+62D0A —43D0ON +%D. (25

itself in that the particle and hole matrices exist in dual vec-
tor spaces. This means thapaRDM may be written as a These formulas have a predictable structure with alternating

linear functional of thep-HRDM as well as lower HRDMs,
and similarly, thep-HRDM may be written as a linear func-
tional of thep-RDM and lower RDMg[38,39. Valdemoro
derives the functional dependence of fa¢iRDM on the
p-RDM by applying the fermion anticommutation rule

alaj+a;al =4 | (18)

signs and coefficients that follow a binomial distribution. In
general, thep-HRDM may be expressed as a linear func-
tional of thep-RDM and the lower RDMs,
-1
p ( p

PD=PI+ % (~1)"| | "DOP~MI+(~1)P ™.
n=1

(26)
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The linear functional expressing tlpeRDM in terms of the  moro’s approximate 3RDM may be constructed with Eq.
p-HRDM and lower HRDMs may be obtained by switching (30), and then the resulting 3RDMD, 5 as well as the
the D andD in the above formula. Relatiof26) represents known 2RDM 2D may be used in Eq(31) to build the
the commutation or anticommutation relatitepending on  4RDM. These reconstruction formulas are approximate be-
whetherp is even or odd, respectivéljor two composite  cause some terms in theRDM cancel with those in the
particles, each of them consisting pffermions. While the p-HRDM and then do not appear within the commutation-
deviation of the composite particles in E@6) from Fermi  anticommutation relations. We have found that these formu-
statistics is often perceived as the source of diffic(t9—  las may be obtained more directly from tgeHRDM func-
43], valdemoro utilizes the increased complexity of thesetionals by approximating the identity operatdt by 'D
relations to develop an approximate reconstruction formuldwhich is equivalent to setting!'D=0) and setting the
for the p-RDM in terms of lower RDMs. g-HRDM to zero,9D=0. Applying these rules to function-
Using second quantization, Valdemoro realized that thesg|s (21), (24), and (25) generates formula&9), (30), and
expressions could be rewritten as terms involving only(31). This approximation is equivalent to Valdemoro’s as-
RDMs and other terms_involving only HRDMs. By writing sumption of a separation of holes and particles and is also
I in terms of D and 1D through Eq.(19), the functional valid in the Hartree-Fock limit.

for 2D becomes Nakatsuji and Yasud@l9] improved Valdemoro's for-
_ _ mula for the 4RDM by finding one of the canceled terms
p-?p='pO*D-'DO'D. (270 through an analysis of Green’s function decoupling dia-

) _ ) grams. We now will show that Nakatsuji's correction may

To express the higher particle and hole matrices fiReand  giso be obtained from the perspective of the particle-hole
9D whereq>2 as RDMs and HRDMs, we must perform equivalence. Valdemoro’s rewriting of the particle-hole rela-
two sets of substitutionsi) replacel with 'D+D and(ii)  tions provides a powerful mechanism for reconstructing
assuming that we have already derived the expressions féigher RDMs from lower RDMs. We offer here another
the p-RDM as RDMs and HRDMs where<lp<(, we want technique for writing these relations to obtain some of the
to use these expressions to replace phBRDMs in terms terms in thep-RDM and p-HRDM that cancel. The exact
wedged with HRDMs. This second step causes mixed termgommutation-anticommutation relations in Eq&7) and
with wedges between HRDMs and RDMs to car{del]. For  (28) may be written as
the 3HRDM we find e —

D+2D=1D%+ 3D~ 1D?)ID +D? 0 Pvaa= D Bvas =

+3(2D—1D2)0'D, (28 &

3 3 — (3 _3N.
where we have employed the right superscripts to indicate D —"Dvai=~ ("D ~"Dvaa), (33)

the number of times to wedge a symbol with itself, i.e.,. hich 2 3 h h )
1p2=1p[D. The right sides of these equations involve in which “D and °D represent the exact RDMs. The error in

only lower RDMs and HRDMs. Because there were no ap_\/aldemoro’s approximation for the 2RDM must be equal to

proximations in the substitutions made, the resulting formuyN€ €rror in Valdemoro’s approximation for the 2HRDM.

las are exact. However, as written, we still need to know themilarly, the error in Valdemoro’s approximation for the
p-HRDM to determine thep-RDM 3RDM must be the negative of the error in Valdemoro’s

3HRDM. Defining the errors in Valdemoro’s formulas for

Valdemoro then approximates the higher RDM from the
the p-RDM and p-HRDM as

lower RDMs by assuming that the RDM on the left may be
equated to the formula involving lower RDMs on the right to

obtain PA=PD —PDy,yq (34)
?Dyqe= 'D? (299 and
and PA=PD — pa\,a,d , (35
*Dyag="D%+3(°D—-'D?)0'D. (B0 we may write the generaexact result for p-RDMs and
Similarly, the 4RDM would be approximated by p-HRDMs,
*Dyae="D*+4(°D—'D%0'D-6(°D—'D?)0'D?. PA=(—1)P PA, (36)

31

_ . With these error matrices Valdemoro’s formulas f and
If we substituteD for D in the above equations, we obtain “D may be rewritten even more concisely as
the analogous reconstruction formulas for the HRDMs.
While Valdemoro’s formula for the 2RDM in E¢29) is just 3Dyag=1D3+3 2A0'D (37
the well-known expression for the 2RDM in the Hartree-
Fock limit, the formulas for the 3RDM and 4RDM in Egs. and
(30) and (31) possess corrections to their Hartree-Fock ex-
pressions'D? and D*. When the 2RDM is known, Valde- 4Dyaq='D*+4 SA0'D+6 2A0'D2. (38
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Replacing theDs in the above equations wifh gives us the Where the contraction operatbrdenotes the summation re-
formulas for3D and #D. Note that the coefficient of the last quired to map the four-particle matrix to a three-particle ma-
term in Eq.(38) is +6 rather than—6 as in Eq.(31) to  trix and the term3A(®D ) is calculated by Eq(34) with
correct the term—122A0'D? from 43A0'D. Formulas  *Dpresused for the 3RDM. The subscript D sindicates
(37) and (38) are consistent with the Hartree-Fo¢klF)  that the resulting 3RDM will be referred to as the present
functionals because thaA terms vanish in the HF limit. approximation. A system of linear equations rather than a
While the As are wedged with the 1RDM, there are no termsformula for 3Dpres results because the unknowid pres ap-
in these formulas where A is wedged with anotheA. A pears on both sides. The dependencé/dfon the improved
term for the 4RDM which does not appear in Valdemoro’s3RDM is denoted bf’A(streQ- If the 2RDM is known, we
formula but only involves a simple wedge product of lower can solve for an improved 3RDM from Eg12) and then use
RDMs and vanishes in the HF limit is the result in Eq(41) to create a more accurate 4RDM. Be-
K 2A [ 2A (39) cause of the special relationship between the 3RDM equa-
' tions and the 4RDM formula, the approximate 4RDM wiill

wherek is a proportionality constant. Similarly, a suitable automatically contract to the approximate 3RDM from which

term for the 4HRDM is it was made.

k 2A O2A. (40)
B. Ensemble representability method

By Eg. (36) with p=4 the missing terms in Valdemoro’s
4RDM formulamust equathe missing terms in the 4AHRDM
formula. This final criterion is satisfied by the corrections in
Egs.(39) and(40) becaus€A =2A. The proportionality con-
stantk in the correction may be determined by looking at the
coefficients in Eqs(37) and(38). The coefficient fo?A0'D

The reconstruction functionals, which approximate the 3-
and 4RDMs in terms of lower RDMs, permit us to solve the
CSE iteratively to achieve an accurate 2RDM. By Nakat-
suji's theorem, however, other means of enforcing approxi-
mateN- representability should also partially remove the in-
determinacy of the CSE. Here we discuss a new technique,

. 2 . . . .
in Eq. (37) where“A is a two-particle matrix arises from the hich we refer to as the ensemble representability method,
three distinct groupings of the particle2 {3}, {13} {2},  for performing reconstruction from the 2RDM to theRDM

and{23} {1}. The same argument determines the coefficientg, o gh approximateN-representability conditions without

in Eq. (38). Finally, we can ascertain thit=3 in Eq. (39 5, expiicit functional. The ERM for reconstruction will in-
from the three distinct groupings of the four quasiparticles:

) . volve thecontraction conditiorthat (i) the p-RDM contract
{12} {34}, {13 {24}, and {14} {23). Calculations with the , the JRDM as well as thp-ensemble representabilite-
Lipkin model confirm this choice fok. Combining this cor-

strictions that thg-RDM be (ii) Hermitian, (iii ) antisymmet-
rection (39) with the original expression in E438), we ob- P (i) (i) y

. K & and da’s | qf | ric, and(iv) positive semidefinite. A family of solutions, in-
tain Nakatsuji and Yasuda’s improved formula cluding the exacp-RDM, results because these conditions

are only necessary fdl-representability whemp<N. The
(41) family nature of the solution is an interesting advantage of
this approach since at least in principle hew necessary con-
for approximating the 4RDM wher8A and 3A are defined straints may be added to select further for the correct solu-
in Eq. (34). tic_m. As p approached the reconstruction from the 2RDM _
Nakatsuji's correction in Eq(39) only involves the will become more accurate, and the ERM offers a systematic

known2RDM. Hence, it may seem that we can simply de-aPProach to determining the exact higher RDMs. Extending
termine the 3RDM by Eq(37) as before, and use this result & result from Rosina, we will prove that whéh=p and the

in Eq. (41) to generate an improved 4RDM. However, this Hamiltonian has only two-particle interactions, the ERM will
attempt will generally not produce a significant improvementdenerate an exag-RDM from a known energetically non-

in the 4RDM because the error from the approximate 3RDMJegenerate 2RDM. For four-particle systems the reconstruc-
will dominate any correction provided by the new 4RDM tion .functlonal for the 4RDM, discussed in the preceding
term. To surmount this problem, we must find a correctionSection, does not produce exact results. To keep the calcula-
for the 3RDM that will make it consistent in accuracy with tions manageable, we will use the ERM method with4.

the improved 4RDM. While Nakatsuji and Yasuda derive aEven whenN is much larger than four, we will find that
correction for the 3RDM, which involves solving a system of four-ensemble representability within the ERM will serve as
equations and using the 1RDM for Hartree-Fock, we have ®owerful necessary conditions to generate an accurate
different approach for obtaining a suitable correction for the#RDM from a known 2RDM. It is important for us to realize
3RDM directly from the improved 4RDM formula. Contract- that applying the ERM with the CSE produces a significantly
ing the expression fofD in Eq. (41) generates a system of Smaller family of solutions than using four-ensemble

linear equations for a corrected 3RDID ,.;which does not N-representability with minimization of the energy expecta-
involve the 4RDM, tion value. The minimization of the eigenvalue produces the

4RDM associated with the lowest energy of the four-particle

5 4 4 ala L 1 reduced Hamiltonian, but the CSE, due to the testing of the
Dpres= =3 Ll D" +4 "A(Dpred "D +6 "AL'D two-particle space, does not allow this solution. While offer-
ing the possibility of a new approach, the ERM will also help

+32A %A1, (42 us to better understand the importance of the CSE for finding

*Dyaka= 1D%+4 SAT'D+6 2A0'D2+ 3 2APA
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an accurate 2RDM and further elucidate the relationship beN-ensemble representable matrices will always produce the
tween reconstruction functionals ahdrepresentability. pure density matrix, corresponding to the ground state. For
Proving that the ground-state 2RDM contains enough inthis reason the’D of the ground state also has only one
formation to generate the higher RDMs when we enforcepreimage in the larger family of ensemble density matrices.
ensembleN-representability will help motivate the ERM Hence, we have the reconstruction theorem, originally
method and provide theoretical justification for reconstrucProved by Rosina at the 1967 conference on reduced density
tion functionals for the 3- and 4RDMs in terms of the Matrices at Queen’s Universif2].
2RDM. Previous worl14] on the CSE has appealed to the ~ Theorem 1The 2RDM for the antisymmetric, nondegen-
well-known theorem of Hohenberg and Kohn which demon-erate ground state of amspecified Nparticle Hamiltonian
strates that the 1-density and the particle nuntbere theo- H with two-particle interactions has a unique preimage in the
retically sufficient to determine the ground-state energies anget ofN-ensemble representable density matrites
wave functions for atoms and moleculg20,31]. If the 1- Let us consider the extension of this result to treat excited
density is enough to generate the wave function, it may seerptates and cases where the energies are degenerate. Assume
the IRDM or 2RDM must be more than sufficient to build a that we know?D () for a nondegenerate excited state of an
unique series of higher RDMs leading to the wave functionN-particle HamiltonianH with two-particle interactions. If
However, as we will show, this reasoning is incorrect, be-°D(#) reconstructs to two antisymmetric wave functions,
cause an implicit assumption in the HK theorem is beingthe state will be degenerate since the wave functions must
neglected. The proof that the ground-state 1-density detehave the same energy. Since this contradicts the assumption
mines the ground and excited wave functions depends on that the state is nondegenerate, it follows tREX(y) has
theoretic construction of the Hamiltonian from the 1-densityonly one pureN-representable preimag€D(y). Because
[44]. For electronic structure problems the particle nuniber the excited state cannot be obtained by a direct minimization
alone completely determines the form of the kinetic energyof the energy, we cannot extend this result to the space of
and electron repulsion terms within the Hamiltonian while ensembleN-representable density matricé¥. We are in-
the unknown one-particle part of the potential is specifiederested, however, in dealing with excited states that are de-
through the given 1-density. Therefore in addition to agenerate for a given energy eigenvalue. The assumption that
knowledge of the particle numb& and the 1-density, the the state is nondegenerate may be relaxed to the assumption
theorem of Hohenberg and Kohn implicitly assumes athat the given state may be distinguished from each of the
knowledge of the kinetic and repulsion terms within theother states of the system by at least one two-particle opera-
Hamiltonian. However, when we construct the higher RDMstor ?B. Two different statesy; andy, have the same expec-
from lower RDMs or densities, the Hamiltonian appears intation values for all two-particle observabléB if and only
neither the reconstruction formulas nor the restrictions of théf their corresponding 2RDMs?D(y,) and ?D(i,) are
ERM. Without more explicit knowledge of the Hamiltonian, equivalent, 2D (1) =2D(¢,). Hence, the new assumption
the 1-density cannot determine the wave function as it is nowill only remain true if the 2RDM of the statg, is different
difficult to illustrate. Let us consider the 1-density from afrom the 2RDM forall the other stateg); (i#1) of the
wave function which is not a Slater determinant. Both Gil-system. This implies that the 2RDM for the state will
bert[45] and Harrimarj46], however, have shown that every have a uniqugure N-representable preimad®D (y;). We
1-density may be represented by Mrparticle Slater wave express this generalization of the reconstruction theorem as
function. Hence, the 1-density clearly corresponds to at leagbllows.
two N-representable wave functions—one Slater wave func- Theorem 2:If we assume that the given state of an-
tion and one non-Slater wave function. Furthermore, lineaspecified Nparticle HamiltonianH with two-particle inter-
combinations of these pure density matrices yield an infiniteactions may be distinguished from each of the other states of
family of ensembleN-representable density matrices which the system by at least one two-particle oper&®r then the

contract to the correct 1-density. 2RDM for the state will have a unique preimage in the set of
Although the 1-density alone is not sufficient to determinepure N-representable density matric&® ().
the ground-state wave function for anknownHamiltonian Because the resultiniyl-particle density matrix may be

with two-particle interactions, the 2RDM is enough to build contracted to thep-RDM when 2<p<N, a corollary to

the wave function, and the proof of this lies not in the HK these theorems is that the 2RDM for electronic problems
theorem but in an important, less famous result, originallycontains enough information to determine tipeRDM
discussed by Rosina. Let us consider the 2RBM ) for  uniquely. Furthermore, these theorems also are true for re-
the antisymmetric nondegenerate ground state of agonstruction from ag-RDM when the Hamiltonian more
N-particle HamiltonianH with two-particle interactions. By generally containg-particle excitations. Most importantly,
D?(y) we indicate the 2RDM from the contraction of a pure these theorems justify the search for reconstruction function-
density matrix formed withy. The 2RDM determines the als that build higher RDMs from the 2RDM without refer-
energy of the eigenstates by Eq. (6). If ?D(y) may be ence to the Hamiltonian in the functionals, and they indicate
obtained from two antisymmetric wave functiong the  how within the ERM the imposition op-ensemble repre-
ground state will be degenerate since by H).they must sentability represents a systematic shrinkage ofpRDM
have the same energy. Because this contradicts the assunfpmily as p approachesN. For correlated systems similar
tion that the ground state is nondegenerate, we have thaistification is not possible for reconstruction schemes based
2D(y) has only one purdl-representable preimag¥D (). on the 1RDM or 1-density. This elucidates why Valdemoro’s
Furthermore, because all of the other states of the systeformula for the 2RDM in terms of the 1RDM is equivalent to
have higher energies, minimizing over the larger class othe Hartree-Fock restriction. To move significantly beyond
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mean field for the 1IRDM, we must incorporate information elements are about an order of magnitude more accurate than
about the Hamiltonian. Thus the reconstruction problem fothose from SDCI. These trends are illustrated for systems
the 1-density and 1RDM not only involves preserving the  with different numbers of fermions including one system
representability as higher RDMs are generated but also davith as many as 40 particles. Finally, we apply the CSE
termining whether the higher RDMs correspond to themethod for the direct determination of excited-state 2RDMs.
Hamiltonian for the system under consideration.

Practical implementation of the ERM for reconstruction A. Description of the model

of the 4RDM requires us to enforce the four conditions men- Consider a quantum system with two energy levels at

tioned above:(i) contraction of the 4RDM to the known — &2 and + /2, each of which hadl degenerate states. By
2RDM as well as the 4-ensemble representability Condition?illing each of :[heN states in the lower level with one fer-
of (ii) Hermiticity, (iii) antisymmetry, and(iv) positive mion, we generate the ground state for a noninteracting
semidefiniteness. Conditioiis) and (iii) are easily enforced —pa,rticle system. The system may be completely character-
since they simply require that certain elements of the 4RD zed by two quant.um numbers andp wherem (either —1

are made equa}I: In fact a four-particle matrix, fuIﬂ!Img the_or +1) denotes the level ang distinguishes the states in
first three conditions, may be constructed from a given anti-

- K : X . “each level by ranging from 1 tdl. While more than one
symmetric, twp-partlcle matrix through a linear MapPINg o mion will possess the sanme quantum number, each fer-
[47,48. Restricting the 4RDM to the set of positive '

semidefinite matrices represents the most difficult condition"o" will always occupy a different state as denotedbsh

A well-known result from linear algebrp49], discussed by quan;ch(ljm nunlbel;sl_ a;d ph..Tho tht|s tnomn.tte[]aftmgf system,
Harriman[11] in relation to theN-representability problem, ¥¥§n? sta?ers)eirnu:)r?elciev\gl L((:) S?thSoinSV:PI]g ot\a’gr (Iee:\rglon'ls'he
permits us to restrict the 4RDM to the positive SemideﬁniteHamiltonian for the svstem is '

set by parametrizing it through another real, Hermitian, an- y
tisymmetric matrix as follows:

€
_ t toAt
H= zmzp mal, jamp+V > a1 0,8 p, - mp,Amp;

‘D=RR (43 P1.P2.m
(45
Contracting this parametrization over two particles and set-

ting the result to the known 2RDM furnishes us with a set of | '€ nature of the perturbation M only allows transitions
nonlinear equations for the matrix elementsiof between states with the same value fforThis implies that

the noninteracting ground-state configuration will only mix
(N=2)(N-3) , - ) with configurations in which each of thié fermions has a
— 13 D=Li"D)=L4RR), (44)  different quantum numbaep. Since a fermion may have one

of two m values for each of th&l values of the quantum

where the contraction operatbrdenotes the summation re- Numberp and yet no two of thé\ fermions may have the
quired to map the 4RDM to a 2RDM. Because there aré@me _value ob, t_here \_N|II be 2 pqssmle configurations.
may expect to find a family of solutions. This is true for tions for the system. Whevt is negligible compared te, the
N>4. By Rosina’s theorem, however, Bit=4 only oneR  System populates the lowest level to achieve its minimum
satisfies these equations, and we obtain the exact 4RDINErgY. The wave function in this case is just the d_eterminant

When the perturbatiovV becomes significant, the Hartree-

Fock configuration will yield an upper bound on the ground
energy. As in configuration interaction for atoms and mol-
Two reconstruction techniques have been presented in thgcules these approximations to the true wave function and its
preceding section to remove the indeterminacy of the CSEenergy may be improved by including excited configura-
To explore the accuracy of determining the 2RDM withouttions. The ground-state wave function will be a linear com-
the wave function through these techniques, we apply therhination of the possible configurations that delicately bal-
to a quasispin model which was originally employed as aances the self and interaction energies to achieve a minimum
benchmark by Lipkin and co-workef$3,34 to study the total energy.
correlation of fermions in a variety of many-body methods The probability of finding the system with a given number
from perturbation theory to Green’s function techniques. Theof fermions in the upper level is independent of fhetates
Lipkin model will be described in detail including an impor- that the fermions inhabit. Because of this the number of ex-
tant angular momentum analogy that simplifies the calculacited fermions alone determines the probability of the system
tions by accounting for the system’s symmetry. After a dis-being found in a certain configuration. Grouping all of the
cussion of the numerical methods employed for solving theconfigurations according to the number of excitations, we
CSE, results will be presented for reconstructing the 3RDMcan reduce the size of the basis set for the Hamiltonian from
and the 4RDM from a given 2RDM as well as for solving the 2 configurations to the number of excitations which is only
CSE for the 2RDM with the ERM and functional reconstruc- N+ 1. This possible reduction in basis size, arising from the
tion schemes. Results show that the CSE methods produdedistinguishability of thep states in the Hamiltonian, may
ground-state energies similar to those from SDCI and densitpe directly incorporated into the Hamiltonian by writikgin
matrices whose terms of angular momentum operat¢83]. For this reason

IV. APPLICATION TO THE LIPKIN MODEL
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models like this one are often referred to as quasispin modeld) Build the 3RDM and 4RDM from an initial guess for the
[35]. Using the anticommutation relations for the creation =~ 2RDM (for example, the Hartree-Fock 2RDM
and annihilation operators and the following definitions for(2) Substitute the 2-, 3-, and 4RDMS into the left-hand side
the angular momentum operators: of the CSE in Eq(12) to produce a new 2RDM guess
multiplied by the energy.
_ T _ t (3) Symmetrize and normalize the 2RDM from the last step
Yo % Aeaplotpr Jo % A1p2rip, (40 to obtain the next guess for the 2RDM. Normalization is
equivalent to dividing by the energy.
and (4) Repeat step&l)—(3) until convergence is achieved.

Colmenero and Valdemoro explain the method’s conver-
gence through a result from the solution of nonlinear equa-
tions[16]. We justify the technique differently by revealing
whereJ, _ andJ_ . represent one-particle transitions while its connection with the power methd9] for finding eigen-
J, + andJ_ _ count the number of particles in the upper values.

and lower levels, respectively, we can write the Hamiltonian Consider the eigenvalue equatidthy,=Eqiy. In the

as power method the trial vectab, is multiplied by the matrix

H to produce another vector which after normalization be-
comes the next trial vectap,. As in the iterative procedure
for the CSE, explained above, this process is repeated until
convergence is achieved. The method only converges to the

Thez component of the angular momentum is just half of theeigenvector whose eigenvalue has the maximum absolute
difference between the number of particles in the upper leveyalue. We can understand this by expanding the initial trial
and the number in the lower level. Because theommutes — 9Uessg, in terms of the actual eigenvectors for the problem
with the square of the total angular momentulfy the B

Hamiltonian partitions into noninteracting submatrices which bo=aootarprtazyyt--, (49)
correspond to the different values af The order of each
submatrix is d+ 1. The values ofl, range in each subma- . ) . .

trix from —J to +J. Since all of che fermions inhabit the trial yector(bN arises fr.om actind\ times on¢, with the H
lowest level in the unperturbed ground-state configurationf“atr'x and dividingN times by the energi,,
the value forJ, in this case is—N/2. This value forJ,, E AN E N
however, only occurs within the IargesF submatrix of order ¢ =HNgpo=agy,+a; E_1> Py +ay E_z) Yot
N+1 when J=N/2. Thus, to determine the correlated 0 0

ground state, we only need to consider the 1 configura- (50)

tions in the largest submatrix since other configurations W|IIAS long as the absolute value Bf is greater than that of the

Cv%t ;nx'xev(‘:”tthcghrfegroounn dd tztzt)i;i;:—:ezb;i#g?g:?g;ﬂggrs’O?‘?fer_other eigenvalues, the method will converge linearly towards
© expect, P 9 . the true eigenvectog,. Similarly, the iterative solution of

B we discuss the calculation of the wave functions from théhe CSE discovers the component of the trial RDM corre-

Y sponding to the eigenvalue with the largest absolute value.
Hamlltor_na_m in Eq.(48) and a procedure that we develloped pWhilegwe emplgy the power methog to solve the CSE
fo_r pbtalnlng the RDMs from the wave functhns with a with the reconstruction functionals, a Newton’'s method is
minimum amount of storage. For additional details about th%tilized when we reconstruct higher RDMs from known

ey i LK Mlower RDMS wih ERM or sove the CSE irough ERN
) y LIp reconstruction. We first examine ERM reconstruction from

and the application ofN-representability conditions to a knownlower RDMs. As described in Eq43) of Sec. 11l B,

similar model_by_Mlha|IOV|oand Rosind34] clear_ly indicate the ERM parametrizes the 4RDM in terms of a product of
that the quasispin model presents a challenging problem in

correlation despite the feasibility of direct solution. Hence antisymmetric, Hermitian matriceR® to preserve four-
\ P Yy T ‘ensemble representability. By contracting the parametrized
while the symmetry of the state in each level simplifies the

. . e 4RDM to the two-particle level as in Ed44), subtracting
computation, the model faithfully reproduces the difficulty of the known 2RDM from this parametrized 2RDM, and setting

the electronic correlation problem to provide an excellentthe resulting matrixE to the zero matrix. we obtain
benchmark for comparing many-body methods. 9 '

— t — T
\]+'+_2p a+1’pa+1’p \]_'—_Ep a—lypa—l,pl (47)

€ 2 2
H=2(3y o —3o )+VIE _+22 ). (48)

where thea; are the expansion coefficients. The{ 1)th

12

B. Numerical methods F= WLE(RR)—ZD:O, (52)

Having established the CSE, the reconstruction tech-
niques, and the Lipkin model, we now discuss the methodwhose elements are nonlinear equations that may be solved
by which the CSE may be solved for the 2RDM. To use theteratively for the unknowns irR by a Newton’s method.
reconstruction functionals with the CSE, we employ the fol-Since there are more elementsR®than equations, we have
lowing self-consistent procedure, similar to the one em-a rectangular Jacobiah[40] whose elements are calculated
ployed by Colmenero and Valdemofb6]. analytically by
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TABLE I. The errors in building the 3- and 4RDMs from a knoWnrepresentable 2RDM are reported through four different quantities,
described in detail within the table’s footnotes. All error measurements involve RDMs normalized to unity. For the 3RDM we examine
Valdemoro’s reconstruction functional as well as the functional with our correction for the 3RDM. For the 4RDM we present Valdemoro’s
reconstruction functional, the functional with Yasuda and Nakatsuji's correction, reconstruction by ERM, and finally, reconstruction by ERM
with the addition of the CSE condition.

Parameters 3RDM errors 4RDM errors 4RDM errors

N v Valdemoro Present Valdemoro Nakatsuiji ERM ERKISE
4 0.065 80 34.25x1073 4.26x 1074 1.47x10°2 2.13x 1078 0 0
b1.59x 1073 7.89x 1076 3.27x1072 3.16x 107° 0 0
€4.25x1073 8.37x 1076 3.94x10°4 8.37x 1076 0 0
94311072 6.50x 1075 1.56x10°? 8.86x 1074 0 0

6 0.040 72 1.2810°2 1.06x 1074 1.98x10°3 5.33x 1074 1.42x 1073 1.92x 10712
1.56x10°4 3.46x 1077 4.96x10™* 4.61x 107”7 0 0
1.25x10°3 1.23x 10°° 9.08<10°° 1.23x 1076 0 0
1.32x1073 1.19x 10°° 2.18x10°° 4.72x 107° 0 0

8 0.031 32 6.9510 % 5.04x 10°4 1.01x10°3 2.55x 1074 1.08x 1073 1.23x 1078
4.16x10°° 5.95x 1078 6.12x10°° 4.76x 1078 0 0
6.66x1074 4.39x 1077 5.25x10°° 4.39x 1077 0 0
7.22x1074 5.48x 1076 9.22x10°4 1.81x 1075 0 0

15 0.015 00 1.4410°* 5.80x 1078 2.04x10°4 2.97x 10°° 2.47x 1074 1.34x 10°°
2.07x10°°8 7.64x10°10 9.33x10° 7 2.55x 1077 0 0
1.35x10°4 2.39x 1078 9.20x10°° 2.39x 1078 0 0
1.52x104 5.40x 1077 1.44x10°4 1.55x 1076 0 0

25 0.009 171 5.2%10°° 1.38x 10°° 7.26x10°° 7.10x 1078 1.60x 1074 2.82x 107°
2.50x10°7 3.68x10° 1 5.46x10°8 6.69x10 12 0 0
4.80x10°° 3.45x 107° 3.55x10°° 3.45x 10°° 0 0
5.55x10°° 1.28< 1077 4.72x10°° 3.45x 1077 0 0

&The error in the reconstructed matrix measured by the infinity norm of its deviation from the exact RDM.

®The error in the 2RDM determined by contracting the approximate 3- or 4RDM to a 2RDM and then computing the infinity norm of its
deviation from the exact 2RDM.

“The energy error corresponding to the absolute deviation of the reconstructed RDM’s approximate energy from the exact energy.

4The error in the positive semidefiniteness of the matrix calculated by adding the squares of its negative eigenvalues and then taking the
square root.

o 0F duce a rectangular Jacobian as in EsR) which may be
Jk’,’lzaR—'- (52)  used to solve for the unknowns R through a Newton’s
k! method.

Although the Jacobiad is singular, a specific Newton direc-
tion is chosen by using the singular value decomposition
technique to select the direction with the minimal 2-norm
[50]. When N>4 the elements oR are underdetermined, Applying the techniques described above, we recon-
and a family of reconstructed 4RDMs will result. Since thestructed the 3RDM and 4RDM from a knowledge of the
exact 4RDM must obey the four-ensemble representabilityRDM. For the numbeN of fermions ranging from 4 to 25
and contraction conditions, it will be a member of the result-the reconstruction errors, measured in four different ways,
ing family. Newton’s method stops after it has located aare reported in Table | for ground states and Table Il for
single member of the family. An analogous procedure mayexcited states. Some errors will be given as the infinity norm
be employed to solve the CSE with ERM reconstructionof an error matrix. The infinity norm of a matrix is the maxi-
when the desired 2RDM isnknown Again the 4RDM is  mum row sum where the row sum is computed by adding the
parametrized with the elementsRfas in Eq.(43). Formulas  magnitudes of the elements in a given row. The four reported
for the lower RDMs in terms oR are obtained by contract- quantities are(1) the error in the elements of the recon-
ing the 4RDM. All of the RDMs in the CSE in Eq12) are  structed matrix measured by the infinity norm of its deviation
replaced with theiR matrix parametrizations, and the right- from the exact RDM(2) the error in the 2RDM determined
hand side of Eq(12) is moved to the left side to generate a by contracting the approximate 3- or 4RDM to a 2RDM and
system of nonlinear equations of the foFn=0. The index then computing the infinity norm of its deviation from the
ranges over each of the nonlinear equations represented lexact 2RDM,(3) the energy error corresponding to the ab-
the CSE in Eq(12). These nonlinear equatiof§=0 pro-  solute deviation of the reconstructed RDM’s approximate en-

C. Results and discussion

1. Reconstruction results
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TABLE Il. The errors in building the 3- and 4RDMs from a known excited-state 2RDM are reported through four different quantities,
described in detail within the table’s footnotes. All error measurements involve RDMs normalized to unity. The level of the excited state is
indicated by the subscript on the numbers of partidleS'he reconstruction techniques are the same as those tested in Table .

Parameters 3RDM errors 4RDM errors 4RDM errors

N Y, Valdemoro Present Valdemoro Nakatsuji ERM ERKISE
4, 0.065 80 #.66x1071 5.75<10°* 2.08 1.30 0 0
b4.43x 1072 3.64x10°? 3.75 1.46¢10°1 0 0
€1.18x10°* 1.90x1072 7.18<10°? 1.90x10°2 0 0
d1.09x10° ! 3.98x10°! 1.97 5.10<10° 1 0 0

10, 0.040 72 2.1%10°2 6.13<10°? 1.76x10°1 1.74x10°1 569X 1073 8.73x 1076
7.07x10°4 1.49x10°4 1.79x10°3 8.53x10°° 0 0
1.89x10°2 1.64x10°° 7.80x1073 1.64x10°3 0 0
1.48<10°2 3.61x1072 9.07x1072 4.62x1072 0 0

10, 0.03132 3.2K10°? 1.69x10°* 4.09x10°* 4.03x10°* 3.81x 1072 4.89% 1076
9.14x10°4 3.14x10°4 5.29x10°°2 1.80x10°4 0 0
2.44x107°2 2.89x10°3 1.49x10°? 2.89x10°° 0 0
1.91x10°2 1.10x1071 2.52x10°! 1.17x10° 1 0 0

25, 0.015 00 3.2%10°3 8.63x10°3 2.58x10 2 2.61x10°?2 1.83x 1073 9.26 x 10710
1.60x10°° 1.36x10°© 8.56x10°© 2.47x10°7 0 0
3.06x10°° 1.22x10°4 9.06x10 4 1.22x10°4 0 0
2.25x10°3 5.11x10°° 1.12x10°2 7.39x10°3 0 0

25, 0.009 171 6.0x 103 2.46x10°? 6.98x10 2 6.99x10 2 7.56 x 1073 8.01x 107”7
2.73x107° 3.55x10°° 3.01x10°° 6.46x10°7 0 0
5.23x10°°3 3.03x10°4 2.47x10°° 3.03x10°4 0 0
3.85x10°° 1.51x1072 3.57x10°? 2.01x10°? 0 0

&The error in the reconstructed matrix measured by the infinity norm of its deviation from the exact RDM.

®The error in the 2RDM determined by contracting the approximate 3- or 4RDM to a 2RDM and then computing the infinity norm of its
deviation from the exact 2RDM.

“The energy error corresponding to the absolute deviation of the reconstructed RDM’s approximate energy from the exact energy.

9The error in the positive semidefiniteness of the matrix calculated by adding the squares of its negative eigenvalues and then taking the
square root.

ergy from the exact energy, and) the error in positive from the 2RDM is consistent with the reconstruction theo-
semidefiniteness of the matrix by adding the squares of itsem and our ultimate goal of using these functionals with the
negative eigenvalues and then taking the square root. AICSE which only tests the two-electron space. Table |
error measurements are performed with RDMs that are noralso gives results for the ERM reconstruction that imposes
malized to unity. When reconstructing for excited states, wehe four-ensemble representability and contraction condi-
select as the initial guess the RDM of the energetically clostions. ForN=4 the ERM produces exact results as expected
est Hartree-Fock state. There are two parameters in the Ligrom Rosina’s theorem, and for ani, it yields zero
kin model: the level spacingand the interaction strength  for the last three criteria since the reconstructed 4RDM is
To make the energies dimensionless, we perform calcul&orced to have nonnegative eigenvalues and to contract
tions with the scaled Hamiltonian obtained by dividing the  correctly to the known 2RDM. The approximate 4RDM from
in Eq. (45 by e The dimensionless interaction strengththis scheme shows more deviation from the elements of
V (=Vl/e) is chosen for eachl to make the ratio of corre- the exact 4RDM than Nakatsuji's 4RDM. By adding the re-
lation energy to total energy in the Lipkin model consistentstriction that the 4RDM must obey the CSE, however, we
with the values reported in the literature for atoms with theobtain reconstruction results which are markedly superior to
corresponding numbeM of electrong51,57. those achieved by the reconstruction functionals. For all
Across all categories in Table | Nakatsuji's correction to methods adN increases, the RDM approximations increase
Valdemoro’s 4RDM and the present correction to Valde-in accuracy.
moro’s 3RDM significantly improve the accuracy by one or  While the reconstruction results for some excited states at
more orders of magnitude. These improvements are consislifferentN values are presented in the same format in Table
tent with those reported by Nakatsuji for the four-electron Bell, there are several important differences in the data. Accu-
atom[19]. While Nakatsuji employs the exact 3RDM in his racy of reconstruction in all categories is significantly less
reconstruction results for the 4RDM, we build the 4RDM for the given excited states than for the ground state. This is
with the exact 2RDM but a 3RDM obtained by the correctiveespecially pronounced for the reconstruction functionals.
technique proposed in the present paper. Hence, ouklso, the corrections to Valdemoro’s functional offer a more
implementation of Nakatsuji's improved 4RDM formula ac- nebulous improvement. Although the errors in the energies
tually includes the present 3RDM correction. Building only and 2RDMs decrease with the correction for the 3RDM, the
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TABLE Ill. The CSE and wave function approaches are compared for the calculation of ground-state energies and 2RDMs. Energies are
reported first, and then the error in the 2RDM is given as measured by the infinity norm of its deviation from the exact 2RDM. All error
measurements involve RDMs normalized to unity. Solutions of the CSE by both the functional and ERM reconstruction methods are
presented.

Parameters CSE approach Wave function approach

N Ecorr/ ErciX100% Y, Functional ERM Hartree-Fock SDCI Full CI

4 0.643 0.065 80 -2.01275 —-2.012 95 -2 -2.01291 —2.012 95
2.82x 107* 0 3.80x10°2 2.52x10°4 0

6 0.413 0.040 72 —3.012 35 —3.012 53 -3 —3.012 36 —3.012 45
1.54% 1074 2.78x 10°° 2.41x107? 3.73x 1074 0

8 0.344 0.031 32 —4.01373 —4.013 94 -4 —4.013 64 —4.01379
1.18x 1074 4.11x 1075 1.90x10 2 4.39x10°* 0

10 0.303 0.025 90 —5.01517 —5.015 40 -5 —5.014 98 —5.01519
9.94x 10°° 4.73x 10°° 1.60x10°2 4.76x10°4 0

15 0.158 0.015 00 —7.511 94 —-7.512 02 -75 -7.51174 —7.511 90
3.74%x 107° 1.70x 1075 9.16x10°3 2.56x 1074 0

20 0.126 0.011 46 —10.012 66 —10.012 79 -10 —10.012 40 —10.012 59
2.75% 107° 2.33x 10°° 7.08x10°3 2.28<1074 0

25 0.102 0.009171  -12.51283 —12.512 97 -125 —12.512 54 —12.512 74
2.10x 107° 2.09x 10°° 5.69x10 3 1.95x10 4 0

40 0.0647 0.005730  —20.01307 —20.013 24 -20 —20.012 72 —20.012 95
1.22x 10°° 1.68x 10°° 3.58x10°° 1.33x10°* 0

errors in the 3RDM elements and the positivity actually be-the nonvariational nature of the CSE methods. Additional
come worse. Similarly, for the 4RDM the corrections only accuracy for the 2RDM will be very useful when computing
contribute to fixing the 2RDM and energy errors. This con-expectation values other than the energy. While Yasuda and
trasts markedly with the ground-state results in Table | wherdakatsuji solve the CSE for systems with four to 14 elec-
improvement from the corrections was evident in all categotrons[19], our results show that the method remains prom-
ries. For excited states the ERM generates an approximatideing for larger numbers of fermions.

to the 4RDM that is more accurate in all categories than any The power method cannot be applied to excited states
functional reconstruction. Again adding to the ERM because it will converge to the state with the maximum ab-
the CSE, which enforces the correct behavior for the locabkolute eigenvalue. This may explain why Colmenero and
energy, improves the reconstruction by many orders of magvaldemoro’s attempt to calculate the excited states of Be
nitude. with the CSE resulted in the convergence upon the ground
state[16]. We also found that the power method would not
work for the excited states of the Lipkin model. However, by

Within the CSE th . h ilized using the ERM with a Newton’s method, we were able to
ithin the the reconstruction schemes are utilized Qi the first excited-state results for the CSE, given in

determine the 2RDM directly without generating the wave
function. These CSE methods will be compared with three 3
standard wave function approaches: Hartree-Fock, single-
double configuration interaction, and full configuration inter-
action (FCI). As an initial guess for the 2RDM in the CSE
methods we choose the Hartree-Fock 2RDM. In Table Il the
energies are reported first and then the error in the 2RDM
measured by the infinity norm of its deviation from the exact w'
2RDM. As in reconstruction these results are for 2RDMs + !
normalized to unity. With the corrective terms the recon- "~

2. CSE results

2 F

FCI)

mo UF

0

‘approx

Functional

struction functional technique yields energies that are ERM

slightly better than SDCI. The energies from the ERM ap- -3 : : : : : . .

proach, which all happen to be lower than the true energies, 0 5.1 5200 25 300 35 40
Number of Fermions (N)

fall below the FCI results by about the same amount that the
SDCI energies are above them. These trends in energy with g1 1. The approximate energies, produced by the CSE with
N are displayed for the CSE techniques and SDCI in Fig. 1the ERM and functional reconstruction methods as well as SDCI,
As noted by Nakatsuji and Yasuda in their calculations, theyre displayed as deviations from the FCI energies. By the varia-
approximate 2RDMs from the CSE methods are about amonal principle the SDCI energy is always an upper bound to the
order of magnitude better than the 2RDMs from SDCI. ThisFCI energy. Both CSE techniques yield energies comparable in
important improvement, illustrated in Fig. 2, may arise fromerror to those from SDCI. Note that all energies are dimensionless.
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of coupled CSEs for the 2RDMs dr2 T RDMs, we might
differentiate the equations with respect to a correlation pa-
rameter in the Hamiltonian to produce differential equations
for the changes in the RDMs and the energy differences. As
in the parametric equations of motion methods for solving
the Schrdinger equation[53,54, the energies and the
RDMs in the CSEs could be propagated from a known limit
like Hartree-Fock to the correlated solution. While furnish-
ing an exact reconstruction, this approach requires calculat-
ing with 2RDMs anl 2 T RDMs for all the wave functions of
the system.

Since the CSE technique may provide a fresh alternative
to contemporary wave function calculations, it is important

FIG. 2. The logarithmic errors in the approximate 2RDMs, gen-for us to investigate its connections with traditional quantum
erated by the CSE with the ERM and functional reconstructioncalculations, especially configuration-interaction methods. In
methods as well as SDCI, are shown for a ranghlofVe measure  both Hartree-Fock and single-double configuration interac-
the error in an approximate 2RDM by taking the infinity norm of its tion we are using an incomplete basis set, and hence, we
deviation from the exact 2RDM. Results indicate that the CSEobtain upper bound solutions by the variational principle. In
methods produce 2RDMs which are generally an order of magnicontrast the CSE calculations are performed with a 2RDM
tude more accurate than those from SDCI. that represents the full-Cl basis. Forcing the 2- and 4RDMs

to be N-representable within the CSE produces the FCI re-

Table IV. While the first excited state was procured with ansult. When N-representability conditions are not fully ap-
accuracy comparable to the ground state, the second excit@lied, the basis set is overcomplete, and variational minimi-
state gave energies that were quite lower than those fromation of the energy from the CSE will yield a lower bound.
FCI. The success of the first excited state may be related talthough the energies from our solution of the CSE with
the fact that it does not mix with the ground state since theyeRM restrictions gave energies lower than the exact ener-
differ in parity. Both states reconstructed with about thegies, we were not guaranteed lower bounds because we did
same accuracy in Table II, and yet they exhibit quite differ-not minimize the energy. Overcompleteness of the basis
ent accuracy when determined with the CSE. arises for correlated systems because, while excitations from

These calculations show that the CSE may be applied tthe ground state of a Hamiltonian without particle interac-
excited states. Another method for obtaining excited stategjons (i.e., HP are orthogonal, excitations from correlated
already suggested although not computed by Colmenero amdave functions are not orthogongd5]. Related problems
Valdemoro[16], would involve directly solving the CSE for occur in other approaches to correlation, including Green’s
the transition RDM between the ground state and an excitetlinction theory, and require the use of inner projection or
state. Reconstruction functionals, similar to those employe@Bram-Schmidt orthogonalizatiof66,57. Hence, for one-
for building the ground-state 3- and 4RDMs from the particle Hamiltonians like the one for HF the higher RDMs
2RDM, are derivable for the transition RDMs. If a large may be readily reconstructed from the 1RDM. The 2RDM
number of excited states are required, we could follow theand 3RDM are'D'D and *D'DO'D, respectively, while
2RDMs for all of the excited states as well as the two-in general thep-RDM is DP where the right superscript
particle transition RDM$2 T RDMs). Since the 4RDMs and indicates that the 1RDM should be wedgpdtimes with
the 4 T RDMs may be resolved with the 2RDMs and the 2 Titself. Building higher RDMs from the 2RDM for correlated
RDMs, associated with a complete set of eigenstpdd$ systems requires a more complicated reconstruction func-
the CSE would no longer be indeterminate. To solve this setional. Overcompleteness manifests itself in that commuta-

Functional

I ) S R I I ) TR
0 5 10 15 20 25 30 35 40

Number of Fermions (N)

TABLE IV. The CSE and wave function approaches are compared for the calculation of excited-state energies and 2RDMs. We report
the error in the 2RDM as measured by the infinity norm of its deviation from the exact 2RDM. All error measurements involve RDMs
normalized to unity. The CSE is solved with the ERM reconstruction technique in which four-ensemble representability and contraction
conditions are imposed.

Parameters CSEERM Hartree-Fock Eul
u

N Ecorr/ ErcX100% Y, Energy 2RDM error Energy 2RDM error Cl
6, 1.22 0.04072 —2.024 58 5.0%10°° -2 4.59x10 2 —2.02472
63 1.69 0.040 72 —1.023 06 1.5&1073 -1 3.21x107? —1.017 14
8, 1.02 0.03132 —3.03051 8.3&10°° -3 4.10<10°? —3.030 80
85 1.48 0.031 32 —2.058 12 5.7%10° % -2 3.75x10 2 —2.03002
10, 0.897 0.025 90 —4.03572 1.1%10°4 -4 3.71x10°2 —4.036 20
10, 1.34 0.025 90 —3.090 21 8.2%10° 3 -3 3.98x10°2 —3.040 85
15, 0.472 0.015 00 —6.530 36 7.0kx10°° -6.5 3.00<10°? —6.530 81
15, 0.735 0.015 00 —5.585 14 5.4%10°3 -55 2.3%10°2 —5.540 74
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tion and anticommutation relations for composite particlesstorage requirements of the algorithms developed to treat
do not obey simple fermion or boson statist[e,42,43. electronic systems. Valdemoro has just reported a recon-
While this greater complexity is generally perceived as astruction algorithm which avoids storage of the 4RDRO].
hindrance to solving thé&l-representability problem, Valde- Future research will involve searching for the most efficient
moro uses this complexity to generate the approximatend accurate implementations of the CSE techniques for at-
RDMs from the lower RDMs. oms and molecules. Through its direct determination of the
2RDM without the wave function the CSE, coupled with a
reconstruction strategy, provides a fresh path towards the

V. CONCLUSION calculation of electron correlation.
Distinguished from traditional quantum calculations
which variationally compute thii-particle wave function in ACKNOWLEDGMENTS
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the CSE cannot be used to solve for the 2RDM since it alsq,, support
depends on the 4RDM. Recently, however, Valdemoro has '
overcome this difficulty through a reconstruction scheme for
building approximations to the 3- and 4RDMs from the
2RDM. We present a simpler representation for Valdemoro’s  The Grassmaniior wedgé product of ag-RDM with a
formulas through the notation of wedge product from the(p—q)-RDM may be expressed as

theory of Grassmann algebra. While Nakatsuji has recently

obtained a significant correction to Valdemoro’s 4RDM from IpOP-ID=ADRP IDA, (A1)

the use of schematic Green’s function diagrams, we show

that the same correction may also be achieved from the pelvhere theAy is the N-particle antisymmetrization operator
spective of particle-hole equivalence. A correction for theand ® is the tensor product. To utilize this formula in a
3RDM, different from the given if19] but also consistent calculation, we must understand the technique for evaluating
with the improved 4RDM, is also derived. We justify the Wedge products of matricggl7]. Let us first consider the
approximation of higher RDMs as functionals of the 2RDM Wedge producC of two one-particle matrices}A and *B,

by demonstrating a result, originally proved by Rosina, that 2c—1a0B A2)

the 2RDM for a ground electronic state contains enough in- - '

formation to determine thBl-particle ensemble density ma- The elementsik"", of the matrix2C may be obtained fromik

trix completely without any information about the Hamil- i . I .
tonian other than that it has no more than two-particleand bi by summing the distinct products arising from all

interactions. We extend this result by proving that the 2RDM§miSymm?triC permut_ations of the upper_ind_ices an(_JI all an-
for any state, distinguishable from the other states of thd'Symmetric permutations (.)f the Io.wer indices. With the
system by some two-particle operator, uniquely determines _edge prodL_Jc.t_c.)f one-particle matrices there are only four
pure density matrix oN particles. This result prepares us for istinct possibilities
the extension of the CSE method beyond the ground state. In i mirh — L aimi alhi_ alki 1 alki
addition to the reconstructive functional approach we present Cki= &b =z (abi —abi—abiraiby. (A3
another reconstruction methd@&RM) based on imposing \More generally, we can write the elements of the wedge
four-ensemble representability and contraction conditions. product as

The CSE with the functional and ERM reconstruction
schemes is illustrated through Lipkin’s quasispin model.gi1-i2:ip qpip+1:-in
Both schemes produced energies as accurate as SDCI whilé&'2"/p JprirIn
the resulting 2RDMs had elements that were generally more 2 o :
accurate than those from SDCI by an order of magnitude. =(m) > e(me(o)moalt iz bt N (Ad)
This may significantly improve the accuracy of the expecta- oome przme fpran

tion values for observables of the system other than the ens which o represents all permutations of the upper indices

ergy. We report the first re_sults from a}pplylng the.CSEandcr represents all permutations of the lower indices while
method to excited states. While the energies and densities fo functione() returns+1 for an even number of transpo-

the excited states were not consistently as good as for thﬁtions and—1 for an odd number of transpositions. Since

T o e o v eae o i the uper and the e ncces epermtaions,
p ' PP ere are K!)? terms in the sum. Hence, normalization re-

methods to systems with abo_ut 14 electrons. Our results wit uires division by N!)2 If, however, the elements
as many as 40 particles confirm that accuracy of the method;_ i, ., b andpiptlin read i i in thei
is maintained with increasing numbers of particles. The sucail,Jz ..... ip an Jpr1rdn are already antisymmetric in their
cess of the CSE method will depend on the efficiency andipper and lower indices, onlyN!/(p!q!)]? of the above

APPENDIX A: GRASSMANN PRODUCTS
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terms will be distinct. This allows us to decrease the numbeof a level are indistinguishable. We can condense the infor-
of numerical operations required for computing the wedgamation in the 1RDM by summing over all values pfto
product. For wedge products between matrices with the samabtain

number of upper and lower indices we have an important

commutation relation 1Cm1_2 1pmi P

) m, m,.p (B33
pA'l dgae IquB p+1red 'N_qB'l ----- 'quAq+l ----- 'N P
J10d9eee Ip Jprardn dpee iq Jgeirin (AS)
_ » =2 (Ylah, pam, pl ) (B3b)
or without the indices P
PACYB=9BPA. (A6) = (I, my ¥, (B30

If the sum (p+q) is odd, exchanging the upper indices
with g upper indices will produce a minus sign, but this will
be canceled by another minus sign produced by exchangmgCm ; then we can determine the 1RDM elements for pny
the lower indices. In many cases it will be easier and clearegmce
to write the wedge products as in the second foA®) with-

out specifying a particular element through indices.

where 1Cml is the condensed 1RDM. Note that if we know

1Dml"—lc”‘l. (B4)

my. P N "M
APPENDIX B: CALCULATIONAL DETAILS
OF THE LIPKIN MODEL By the last two relations the mapping between the condensed

1RDM and the 1RDM is completely defined. The condensed
Wave functions for the Lipkin model are readily obtained 5 has the form

by diagonalizing the Hamiltonian in a basis set of the angular

momentum states af, for J=N/2. As the raising and low- mom (e o). B)

ering operators of angular momentum, the operators. ~ °C Crngom.— > D D (g o). (M) (B53
andJ_ , have a well-defined action on the basis functions of P1.P2

J,. The result of applying the operatals , andJ_ _ may

be determined by expressing them directly in terms)af

Remember thatJZ}Z/ givgs the c?ifference betV\}//een the nuz?nber 2 <<ﬂ| Ams.p m2 ma g o, m1|¢>

of fermions in the upper level and the number in the lower (B5b)
level while the total number of fermions is just the sum of 1
the fermions in the upper and lower levels. Hence, the op- _ = _

eratorsJ, , andJ_ _, which extract the number of par- 2! (<¢|Jml,m3~]m2,m4|<ﬂ> 5m2,m3<¢|3m1,m4|$>)-
ticles in the upper and lower levels, respectively, must be (B50)

related toJ, b
y Again we have the mapping

Ji +=N+2J, andJ_ _=N-2J,. (B1)
') - . . (Mmg,p1).(M2,p2) _ ;z my,m, (B6)
nce we have the wave functions, we are interested in ob- (Mg,pp)(Mg.Pp2)~ N(N—1) ~Mg.my’

taining the reduced density matrices. Let us examine the

second-quantized definition for the 1RDM where now the factor involves division by(N—1) since
IR the 2RDM vanishes ip; = p,. From the antisymmetry of the
D, p =(ylag, p,8m, p,l - (B2)  2RDM we also have

Transitions between different values pfare forbidden be- (My.pu(maupp) L 5 mymy B7)

cause in the configurations that mix with the noninteracting (Mg,p).(mg,py) — N(N—1) ~my.mg’

ground state more than one fermion cannot have the same

quantum numberp. For this reason the elements of the As with the 1RDM, these formulas provide a complete map-
1RDM will vanish unlesg; = p,. Furthermore, the value of ping between the condensed 2RDM and the true 2RDM. In a
1D2;:S must be the same for gli since the different states similar fashion we obtain the higher RDMs.
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