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Contracted Schrödinger equation: Determining quantum energies and two-particle density
matrices without wave functions
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~Received 18 July 1997; revised manuscript received 30 October 1997!

The contracted Schro¨dinger equation~CSE! technique through its direct determination of the two-particle
reduced density matrix~2RDM! without the wave function may offer a fresh alternative to traditional many-
body quantum calculations. Without additional information the CSE, also known as the density equation,
cannot be solved for the 2RDM because it also requires a knowledge of the 4RDM. We provide theoretical
foundations through a reconstruction theorem for recent attempts at generating higher RDMs from the 2RDM
to remove the indeterminacy of the CSE. With Grassmann algebra a more concise representation for
Valdemoro’s reconstruction functionals@F. Colmenero, C. Perez del Valle, and C. Valdemoro, Phys. Rev. A
47, 971 ~1993!# is presented. From the perspective of the particle-hole equivalence we obtain Nakatsuji and
Yasuda’s correction for the 4RDM formula@H. Nakatsuji and K. Yasuda, Phys. Rev. Lett.76, 1039~1996!# as
well as a corrective approach for the 3RDM functional. A different reconstruction strategy, the ensemble
representability method~ERM!, is introduced to build the 3- and 4-RDMs by enforcing four-ensemble repre-
sentability and contraction conditions. We derive the CSE in second quantization without Valdemoro’s matrix
contraction mapping and offer the first proof of Nakatsuji’s theorem for the second-quantized CSE. Both the
functional and ERM reconstruction strategies are employed with the CSE to solve for the energies and the
2RDMs of a quasispin model without wave functions. We elucidate the iterative solution of the CSE through
an analogy with the power method for eigenvalue equations. Resulting energies of the CSE methods are
comparable to single-double configuration-interaction~SDCI! energies, and the 2RDMs are more accurate by
an order of magnitude than those from SDCI. While the CSE has been applied to systems with 14 electrons, we
present results for as many as 40 particles. Results indicate that the 2RDM remains accurate as the number of
particles increases. We also report a direct determination of excited-state 2RDMs through the CSE. By cir-
cumventing the wave function, the CSE presents new possibilities for treating electron correlation.
@S1050-2947~98!02406-8#

PACS number~s!: 31.10.1z, 31.25.2v
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I. INTRODUCTION

Knowledge of the two-particle reduced density mat
~2RDM! allows one to calculate the energy and other obse
ables for atomic and molecular systems with an arbitr
numberN of electrons. For a quantum system, fully chara
terized by a singleN-particle wave function, theN-particle
density matrixND is the kernel of the wave function’s pro
jection operator. By integrating the density matrixND over
(N22) particles, we obtain the 2RDM which contain
enough information to calculate the expectation values
any operator with only two-particle interactions like the ele
tronic Hamiltonian@1–3#. Although a direct determination o
the 2RDM would avoid the difficult calculation of th
N-particle wave function and yet still provide us with th
most relevant electronic structure information for atoms a
molecules, variation of the 2RDM elements to minimize t
energy has not been possible because a simple se
N-representability conditions to ensure that the 2RDM r
resents a realisticN-particle system has not been found@4–
13#. Recent theoretical and computational results, howe
involving the contracted Schro¨dinger equation~CSE!, also
known as the density equation, rekindle the possibility of
accurate method for generating the 2RDM without the wa
function @14–20#.

The CSE was initially derived in 1976 as an integr
571050-2947/98/57~6!/4219~16!/$15.00
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differential equation in the works of Cohen and Frishbe
@21# and Nakatsuji@22#. Harriman@23# presented in 1979 a
matrix version of the CSE in terms of contraction operato
and in 1985 Valdemoro obtained a matrix formulation of t
CSE by contracting the Schro¨dinger equation to the two
particle space in second quantization@24#. Just as the Schro¨-
dinger equation describes the relationship between
N-particle Hamiltonian and its wave function~or density
matrix ND!, the CSE connects the two-particle reduc
Hamiltonian and the 2RDM. However, because the CSE a
depends on the 4RDM, it is indeterminate without addition
constraints@23#. We will derive a matrix formulation of the
CSE in second quantization without Valdemoro’s gener
ized contraction mapping@18,25,26#. The derivation empha-
sizes a test function approach which easily generates the
tracted equation from the matrix form of the Schro¨dinger
equation. Nakatsuji@22# proved in 1976 that with the as
sumption of pureN representability@3# a 2RDM and a
4RDM will satisfy the integro-differential version of th
CSE if and only if they correspond to anN-particle wave
function that satisfies the corresponding Schro¨dinger equa-
tion. We provide a proof of Nakatsuji’s theorem@22# for the
second-quantized CSE.

Employing the particle-hole equivalence, Valdemoro h
derived formulas for reconstructing the 3- and 4RDMs fro
the 2RDM to remove the indeterminacy of the CS
4219 © 1998 The American Physical Society
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4220 57DAVID A. MAZZIOTTI
@14,15,27#. Recently, Nakatsuji and Yasuda have added
additional term to each of these formulas by considering
decoupling diagrams for Green’s functions@19#. Nakatsuji’s
correction for the 3RDM, involving the solution of a syste
of equations, requires the Hartree-Fock 1RDM. We achiev
significantly simpler representation for Valdemoro’s form
las through the notation of Grassmann algebra@28,29#. Fur-
thermore, we derive Nakatsuji’s corrective term for t
4RDM within the framework of the particle-hole equivalen
and a new corrective 3RDM term, different from Nakatsuj
but also consistent with the accuracy of the improv
4RDM. Valdemoro and co-workers@16,20# have employed
the reconstruction formulas to achieve iterative solutions
the CSE for atoms and molecules with around 4–6 electro
and more recently, Nakatsuji and Yasuda@19# have used the
formulas with their corrections to solve the CSE for molec
lar systems with four to 14 electrons.

The CSE approach emphasizes the connections betw
the problems of reconstruction andN-representability. We
investigate the reasons why the 2RDM has enough infor
tion to build higher RDMs. If the Hamiltonian for an elec
tronic problem is explicitly employed in the reconstructio
the 1-density alone is theoretically sufficient to determine
wave function and hence the higher RDMs through the th
rem of Hohenberg and Kohn~HK! @30,31#. However, the
reconstruction functionals, employed here as well as in p
vious work, involve only the 2RDM without any explici
references to the Hamiltonian. Therefore the HK theor
does not directly apply to the reconstruction problem
which we are interested. To demonstrate that the 2RDM
sufficient, we instead will prove and extend an importa
theorem, originally demonstrated by Rosina@32#. Rosina
showed that the ground-state 2RDM for a quantum sys
completely determines the exactN-particle ground-state
wave functionwithout any specific information about th
Hamiltonian other than it must have no more than tw
particle interactions. A consequence of this theorem is
any ground-state electronic 2RDM exactly determines wit
the ensembleN-representable space a unique series of hig
p-RDMs where 2,p<N. These results provide importan
justification for the functional description of the high
RDMs in terms of the 2RDM.

With the theoretical basis of Rosina’s theorem, we p
pose a new reconstruction scheme, which we call the
semble representability method~ERM!, in which thep-RDM
is generated from the 2RDM by imposing contraction a
p-ensemble representability conditions. For ap-RDM to be
p-representable it must be Hermitian, antisymmetric, a
positive semidefinite. Unlike the functional approach th
yields a single approximate solution, this method generat
family of solutions that contains the exact solution. Just
the reconstruction functionals act likeN-representability
conditions, the ensemble representability conditions can
be used to achieve an approximate reconstruction. The E
will produce more accurate reconstructions asp approaches
N, and whenp5N, the reconstruction becomes exact
Rosina’s theorem. The ERM results forp54 are comparable
to those from the functional approach. Moreover, the res
ing solutions of the CSE with four-ensemble representab
are equivalent in accuracy to the 2RDMs produced thro
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the solution of the CSE by Valdemoro’s reconstruction fo
mulas with corrections.

Both ERM and functional reconstruction techniques
solving the CSE will be illustrated through a quasisp
model, originally used by Lipkin as a benchmark to compa
several many-body methods for studying correlation in f
mionic systems@33,34#. Results indicate that the method
produce energies equivalent to those from single-dou
configuration-interaction~SDCI! calculations, and 2RDMs
that are an order of magnitude more accurate than those
tained by SDCI. We present results of the method for m
erately large numbersN of fermions as well as results o
excited states. Unlike most traditional quantum metho
which truncate the number of excitations beyond t
Hartree-Fock reference state, this method works within a
duced particle space which is equivalent to the full-CI bas
N-representability is approximated for a direct determinat
of the density matrix.

II. CONTRACTED SCHRÖ DINGER EQUATION

A quantum system ofN fermions may be characterized b
the Schro¨dinger equation~SE!

Hucn&5Enucn&, ~1!

in which the wave functioncn depends on the coordinate
for the N particles. In this section we show that within a
N-representable space we may solve for the 2RDM dire
through a contraction of the SE to the two-particle spa
While the resulting contracted Schro¨dinger equation canno
be directly solved for the 2RDM withoutN-representability
constraints since the CSE also depends on the 4RDM,
proximations of the 4RDM in terms of the 2RDM have r
cently produced promising results@16,19,20#. Beginning
with the SE, we will obtain Valdemoro’s form of the CSE i
second quantization in a fashion which does not requir
knowledge of the generalized matrix contraction mapp
~MCM! @16,24–26#. The derivation emphasizes the use
test functions for performing the contraction of the SE to t
lower particle space. We will also present a proof of Nak
suji’s theorem@22# for the CSE in second quantization.

A. Derivation in second quantization

Within second quantization@35# the Hamiltonian operator
may be expressed as

H5 1
2 (

p,q;s,t

2Ks,t
p,qap

†aq
†atas , ~2!

where the elements of the two-particle reduced Hamilton
2K are given by

2Ks,t
p,q5~p,s;q,t !1

1

N21
~dq,tep,s1dp,seq,t!. ~3!

The two-electron repulsion integrals are represented by
Mulliken symbol (p,s;q,t),
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~p,s;q,t !5 K fp~1!fq~2!U 1

r 12
Ufs~1!f t~2!L ~4!

while one-electron portions of the Hamiltonian are includ
in the matrixe,

ep,s52K fp~1!U¹1
2

2
1

Z

r 1
Ufs~1!L . ~5!

Because theN-particle Hamiltonian (H) contains only two-
electron excitations, the expectation value ofH yields a for-
mula for the energy involving just the 2RDM,

E5 (
p,q;s,t

2Ks,t
p,q 2Ds,t

p,q5Tr~ 2K2D !, ~6!

where

2Ds,t
p,q5

1

2!
^cuap

†aq
†atasuc&. ~7!

In general, thep-RDM in second quantization is defined a

pD j 1 , j 2 ,..., j p

i 1 ,i 2 ,...,i p 5
1

p!
^cuai 1

† ai 2
†
¯ai p

† aj p
aj p21

¯aj 1
uc&, ~8!

and the normalization isN!/ @p!(N2p)! #. Variation of 2D
to produce the lowest energy will generate the ground-s
energy of the reduced Hamiltonian2K which will usually be
much lower than the energy of the many-particle Ham
tonian H. To obtain the correct energyE of the N-electron
Hamiltonian H, we must impose additionalN-represent-
ability constraints on the 2RDM to ensure that it is deriva
from an antisymmetricN-particle wave functionc through
the integration of its associated density matrix.

To derive the CSE rather than the expectation value,
define functionŝ Fk,l

i , j u to test the two-electron space

^Fk,l
i , j u5^cuai

†aj
†alak . ~9!

Taking the inner product of the test functions with the S
produces

^cuai
†aj

†alakHc&5E^cuai
†aj

†alakuc&52E 2Dk,l
i , j .

~10!

If we substitute for the Hamiltonian operator in Eq.~2!, we
obtain the relation

(
p,q,s,t

2Ks,t
p,q^cuai

†aj
†alakap

†aq
†atasuc&54E 2Dk,l

i , j . ~11!

Using a graphical rule@26# to rearrange the creation an
annihilation operators on the left-hand side to produ
RDMs, we generate Colmenero and Valdemoro’s 2,4-C
@16#

~ 2K 2D!k,l
i , j 13 (

p,q,t
~ 2Ki ,t

p,q 3Dk,t,l
p,q, j12K j ,t

p,q 3Dl ,t,k
p,q,i !

16 (
p,q,s,t

~2Ks,t
p,q 4Ds,t,k,l

p,q,i , j !5E 2Dk,l
i , j . ~12!
d

te

-

e

e
E

Evaluation of the first term in the above equation involv
multiplying matrices2K and 2D and then selecting the ele
ment of the resulting matrix, specified by the indices. W
have derived the 2,4-CSE through test functions rather t
the generalized MCM. A 1,3-CSE may also be produced
replacing the doubly excited test functions in Eq.~9! with
test functions formed by single excitations of the groun
state wave function. Similarly, a 3,5-CSE and a 4,6-C
may be created with test functions using triple and quadru
excitations, respectively. Since the 2,4-CSE is the focus
this paper, we will simply refer to it as the CSE.

B. Nakatsuji’s theorem

While previous work@16,19# on the CSE has assume
that Nakatsuji’s theorem, proven in 1976 for the integr
differential form of the CSE, remains valid for thesecond-
quantizedCSE, we present a formal proof. Nakatsuji’s the
rem is the following: if we assume that the density matric
are pureN-representable, then the CSE may be satisfied b
2D and 4D if and only if the preimage density matrixND
satisfies the Schro¨dinger equation. The above derivatio
clearly proves that the SE implies the CSE. We only need
prove that the CSE implies the SE. The SE equation can
satisfied if and only if

^cuH2uc&2^cuHuc&250, ~13!

known as the dispersion condition@36#. Multiplying both
sides of the CSE in Eq.~11! by the reduced Hamiltonian
elements2Kk,l

i , j and summing over the remaining indices pr
duces

K cUS 1

2 (
i , j ;k,l

2Kk,l
i , j ai

†aj
†alakD S 1

2 (
p,q;s,t

2Ks,t
p,qap

†aq
†atasD UcL

5ES (
i , j ;k,l

2Kk,l
i , j 2Dk,l

i , j D . ~14!

By Eq. ~6! the sum on the right-hand side of the above eq
tion is equal to the energyE, and from Eq.~2! we realize that
the sums on the left-hand side are just Hamiltonian opera
in the second-quantized notation. Hence, when the 2R
corresponds to anN-particle wave functionc, Eq. ~14! im-
plies Eq.~13!, and the proof of Nakatsuji’s theorem is a
complished. Because the Hamiltonian is defined in sec
quantization, the proof of Nakatsuji’s theorem is also va
when the one-particle basis set is incomplete. Recall that
SE with a second-quantized Hamiltonian corresponds t
Hamiltonian eigenvalue equation with the given one-parti
basis. Unlike the SE, the CSE only requires the 2- a
4RDMs in the given one-particle basis rather than the
N-particle wave function. While Nakatsuji’s theorem hold
for the 2,4-CSE, it is not valid for the 1,3-CSE. This for
shadows the advantage of reconstructing from the 2R
instead of the 1RDM which we will discuss in the context
Rosina’s theorem.

III. THEORY OF RECONSTRUCTION

Both Valdemoro and co-workers@16,20# and Nakatsuji
and Yasuda@19# have recently solved the CSE by approx
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4222 57DAVID A. MAZZIOTTI
mating the 4RDM as a functional of the 2RDM. In the fir
section we derive Valdemoro’s approximate reconstruct
functionals for the first time in the notation of Grassma
algebra@28,29#. Furthermore, we derive Nakatsuji and Yas
da’s recent corrective term for the 4RDM functional throu
the particle-hole equivalence rather than with Green’s fu
tion decoupling diagrams and provide a corrective appro
for the 3RDM. A central question of the reconstruction pro
lem is whether knowledge of the 2RDM conveys enou
information to generate the 4RDM. In the second section
will answer this question through a theorem by Rosina@32#
and an extension of the theorem for excited states. We
introduce an approach to reconstruction, the ensemble re
sentability method, in which ensemble 4-representability a
contraction conditions are employed to build the 4RD
from the 2RDM without an approximate functional.

A. Reconstruction functionals

Valdemoro’s derivation of the 3RDM and 4RDM func
tionals relies on the relationship between particles and ho
Traditionally, many-body quantum-mechanical systems
described in terms of their particles because there are us
many fewer particles than holes. Within second quantiza
or Grassmann algebra, however, the Hamiltonian fo
many-particle system may also be expressed in terms o
holes. When computing the energy of anN-particle Hamil-
tonian expressed in holes, we must multiply the hole Ham
tonian H̄ by the (r 2N)-hole matrix (r 2N)D̄ before taking
the trace

E5Tr~H ND !5Tr~H̄ ~r 2N!D̄ !, ~15!

wherer is the rank of the one-particle basis set@37#, and the
general definition for thep-hole reduced density matri
~p-HRDM! is

pD̄ i 1 ,i 2 ,...,i p

j 1 , j 2 ,...,j p5
1

p!
^cuaj 1

aj 2
¯aj p

ai 1
† ai 2

†
¯ai p

† uc&. ~16!

Normalization of thep-HRDM in second quantization is (r
2N)!/ @p!( r 2N2p)! #. As in the particle case, if we use th
two-hole reduced Hamiltonian2K̄, we can express the ex
pectation value with the 2HRDM2D̄,

E5Tr~H̄ ~r 2N!D̄ !5Tr~ 2K̄ 2D̄ !. ~17!

To directly minimize the energy with respect to paramet
in the 2HRDM, we would need to restrict the 2HRDM to th
family of (r 2N)-ensemble representable matrices.

Mathematically, the particle-hole equivalence manife
itself in that the particle and hole matrices exist in dual v
tor spaces. This means that ap-RDM may be written as a
linear functional of thep-HRDM as well as lower HRDMs,
and similarly, thep-HRDM may be written as a linear func
tional of thep-RDM and lower RDMs@38,39#. Valdemoro
derives the functional dependence of thep-HRDM on the
p-RDM by applying the fermion anticommutation rule

ai
†aj1ajai

†5d i , j ~18!
n

-
h

-
h
e

so
re-
d

s.
re
lly
n
a
he

l-

s

s
-

to the definition of thep-HRDM in second quantization to
convert it to thep-RDM. Taking the expectation value of th
above relation, we obtain the linear relationship between
elements of the 1RDM and the 1HRDM,

1D j
i 1 1D̄ i

j5 1I j
i . ~19!

Converting the 2HRDM into a 2RDM produces the expre
sion

2D̄ i 1 ,i 2

j 1 , j 25~d j 1

i 1d j 2

i 22d j 1

i 2d j 2

i 1!/22 1D j 1

i 1d j 2

i 21 1D j 2

i 1d j 1

i 21 2D j 1 , j 2

i 1 ,i 2 ,

~20!

which contains a sum of three different kinds of terms th
have~i! one 2RDM,~ii ! one 1RDM multiplying oned, and
~iii ! two ds. Equation~20! is just the expectation value of th
commutation relation for two fermion particles. The com
plexity of Eq. ~20!, compared to Eq.~19!, reflects the fact
that composite particles do not obey the simple fermion
ticommutation relation~18!. The deviation of composite par
ticles from Fermi statistics helps to explain why th
N-representability problem is much more difficult for th
2RDM than the 1RDM@40–43#.

As p increases beyond 2, the derivation becomes
wieldy in second quantization, and Valdemoro relies upo
pictorial approach to simplify the presentation@15#. The re-
lations may be expressed more concisely with wedge~or
Grassmann! products from the theory of Grassmann algeb
Additional information about the definition and evaluation
Grassmann products is available in Appendix A. Writt
completely in this notation, the formula for the 2HRDM wi
have only three terms

2D̄ i 1 ,i 2

j 1 , j 25 2I j 1 , j 2

i 1 ,i 2 22 1D j 1

i 1∧1I j 2

i 212D j 1 , j 2

i 1 ,i 2 , ~21!

where

1I j 1

i 15d j 1

i 1 ~22!

and

2I j 1 , j 2

i 1 ,i 2 51I j 1

i 1∧1I j 2

i 2. ~23!

For convenience indices will often be omitted. Similarly, t
p-HRDM may be expressed as a sum ofp11 wedge prod-
ucts that also correspond to the number ofd functions in
each term. For3D̄ and 4D̄ we have

3D̄53I 23 1D∧2I 13 2D∧1I 23D ~24!

and

4D̄54I 24 1D∧3I 16 2D∧2I 24 3D∧1I 14D. ~25!

These formulas have a predictable structure with alterna
signs and coefficients that follow a binomial distribution.
general, thep-HRDM may be expressed as a linear fun
tional of thep-RDM and the lower RDMs,

pD̄5pI 1 (
n51

p21

~21!nS p
nD nD∧ ~p2n!I 1~21! p pD.

~26!
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The linear functional expressing thep-RDM in terms of the
p-HRDM and lower HRDMs may be obtained by switchin
the D and D̄ in the above formula. Relation~26! represents
the commutation or anticommutation relation~depending on
whetherp is even or odd, respectively! for two composite
particles, each of them consisting ofp fermions. While the
deviation of the composite particles in Eq.~26! from Fermi
statistics is often perceived as the source of difficulty@40–
43#, Valdemoro utilizes the increased complexity of the
relations to develop an approximate reconstruction form
for the p-RDM in terms of lower RDMs.

Using second quantization, Valdemoro realized that th
expressions could be rewritten as terms involving o
RDMs and other terms involving only HRDMs. By writin
1I in terms of 1D and 1D̄ through Eq.~19!, the functional
for 2D̄ becomes

2D̄22D51D̄∧1D̄21D∧1D. ~27!

To express the higher particle and hole matrices likeqD and
qD̄ where q.2 as RDMs and HRDMs, we must perform
two sets of substitutions:~i! replace1I with 1D11D̄ and~ii !
assuming that we have already derived the expressions
thep-RDM as RDMs and HRDMs where 1,p,q, we want
to use these expressions to replace thep-RDMs in terms
wedged with HRDMs. This second step causes mixed te
with wedges between HRDMs and RDMs to cancel@14#. For
the 3HRDM we find

3D̄13D51D̄313~2D̄21D̄2!∧1D̄11D3

13~2D21D2!∧1D, ~28!

where we have employed the right superscripts to indic
the number of times to wedge a symbol with itself, i.
1D251D∧1D. The right sides of these equations invol
only lower RDMs and HRDMs. Because there were no
proximations in the substitutions made, the resulting form
las are exact. However, as written, we still need to know
p-HRDM to determine thep-RDM.

Valdemoro then approximates the higher RDM from t
lower RDMs by assuming that the RDM on the left may
equated to the formula involving lower RDMs on the right
obtain

2DVald5
1D2 ~29!

and

3DVald5
1D313~2D21D2!∧1D. ~30!

Similarly, the 4RDM would be approximated by

4DVald5
1D414~3D21D3!∧1D26~2D21D2!∧1D2.

~31!

If we substituteD̄ for D in the above equations, we obta
the analogous reconstruction formulas for the HRDM
While Valdemoro’s formula for the 2RDM in Eq.~29! is just
the well-known expression for the 2RDM in the Hartre
Fock limit, the formulas for the 3RDM and 4RDM in Eq
~30! and ~31! possess corrections to their Hartree-Fock
pressions1D3 and 1D4. When the 2RDM is known, Valde
e
la

e
y

for

s

te
,

-
-
e

.

-

moro’s approximate 3RDM may be constructed with E
~30!, and then the resulting 3RDM3DVald as well as the
known 2RDM 2D may be used in Eq.~31! to build the
4RDM. These reconstruction formulas are approximate
cause some terms in thep-RDM cancel with those in the
p-HRDM and then do not appear within the commutatio
anticommutation relations. We have found that these form
las may be obtained more directly from theq-HRDM func-
tionals by approximating the identity operator1I by 1D
~which is equivalent to setting1D̄50! and setting the
q-HRDM to zero, qD̄50. Applying these rules to function
als ~21!, ~24!, and ~25! generates formulas~29!, ~30!, and
~31!. This approximation is equivalent to Valdemoro’s a
sumption of a separation of holes and particles and is a
valid in the Hartree-Fock limit.

Nakatsuji and Yasuda@19# improved Valdemoro’s for-
mula for the 4RDM by finding one of the canceled term
through an analysis of Green’s function decoupling d
grams. We now will show that Nakatsuji’s correction ma
also be obtained from the perspective of the particle-h
equivalence. Valdemoro’s rewriting of the particle-hole re
tions provides a powerful mechanism for reconstruct
higher RDMs from lower RDMs. We offer here anoth
technique for writing these relations to obtain some of
terms in thep-RDM and p-HRDM that cancel. The exac
commutation-anticommutation relations in Eqs.~27! and
~28! may be written as

2D22DVald5
2D̄22D̄Vald ~32!

and

3D23DVald52~3D̄23D̄Vald!, ~33!

in which 2D and 3D represent the exact RDMs. The error
Valdemoro’s approximation for the 2RDM must be equal
the error in Valdemoro’s approximation for the 2HRDM
Similarly, the error in Valdemoro’s approximation for th
3RDM must be the negative of the error in Valdemoro
3HRDM. Defining the errors in Valdemoro’s formulas fo
the p-RDM andp-HRDM as

pD5pD2pDVald ~34!

and

pD̄5pD̄2pD̄Vald , ~35!

we may write the general,exact result for p-RDMs and
p-HRDMs,

pD5~21!p pD̄. ~36!

With these error matrices Valdemoro’s formulas for3D and
4D may be rewritten even more concisely as

3DVald5
1D313 2D∧1D ~37!

and

4DVald5
1D414 3D∧1D16 2D∧1D2. ~38!
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4224 57DAVID A. MAZZIOTTI
Replacing theDs in the above equations withD̄ gives us the
formulas for 3D̄ and 4D̄. Note that the coefficient of the las
term in Eq. ~38! is 16 rather than26 as in Eq.~31! to
correct the term212 2D∧1D2 from 4 3D∧1D. Formulas
~37! and ~38! are consistent with the Hartree-Fock~HF!
functionals because theD terms vanish in the HF limit.
While theDs are wedged with the 1RDM, there are no ter
in these formulas where aD is wedged with anotherD. A
term for the 4RDM which does not appear in Valdemoro
formula but only involves a simple wedge product of low
RDMs and vanishes in the HF limit is

k 2D ∧ 2D, ~39!

where k is a proportionality constant. Similarly, a suitab
term for the 4HRDM is

k 2D ∧ 2D. ~40!

By Eq. ~36! with p54 the missing terms in Valdemoro’
4RDM formulamust equalthe missing terms in the 4HRDM
formula. This final criterion is satisfied by the corrections
Eqs.~39! and~40! because2D52D̄. The proportionality con-
stantk in the correction may be determined by looking at t
coefficients in Eqs.~37! and~38!. The coefficient for2D∧1D
in Eq. ~37! where 2D is a two-particle matrix arises from th
three distinct groupings of the particles:$12% $3%, $13% $2%,
and$23% $1%. The same argument determines the coefficie
in Eq. ~38!. Finally, we can ascertain thatk53 in Eq. ~39!
from the three distinct groupings of the four quasiparticl
$12% $34%, $13% $24%, and $14% $23%. Calculations with the
Lipkin model confirm this choice fork. Combining this cor-
rection~39! with the original expression in Eq.~38!, we ob-
tain Nakatsuji and Yasuda’s improved formula

4DNakat5
1D414 3D∧1D16 2D∧1D213 2D∧2D

~41!

for approximating the 4RDM where2D and 3D are defined
in Eq. ~34!.

Nakatsuji’s correction in Eq.~39! only involves the
known2RDM. Hence, it may seem that we can simply d
termine the 3RDM by Eq.~37! as before, and use this resu
in Eq. ~41! to generate an improved 4RDM. However, th
attempt will generally not produce a significant improveme
in the 4RDM because the error from the approximate 3RD
will dominate any correction provided by the new 4RD
term. To surmount this problem, we must find a correct
for the 3RDM that will make it consistent in accuracy wi
the improved 4RDM. While Nakatsuji and Yasuda derive
correction for the 3RDM, which involves solving a system
equations and using the 1RDM for Hartree-Fock, we hav
different approach for obtaining a suitable correction for
3RDM directly from the improved 4RDM formula. Contrac
ing the expression for4D in Eq. ~41! generates a system o
linear equations for a corrected 3RDM3Dpreswhich does not
involve the 4RDM,

3Dpres5
4

N23
L4

3@ 1D414 3D~3Dpres!∧1D16 2D∧1D2

132D∧2D#, ~42!
s

ts

:

-

t

n

f
a

e

where the contraction operatorL denotes the summation re
quired to map the four-particle matrix to a three-particle m
trix and the term3D(3Dpres) is calculated by Eq.~34! with
3Dpres used for the 3RDM. The subscript in3Dpres indicates
that the resulting 3RDM will be referred to as the prese
approximation. A system of linear equations rather than
formula for 3Dpres results because the unknown3Dpres ap-
pears on both sides. The dependence of3D on the improved
3RDM is denoted by3D(3Dpres). If the 2RDM is known, we
can solve for an improved 3RDM from Eq.~42! and then use
the result in Eq.~41! to create a more accurate 4RDM. B
cause of the special relationship between the 3RDM eq
tions and the 4RDM formula, the approximate 4RDM w
automatically contract to the approximate 3RDM from whi
it was made.

B. Ensemble representability method

The reconstruction functionals, which approximate the
and 4RDMs in terms of lower RDMs, permit us to solve t
CSE iteratively to achieve an accurate 2RDM. By Nak
suji’s theorem, however, other means of enforcing appro
mateN- representability should also partially remove the
determinacy of the CSE. Here we discuss a new techniq
which we refer to as the ensemble representability meth
for performing reconstruction from the 2RDM to thep-RDM
through approximateN-representability conditions withou
an explicit functional. The ERM for reconstruction will in
volve thecontraction conditionthat ~i! the p-RDM contract
to the 2RDM as well as thep-ensemble representabilityre-
strictions that thep-RDM be~ii ! Hermitian,~iii ! antisymmet-
ric, and~iv! positive semidefinite. A family of solutions, in
cluding the exactp-RDM, results because these conditio
are only necessary forN-representability whenp,N. The
family nature of the solution is an interesting advantage
this approach since at least in principle new necessary c
straints may be added to select further for the correct s
tion. As p approachesN the reconstruction from the 2RDM
will become more accurate, and the ERM offers a system
approach to determining the exact higher RDMs. Extend
a result from Rosina, we will prove that whenN5p and the
Hamiltonian has only two-particle interactions, the ERM w
generate an exactp-RDM from a known energetically non
degenerate 2RDM. For four-particle systems the reconst
tion functional for the 4RDM, discussed in the precedi
section, does not produce exact results. To keep the calc
tions manageable, we will use the ERM method withp54.
Even whenN is much larger than four, we will find tha
four-ensemble representability within the ERM will serve
powerful necessary conditions to generate an accu
4RDM from a known 2RDM. It is important for us to realiz
that applying the ERM with the CSE produces a significan
smaller family of solutions than using four-ensemb
N-representability with minimization of the energy expec
tion value. The minimization of the eigenvalue produces
4RDM associated with the lowest energy of the four-parti
reduced Hamiltonian, but the CSE, due to the testing of
two-particle space, does not allow this solution. While offe
ing the possibility of a new approach, the ERM will also he
us to better understand the importance of the CSE for find
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an accurate 2RDM and further elucidate the relationship
tween reconstruction functionals andN-representability.

Proving that the ground-state 2RDM contains enough
formation to generate the higher RDMs when we enfo
ensembleN-representability will help motivate the ERM
method and provide theoretical justification for reconstr
tion functionals for the 3- and 4RDMs in terms of th
2RDM. Previous work@14# on the CSE has appealed to th
well-known theorem of Hohenberg and Kohn which demo
strates that the 1-density and the particle numberN are theo-
retically sufficient to determine the ground-state energies
wave functions for atoms and molecules@30,31#. If the 1-
density is enough to generate the wave function, it may se
the 1RDM or 2RDM must be more than sufficient to build
unique series of higher RDMs leading to the wave functi
However, as we will show, this reasoning is incorrect, b
cause an implicit assumption in the HK theorem is be
neglected. The proof that the ground-state 1-density de
mines the ground and excited wave functions depends o
theoretic construction of the Hamiltonian from the 1-dens
@44#. For electronic structure problems the particle numbeN
alone completely determines the form of the kinetic ene
and electron repulsion terms within the Hamiltonian wh
the unknown one-particle part of the potential is specifi
through the given 1-density. Therefore in addition to
knowledge of the particle numberN and the 1-density, the
theorem of Hohenberg and Kohn implicitly assumes
knowledge of the kinetic and repulsion terms within t
Hamiltonian. However, when we construct the higher RD
from lower RDMs or densities, the Hamiltonian appears
neither the reconstruction formulas nor the restrictions of
ERM. Without more explicit knowledge of the Hamiltonia
the 1-density cannot determine the wave function as it is
difficult to illustrate. Let us consider the 1-density from
wave function which is not a Slater determinant. Both G
bert@45# and Harriman@46#, however, have shown that eve
1-density may be represented by anN-particle Slater wave
function. Hence, the 1-density clearly corresponds to at le
two N-representable wave functions—one Slater wave fu
tion and one non-Slater wave function. Furthermore, lin
combinations of these pure density matrices yield an infin
family of ensembleN-representable density matrices whi
contract to the correct 1-density.

Although the 1-density alone is not sufficient to determ
the ground-state wave function for anunknownHamiltonian
with two-particle interactions, the 2RDM is enough to bu
the wave function, and the proof of this lies not in the H
theorem but in an important, less famous result, origina
discussed by Rosina. Let us consider the 2RDM2D(c) for
the antisymmetric nondegenerate ground state of
N-particle HamiltonianH with two-particle interactions. By
D2(c) we indicate the 2RDM from the contraction of a pu
density matrix formed withc. The 2RDM determines the
energy of the eigenstatec by Eq. ~6!. If 2D(c) may be
obtained from two antisymmetric wave functionsc, the
ground state will be degenerate since by Eq.~6! they must
have the same energy. Because this contradicts the ass
tion that the ground state is nondegenerate, we have
2D(c) has only one pureN-representable preimage,ND(c).
Furthermore, because all of the other states of the sys
have higher energies, minimizing over the larger class
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N-ensemble representable matrices will always produce
pure density matrix, corresponding to the ground state.
this reason the2D of the ground state also has only on
preimage in the larger family of ensemble density matric
Hence, we have the reconstruction theorem, origina
proved by Rosina at the 1967 conference on reduced den
matrices at Queen’s University@32#.

Theorem 1:The 2RDM for the antisymmetric, nondegen
erate ground state of anunspecified N-particle Hamiltonian
H with two-particle interactions has a unique preimage in
set ofN-ensemble representable density matricesND.

Let us consider the extension of this result to treat exci
states and cases where the energies are degenerate. As
that we know2D(c) for a nondegenerate excited state of
N-particle HamiltonianH with two-particle interactions. If
2D(c) reconstructs to two antisymmetric wave function
the state will be degenerate since the wave functions m
have the same energy. Since this contradicts the assum
that the state is nondegenerate, it follows that2D(c) has
only one pureN-representable preimage,ND(c). Because
the excited state cannot be obtained by a direct minimiza
of the energy, we cannot extend this result to the space
ensembleN-representable density matrices,ND. We are in-
terested, however, in dealing with excited states that are
generate for a given energy eigenvalue. The assumption
the state is nondegenerate may be relaxed to the assum
that the given state may be distinguished from each of
other states of the system by at least one two-particle op
tor 2B. Two different statesc1 andc2 have the same expec
tation values for all two-particle observables2B if and only
if their corresponding 2RDMs2D(c1) and 2D(c2) are
equivalent, 2D(c1)52D(c2). Hence, the new assumptio
will only remain true if the 2RDM of the statec1 is different
from the 2RDM for all the other statesc i ( iÞ1) of the
system. This implies that the 2RDM for the statec1 will
have a uniquepure N-representable preimageND(c1). We
express this generalization of the reconstruction theorem
follows.

Theorem 2:If we assume that the given state of anun-
specified N-particle HamiltonianH with two-particle inter-
actions may be distinguished from each of the other state
the system by at least one two-particle operator2B, then the
2RDM for the state will have a unique preimage in the set
pure N-representable density matricesND(c).

Because the resultingN-particle density matrix may be
contracted to thep-RDM when 2,p,N, a corollary to
these theorems is that the 2RDM for electronic proble
contains enough information to determine thep-RDM
uniquely. Furthermore, these theorems also are true for
construction from aq-RDM when the Hamiltonian more
generally containsq-particle excitations. Most importantly
these theorems justify the search for reconstruction funct
als that build higher RDMs from the 2RDM without refe
ence to the Hamiltonian in the functionals, and they indic
how within the ERM the imposition ofp-ensemble repre-
sentability represents a systematic shrinkage of thep-RDM
family as p approachesN. For correlated systems simila
justification is not possible for reconstruction schemes ba
on the 1RDM or 1-density. This elucidates why Valdemoro
formula for the 2RDM in terms of the 1RDM is equivalent
the Hartree-Fock restriction. To move significantly beyo
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4226 57DAVID A. MAZZIOTTI
mean field for the 1RDM, we must incorporate informati
about the Hamiltonian. Thus the reconstruction problem
the 1-density and 1RDM not only involves preserving theN-
representability as higher RDMs are generated but also
termining whether the higher RDMs correspond to t
Hamiltonian for the system under consideration.

Practical implementation of the ERM for reconstructi
of the 4RDM requires us to enforce the four conditions m
tioned above:~i! contraction of the 4RDM to the known
2RDM as well as the 4-ensemble representability conditi
of ~ii ! Hermiticity, ~iii ! antisymmetry, and~iv! positive
semidefiniteness. Conditions~ii ! and~iii ! are easily enforced
since they simply require that certain elements of the 4RD
are made equal. In fact a four-particle matrix, fulfilling th
first three conditions, may be constructed from a given a
symmetric, two-particle matrix through a linear mappi
@47,48#. Restricting the 4RDM to the set of positiv
semidefinite matrices represents the most difficult conditi
A well-known result from linear algebra@49#, discussed by
Harriman@11# in relation to theN-representability problem
permits us to restrict the 4RDM to the positive semidefin
set by parametrizing it through another real, Hermitian,
tisymmetric matrix as follows:

4D5RR. ~43!

Contracting this parametrization over two particles and s
ting the result to the known 2RDM furnishes us with a set
nonlinear equations for the matrix elements ofR,

~N22!~N23!

12
2D5L4

2~4D !5L4
2~RR!, ~44!

where the contraction operatorL denotes the summation re
quired to map the 4RDM to a 2RDM. Because there
more unknown elements ofR than nonlinear equations, w
may expect to find a family of solutions. This is true f
N.4. By Rosina’s theorem, however, atN54 only oneR
satisfies these equations, and we obtain the exact 4R
from the 2RDM. More details for solving these equatio
will be given when we apply the ERM in the next section

IV. APPLICATION TO THE LIPKIN MODEL

Two reconstruction techniques have been presented in
preceding section to remove the indeterminacy of the C
To explore the accuracy of determining the 2RDM witho
the wave function through these techniques, we apply th
to a quasispin model which was originally employed as
benchmark by Lipkin and co-workers@33,34# to study the
correlation of fermions in a variety of many-body metho
from perturbation theory to Green’s function techniques. T
Lipkin model will be described in detail including an impo
tant angular momentum analogy that simplifies the calcu
tions by accounting for the system’s symmetry. After a d
cussion of the numerical methods employed for solving
CSE, results will be presented for reconstructing the 3RD
and the 4RDM from a given 2RDM as well as for solving t
CSE for the 2RDM with the ERM and functional reconstru
tion schemes. Results show that the CSE methods pro
ground-state energies similar to those from SDCI and den
matrices whose
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elements are about an order of magnitude more accurate
those from SDCI. These trends are illustrated for syste
with different numbers of fermions including one syste
with as many as 40 particles. Finally, we apply the C
method for the direct determination of excited-state 2RDM

A. Description of the model

Consider a quantum system with two energy levels
2e/2 and1e/2, each of which hasN degenerate states. B
filling each of theN states in the lower level with one fer
mion, we generate the ground state for a noninterac
N-particle system. The system may be completely charac
ized by two quantum numbersm andp wherem ~either21
or 11! denotes the level andp distinguishes the states i
each level by ranging from 1 toN. While more than one
fermion will possess the samem quantum number, each fer
mion will always occupy a different state as denoted byboth
quantum numbersm and p. To this noninteracting system
we add a perturbationV which acts to switch two fermions
from states in one level to states in the other level. T
Hamiltonian for the system is

H5
e

2(m,p
mam,p

† am,p1V (
p1 ,p2 ,m

am,p1

† am,p2

† a2m,p2
a2m,p1

.

~45!

The nature of the perturbation inV only allows transitions
between states with the same value forp. This implies that
the noninteracting ground-state configuration will only m
with configurations in which each of theN fermions has a
different quantum numberp. Since a fermion may have on
of two m values for each of theN values of the quantum
numberp and yet no two of theN fermions may have the
same value ofp, there will be 2N possible configurations
The different configurations of fermions are the basis fu
tions for the system. WhenV is negligible compared toe, the
system populates the lowest level to achieve its minim
energy. The wave function in this case is just the determin
of the one-particle states in the lower level which cor
sponds to the Hartree-Fock solution for the ground sta
When the perturbationV becomes significant, the Hartree
Fock configuration will yield an upper bound on the grou
energy. As in configuration interaction for atoms and m
ecules these approximations to the true wave function an
energy may be improved by including excited configu
tions. The ground-state wave function will be a linear co
bination of the possible configurations that delicately b
ances the self and interaction energies to achieve a minim
total energy.

The probability of finding the system with a given numb
of fermions in the upper level is independent of thep states
that the fermions inhabit. Because of this the number of
cited fermions alone determines the probability of the syst
being found in a certain configuration. Grouping all of th
configurations according to the number of excitations,
can reduce the size of the basis set for the Hamiltonian fr
2N configurations to the number of excitations which is on
N11. This possible reduction in basis size, arising from
indistinguishability of thep states in the Hamiltonian, ma
be directly incorporated into the Hamiltonian by writingH in
terms of angular momentum operators@33#. For this reason
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models like this one are often referred to as quasispin mo
@35#. Using the anticommutation relations for the creati
and annihilation operators and the following definitions
the angular momentum operators:

J1,25(
p

a11,p
† a21,p , J2,15(

p
a21,p

† a11,p , ~46!

and

J1,15(
p

a11,p
† a11,p J2,25(

p
a21,p

† a21,p , ~47!

whereJ1,2 andJ2,1 represent one-particle transitions whi
J1,1 and J2,2 count the number of particles in the upp
and lower levels, respectively, we can write the Hamilton
as

H5
e

2
~J1,12J2,2!1V~J1,2

2 1J2,1
2 !. ~48!

Thez component of the angular momentum is just half of t
difference between the number of particles in the upper le
and the number in the lower level. Because theH commutes
with the square of the total angular momentumJ2, the
Hamiltonian partitions into noninteracting submatrices wh
correspond to the different values ofJ. The order of each
submatrix is 2J11. The values ofJz range in each subma
trix from 2J to 1J. Since all of the fermions inhabit th
lowest level in the unperturbed ground-state configurati
the value forJz in this case is2N/2. This value forJz ,
however, only occurs within the largest submatrix of ord
N11 when J5N/2. Thus, to determine the correlate
ground state, we only need to consider theN11 configura-
tions in the largest submatrix since other configurations w
not mix with the ground state. TheseN11configurations, as
we expect, correspond to exciting a different number of f
mions into states of the higher energetic level. In Appen
B we discuss the calculation of the wave functions from
Hamiltonian in Eq.~48! and a procedure that we develop
for obtaining the RDMs from the wave functions with
minimum amount of storage. For additional details about
model the reader is referred to the original articles by Lip
and co-workers@33#. Calculations by Lipkin on this mode
and the application ofN-representability conditions to
similar model by Mihailovic´ and Rosina@34# clearly indicate
that the quasispin model presents a challenging problem
correlation despite the feasibility of direct solution. Henc
while the symmetry of the state in each level simplifies
computation, the model faithfully reproduces the difficulty
the electronic correlation problem to provide an excell
benchmark for comparing many-body methods.

B. Numerical methods

Having established the CSE, the reconstruction te
niques, and the Lipkin model, we now discuss the meth
by which the CSE may be solved for the 2RDM. To use
reconstruction functionals with the CSE, we employ the f
lowing self-consistent procedure, similar to the one e
ployed by Colmenero and Valdemoro@16#.
ls
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~1! Build the 3RDM and 4RDM from an initial guess for th
2RDM ~for example, the Hartree-Fock 2RDM!.

~2! Substitute the 2-, 3-, and 4RDMS into the left-hand s
of the CSE in Eq.~12! to produce a new 2RDM gues
multiplied by the energy.

~3! Symmetrize and normalize the 2RDM from the last st
to obtain the next guess for the 2RDM. Normalization
equivalent to dividing by the energy.

~4! Repeat steps~1!–~3! until convergence is achieved.

Colmenero and Valdemoro explain the method’s conv
gence through a result from the solution of nonlinear eq
tions @16#. We justify the technique differently by revealin
its connection with the power method@49# for finding eigen-
values.

Consider the eigenvalue equationHc05E0c0. In the
power method the trial vectorf0 is multiplied by the matrix
H to produce another vector which after normalization b
comes the next trial vectorf2. As in the iterative procedure
for the CSE, explained above, this process is repeated
convergence is achieved. The method only converges to
eigenvector whose eigenvalue has the maximum abso
value. We can understand this by expanding the initial t
guessf0 in terms of the actual eigenvectors for the proble

f05a0c01a1c11a2c21¯, ~49!

where theai are the expansion coefficients. The (N11)th
trial vectorfN arises from actingN times onf0 with the H
matrix and dividingN times by the energyE0,

fN5HNf05a0c01a1S E1

E0
D N

c11a2S E2

E0
D N

c21¯ .

~50!

As long as the absolute value ofE0 is greater than that of the
other eigenvalues, the method will converge linearly towa
the true eigenvectorc0. Similarly, the iterative solution of
the CSE discovers the component of the trial RDM cor
sponding to the eigenvalue with the largest absolute valu

While we employ the power method to solve the CS
with the reconstruction functionals, a Newton’s method
utilized when we reconstruct higher RDMs from know
lower RDMs with ERM or solve the CSE through ERM
reconstruction. We first examine ERM reconstruction fro
knownlower RDMs. As described in Eq.~43! of Sec. III B,
the ERM parametrizes the 4RDM in terms of a product
antisymmetric, Hermitian matricesR to preserve four-
ensemble representability. By contracting the parametri
4RDM to the two-particle level as in Eq.~44!, subtracting
the known 2RDM from this parametrized 2RDM, and setti
the resulting matrixF to the zero matrix, we obtain

F5
12

~N23!~N22!
L4

2~RR!22D50, ~51!

whose elements are nonlinear equations that may be so
iteratively for the unknowns inR by a Newton’s method.
Since there are more elements ofR than equations, we hav
a rectangular JacobianJ @40# whose elements are calculate
analytically by
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TABLE I. The errors in building the 3- and 4RDMs from a knownN-representable 2RDM are reported through four different quantit
described in detail within the table’s footnotes. All error measurements involve RDMs normalized to unity. For the 3RDM we e
Valdemoro’s reconstruction functional as well as the functional with our correction for the 3RDM. For the 4RDM we present Valde
reconstruction functional, the functional with Yasuda and Nakatsuji’s correction, reconstruction by ERM, and finally, reconstruction b
with the addition of the CSE condition.

Parameters 3RDM errors 4RDM errors 4RDM errors

N Ṽ Valdemoro Present Valdemoro Nakatsuji ERM ERM1CSE

4 0.065 80 a4.2531023 4.263 1024 1.4731022 2.133 1023 0 0
b1.5931023 7.893 1026 3.2731022 3.163 1025 0 0
c4.2531023 8.373 1026 3.9431024 8.373 1026 0 0
d4.3131023 6.503 1025 1.5631022 8.863 1024 0 0

6 0.040 72 1.2831023 1.063 1024 1.9831023 5.333 1024 1.42 3 1023 1.92 3 10212

1.5631024 3.463 1027 4.9631024 4.613 1027 0 0
1.2531023 1.233 1026 9.0831025 1.233 1026 0 0
1.3231023 1.193 1025 2.1831023 4.723 1025 0 0

8 0.031 32 6.9631024 5.043 1024 1.0131023 2.553 1024 1.08 3 1023 1.23 3 1028

4.1631025 5.953 1028 6.1231025 4.763 1028 0 0
6.6631024 4.393 1027 5.2531025 4.393 1027 0 0
7.2231024 5.483 1026 9.2231024 1.813 1025 0 0

15 0.015 00 1.4431024 5.803 1026 2.0431024 2.973 1025 2.47 3 1024 1.34 3 1029

2.0731026 7.64310210 9.3331027 2.553 1027 0 0
1.3531024 2.393 1028 9.2031026 2.393 1028 0 0
1.5231024 5.403 1027 1.4431024 1.553 1026 0 0

25 0.009 171 5.2131025 1.383 1026 7.2631025 7.103 1026 1.60 3 1024 2.82 3 1029

2.5031027 3.68310211 5.4631028 6.69310212 0 0
4.8031025 3.453 1029 3.5531026 3.453 1029 0 0
5.5531025 1.283 1027 4.7231025 3.453 1027 0 0

aThe error in the reconstructed matrix measured by the infinity norm of its deviation from the exact RDM.
bThe error in the 2RDM determined by contracting the approximate 3- or 4RDM to a 2RDM and then computing the infinity norm
deviation from the exact 2RDM.
cThe energy error corresponding to the absolute deviation of the reconstructed RDM’s approximate energy from the exact energ
dThe error in the positive semidefiniteness of the matrix calculated by adding the squares of its negative eigenvalues and then
square root.
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Although the JacobianJ is singular, a specific Newton direc
tion is chosen by using the singular value decomposit
technique to select the direction with the minimal 2-no
@50#. When N.4 the elements ofR are underdetermined
and a family of reconstructed 4RDMs will result. Since t
exact 4RDM must obey the four-ensemble representab
and contraction conditions, it will be a member of the resu
ing family. Newton’s method stops after it has located
single member of the family. An analogous procedure m
be employed to solve the CSE with ERM reconstruct
when the desired 2RDM isunknown. Again the 4RDM is
parametrized with the elements ofR as in Eq.~43!. Formulas
for the lower RDMs in terms ofR are obtained by contract
ing the 4RDM. All of the RDMs in the CSE in Eq.~12! are
replaced with theirR matrix parametrizations, and the righ
hand side of Eq.~12! is moved to the left side to generate
system of nonlinear equations of the formFi50. The indexi
ranges over each of the nonlinear equations represente
the CSE in Eq.~12!. These nonlinear equationsFi50 pro-
n

ty
-

y

by

duce a rectangular Jacobian as in Eq.~52! which may be
used to solve for the unknowns inR through a Newton’s
method.

C. Results and discussion

1. Reconstruction results

Applying the techniques described above, we rec
structed the 3RDM and 4RDM from a knowledge of th
2RDM. For the numberN of fermions ranging from 4 to 25
the reconstruction errors, measured in four different wa
are reported in Table I for ground states and Table II
excited states. Some errors will be given as the infinity no
of an error matrix. The infinity norm of a matrix is the max
mum row sum where the row sum is computed by adding
magnitudes of the elements in a given row. The four repor
quantities are~1! the error in the elements of the reco
structed matrix measured by the infinity norm of its deviati
from the exact RDM,~2! the error in the 2RDM determined
by contracting the approximate 3- or 4RDM to a 2RDM a
then computing the infinity norm of its deviation from th
exact 2RDM,~3! the energy error corresponding to the a
solute deviation of the reconstructed RDM’s approximate
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TABLE II. The errors in building the 3- and 4RDMs from a known excited-state 2RDM are reported through four different qua
described in detail within the table’s footnotes. All error measurements involve RDMs normalized to unity. The level of the excited
indicated by the subscript on the numbers of particlesN. The reconstruction techniques are the same as those tested in Table I.

Parameters 3RDM errors 4RDM errors 4RDM errors

N Ṽ Valdemoro Present Valdemoro Nakatsuji ERM ERM1CSE

42 0.065 80 a1.6631021 5.7531021 2.08 1.30 0 0
b4.4331022 3.6431022 3.75 1.4631021 0 0
c1.1831021 1.9031022 7.1831022 1.9031022 0 0
d1.0931021 3.9831021 1.97 5.1031021 0 0

102 0.040 72 2.1931022 6.1331022 1.7631021 1.7431021 5.69 3 1023 8.73 3 1026

7.0731024 1.4931024 1.7931023 8.5331025 0 0
1.8931022 1.6431023 7.8031023 1.6431023 0 0
1.4831022 3.6131022 9.0731022 4.6231022 0 0

103 0.031 32 3.2131022 1.6931021 4.0931021 4.0331021 3.81 3 1022 4.89 3 1026

9.1431024 3.1431024 5.2931023 1.8031024 0 0
2.4431022 2.8931023 1.4931022 2.8931023 0 0
1.9131022 1.1031021 2.5231021 1.1731021 0 0

252 0.015 00 3.2531023 8.6331023 2.5831022 2.6131022 1.83 3 1023 9.26 3 10210

1.6031025 1.3631026 8.5631026 2.4731027 0 0
3.0631023 1.2231024 9.0631024 1.2231024 0 0
2.2531023 5.1131023 1.1231022 7.3931023 0 0

253 0.009 171 6.0131023 2.4631022 6.9831022 6.9931022 7.56 3 1023 8.01 3 1027

2.7331025 3.5531026 3.0131025 6.4631027 0 0
5.2331023 3.0331024 2.4731023 3.0331024 0 0
3.8531023 1.5131022 3.5731022 2.0131022 0 0

aThe error in the reconstructed matrix measured by the infinity norm of its deviation from the exact RDM.
bThe error in the 2RDM determined by contracting the approximate 3- or 4RDM to a 2RDM and then computing the infinity norm
deviation from the exact 2RDM.
cThe energy error corresponding to the absolute deviation of the reconstructed RDM’s approximate energy from the exact energ
dThe error in the positive semidefiniteness of the matrix calculated by adding the squares of its negative eigenvalues and then
square root.
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ergy from the exact energy, and~4! the error in positive
semidefiniteness of the matrix by adding the squares of
negative eigenvalues and then taking the square root.
error measurements are performed with RDMs that are n
malized to unity. When reconstructing for excited states,
select as the initial guess the RDM of the energetically cl
est Hartree-Fock state. There are two parameters in the
kin model: the level spacinge and the interaction strengthV.
To make the energies dimensionless, we perform calc
tions with the scaled Hamiltonian obtained by dividing theH
in Eq. ~45! by e. The dimensionless interaction streng
Ṽ (5V/e) is chosen for eachN to make the ratio of corre-
lation energy to total energy in the Lipkin model consiste
with the values reported in the literature for atoms with t
corresponding numberN of electrons@51,52#.

Across all categories in Table I Nakatsuji’s correction
Valdemoro’s 4RDM and the present correction to Vald
moro’s 3RDM significantly improve the accuracy by one
more orders of magnitude. These improvements are con
tent with those reported by Nakatsuji for the four-electron
atom @19#. While Nakatsuji employs the exact 3RDM in hi
reconstruction results for the 4RDM, we build the 4RD
with the exact 2RDM but a 3RDM obtained by the correcti
technique proposed in the present paper. Hence,
implementation of Nakatsuji’s improved 4RDM formula a
tually includes the present 3RDM correction. Building on
its
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from the 2RDM is consistent with the reconstruction the
rem and our ultimate goal of using these functionals with
CSE which only tests the two-electron space. Table
also gives results for the ERM reconstruction that impo
the four-ensemble representability and contraction co
tions. ForN54 the ERM produces exact results as expec
from Rosina’s theorem, and for anyN, it yields zero
for the last three criteria since the reconstructed 4RDM
forced to have nonnegative eigenvalues and to cont
correctly to the known 2RDM. The approximate 4RDM fro
this scheme shows more deviation from the elements
the exact 4RDM than Nakatsuji’s 4RDM. By adding the r
striction that the 4RDM must obey the CSE, however,
obtain reconstruction results which are markedly superio
those achieved by the reconstruction functionals. For
methods asN increases, the RDM approximations increa
in accuracy.

While the reconstruction results for some excited state
differentN values are presented in the same format in Ta
II, there are several important differences in the data. Ac
racy of reconstruction in all categories is significantly le
for the given excited states than for the ground state. Th
especially pronounced for the reconstruction function
Also, the corrections to Valdemoro’s functional offer a mo
nebulous improvement. Although the errors in the energ
and 2RDMs decrease with the correction for the 3RDM,
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TABLE III. The CSE and wave function approaches are compared for the calculation of ground-state energies and 2RDMs. Ene
reported first, and then the error in the 2RDM is given as measured by the infinity norm of its deviation from the exact 2RDM. A
measurements involve RDMs normalized to unity. Solutions of the CSE by both the functional and ERM reconstruction meth
presented.

Parameters CSE approach Wave function approach

N Ecorr /EFCI3100% Ṽ Functional ERM Hartree-Fock SDCI Full CI

4 0.643 0.065 80 22.012 75 22.012 95 22 22.012 91 22.012 95
2.82 3 1024 0 3.8031022 2.5231024 0

6 0.413 0.040 72 23.012 35 23.012 53 23 23.012 36 23.012 45
1.54 3 1024 2.783 1025 2.4131022 3.7331024 0

8 0.344 0.031 32 24.013 73 24.013 94 24 24.013 64 24.013 79
1.18 3 1024 4.113 1025 1.9031022 4.3931024 0

10 0.303 0.025 90 25.015 17 25.015 40 25 25.014 98 25.015 19
9.94 3 1025 4.733 1025 1.6031022 4.7631024 0

15 0.158 0.015 00 27.511 94 27.512 02 27.5 27.511 74 27.511 90
3.74 3 1025 1.703 1025 9.1631023 2.5631024 0

20 0.126 0.011 46 210.012 66 210.012 79 210 210.012 40 210.012 59
2.75 3 1025 2.333 1025 7.0831023 2.2831024 0

25 0.102 0.009 171 212.512 83 212.512 97 212.5 212.512 54 212.512 74
2.10 3 1025 2.093 1025 5.6931023 1.9531024 0

40 0.0647 0.005 730 220.013 07 220.013 24 220 220.012 72 220.012 95
1.22 3 1025 1.683 1025 3.5831023 1.3331024 0
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errors in the 3RDM elements and the positivity actually b
come worse. Similarly, for the 4RDM the corrections on
contribute to fixing the 2RDM and energy errors. This co
trasts markedly with the ground-state results in Table I wh
improvement from the corrections was evident in all cate
ries. For excited states the ERM generates an approxima
to the 4RDM that is more accurate in all categories than
functional reconstruction. Again adding to the ER
the CSE, which enforces the correct behavior for the lo
energy, improves the reconstruction by many orders of m
nitude.

2. CSE results

Within the CSE the reconstruction schemes are utilized
determine the 2RDM directly without generating the wa
function. These CSE methods will be compared with th
standard wave function approaches: Hartree-Fock, sin
double configuration interaction, and full configuration inte
action ~FCI!. As an initial guess for the 2RDM in the CS
methods we choose the Hartree-Fock 2RDM. In Table III
energies are reported first and then the error in the 2R
measured by the infinity norm of its deviation from the exa
2RDM. As in reconstruction these results are for 2RDM
normalized to unity. With the corrective terms the reco
struction functional technique yields energies that
slightly better than SDCI. The energies from the ERM a
proach, which all happen to be lower than the true energ
fall below the FCI results by about the same amount that
SDCI energies are above them. These trends in energy
N are displayed for the CSE techniques and SDCI in Fig
As noted by Nakatsuji and Yasuda in their calculations,
approximate 2RDMs from the CSE methods are about
order of magnitude better than the 2RDMs from SDCI. T
important improvement, illustrated in Fig. 2, may arise fro
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the nonvariational nature of the CSE methods. Additio
accuracy for the 2RDM will be very useful when computin
expectation values other than the energy. While Yasuda
Nakatsuji solve the CSE for systems with four to 14 ele
trons @19#, our results show that the method remains pro
ising for larger numbers of fermions.

The power method cannot be applied to excited sta
because it will converge to the state with the maximum
solute eigenvalue. This may explain why Colmenero a
Valdemoro’s attempt to calculate the excited states of
with the CSE resulted in the convergence upon the gro
state@16#. We also found that the power method would n
work for the excited states of the Lipkin model. However,
using the ERM with a Newton’s method, we were able
obtain the first excited-state results for the CSE, given

FIG. 1. The approximate energies, produced by the CSE w
the ERM and functional reconstruction methods as well as SD
are displayed as deviations from the FCI energies. By the va
tional principle the SDCI energy is always an upper bound to
FCI energy. Both CSE techniques yield energies comparable
error to those from SDCI. Note that all energies are dimensionl
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Table IV. While the first excited state was procured with
accuracy comparable to the ground state, the second ex
state gave energies that were quite lower than those f
FCI. The success of the first excited state may be relate
the fact that it does not mix with the ground state since th
differ in parity. Both states reconstructed with about t
same accuracy in Table II, and yet they exhibit quite diff
ent accuracy when determined with the CSE.

These calculations show that the CSE may be applie
excited states. Another method for obtaining excited sta
already suggested although not computed by Colmenero
Valdemoro@16#, would involve directly solving the CSE fo
the transition RDM between the ground state and an exc
state. Reconstruction functionals, similar to those emplo
for building the ground-state 3- and 4RDMs from th
2RDM, are derivable for the transition RDMs. If a larg
number of excited states are required, we could follow
2RDMs for all of the excited states as well as the tw
particle transition RDMs~2 T RDMs!. Since the 4RDMs and
the 4 T RDMs may be resolved with the 2RDMs and the 2
RDMs, associated with a complete set of eigenstates@34#,
the CSE would no longer be indeterminate. To solve this

FIG. 2. The logarithmic errors in the approximate 2RDMs, ge
erated by the CSE with the ERM and functional reconstruct
methods as well as SDCI, are shown for a range ofN. We measure
the error in an approximate 2RDM by taking the infinity norm of
deviation from the exact 2RDM. Results indicate that the C
methods produce 2RDMs which are generally an order of ma
tude more accurate than those from SDCI.
ted
m
to
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to
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nd
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e
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et

of coupled CSEs for the 2RDMs and 2 T RDMs, we might
differentiate the equations with respect to a correlation
rameter in the Hamiltonian to produce differential equatio
for the changes in the RDMs and the energy differences.
in the parametric equations of motion methods for solv
the Schro¨dinger equation@53,54#, the energies and the
RDMs in the CSEs could be propagated from a known lim
like Hartree-Fock to the correlated solution. While furnis
ing an exact reconstruction, this approach requires calcu
ing with 2RDMs and 2 T RDMs for all the wave functions o
the system.

Since the CSE technique may provide a fresh alterna
to contemporary wave function calculations, it is importa
for us to investigate its connections with traditional quantu
calculations, especially configuration-interaction methods
both Hartree-Fock and single-double configuration inter
tion we are using an incomplete basis set, and hence,
obtain upper bound solutions by the variational principle.
contrast the CSE calculations are performed with a 2RD
that represents the full-CI basis. Forcing the 2- and 4RD
to be N-representable within the CSE produces the FCI
sult. WhenN-representability conditions are not fully ap
plied, the basis set is overcomplete, and variational mini
zation of the energy from the CSE will yield a lower boun
Although the energies from our solution of the CSE w
ERM restrictions gave energies lower than the exact en
gies, we were not guaranteed lower bounds because we
not minimize the energy. Overcompleteness of the ba
arises for correlated systems because, while excitations f
the ground state of a Hamiltonian without particle intera
tions ~i.e., HF! are orthogonal, excitations from correlate
wave functions are not orthogonal@55#. Related problems
occur in other approaches to correlation, including Gree
function theory, and require the use of inner projection
Gram-Schmidt orthogonalization@56,57#. Hence, for one-
particle Hamiltonians like the one for HF the higher RDM
may be readily reconstructed from the 1RDM. The 2RD
and 3RDM are1D∧1D and 1D∧1D∧1D, respectively, while
in general thep-RDM is 1Dp where the right superscrip
indicates that the 1RDM should be wedgedp times with
itself. Building higher RDMs from the 2RDM for correlate
systems requires a more complicated reconstruction fu
tional. Overcompleteness manifests itself in that commu

-
n

i-
e report
RDMs
traction
TABLE IV. The CSE and wave function approaches are compared for the calculation of excited-state energies and 2RDMs. W
the error in the 2RDM as measured by the infinity norm of its deviation from the exact 2RDM. All error measurements involve
normalized to unity. The CSE is solved with the ERM reconstruction technique in which four-ensemble representability and con
conditions are imposed.

Parameters CSE1ERM Hartree-Fock
Full
CIN Ecorr /EFCI3100% Ṽ Energy 2RDM error Energy 2RDM error

62 1.22 0.040 72 22.024 58 5.0331025 22 4.5931022 22.024 72
63 1.69 0.040 72 21.023 06 1.5831023 21 3.2131022 21.017 14
82 1.02 0.031 32 23.030 51 8.3631025 23 4.1031022 23.030 80
83 1.48 0.031 32 22.058 12 5.7231023 22 3.7531022 22.030 02
102 0.897 0.025 90 24.035 72 1.1531024 24 3.7131022 24.036 20
103 1.34 0.025 90 23.090 21 8.2531023 23 3.9831022 23.040 85
152 0.472 0.015 00 26.530 36 7.0131025 26.5 3.0031022 26.530 81
153 0.735 0.015 00 25.585 14 5.4531023 25.5 2.3331022 25.540 74
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tion and anticommutation relations for composite partic
do not obey simple fermion or boson statistics@40,42,43#.
While this greater complexity is generally perceived as
hindrance to solving theN-representability problem, Valde
moro uses this complexity to generate the approxim
RDMs from the lower RDMs.

V. CONCLUSION

Distinguished from traditional quantum calculatio
which variationally compute theN-particle wave function in
a truncated basis set, the CSE technique solves directly
the 2RDM by combining an approximate reconstructi
scheme with the CSE. The given derivation of the seco
quantized CSE, reinforcing how the CSE tests the tw
electron space, does not require Valdemoro’s general
matrix contraction mapping. We present a formal proof
Nakatsuji’s theorem for the second-quantized CSE. By its
the CSE cannot be used to solve for the 2RDM since it a
depends on the 4RDM. Recently, however, Valdemoro
overcome this difficulty through a reconstruction scheme
building approximations to the 3- and 4RDMs from th
2RDM. We present a simpler representation for Valdemor
formulas through the notation of wedge product from t
theory of Grassmann algebra. While Nakatsuji has rece
obtained a significant correction to Valdemoro’s 4RDM fro
the use of schematic Green’s function diagrams, we sh
that the same correction may also be achieved from the
spective of particle-hole equivalence. A correction for t
3RDM, different from the given in@19# but also consisten
with the improved 4RDM, is also derived. We justify th
approximation of higher RDMs as functionals of the 2RD
by demonstrating a result, originally proved by Rosina, t
the 2RDM for a ground electronic state contains enough
formation to determine theN-particle ensemble density ma
trix completely without any information about the Ham
tonian other than that it has no more than two-parti
interactions. We extend this result by proving that the 2RD
for any state, distinguishable from the other states of
system by some two-particle operator, uniquely determine
pure density matrix ofN particles. This result prepares us f
the extension of the CSE method beyond the ground stat
addition to the reconstructive functional approach we pres
another reconstruction method~ERM! based on imposing
four-ensemble representability and contraction conditions

The CSE with the functional and ERM reconstructi
schemes is illustrated through Lipkin’s quasispin mod
Both schemes produced energies as accurate as SDCI
the resulting 2RDMs had elements that were generally m
accurate than those from SDCI by an order of magnitu
This may significantly improve the accuracy of the expec
tion values for observables of the system other than the
ergy. We report the first results from applying the CS
method to excited states. While the energies and densitie
the excited states were not consistently as good as for
ground state, this approach to excited-state energies
prove useful. Previous calculations have applied the C
methods to systems with about 14 electrons. Our results
as many as 40 particles confirm that accuracy of the met
is maintained with increasing numbers of particles. The s
cess of the CSE method will depend on the efficiency a
s
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storage requirements of the algorithms developed to t
electronic systems. Valdemoro has just reported a rec
struction algorithm which avoids storage of the 4RDM@20#.
Future research will involve searching for the most efficie
and accurate implementations of the CSE techniques fo
oms and molecules. Through its direct determination of
2RDM without the wave function the CSE, coupled with
reconstruction strategy, provides a fresh path towards
calculation of electron correlation.
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APPENDIX A: GRASSMANN PRODUCTS

The Grassmann~or wedge! product of aq-RDM with a
(p2q)-RDM may be expressed as

qD∧ ~p2q!D5AN
qD ^

~p2q!DAN , ~A1!

where theAN is the N-particle antisymmetrization operato
and ^ is the tensor product. To utilize this formula in
calculation, we must understand the technique for evalua
wedge products of matrices@47#. Let us first consider the
wedge productC of two one-particle matrices,1A and 1B,

2C51A∧1B. ~A2!

The elementsck,l
i , j of the matrix 2C may be obtained fromak

i

and bl
j by summing the distinct products arising from a

antisymmetric permutations of the upper indices and all
tisymmetric permutations of the lower indices. With th
wedge product of one-particle matrices there are only f
distinct possibilities

ck,l
i , j 5ak

i ∧bl
j5 1

4 ~ak
i bl

j2ak
j bl

i2al
ibk

j 1al
jbk

i !. ~A3!

More generally, we can write the elements of the wed
product as

aj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p ∧bj p11 ,...,j N

i p11 ,...,i N

5S 1

N! D
2

(
p,s

e~p!e~s!psaj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p bj p11 ,...,j N

i p11 ,...,i N , ~A4!

in which p represents all permutations of the upper indic
ands represents all permutations of the lower indices wh
the functione~p! returns11 for an even number of transpo
sitions and21 for an odd number of transpositions. Sin
both the upper and the lower indices haveN! permutations,
there are (N!) 2 terms in the sum. Hence, normalization r
quires division by (N!) 2. If, however, the elements
aj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p andbj p11 ,...,j N

i p11 ,...,i N are already antisymmetric in the

upper and lower indices, only@N!/( p!q!) #2 of the above
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terms will be distinct. This allows us to decrease the num
of numerical operations required for computing the wed
product. For wedge products between matrices with the s
number of upper and lower indices we have an import
commutation relation

pAj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p ∧qBj p11 ,...,j N

i p11 ,...,i N 5qBj 1 ,...,j q

i 1 ,...,i q ∧pAj q11 ,...,j N

i q11 ,..., i N

~A5!

or without the indices

pA∧qB5qB∧pA. ~A6!

If the sum (p1q) is odd, exchanging thep upper indices
with q upper indices will produce a minus sign, but this w
be canceled by another minus sign produced by exchan
the lower indices. In many cases it will be easier and clea
to write the wedge products as in the second form~A6! with-
out specifying a particular element through indices.

APPENDIX B: CALCULATIONAL DETAILS
OF THE LIPKIN MODEL

Wave functions for the Lipkin model are readily obtain
by diagonalizing the Hamiltonian in a basis set of the angu
momentum states ofJz for J5N/2. As the raising and low-
ering operators of angular momentum, the operatorsJ1,2
andJ2,1 have a well-defined action on the basis functions
Jz . The result of applying the operatorsJ1,1 andJ2,2 may
be determined by expressing them directly in terms ofJz .
Remember that 2Jz gives the difference between the numb
of fermions in the upper level and the number in the low
level while the total number of fermions is just the sum
the fermions in the upper and lower levels. Hence, the
eratorsJ1,1 and J2,2 , which extract the number of par
ticles in the upper and lower levels, respectively, must
related toJz by

J1,15N12Jz and J2,25N22Jz . ~B1!

Once we have the wave functions, we are interested in
taining the reduced density matrices. Let us examine
second-quantized definition for the 1RDM

1Dm2 ,p2

m1 ,p15^cuam1 ,p1

† am2 ,p2
uc&. ~B2!

Transitions between different values ofp are forbidden be-
cause in the configurations that mix with the noninteract
ground state more than one fermion cannot have the s
quantum numberp. For this reason the elements of th
1RDM will vanish unlessp15p2. Furthermore, the value o
1Dm ,p

m1 ,p must be the same for allp since the different state

2

r
e
e
t

ng
er

r

f

r
r
f
-

e

b-
e

g
e

of a level are indistinguishable. We can condense the in
mation in the 1RDM by summing over all values ofp to
obtain

1Cm2

m15(
p

1Dm2 ,p
m1 ,p

~B3a!

5(
p

^cuam1 ,p
† am2 ,puc& ~B3b!

5^cuJm1 ,m2
uc&, ~B3c!

where 1Cm2

m1 is the condensed 1RDM. Note that if we kno
1Cm2

m1, then we can determine the 1RDM elements for anyp

since

1Dm2 ,p
m1 ,p

5
1

N
Cm2

m1. ~B4!

By the last two relations the mapping between the conden
1RDM and the 1RDM is completely defined. The condens
2RDM has the form

2Cm3 ,m4

m1 ,m25 (
p1 ,p2

2D
~m3 ,p1!,~m4 ,p2!

~m1 ,p1!,~m2 ,p2!
~B5a!

5
1

2! (
p1 ,p2

^cuam1 ,p1

† am2 ,m2

† am4 ,p2
am3 ,m1

uc&

~B5b!

5
1

2!
~^cuJm1 ,m3

Jm2,m4
uc&2dm2 ,m3

^cuJm1 ,m4
uc&!.

~B5c!

Again we have the mapping

2D
~m3 ,p1!,~m4 ,p2!

~m1 ,p1!,~m2 ,p2!
5

1

N~N21!
2Cm3 ,m4

m1 ,m2, ~B6!

where now the factor involves division byN(N21) since
the 2RDM vanishes ifp15p2. From the antisymmetry of the
2RDM we also have

2D
~m3 ,p2!,~m4 ,p1!

~m1 ,p1!,~m2 ,p2!
5

21

N~N21!
2Cm4 ,m3

m1 ,m2, ~B7!

As with the 1RDM, these formulas provide a complete ma
ping between the condensed 2RDM and the true 2RDM. I
similar fashion we obtain the higher RDMs.
m-
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