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Global and local properties of the S states of thedtpy molecular ion: A finite-element study
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An accurate finite-element meth@@EM) is applied to solve the three-dimensional Sclinger equation for
the S states of thelty molecular ion. Using an adaptive refinement of the grid and higher-order polynomials
the energy eigenvalues are obtained with a relative precision better thdh The deviation from the virial
theorem, the two-body cusp ratios, and the expectation valies (r),(r2),(s(r)) for the three interparticle
distances are computed and discussed. The FEM values turn out to be comparable to results obtained with
sophisticated global basis sets. Special local refinement techniques are applied to study the expectation values
for the Dirac delta functions. New benchmark values for these local properties are presented.
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PACS numbg(s): 36.10.Dr, 32.10-f, 02.70.Dh

I. INTRODUCTION strict ourselves to the lowest two states in the manifiold

. . . =0, which in the adiabatic limit are labeled {,0) and
Local properties of the wave function play an important

role for many few-body systems. Examples are the hyperfine 't 'is the main goal of this work to show that a FEM
splitting in muonic system$l], the annihilation rate in a treatments of a three-body problem with three unequal
positronic or antiprotonic systefi2,3], or thedt fusion rate  masses can achieve highly accurate results in terms of energy
in the study of muon catalyzed fusips—8]. The quality of a and expectation values. Focusing on the expectation values
certain local property of a wave function, however, cannot bdor the Dirac delta function, we study how a special local
determined from the quality of the energy eigenvalue and grid refinement can be applied to improve the accuracy of
method to reduce systematically the error of such propertie!cal properties computed usually with global basis sets.

is still lacking. Several attempts have been made to overVhen the FEM was applied to thetx system in a previous

come this problem, including the addition of terms that ap-Study[22], a binding energy accurate to 5 significant digits

pear in the Fock expansion, using more diffuse operd8irs was obtained. High precision values for the binding energies

. . . : ave been presented by several groups; see, for example,
or the correlation function hyperspherical harmonic metho o L
[10]. But the success of each of these is limited to certai 23-21. A convergence up to 12 and 8 significant digits has

C ._heen achieved for the energy eigenvalue of the ground state
applications. It has been suggested that the FEM should yiel . . 2
significantly improved expectation values due to its local in—and the(0,1) state, respectivel}28,29. Using a simplified

terpolation schem¢l11]; to our knowledge this has never version O.f the "_“?gfa' transfqmﬁgenerator coqrdinale
been shown or studied systematically. In a previous stud ethod high precision expectation values for various opera-

[12] an adaptive finite-element meth¢BEM) [13—-15 was ors have been published for bahstateq 30]

applied to solve the three-dimensional Salinger equation II. NUMERICAL PROCEDURE AND RESULTS

for the ground states of three-body Coulomb systems with

two equal masses. The high precision achieved in this direct For total angular momentum zerd €0) the nonrelativ-
numerical treatment motivated us to apply the FEM to threeistic Schralinger equation for three interacting charged point
body Coulomb systems with three unequal masses. We chogarticles depends only on the three interparticle distances
the prominentdtu system for a case study because it has ;,, ry3, andr,3[31-34. We treat the Schdinger equation
been investigated extensively in connection with muon-n the variational form(if not indicated otherwise, all quan-
catalyzed fusion; sefd6—21] and references therein. We re- tities in this work are given in atomic unjts
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TABLE |I. The energyE, the binding energ¥,;,, and the ex- TABLE Il. The integrated cusp values v(rj)
pectation values for various operators for thstates ofdtw. The =(8(rij)alarj)/(8(rij)) and the expectation values for the Dirac
threshold energy for the dissociation intp. and d is given in  delta functions for thg0,0) state. The exact values for the inte-
atomic units byeg,= —0.5mm, /(m;+m,). The conversion factor ~grated cusp values are given by =Z;Z;mm; /(m;+m;).
1a.u=27.211 3961 eV is applied. The FEM results are converged

to all figures given; additional digits are given in parentheses. The Relative
mass values m,=206.768 262, my=3670.483 014, andm, Property precision
=5496.921 58 are used. _1 _
v(rq,) (3g7) —195.741 42 9x107
Property 0.0 0,1) —195.741 606 3% 1x10°°
—195.742 14 3x10°°®
Number of 3288 3509 —195.741 606 48 exact
grid points v(ry,) (a0 %) —-199.272 3% 1Xx107©
Epin (€V) 319.136 967 34.834 446 —199.272 567 92 exact
319.136 967 34.834 448 W(rg) (agh) 2203.886 1%x10°3
Aty (@u) 3.0e-8 108 2200.879 822 1x1077
AT,V (au) 1.4e-8 1.1e-8 220001& 4% 10*4
(Ury) (a0 156.795 60092 145.849 2235) 2200.879 985 exact
(Lrg,) (agh) 149.431 42479) 106.421 3015) (8(rg,)) (1025 ) 1.366 003 73
(1) (agh) 83.498 33183 50.437 6734) g 1.366 003 81
(ri,) (10 2ap) 0.978 738 485) 1.324 55098) 1.366 003 &
(ra) (10 2ay) 1.024 292 7149) 1.902 24825) 1,542 707 39
1.024 292 718 1.902 243 430 1.542 706 8
(rqy (10 2ag) 1.328 982 5634) 2.496 14159 (8(re)) (35 7 838 4%
1.328 982 558 2.496 141 767 7.841 868
(r2,) (10*ad 1.262 377 £38) 2.750 79235) 7.841 95

(rg (107%af)

(rgy (10 %ad)

1.262 377 542
1.375772 (B2
1.375772 038
1.938 414 413
1.938 414 422

2.750 792 362
5.238 72%59)
5.238 727 613
7.164 6922)
7.164 694 220

8FEM, energy optimized.
°FEM, (5(r;;)) optimized.
Bishop, Frolov, and Smith, 19930].

puted by further refinement steps, however, the number of
refinement steps is restricted by the requirements on the
computer being used. The FEM and the global appr$ach
show excellent agreement, but despite the fact that the FEM
energy eigenvalues are one order of magnitude more accu-
rate the expectation values are not improved by the FEM.
This is a surprising result since the FEM expectation values
2) are usually of very high accuracy. The reason for this result
becomes obvious when inspecting the deviations from the
A self-adaptive multilevel finite-element meth@eEM) [14]  virial theoremA+ y=(T)+(V)/2, whereT andV denote the
is used to treat the variational problefd). First, we select kinetic and potential part of the Hamiltonian, respectively.
the set of mass parameterm,=206.7686 a.u., my  Since the error in the energy eigenvalue X0~ 1Y) is small
=3670.481 a.u., anth,=5496.899 a.u. The adaptive FEM compared taA1 <10 the accuracy of the FEM expecta-
obtained a binding energy @,;,=319.139 752 153 eV af- tion values is determined by the deviation from the virial
ter fourteen refinement steps on a grid with 4560 points. Thisheorem; see Refl12] for a discussion. The large deviation
energy value has a relative error 0«30 ' compared to  from the virial theorem indicates that the FEM energy eigen-
the bench mark valueE,=319.139 752 161 eV, which value is lowered by the cancellation of errors in different
were obtained with up to 1400 explicitly correlated Slaterparts of the Hamiltonian. Such a cancelation of errors is well
type geminalg28,29. known for energy optimized global basis sets and seems to
After having verified that accurate energy eigenvalues foplay a role in FEM calculations on energy optimized grids as
dtu can be obtained with the adaptive FEM, we turn towell. The situation is different in the global basis set expan-
expectation values for various operators. Therefore weion of Bishopet al. [30], where the deviations from the
change the mass parameters to(inere recent and reliable virial theorem and the errors in the energies are of the same
set of mass valuesn,=206.768 262,my=3670.483 014, order of magnitude. This is probably a consequence of the
andm,=5496.921 58§35]. The FEM results obtained for the quasirandom choice of the nonlinear parameters in the inte-
(0,0 and (0,2) states are listed in Table I. The results aregral transform method.
compared with the benchmark values obtained by Bishop, An attractive feature of the FEM is the flexibility of the
Frolov, and Smit{30]. Improved FEM results may be com- method. Hence, we use the adaptive refinement to improve

@Bishop, Frolov, and Smith30].

where the reduced masses are given /dy=mm;/(m;
+m;). The potential energy has the usual form

2,2, 2,73 ZyZ
152, L183  L283

l2 M3 l23

V(ri,r3,M23) =
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the expectation values for the Dirac delta functiai(s;), cancellations occur only for three-body problems in which a
see[14]. The corresponding FEM results can be comparedast electronic(or muonig motion is coupled with a slow
with the FEM results for energy optimized grids and the*“vibrational” nuclear-nuclear motion. A similar error can-
benchmark values obtained by Bishop, Frolov, and Smittcellation has been observed for the application of the adap-
[30], see Table Il. An indication for the relative precision of tive FEM to the hydrogen molecular ion,H, but not in
the expectation values for Dirac delta functions is given bysuch cases as the helium atom or the Bgstem €* e e")
the quality of the two-body cusp ratiosy(rj;) [12] in which no slow nuclear-nuclear motion is involved. In
=(8(rij)dlari; )I{5(ri;)). The special local refinement im- global basis set expansions fotu, on the other hand, this
proves the benchmark values of Bishetpal.[30] by several error cancellation does not occur if the nonlinear parameters
orders of magnitude. are chosen quasirandomly as in the integral transform gen-
erator coordinate methd®0]. This is strongly indicated by
IIl. CONCLUSION the fact that the deviation from the virial theorem and the
) error in the energy eigenvalue in the numerical treatment of
The adaptive FEM turned out to be a valuable method foljshopet al. are of the same order of magnitude. This favor-
the treatment of general three-body Coulomb problems withype result is not obtained by the FEM on energy optimized
a total angl_JIar mpmentL_Jm of zero. A relative precision bette@rids, however, the adaptive FEM is not restricted to energy
than 10 is easily achieved for the energy eigenvalues ofpptimized grids; a multilevel local grid refinement according
the S states ofdtu. The precision of the expectation values tq any physical property is possible. We demonstrated this
and the deviation from the virial theorem are comparable t(c;}y the refinement of the grid according to the expectation

sophisticated global basis set expansions. A cancellation Qfajyes for the Dirac delta functions. The resulting expecta-

the FEM, as is well known for expansions in global basis

sets that are strictly optimized to minimize the energy eigen-

value. Thus, the local interpolation s_cheme of the f_|n_|te ele- ACKNOWLEDGMENTS
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