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Global and local properties of theS states of thedtµ molecular ion: A finite-element study

J. Ackermann
Institut für Molekulare Biotechnologie (IMB), Beutenbergstrasse 11, D-07745 Jena, Germany

~Received 10 November 1997; revised manuscript received 22 February 1998!

An accurate finite-element method~FEM! is applied to solve the three-dimensional Schro¨dinger equation for
the S states of thedtm molecular ion. Using an adaptive refinement of the grid and higher-order polynomials
the energy eigenvalues are obtained with a relative precision better than 10211. The deviation from the virial
theorem, the two-body cusp ratios, and the expectation values^1/r &,^r &,^r 2&,^d(r )& for the three interparticle
distances are computed and discussed. The FEM values turn out to be comparable to results obtained with
sophisticated global basis sets. Special local refinement techniques are applied to study the expectation values
for the Dirac delta functions. New benchmark values for these local properties are presented.
@S1050-2947~98!00906-8#

PACS number~s!: 36.10.Dr, 32.10.2f, 02.70.Dh
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I. INTRODUCTION

Local properties of the wave function play an importa
role for many few-body systems. Examples are the hyper
splitting in muonic systems@1#, the annihilation rate in a
positronic or antiprotonic system@2,3#, or thedt fusion rate
in the study of muon catalyzed fusion@4–8#. The quality of a
certain local property of a wave function, however, cannot
determined from the quality of the energy eigenvalue an
method to reduce systematically the error of such proper
is still lacking. Several attempts have been made to ov
come this problem, including the addition of terms that a
pear in the Fock expansion, using more diffuse operators@9#,
or the correlation function hyperspherical harmonic meth
@10#. But the success of each of these is limited to cert
applications. It has been suggested that the FEM should y
significantly improved expectation values due to its local
terpolation scheme@11#; to our knowledge this has neve
been shown or studied systematically. In a previous st
@12# an adaptive finite-element method~FEM! @13–15# was
applied to solve the three-dimensional Schro¨dinger equation
for the ground states of three-body Coulomb systems w
two equal masses. The high precision achieved in this di
numerical treatment motivated us to apply the FEM to thr
body Coulomb systems with three unequal masses. We c
the prominentdtm system for a case study because it h
been investigated extensively in connection with muo
catalyzed fusion; see@16–21# and references therein. We re
571050-2947/98/57~6!/4201~3!/$15.00
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strict ourselves to the lowest two states in the manifoldL
50, which in the adiabatic limit are labeled by~0,0! and
~0,1!.

It is the main goal of this work to show that a FEM
treatments of a three-body problem with three uneq
masses can achieve highly accurate results in terms of en
and expectation values. Focusing on the expectation va
for the Dirac delta function, we study how a special loc
grid refinement can be applied to improve the accuracy
local properties computed usually with global basis se
When the FEM was applied to thedtm system in a previous
study @22#, a binding energy accurate to 5 significant dig
was obtained. High precision values for the binding energ
have been presented by several groups; see, for exam
@23–27#. A convergence up to 12 and 8 significant digits h
been achieved for the energy eigenvalue of the ground s
and the~0,1! state, respectively@28,29#. Using a simplified
version of the integral transform~generator coordinate!
method high precision expectation values for various ope
tors have been published for bothS states@30#.

II. NUMERICAL PROCEDURE AND RESULTS

For total angular momentum zero (L50) the nonrelativ-
istic Schrödinger equation for three interacting charged po
particles depends only on the three interparticle distan
r 12, r 13, andr 23 @31–34#. We treat the Schro¨dinger equation
in the variational form~if not indicated otherwise, all quan
tities in this work are given in atomic units!
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where the reduced masses are given bym i j 5mimj /(mi
1mj ). The potential energy has the usual form

V~r 12,r 13,r 23!5
Z1Z2

r 12
1

Z1Z3

r 13
1

Z2Z3

r 23
. ~2!

A self-adaptive multilevel finite-element method~FEM! @14#
is used to treat the variational problem~1!. First, we select
the set of mass parametersmm5206.7686 a.u., md
53670.481 a.u., andmt55496.899 a.u. The adaptive FEM
obtained a binding energy ofEbin5319.139 752 153 eV af-
ter fourteen refinement steps on a grid with 4560 points. T
energy value has a relative error of 3310212 compared to
the bench mark valueEbin5319.139 752 161 eV, which
were obtained with up to 1400 explicitly correlated Sla
type geminals@28,29#.

After having verified that accurate energy eigenvalues
dtm can be obtained with the adaptive FEM, we turn
expectation values for various operators. Therefore
change the mass parameters to the~more recent and reliable!
set of mass valuesmm5206.768 262,md53670.483 014,
andmt55496.921 58@35#. The FEM results obtained for th
~0,0! and ~0,1! states are listed in Table I. The results a
compared with the benchmark values obtained by Bish
Frolov, and Smith@30#. Improved FEM results may be com

TABLE I. The energyE, the binding energyEbin , and the ex-
pectation values for various operators for theS states ofdtm. The
threshold energy for the dissociation intotm and d is given in
atomic units bye thr520.5mtmm /(mt1mm). The conversion factor
1 a.u.527.211 3961 eV is applied. The FEM results are conver
to all figures given; additional digits are given in parentheses.
mass values mm5206.768 262, md53670.483 014, and mt

55496.921 58 are used.

Property ~0,0! ~0,1!

Number of
grid points

3288 3509

E ~a.u.! 2111.364 346 91(4) 2100.916 425 77(3)
2111.364 346 90a 2100.916 425 766a

Ebin ~eV! 319.136 967 34.834 446
319.136 967a 34.834 446a

DT,V ~a.u.! 3.0e-8 7.0e-8
DT,V ~a.u.! 1.4e-8a 1.1e-8a

^1/r tm& (a0
21) 156.795 600~92! 145.849 22~35!

^1/r dm& (a0
21) 149.431 424~79! 106.421 30~15!

^1/r dt& (a0
21) 83.498 331~83! 50.437 67~34!

^r tm& (1022a0) 0.978 738 45~55! 1.324 550~98!

0.978 738 456a 1.324 550 984a

^r dm& (1022a0) 1.024 292 71~49! 1.902 243~25!

1.024 292 716a 1.902 243 430a

^r dt& (1022a0) 1.328 982 55~34! 2.496 141~59!

1.328 982 556a 2.496 141 767a

^r tm
2 & (1024a0

2) 1.262 377 5~38! 2.750 792~35!

1.262 377 542a 2.750 792 364a

^r dm
2 & (1024a0

2) 1.375 772 0~32! 5.238 725~58!

1.375 772 038a 5.238 727 619a

^r dt
2 & (1024a0

2) 1.938 414 4~13! 7.164 69~22!

1.938 414 422a 7.164 694 220a

aBishop, Frolov, and Smith@30#.
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puted by further refinement steps, however, the numbe
refinement steps is restricted by the requirements on
computer being used. The FEM and the global approach@30#
show excellent agreement, but despite the fact that the F
energy eigenvalues are one order of magnitude more a
rate the expectation values are not improved by the FE
This is a surprising result since the FEM expectation val
are usually of very high accuracy. The reason for this res
becomes obvious when inspecting the deviations from
virial theoremDT,V5^T&1^V&/2, whereT andV denote the
kinetic and potential part of the Hamiltonian, respective
Since the error in the energy eigenvalue (,10211) is small
compared toDT,V,1027 the accuracy of the FEM expecta
tion values is determined by the deviation from the vir
theorem; see Ref.@12# for a discussion. The large deviatio
from the virial theorem indicates that the FEM energy eige
value is lowered by the cancellation of errors in differe
parts of the Hamiltonian. Such a cancelation of errors is w
known for energy optimized global basis sets and seem
play a role in FEM calculations on energy optimized grids
well. The situation is different in the global basis set expa
sion of Bishopet al. @30#, where the deviations from the
virial theorem and the errors in the energies are of the sa
order of magnitude. This is probably a consequence of
quasirandom choice of the nonlinear parameters in the i
gral transform method.

An attractive feature of the FEM is the flexibility of th
method. Hence, we use the adaptive refinement to impr

TABLE II. The integrated cusp values n(r i j )
5^d(r i j )]/]r i j &/^d(r i j )& and the expectation values for the Dira
delta functions for the~0,0! state. The exact values for the inte
grated cusp values are given byn i j 5ZiZjmimj /(mi1mj ).

Property
Relative
precision

n(r dm) (a0
21) 2195.741 42a 931027

2195.741 606 34b 131029

2195.742 14c 331026

2195.741 606 48 exact
n(r tm) (a0

21) 2199.272 37a 131026

2199.272 567 62b 231029

2199.272 09c 231026

2199.272 567 92 exact
n(r dt) (a0

21) 2203.889a 131023

2200.879 824b 131027

2200.014c 431024

2200.879 985 exact
^d(r dm)& (106a0

23) 1.366 003 73a

1.366 003 81b

1.366 003 4c

^d(r tm)& (106a0
23) 1.542 707 30a

1.542 707 39b

1.542 706 8c

^d(r dt)& (a0
23) 7.838 43a

7.841 86b

7.841 95c

aFEM, energy optimized.
bFEM, ^d(r i j )& optimized.
cBishop, Frolov, and Smith, 1995@30#.
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57 4203GLOBAL AND LOCAL PROPERTIES OF THES STATES . . .
the expectation values for the Dirac delta functionsd(r i j ),
see@14#. The corresponding FEM results can be compa
with the FEM results for energy optimized grids and t
benchmark values obtained by Bishop, Frolov, and Sm
@30#, see Table II. An indication for the relative precision
the expectation values for Dirac delta functions is given
the quality of the two-body cusp ratiosn(r i j )
5^d(r i j )]/]r i j &/^d(r i j )&. The special local refinement im
proves the benchmark values of Bishopet al. @30# by several
orders of magnitude.

III. CONCLUSION

The adaptive FEM turned out to be a valuable method
the treatment of general three-body Coulomb problems w
a total angular momentum of zero. A relative precision be
than 10211 is easily achieved for the energy eigenvalues
the S states ofdtm. The precision of the expectation value
and the deviation from the virial theorem are comparable
sophisticated global basis set expansions. A cancellatio
errors in a different part of the Hamiltonian is observable
the FEM, as is well known for expansions in global ba
sets that are strictly optimized to minimize the energy eig
value. Thus, the local interpolation scheme of the finite e
ment method doesnot lead to a superior overall precision o
the wave function if compared to global basis set a
proaches. This seems to be a direct consequence of the a
tion of the FEM grid according to the energy minimum pri
ciple. Remarkably, in the adaptive FEM these er
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cancellations occur only for three-body problems in which
fast electronic~or muonic! motion is coupled with a slow
‘‘vibrational’’ nuclear-nuclear motion. A similar error can
cellation has been observed for the application of the ad
tive FEM to the hydrogen molecular ion H2

1 , but not in
such cases as the helium atom or the Ps2 system (e1e2e2)
@12# in which no slow nuclear-nuclear motion is involved.
global basis set expansions fordtm, on the other hand, this
error cancellation does not occur if the nonlinear parame
are chosen quasirandomly as in the integral transform g
erator coordinate method@30#. This is strongly indicated by
the fact that the deviation from the virial theorem and t
error in the energy eigenvalue in the numerical treatmen
Bishopet al.are of the same order of magnitude. This favo
able result is not obtained by the FEM on energy optimiz
grids, however, the adaptive FEM is not restricted to ene
optimized grids; a multilevel local grid refinement accordi
to any physical property is possible. We demonstrated
by the refinement of the grid according to the expectat
values for the Dirac delta functions. The resulting expec
tion values^d(r i j )& are the most accurate in the literature
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