PHYSICAL REVIEW A VOLUME 57, NUMBER 6 JUNE 1998

Information transmission through a noisy quantum channel

Howard Barnum:?* M. A. Nielsen!?>" and Benjamin Schumacher
1 Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
2 Center for Advanced Studies, Department of Physics and Astronomy, University of New Mexico,
Albuquerque, New Mexico 87131-1156
3 Department of Physics, Kenyon College, Gambier, Ohio 43022
(Received 3 March 1997

Noisy quantum channels may be used in many information-carrying applications. We show that different
applications may result in different channel capacities. Upper bounds on several of these capacities are proved.
These bounds are based on fttwherent informationwhich plays a role in quantum information theory
analogous to that played by the mutual information in classical information theory. Many new properties of the
coherent information and entanglement fidelity are proved. Two nonclassical features of the coherent infor-
mation are demonstrated: the failure of subadditivity, and the failure of the pipelining inequality. Both prop-
erties arise as a consequence of quantum entanglement, and give quantum information new features not found
in classical information theory. The problem of a noisy quantum channel with a classical observer measuring
the environment is introduced, and bounds on the corresponding channel capacity proved. These bounds are
always greater than for the unobserved channel. We conclude with a summary of open problems.
[S1050-294{@8)04005-7

PACS numbd(s): 03.65.Bz

[. INTRODUCTION of mutual informationin classical information theory. Many
new results about the coherent information are proved, and
A central result of Shannon’s classical theory of informa-we show that quantum entanglement allows the coherent in-
tion [1-3] is the noisy-channel coding theorerihis result ~ formation to have properties that have no classical analogue.
provides areffective proceduréor determining thecapacity ~ These properties are critical to understanding what is essen-
of a noisy channel—the maximum rate at which classicalially quantum about the quantum noisy-channel coding
information can be reliably transmitted through the channelproblem. Section VIII brings us back to noisy-channel cod-
There has been much recent work on quantum analogues #fd, and formally sets up the class of noisy-channel coding
this result{4—8. problems we consider. Section IX proves a variety of upper
This paper has two central purposes. The first purpose igounds on the capacity of a noisy quantum channel, depend-
to develop general techniques for proving upper bounds oiflg on what class of coding schemes one is willing to allow.
the capacity of a noisy quantum channel, which are appliea—his is followed in Sec. X by a discussion of the achievabil-
to several different classes of quantum noisy-channel probty of these upper bounds and of earlier work on channel
lems. Second, we point out some essentially new featuregapacity. Section Xl formulates the new problem of a noisy
that quantum mechanics introduces into the noisy-channgluantum channel with measurement, allowing classical in-
problem. formation about the environment to be obtained by measure-
The paper is organized as follows. In Sec. Il we give ament, and then used during the decoding process. Upper
basic introduction to the problem of the noisy quantum chanbounds on the corresponding channel capacity are proved.
nel, and explain the key concepts. Section Ill reviews therinally, Sec. XIlI concludes with a summary of our results, a
quantum operationgormalism that is used throughout the discussion of the new features that quantum mechanics adds
paper to describe a noisy quantum channel, and Sec. IV rdo the problem of the noisy channel, and suggestions for
views the concept of thentropy exchangassociated with a further research.
guantum operation. Section V shows how the classical noisy-
channel coding theorem can be put into the quantum lan-
guage, and explains why the capacities that arise in this con-
text are not useful for applications such as quantum The problem of noisy-channel coding will be outlined in
computing and teleportation. Section VI discusses ¢he  this section. Precise definitions of the concepts used will be

tanglement fidelitywhich is the measure we use to quantify given in later sections. The procedure is illustrated in Fig. 1.
how well a state and its entanglement are transmitted through

II. NOISY-CHANNEL CODING

a noisy quantum channel. Section VIl discussescthieerent S Channel Channel .
informationintroduced in[5] as an analogue to the concept _Source o, Toput oy e QUM oding RSVl
Py |——=| Pe | ——| P, |——= P,
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There is aquantum sourceemitting unknown quantum Although all closed quantum systems are described by uni-
states, which we wish to transmit through the channel tdary evolutions, in accordance with Schieger’s equation,
some receiver. Unfortunately, the channel is usually subjeainore general state changes are possible for open quantum
to noise, which prevents it from transmitting states with highsystems, such as noisy quantum channels.
fidelity. For example, an optical fiber suffers losses during How does one describe a general state change in quantum
transmission. Another important example of a noisy quantunmechanics? The answer to this question is provided by the
channel is the memory of a quantum computer. There thguantum operations formalism. This formalism is described
idea is to transmit quantum staiegime The effect of trans- in detail by Kraug11] (see also Hellwig and Kray42]) and
mitting a state from time;; to t, can be described as a noisy is given short but detailed reviews in Chdi3] and in the
guantum channel. Quantum teleportat[@h can also be de- Appendix to[4]. In this formalism there is amput stateand
scribed as a noisy quantum channel whenever there are inan output statewhich are connected by a map,
perfections in the teleportation procd&s10].

The idea of noisy-channel coding is to encode the quan- &p)
tum state emitted by the sourcgs, which one wishes to p= tr[&(p)]°
transmit, using somencoding operationwhich we denote
C. The encoded state is then sent through the channel, whoddis map is aguantum operatiod, a linear, trace-decreasing
operation we denote hy. The output state of the channel is map that preserves positivity. The trace in the denominator is
thendecodedusing somedecoding operatiorD. The objec- included in order to preserve the trace conditionpXrf 1.
tive is for the decoded state to match with high fidelity the ~ The most general form fof that is physically reasonable
state emitted by the source. As in the classical theory, wén addition to being linear and trace decreasing and preserv-
consider the fidelity of large blocks of material produced bying positivity, a physically reasonab® must satisfy an ad-
repeated emission from the source, and allow the encodingitional property called complete positivjtycan be shown to
and decoding to operate on these blocks. A channel is said g [11]
transmit a source reliably if a sequence of block-coding and
block-de_cod_lng_ procgdqres can be fouqd that approaches E(P):E AipAiT- (3.3
perfect fidelity in the limit of large block size. |

What then is theeapacityof such a channel—the highest
rate at which information can be reliably transmitted throughThe system operators;, which must satisfyS;A/A;<I,
the channel? The goal of @éhannel capacity theorens to ~ completely specify the quantum operation. In the particular
provide a procedure to answer this question. This procedurease of a unitary transformation, there is only one term in the
must be areffective procedurehat is, an explicit algorithm sumA;=U, leaving us with the transformatioi3.1).
to evaluate the channel capacity. Such a theorem comes in A class of operations that is of particular interest is the
two parts. One part proves an upper bound on the rate dtace-preservingr nonselectiv@perations. Physically, these
which information can be reliably transmitted through thearise in situations where the system is coupled to some en-
channel. The other part demonstrates that there are codirngfonment that is not under observation; the effect of the
and decoding schemes that attain this bound, which is ther@volution is averaged over all possible outcomes of the in-
fore the channel capacity. We do not prove such a channdéraction with the environment. Trace-preserving operations
capacity theorem in this paper. We do, however, deriveare defined by the requirement that
bounds on the rate at which information can be sent through
a noisy quantum channel. EI AiTAiz | 3.4)

(3.2

I1l. QUANTUM OPERATIONS This is equivalent to requiring that for all density operators

What is a quantum noisy channel, and how can it be de’’
scribed mathematically? This section reviews the formalism tr[&(p)]=1, (3.5
of quantum operations, which is used to describe noisy chan-
nels. Previous papers on the noisy-channel problés8]  explaining the nomenclature “trace preserving.” Notice that
have used apparently different formalisms to describe théhis means the evolution equati¢8.2) reduces to the sim-
noisy channel. In fact, all the formalisms can be shown to beler form
equivalent, as we shall see in this section. Historically, quan-
tum operations have also sometimes been knowoas- p—E&(p), (3.6
pletely positive maper superscattering operatord’he mo- ) _
tivation in all cases has been to describe general stat¢hencis trace preserving. . _
changes in guantum mechanics. The following representation theorems proved in[11],

A simple example of a state change in quantum mechar-13], and [4]. It shows the connection between trace-
ics is the unitary evolution experienced by a closed quanturRr€serving quantum operations and systems interacting uni-

system. The final state of the system is related to the initiafarily with an environment, and thus provides part of the
state by a unitary transformatids, justification for the physical interpretation of trace-

preserving quantum operations described above.
Theorem (representation theorem for trace-preserving
p—&(p)=UpUT. (3.9 guantum operations)Suppose is a trace-preserving quan-
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FIG. 2. Quantum operations arise when a syst@ninteracts
with an environmenk.

E

tum operation on a system withdadimensional state space.
Then it is possible to construct an “environmenE’ of at FIG. 3. Quantum operations in the presence of a reference sys-
mostd? dimensions, such that the system and environmentemR.

are initially uncorrelated, the environment is initially in a

pure stateo=|s)(s|, and there exists a unitary evolutith  sical case, memoryless means that the output of the channel

on system and environment such that is independent of the past, conditioned on knowing the state
of the source. Quantum mechanically we take this to mean
&p)= tre[U(p@a)UT]. (3.7 that the output of the channel is completely determined by

) ) . the encoded state of the source, and is not affected by the
Here and elsewhere in the paper a subscript on a trace 'nd;b‘revious history of the source.

cates a partial trace over the corresponding systenm this Phrased in the language of quantum operations, we as-

case. _ o _ sume that there is a quantum operatisghdescribing the
Conversely, given any initially uncorrelated enwronmentdynamics of the channel. The inppt of the channel is re-
o (possibly of more thard? dimensions, and initially im- lated to the outpup, by the equation
purg, a unitary interactiorlJ between the system and the °
environment gives rise to a trace-preserving quantum opera- pi—po=Mpi). (3.9
tion,
For the majority of this paper we assume, as in the previous
&p)= tre[U(p@a)U™]. (3.8 equation, that the operation describing the action of the chan-
. . nel is trace preserving. This corresponds to the physical as-
This theorem tells us that any trace-preserving quantund, htion that no classical information about the state of the
operation can always beocked ums a unitary evolution by  qgtem or its environment is obtained by an external classical
adding an environment with which the system can interacfpcarver. All previous work on noisy-channel coding with

unl_tanly..Chonve_r;(_aI)l/I, it tells USI th?jt any such unitary inter-yhe oy cention 0f14] has assumed that this is the case, and
action with an initially uncorrelated environment gives rise,,« 4 so for the majority of the paper. In Sec. XI we con-

to a trace-preserving quantum operation. Both of these faclgye the case of a noisy channel that is being observed by
are useful in what follows. The picture we have of a quantumy o classical observer

operation is neatly summarized in Fig. 2.

Here, Q denotes the state of the system before the inter
action with the environment, ar@’ the state of the system
after the interaction. Unless stated otherwise we follow th
convention thalQ andQ’ ared dimensional. The environ-
ment systenE and the operatod °F might be chosen to be
the actual physical environment and its interaction v@th pR= tra(|yR(YRQ). (3.10
but this is not necessary. The only thing that matters for the
description of noisy channels is the dynamics@fFor any ~ Such a stat¢yR®) is called apurification of p©, and it can
given quantum operatiofithere are many possible represen-be showr(15] that such a systerR and purificationg =)
tations of £ in terms of environment& and interactions always exist. From our point of vieR is introduced simply
UQE. We always assume that the initial stateFofs apure  as a mathematical device to purify the initial state. The joint
state and regardE as a mathematical artifice. Of course, the systemRQ evolves according to the dynamiZg® £ given
actual physical environmeii, may be initially impure, but by
the above representation theorem shows that for the purposes
of describing the dynamics @@, it can be replaced by an pR'Q = (7@ &) (pR9), (3.12)
“environment” E that is initially pure and gives rise to ex-
actly the same dynamics. In what follows it is this latter whereZy is the identity dynamics for the reference system
that is most useful. The overall picture we have of a trace-preserving quan-

Shannon'’s classical noisy coding theorem is proved fotum operation is shown in Fig. 3.
discrete memoryless channeBiscrete means that the chan-  The picture we have described thus far applies only to
nel only has a finite number of input and output states. Bytrace-preservingguantum operations. Later in the paper we
analogy we define a discrete quantum channel to be one thaiill also be interested in quantum operations that are not
has a finite number of Hilbert space dimensions. In the clastrace preserving. That is, they do not satisfy the relation

In addition to the environmeri it is also extremely use-
ful to introduce areference system i the following way.
One might imagine that the syste@ is initially part of a
eiarger systenRQ and that the total is in a pure stdigR?)
satisfying
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that for eachm the corresponding constant,=1, and the
projectors PE] form a complete orthogonal se}:mPEFI,
I\I,RQ> ¥ PEP = 6mm P5.

i Conversely, any map of the forr(8.16 is a quantum
Q Q' operation.

Once again, introducing a reference systemmhat purifies
ePE[QE pQ we are left with a picture of the dynamics that looks like
that shown in Fig. 4.

A few miscellaneous remarks will be useful later on.

E (1) A prime always denotes mormalizedstate. For in-
stance,
FIG. 4. Trace decreasing quantum operations.
ro__Zeef)e™ 317
>ATA=1, and thus {r&(p)]#1 in general. Such quantum t (Zr2 ) (pRA] '

operations arise in the theory géneralized measurements .
To each outcomen of a measurement there is an associated (2) The tptal ,St‘,"‘t,e .Of the systeRQE st'arts .and remains
quantum operatiod,,, with an operator-sum representation, Pure. That isp® Q'F'is a pure state. Purity gives very use-
ful relations among Von Neumann entropieS(p)
=—tr(p log,p), such asS(pR' ?)=S(pE') and all other
permutations amon&,Q andE. These are used frequently
in what follows.
The probability of obtaining outcome is postulated to be (3) Generically we denote quantum operationsébgand
the dimension of the quantum systépnby d.
_ _ (4) Trace-preservingguantum operations arise when a
PI(m) = t&m(p)]= tr( 2,: A’T“iAm‘p)' (313 system interacts with an environment, amal measurement
is performed on the system plus environment. Non-trace-
The completeness relation for probabilitigg, Pr(m)=1 is  preserving operations arise when classical information about
equivalent to the completeness relation for the operators ajjhe state of the system is made available by such a measure-
pearing in the operator-sum representations ment. For most of this paper the noisy quantum channel is
described by a trace-preserving quantum operation.
(5) Sometimes we consider the composition of t¢ay

gm(P):Z AmiPA:Lni' (3.12

> AlAR= (3.14 . : .
& Cimitimi : more quantum operations. Generically we use the notation
&1,&,, ... for the different operations, and the notation
Thus for eachm, &,0&; to denote composition of operations,
‘ (E20€1)(p)=E2(E4(p). (3.18
Z Al Ami=<I. (3.15

Furthermore it is sometimes useful to use B®@ E picture of

. L . . quantum operations to discuss compositions. We denote the
As an aside, it is interesting to note that the formulation of nvironment corresponding to operatiénby E;, and as-

?fg_n;lém targeﬁts?riernm()esr:tclgﬁzg (;)nn Lh:n tﬁgjﬁ:ggr?arﬁgztuilsa ime environments corresponding to different valudsaoé
» [aug 4 ' dependent and initially pure. So, for example, the initial

spemgl case of the qgantum opergtlons formalism, obtaunabseTate for a two-stage composition would be
by using a single projectdk,,= P, in the operator-sum rep-
resentation foi, . The formalism of positive operator val- pROEE2= | yRO(YRY®|s,)(s1|®|S,)(S,].  (3.19
ued measurePOVM’s) [15] is also related to the general-
ized measurements formalisrrEmEEiALiAmi are the A single prime denotes the state of the system after the ap-
elements of the POVM that is measured. plication of £;, and a double prime denotes the state of the
A result analogous to the earlier representation theorersystem after the application é%°&;, and so on.
for trace-preserving quantum operations can be proved for
general operations. IV. ENTROPY EXCHANGE
Theorem (general representation theorem for operations). . ) ) . o .
Suppos€ is a general quantum operation. Then it is possible This section briefly reviews the d'eflnltlon.and some basic
to find an environmenE initially in a pure stater=|s)(s| results about thentropy exchangawhich was independently
uncorrelated with the system, a unitds®E, a projectorPt introduced by Schumaché¢#d] and Lloyd[7]. The entropy

onto the environment alone. and a consi@nt0. such that  €Xchange turns out to be central to understanding the noisy
quantum channel.

E(p)=ctrg PEUQE(p® o) URETPE]. (3.1 The entropy exchangef a quantum operatioé with in-
put p is defined to be
Furthermore, in the case of a generalized measurement de-
scribed by operations,, it is possible to do so in such a way Se(p,S)ES(pE'), 4.7
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wherepE’ is the state of an initially pure environmefihe  output statesly) of the channel, although more general

“mock” environment of the previous sectiprafter the op- Schemes are possible. For the purpose of illustration the
eration, andS(p)=— tr(p log,p) is the Von Neumann en- Present level of generality suffices. A classical input random
tropy. If &(p) =3;A;pAl then a convenient form for the en- variable X corresponds to an input density operator for the
tropy exchange is found by defining a matriv with ~ guantum channel,

elements
= ) 5.4
(A oA px= 2 PO)IX)(X] (5.4
1= THlE ()] 4.2
p The statistics ofX are recoverable by measuripg in the
It can be showri4,14] that |x) basis. Defining operatoi,, by
So(p,€)=S(W)=— tr(W log,W). 4.3 Exy=IY){x], (5.9

The last equation is frequently useful when performing cal-We find that the channel operation defined by
culations.
N(p)=2 PyExypEry (5.6
V. CLASSICAL NOISY CHANNELS Xy

IN A QUANTUM SETTING . . .
is a trace-preserving quantum operation, and that

In this section we show how classical noisy channels can
be formulated in terms of quantum mechanics. We begin b . _
reviewing the formulation in terms of classical inforngtiony N(pX)_pY_; SE ©.9
theory.

A classical noisy channel is described in terms of distin-where py is the density operator corresponding to the ran-
guishable channel states, which we labekbyf the inputto ~ dom variableY that would have been obtained frofngiven
the channel is symbat then the output is symbao} with a classical channel with probabilitigs, .. This gives a
probability py,. The channel is assumed to act indepen-quantum mechanical formalism for describing classical
dently on each input. For eaoh the probability sum rule sources and channels. It is interesting to see what form the
S,pyx=1 is satisfied. Theseonditional probabilities p, mutua! information and channel capacity take in the quantum
completely describe the classical noisy channel. formalism.

Suppose the input to the chanmel represented by some Notice that
classical random variablé¢ and the output by a random vari-
ableY. The mutual information betweexX andY is defined H(X)=S(px),

by H(Y)=S(py) = S\ px)). (5.9
H(XZY)EH(X)+H(Y)—H(X,Y), (5.1)

(5.9

Next we compute the entropy exchange associated with the
whereH(X) is the Shannon information of the random vari- channel operating on inputy , by computing theN/ matrix

able X defined by given by Eq.(4.2). TheW matrix corresponding to the chan-
nel with inputpy has entries
H(X)==2 p(x) logp(x), (5.2 Wigy)xy') = St By PO P(YIX), (5.10

with 0 log,0=lim,_,op logp=0. but the joint distribution of X,Y) satisfies p(x)p(y|x)

Shannon showed that the capacity of a noisy classical p(x.y). ThusW is diggo_nal with eigenvalues(x.y), so
channel is given by the expression the entropy exchange is given by

Cs=maxH(X:Y), (5.3 Se(px . N) =H(X,Y). (5.11

p(x) It follows that

where the maximum is taken over all possible distributions
p(x) for the channel inpuX. Notice that although this is not H(X:Y)=S(px) + S(Mpx)) = Se(px,N),  (5.12
an explicit expression for the channel capacity in terms of . .
the conditional probabilitiep,;, , the maximization can eas- a_nd th_us ;c]he Shannonfcapalc_ﬂg Og the classical channel is
ily be performed using well-known techniques from numeri-9'VeN I the quantum formalism by
cal mathematics. That is, Shannon'’s result provides an effec- — _
tive procedure for computing the capacity of a noisy classical Co=maf S(px) + SMpx)) = Selpx. M1 (513
channel.

All these results may be reexpressed in terms of quanturwhere the maximization is over all input states for the chan-
mechanics. We suppose the channel has some preferred mel py that are diagonal in thgx) basis.
thonormal basi$x) of signal states. For convenience we as- The problem we have been considering is that of trans-
sume the set of input statés) is the same as the set of mitting a discrete set of orthogonal statéke statesx))

PX
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through the channel. In many quantum applications one is =il tr(Aip)|?
not only interested in transmitting a discrete set of states, but Fe(p,&)= W-
also arbitrary superpositions of those states. That is, one

wants to transmit entireubspacesf states. In this case, the This expression simplifies for trace-preserving quantum op-
capacity of interest is the maximum rate of transmission ofrations since the denominator is 1. The entanglement fidel-
subspace dimensions. This may occur in quantum compufty has the following propertie§4,5,14: (1) 0<F¢(p.£)

ing, cryptography, and teleportation. It is also interesting in<q (2) Fe(p,€)=1 if and only if for all pure state$y)
these applications to transmit threntanglementof states. lying in the support of,

This cannot be done by considering the transmission of a set
of orthogonal pure states alone. E( W) =) y]. 6.3
It is not difficult to see thaCgq is not correct as a measure
of how many subspace dimensions may be reliably transmit3) The entanglement fidelity is a lower bound on the fidelity
ted through a quantum channel. For example, consider thadefined by Jozsgl9] in the following sense:
classical noiseless channel,

(6.2

Fe(p.&)<F(p.&(p)). (6.4
Nip)=2 [X){X]p|x)}{X, (5.14  (4) Supposd|y;),pi} is an ensemble realizing,
where|x) is an orthonormal set of basis states for the chan- P:Z Pil i) {dhi - 6.9

nel. It is easily seen that

Then the entanglement fidelity is a lower bound on the av-
Cs=log,d, (5.19  erage fidelity for the pure statég;),

whered is the number of channel dimensions. Yet it is intu-
itively clear, and is later proved in a more rigorous fashion,
that such a channel cannot be used to transmit any nontrivial
subspace of state space, nor can it be used to transmit af§) Again supposé|;),p;} is an ensemble realizing Then
entanglement, and thus its capacity for transmitting thesé the pure-state fidelity 4| E(| ){])| )=1— 5 for all | )
types of quantum resources is zero. in the support of p, Fq(p,£)=1-(3/2)» (Knill and
Laflamme[20]).
There are several reasons for using the entanglement fi-
delity as our measure of success in transmitting quantum
In this section we review a quantity known as tee-  states. If we succeed in sending a soupgewith high en-
tanglement fidelity4]. It is this quantity that we use to study tanglement fidelity, we can serahy ensemble forpg with
the effectiveness of schemes for sending information throughigh average pure-state fidelity, by itéd) above. Entangle-
a noisy quantum channel. ment fidelity is thus a more severe requirement of quantum
The entanglement fidelity is defined forpaocess speci-  coherence than average pure-state fidelity. Moreover, the
fied by a quantum operatiafiacting on some initial state. ability to preserve entanglement is of great importance in
We denote it byF(p,£). The concerns motivating the defi- applications of quantum coding to, say, quantum computa-
nition of the entanglement fidelity are twofoldt) F.(p,£)  tion, where one would like to be able to apply error correc-
measures how well thstatep is preserved by the operation tion in a modular fashion to small portions of a quantum
£. An entanglement fidelity close to one indicates that thecomputer despite the fact that they may, in the course of
process preserves the state wél). F(p,£) measures how quantum computation, become entangled with other parts of
well the entanglemenof p with other systems is preserved the computef21]. (Of course, the general problem of finding
by the operation. An entanglement fidelity close to one the capacity of a noisy quantum channel forgizen en-
indicates the process preserves the entanglement well. semble with average pure-state fidelity as the reliability mea-
Conversely, an entanglement fidelity close to zero indi-sure is also worth investigating.
cates that the state or its entanglement were not well pre- An appropriate measure of how wellsabspacef quan-
served by the operatiofi tum states is transmitted is tisebspace fidelity

Formally, the entanglement fidelity is defined by FL(P.&) D ) 6.7
,£)=min , )
) 1)

Fe<p,5>s2 pi{ il EQ )i ). (6.6)

VI. ENTANGLEMENT FIDELITY

Fe(p.&)=(4 AT E)(|YRY(RDIPRY. (6.
where the minimization is over all pure statgg) in the

That is, the entanglement fidelity is the overlap between thgubspace whose projectorRs Item (5) above implies that if
initial purification|#R°) of the stateoeforeit is sent through  the subspace fidelity is close to one, the entanglement fidelity
the channel with the state of the joint syst&® afterit has s also close to one. The converse is not in general true. That
been sent through the channel. The entanglement fidelity dés, reliable transmission of subspaces is a more stringent re-
pends only onp and &, not on the particular purification quirement than transmission of entanglement. Therefore us-
|4RQ) of p that is used4]. If £ has operation elemenfd}  ing entanglement fidelity as our criterion for reliable trans-
then the entanglement fidelity has the expres§hhd] mission yields capacities at least as great as those obtained
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when subspace fidelity is used as the criterion. We conjecturehich is the quantum Fano inequality.

that these two capacities are identical. For applications it is useful to understand the continuity
As an alternative measure of subspace fidelity, one mighproperties of the entanglement fidelity. To that end we prove
consider the average pure-state fidelity, the following lemma.

Lemma (continuity lemma for entanglement fideli§gp-

pose€ is a trace-preserving quantum operatipris a density
f dig) sl eenla), 6.8 operator, and is a Hermitian operator with trace zero. Then
where the integration is done using the unitarily invariant IFe(p+A,E)—Feo(p,E)|<2 tr(|A]) + tr(|A])2.
measure on the subspace of interest. By itdinabove, the (6.19

capacity resulting from this measure of reliability is at least )
as great as that which results when entanglement fidelity is 10 Prove the lemma we apply E¢6.2) to obtain
used as the measure of reliability. We do not know whether
these two capacities are equal. o |Fe(P+A,5)—Fe(P,5)|$22 | tr(Aip)| | tr(ATA)|
The lesson to be learned from this discussion is that there [
are many different measures that may be used to quantify
how reliably quantum states are transmitted, and different +) | tr(AA))2 (6.15
measures may result in different capacities. Which measure [
is used depends on what resource is most important for the ) ) ) )
application of interest. For the remainder of this paper, weAPPlying a Cauchy-Schwarz inequality to each sum, the first
use the entanglement fidelity as our measure of reliability. With respect to the complex inner produefx;"y;, the sec-
There is a very useful inequality, trguantum Fano in- ond with respect to the Hilbert-Schmidt inner product
equality which relates the entropy exchange and the en-tr(X'Y), we obtain

tanglement fidelity. It i§4]
[Fe(p+A,8)—Fe(p,€)|

Se(p.E)<h(Fe(p,))+[1-Fe(p.E)] logy(d?—1), vz
(6.9 <2| > | tr(Ap) 2> | tr(ATA)[?
i J

whereh(p)=—p log, p—(1-p) log,(1—p) is the dyadic

Shannon information associated wiph It is useful to note T

for our later work that 6h(p)<1 and log (d2—1) +2i | tr(AJA[AD] [ tr(AD], (6.16
< 2log, d, so from the quantum Fano inequality,

where |A|=/ATA. Applying Eg. (6.2 andF.(p,£)<1 to
the first sum and the trace-preserving propertyab the
final sum gives

So(p.E)<1+2[1-Fu(p,6)] log, d.  (6.10

The proof of the quantum Fano inequali.9) is simple

enough that for convenience we repeat it here. Consider an
orthonormal set ofi? basis state$y;) for the systemRQ. |Fe(p+A,E)—Fe(p,E)| <2 /2 | tr(AJ-TA)|2+ tr(|A])2.
This basis set is chosen so tha) =|4R). If we form the i

quantitiesp;= (| pR 2’| 4;), then it is possible to shoysee, (6.179

for example[22], p. 240 One final application of the Cauchy-Schwarz inequality and

the trace-preserving property &fgives

S ) =H(py, . .. Pe2), (6.1
. . . [Fe(p+A,8)—Fe(p,E)|<2 tr(|A]) + tr(|A])?,

whereH(p;) is the Shannon information of the set. But (6.18

by easily verified grouping properties of the Shannon en-

tropy, as required.

This result gives bounds on the change in the entangle-
o] P42 ment fidelity when the input state is perturbed. Note, inci-

H(p1, ... Pg2) =h(p1) +(1=py)H 1-p;’ " '1-py)’ dentally, that during the proof a coefficieRF(p,&) was

(6.12 dropped from the first term on the right-hand side of the
inequality. For some applications it may be useful to apply

and it is easy to show that the inequality with this coefficient in place.
1p2p o ,1pd2 )gbg(dz_l)_ VIl. COHERENT INFORMATION
~py —

In this section we investigate theoherent information
Combining these results and noting that=F.(p,&) by  The coherent information was defined [B], where it was

definition of the entanglement fidelity, suggested that the coherent information plays a role in quan-
tum information theory analogous to the role played by mu-
So(p,&)<h(Fo(p,E)+[1—F(p,E)] log, (d2—1), tual information in classical information theory in the fol-

(6.13 lowing sense. Consider a classical random process,
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M X—=Y—Z, (7.9
XY, (7.0
satisfies a data-processing inequality,

in which the random variabl¥ is used as the input to some
process that produces as output the random variblEhe H(X)=H(X:Y)=H(X:Z). (7.9
distributions of X and Y are related by a linear map1 ] ] ] ]
determined by the conditional probabilities of the process!he idea is that the operatioh—Z represents some kind of
An example of such a process is a noisy classical channef@ta processing” ofY to obtainZ, and the mutual infor-
with input X and outputy. As discussed earlier, an important Mation after processingd(X:Z), can be no higher than the
quantity in information theory is the mutual information Mutual information before processingi(X:Y). Further-
H(X:Y) between the inpuK and the outputy’ of the pro-  More, suppose we have a Markov process,
cess. Note thatl(X:Y) can be regarded as a function of the
input X and the mapM only, since the joint distribution of X=Y, (7.6

X andY is determined by these. _ ) . .
Quantum mechanically we can consider a process definet ch that (X) =H(X:Y). Intuitively, one might expect that

: A : it should be possible to do data processingraio recoverX.
by an inputp, an_d outpup’, with the process described by a It is not difficult to show that it is possible, usingalone, to
guantum operatios,

construct a third variablZ forming a third stage in the Mar-

e kov process,

p—p'=Ep). (7.2 X—=Y—Z (7.7
We assert that the coherent information, defined b . . . .
! ' ned by such thatXx=2Z with probability 1, if and only if H(X)
&(p) =H(X:Y).
I(p, &)=Y m - Su(p,&), (7.3 An analogous quantum result has been proved by Schu-

macher and Nielsefb]. It states that given trace-preserving

plays a role in quantum information theory analogous to thafli@ntum operations, and¢, defining a quantum process,
played by the mutual informatioH (X:Y) in classical infor-
mation theory. This is not obvious from the definition, and p—&x(p)—=(E2E1)(p), (7.8
one goal of this section is to make it appear plausible tha{hen
this is the case. Of course, the true justification for regarding
the coherent m_forr_na_tlon as the quantum a_nalogue qf th_e S(p)=1(p,E1) =1 (p,Ex0Ey). (7.9
mutual information is its success as the quantity appearing in
results on channel capacity, as discussed in later sectionsyrthermore, it was shown ii5] that given a process
This is the true motivation for all definitions in information
theory, whether classical or quantum: their success at quan- p—&1(p), (7.10
tifying the resources needed to perform some interesting
physical task, not some abstract mathematical motivation. it is possible to find an operatiofy, that reverses; if and

In Sec. VIl A we review the data-processing inequality only if
that provides motivation for regarding the coherent informa-
tion as a quantum analogue of the mutual information, and S(p)=1(p,&1). (7.1
whose application is crucial to later reasoning. Section VII B
studies in detail the properties of the coherent information. InThe close analogy between the classical and quantum data-
particular, we prove several results related to convexity thaprocessing inequalities provides a strong operational motiva-
are useful both as calculational aids, and also for provingion for considering the coherent information to be the quan-
later results. Section VII C proves a lemma about the entum analogue of the classical mutual information.
tanglement fidelity that glues together many of our later The proof of the quantum data-processing inequality is
proofs of upper bounds on the channel capacity. Finallyrepeated here in order to address the issue of what happens
Secs. VII D and VII E describe two important ways that thewhen &; and &, are not trace preserving. The proof of the
behavior of the coherent information differs from the behav-first inequality is to apply the subadditivity inequalif22]
ior of the mutual information when quantum entanglement isS(pR'E')<S(pR') + S(pE') in the RQE picture of opera-
allowed. tions to obtain

A. Quantum data-processing inequality [(p,&1) = &1(p)]—Selp,&1) (7.12

The role of coherent information in quantum information

theory is intended to be similar to that of mutual information =S(p°®)=S(p") (7.13
in classical information theory. This is not obvious from the . ,

definition, but can be given an operational motivation in =S(p"F)—S(p") (7.19
terms of a procedure known data processingThe classical

data-processing inequalif8] states that any three variable sS(pR'):S(pR)=S(p).

Markov process, (7.19



57 INFORMATION TRANSMISSION THROUGH A NOISY ... 4161

It i§ clear that this part. of the inequality neeo_l n.ot hold. vyhen [(pAE)=1(p,E). (7.23
&, is not trace preserving. The reason for this is that it is no
longer necessarily the case ttpﬁt' = pR and thus it may not This follows immediately from the definition of the coherent

be possible to make the identificati(S(pR')=S(pR). For ;r(;{r;rxiﬁgon. A slightly more difficult property to prove is the
example, suppose we have a three-dimensional state SPACeTheorem (generalized convexity theorem for coherent in-

with orthonormal state$l), |2), and|3). Let P, be the . _ :
projector onto the two-dimensional subspace spanndd by formation). Supposet; are quantum operations. Then
Z t&(p) ] (p,&)

and|2), andP5 the projector onto the subspace spanned by
|3). Let p=(p/2)Pi,+(1—p)P3, where 0<p<1l, and |(p,2 I ES e (7.249
&(p)=P1,pP1,. Then by choosing small enough we can ! icitp

make S(p)~0, butl(p,£)=1, so we have an example of a This result is extremely useful in our later work. An im-
%’ortant and immediate corollary is the following.

non-trace-preserving operation that does not obey the dat
Corollary (convexity theorem for coherent information).

processing inequality.
The proof of the second part of the data-processing iny; o trace-preserving operatiof=3.pi&; is a convex sum
(pi=0,2;p;=1) of trace-preserving operatiods, then the

equality is to apply the strong subadditivity inequalig2],
coherent information is convex,

S(pRE1%2) + S(pF) < S(p™ 1) + S(pF1%),  (7.16
where we are now using aRQE,E, picture of the opera- |(p,2 Pi&i sz pil (p,&). (7.2
tions. From purity of the total state ®QEE, it follows ! !
that

The proof of the corollary is immediate from the theorem.
p— " The theorem follows from the concavity of tleenditional
R'ETEDN Q
S(p™ "72)=S(p™). (7.1 entropy(see references cited [22], pages 249—250which

Neither of the systemR or E,; are involved in the second for two systems 1 and 2 is defined by

stage of the dynamics in whic® andE, interact unitarily. S(2|1)=S(p1o) — S(trap12). (7.26
Thus, their state does not change during this st@@‘é‘?z

— pR'E1, But from the purity ofRQE, after the first stage o
the dynamics,

¢ This expression is concave jn,. Now notice that

1(p,&)=S(p?)—S(pR')=-S(R'|Q"). (7.27

R'ETY — R'E7\ — Q’ . .
S(p™ ") =S(p™ ") =S(p* ). (7.18  The theorem now follows from the concavity of the condi-
tional entropy.

The remaining two terms in the subadditivity inequality are A further useful result concerns the additivity of coherent

now recognized as entropy exchanges,

information.
" , Theorem (additivity for independent channelSuppose
Eiy Ei\ —
S(p=1)=S(p=1)=S(p,&1), (7.19 &, ....&, are quantum operations apqg, . . . ,p, are den-
g sity operators. Then
S(p=172) =S¢(p,E20E1). (7.20
Making these substitutions into the inequality obtained from 1(p1® - ®ppn,&1® - -Sn)=2i l(pi,&). (7.28

strong subadditivity(7.16) yields

o o The proof is immediate from the additivity property of en-
S(p™)+Se(p,E1)<S(p~ ) +Se(p.E22€1), (7.2 tropies for product states.

which can be rewritten as the second stage of the data- C Al bout entangl t fidelit
processing inequality, . emma about entangiement fidelity
The following lemma is the glue that holds together much

I(p,£1)=1(p,E20E). (7.22  of our later work on proving upper bounds to channel capaci-

] o ) . ) ties. In this section we prove the lemma only for the special
Notice that this inequality holds provide®} is trace pre-  case of trace-preserving operations. A similar but more com-

serving, and does not require any assumptionhas trace  pjicated result is true for general operations, and is given in

preserving. This is very useful in our later work. Sec. XI.
We begin by repeating the proof of a simple inequality
B. Properties of coherent information that was first proved if4], which states that the decred#e

any) in system entropy must be bounded above by the in-

cone, that is, i€; is a collection of completely positive maps crease in the entropy of a pure envwonn_]ent. This applies
and\; is a set of non-negative numbers then & is also a o.n'Iy' for' trace—preservmg OPe,ra“O'fs A/\pplylng ’the subad-
completely positive map. In this section we prove two veryditivity inequality [22] S(p° £)<S(p®')+S(pF) and the
useful properties of the coherent information. First, it is easyelationshipS(pR)=S(p?'F'), that follows from purity we

to see that for any quantum operatirand non-negativa, obtain

The set of completely positive maps forms a positive
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S(p)=S(p"), (7.29 X—Y—2Z. (7.40
=g pR’), (7.30 Intuitively we expect that
e H(X:Z)<H(Y:2), (7.4)
=S(p?F), (7.39
, , and, indeed, it is not difficult to prove such a “pipelining
<S(p?)+S(pF). (7.32  inequality,” based on the definition of the mutual informa-
N o _ tion. The idea is that any information aboXithat reacheg
Rewriting this slightly gives must go throughy, and therefore is also information that
has aboutr. However, the quantum mechanical analogue of
S(p)—SE(p))=Se(p,£), (733 this result fails to hold. We shall see that the reason it fails is

due to quantum entanglement.
Example 1Suppose we have a two-part quantum process
scribed by quantum operatiofis and £2:

for any trace-preserving quantum operattn
Lemma (entanglement fidelity lemma for operations).de

Supposef is a trace-preserving quantum operation, and

some quantum state. Then for all trace-preserving quantum p—E1(p)—(E2E)(p). (7.42

operationsD,

Then, in general

AL
This lemma is extremely useful in obtaining proofs of (pobrb) =1 (Elp). &) (7.43
bounds on the channel capacity. In order for the entanglean explicit example showing that this is the case is given
ment fidelity to be close to 1, the quantity appearing on thebelow. It is not possible to prove a general inequality of this
right-hand side must be close to zero. This shows that theort for the coherent information—examples may be found
entropy ofp cannot greatly exceed the coherent informationwhere a<,> or = sign could occur in the last equation. We

S(p)<I(p,E)+2+4[1—F(p,D°E)] log, d. (7.34

I(p,&) if the entanglement fidelity is to be close to 1. now show how the purely quantum mechanical effect of en-
To prove the lemma, notice that by the second part of theanglement is responsible for this property of coherent infor-
data-processing inequality.9), mation.
Notice that the truth of the equation
S(p) = 1(p,E)=<S(p) = S((D=&)(p)) + Se(p, DE).
(7.39 1(p,E2E1) <1 (E1(p) . E2) (7.44
Applying inequality(7.33 gives is equivalent to
S(p) =S((D>E)(p))=<Se(p,DE), (7.36 Se(E1(p),E)<Su(p,E0Ey). (7.45
and combining the last two inequalities gives This last equation makes it easy to see why &4 may
fail. It is because the entropy of the joint environment for
S(p)—1(p,£)<2Sy(p,DE) (7.37) processeg; andé, (the quantity on the right-hand sidamay

be less than the entropy of the environment for progss
<2h[Fe(p,D°E)]+2(1—F(p,D°E)) log, (d?— 1)7' 3 alone(the quantity on the left This is a property peculiar to
(7.38 quantum mechanics, which is caused by entanglement; there
where the second step follows from the quantum Fano iniS NO classical analogue. An example of this type of phenom-
equality(6.9). But the dyadic Shannon entropyis bounded ~ €nOn is provided by an EPR pair, where the entropy of either

above by 1 and log(d?—1)<2 log, d, so system alondone bi} is greater than that of the entire sys-
tem, which is pure and thus has zero bits of entropy.
S(p)<I(p,E)+2+4[1—F(p,D=€)] log, d. (7.39 An example of Eq(7.43 is as follows. For convenience
we use the language of coding and channel operations, since
This completes the proof. that language is most convenient latéy.is to be identified

This inequality is strong enough to prove the asymptoticwith the coding operatior(;, and&; is to be identified with
bounds that are of most interest for our later work. Thethe channel operatiod.

somewhat stronger inequality7.38 is also useful when Suppose we have a four-dimensional state space. We sup-
proving one-shot results, that is, when no block coding igpose that we have an orthonormal basis|2),|3),|4), and
being used. that P4, is the projector onto the space spanned byand
|2), and P4, is the projector onto the space spanned dy
D. Quantum characteristics of the coherent information | and|4). Let U be a unitary operator defined by
There are at least two important respects in which the U=|3)(1]+]4)(2]+]1)(3]+|2)(4]. (7.46

coherent information behaves differently from the classical
mutual information. In this subsection and the next we ex-The channel operation is
plain what these differences are.
Classically, suppose we have a Markov process, N(p)=P1pP 1o+ UTP3pP3,U, (7.4
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Channel Channel
Process 1 .
X, Y, Source Encoding Input Channel Output Decoding Receiver
ps —_— pc _— po —_— Pr
Process 2 FIG. 6. The noisy quantum channel, together with encodings
Xp|l———| Y, and decodings.
FIG. 5. Dual classical channels operating on inpgtsand X, An example of EQ(7-54? is the following. Suppos_e sys-
produce outputy; andY,. tem 1 consists of two qubit#y andB. System 2 consists of

two more qubitsC andD. As the initial state we choose

and we use an encoding defined by |
A

lc
=—|y®PWyPPl® =, 7.5
C(p)=BP12pP1st JUPLpP LU+ PaypPay. (748 piz= @RI 5 (759
It is easily checked that for any stagewhose support lies Where|/°P) is a Bell state shared between systeé@randD.
wholly in the space spanned b¥%) and|2), The action of the channel oh andB is as follows: it sets
bit B to some standard staté)), and allowsA through un-
(NC)(p)=p. (7.49  changed. This is achieved by swapping the stat ofit into
the environment. Formally,
It follows that
E(pas)=pa®|0)(0]. (7.56
I(p,NoC)=S(p). (7.50 .
The same channel is now set to act on syst€rendD:
It is also easy to verify that
Y b E(pcp) =pc®]0)(0]. (7.57)
H(C(p). N)=25(p) 1. (7.59 A straightforward though slightly tedious calculation shows
Thus there exist statgs such that that with this channel setup
[(p1,£)=1(p2,£)=0, 7.5
1(p,NoC)>1(C(p),N), (7.52 (p1,E)=1(p2,E) (7.58
- and
providing an example of E(7.43.

E. Quantum characteristics of the coherent information Il

. . . .__Thus this setup provides an example of E{54).
The second important difference between coherent infor- PP P E454

mation and classical mutual information is related to the
property known classically asubadditivity of mutual infor-
mation Suppose we have several independent channels op- |n this section we return to noisy-channel coding. Recall
erating. Figure 5 shows the case of two channels. the basic procedure for noisy channel coding, as illustrated in
These channels are numbered 1. ,n and take as inputs  Fig. 6.
random variableé(l, e Xp The channels might be sepa- Suppose a quantum source has outpyt A quantum
rated spatially, as shown in the figure, or in time. The chanopperation, which we shall denot& is used toencodethe
nels are assumed to act independently on their respectiurce, giving the input state to the chanmeE=C(ps). The
inputs, and produce outputs, ... Y. Itis not difficult to  encoded state is used as input to the noisy channel, giving a
show that channel outpup,=Mp,). Finally, a decoding quantum op-
erationD is used to decode the output of the channel, giving
H(Xq, ... X0 Yq, oo Y=< H(X;:Y;). (7.59  areceived statep,=D(p,). The goal of noisy-channel cod-
[ ing is to find out what source states can be sent with high
entanglement fidelity. That is, we want to know for what

This property is known as theubadditivityof mutual infor-  statesp encoding and decoding operations can be found
mation. It is used, for example, in proofs of the weak con-gych that

verse to Shannon’s noisy-channel coding theorem. We now
show that the corresponding quantum statement about coher- Fe(pg, DoNoC)~1. 8.1
ent information fails to hold.

Example 2.There exists a quantum operatishand a If large blocks of source states with entroRyper use of the

VIIl. NOISY-CHANNEL CODING REVISITED

density operatop;, such that channel can be sent through the channel with high fidelity,
we say the channel is transmitting at the rRte
1(p12,£0E)%1(p1,E)+1(p2,E), (7.59 Shannon’s noisy-channel coding theorem is an example

of a channel capacitgtheorem. Such theorems come in two
wherep,= try(p;,) andp,= try(p;,) are the usual reduced parts: (1) An upper boundis placed on the rate at which
density operators for systems 1 and 2. information can be sent reliably through the channel. There
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should be an effective procedure for calculating this uppenotion of anindependent, identically distributedlassical
bound.(2) It is proved that a reliable scheme for encodingsource, thus the term i.i.d. The entropy rate of this source is
and decoding exists that comes arbitrarily closattaining  simply S(ps).
the upper bound found ifL). A discrete memoryless chann@H.,N) consists of a
This maximum rate at which information can be reliably finite-dimensional Hilbert spackl, and a trace-preserving
sent through the channel is known as th@nnel capacity  quantum operatiodV. The nth extensiorof that channel is
Channel capacity results may be understood in the |angiven by the pair K—l;@” N®M), where®n is used to denote
guage of error correcting codésee[23] for a review of the  n-fold tensor products. The memoryless nature of the chan-
classical theory of error correcting codes, [@¥4] for a re-  nel is reflected in the fact that the operation performed on the
view and many references for the quantum thgolry order  n copies of the channel system is a tensor product of inde-
to protect information against the effects of noise, it is en-pendent single-system operations.
coded using an error correcting code, with the encoding op- Define ann code(C,D) from Hy into H,, to consist of a
eration represented hj; then subjected to the noise, repre- trace-preserving quantum operatidfrom HS" to HS" , and
sented by/V, and finally the encoding is undone using the 4 trace-preserving quantum operatibrfrom HE" to HE".

decoding operatio®. Finding a good error correcting code \ye refer toC as theencodingand D as thedecoding
means finding a paif andD that preserves the information The total coding operatior is given by

being encoded. A channel capacity theorem places an ulti-
mate achievable limit on the effectiveness of these error cor- T=DoN®"o(. (8.9
recting codes, for a given noise model

In this paper we consider only the first of these two tasksThe measure of success we use for the total procedure is the
the placing of upper bounds on the rate at which quantuniotal entanglement fidelity
information can be reliably sent through a noisy quantum
channel. The results we prove are analogous to the weak Fe(ps,7). (8.5
converse of the classical noisy coding theorem, but cannot be
considered true converses until attainability of our bounds is In practice we frequently abuse notation, usually by omit-
demonstrated. We do consider it likely that our bounds areing explicit mention of the Hilbert spacés, andH.. Note

equal to the true quantum channel capacity. also that, in principle, the channel could have different input
and output Hilbert spaces. To ease notational clutter we do
A. Mathematical formulation of noisy-channel coding not consider that case here, but all the results we prove go

Up to this point the procedure for doing noisy-channelthrough without change.

coding has been discussed in broad outline but we have n?‘toGNen a source statp; and a channel\; the goal of

S . . . isy-channel coding is to find an encodifignd a decoding
made all of our definitions mathematically precise. This sub-D such thatF(p,,7) is close to 1; that isp, and its en-

section gives a precise formulation fqr the most Irnpprta'annglement is transmitted almost perfectly. In general this is
concepts appearing in our work on n0|sy-cha_nnel codl_ng. not possible to do. However, Shannon showed in the classi-
Define aquantum SOWCQ:(HS’Y)JO §°“S'St (n)f a Hil- cal context that by considering blocks of output from the
bert sp?(_:eHS and a sequencéfz{pa,ps, .-+ sy} source and performing block encoding and decoding it is
whereps is a density operator oH, ps a density operator  hossible to considerably expand the class of source sgates
on H®Hs, and pg a density operator o™, etc... .  for which this is possible. The quantum mechanical version
Using, for example, “t§," to denote the partial trace over of this procedure is to find a sequencerotodes (", D")
the third and fourth copies dfis, we require as part of our g;ch that as1—«, the measure of success(pl, 7" ap-
definition of a quantum source that for glland alln>j, proaches 1, wher@ = D" A" (we will sometimes refer
tr: (p") = pl 8.2 to such a sequence agading scheme . .
j+1...nPs) = Ps> ' Suppose such a sequence of codes exists for a given

i.e., that density operators in the sequence be consistent WigﬁurceE. In this case the channel is said to transhiteli-

each other in the sense that earlier ones be derivable fro
later ones by an appropriate partial trace. Ttk density
operator is meant to represent the state @missions from
the source, normally thought of as takimgunits of time.

ly. We also say that the channel can transmit reliably at a
rate R=S(X). (Note that this definition does not require that
the channel be able to transmit reliateypy source with en-
tropy rate less than or equal B that is a different potential
gefinition of what it means for a channel to transmit reliably
at rateR. We conjecture that the two definitions are equiva-
lent in the contexts considered in this paper.

A noisy-channel coding theorem enables one to deter-
mine, for any source and channel, whether or not the source

ably infinite tensor product of spacét;, but we wish to
avoid the technical issues associated with such prodWes.
define theentropy rateof a general sourc® as

S(pM) can be transmitted reliably on that channel. Classically, this
S(3)=lim sup ST 8.3 is determined by comparing the entropy rate of the source to
n—o n the capacity of the channel. If the entropy rate of the source

is greater than the capacity, the source cannot be transmitted
A special case of this general definition of a quantumreliably. If the entropy rate is less than the capacity, it can.
source is the i.i.d. sourcaHi,{ps,ps®ps, - - -, ps s - - -}), The conjunction of these two statements is precisely the
for some fixedps. Such a source corresponds to the classicahoisy-channel coding theorerfiThe case when the entropy
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rate of the source equals the capacity requires separate con-For unitaryl/" we have

sideration; sometimes reliable transmission is achievable,

and sometimes notWe expect that in quantum mechanics, | (ps ,N¥MoU) =1U"(ps), N°"), (9.5
the entropy rates(3) of the source will play the role of the
classical entropy rate. A channel will be able to transmit
reliably any source with entropy rate less than the capacity; No7 M) <

furthermore,no source with entropy rate greater than the | (ps NTPU)<Cp. ©6
capacity will be reliably transmissiblg.e., the channel will By Eq. (7.34 with E=AN®"y", and the fact that
be unable to transmit reliably at a rate greater than the ca(1/(p.),NV*")=< max,l (p,N*")=C,,, it now follows that
pacity). The first part of this would constitute a quantum

noisy-channel coding theorem; the second, a “weak con- S(pl) C, N o N

verse” of the theorem(A “strong converse” would require — =5 tp AL Felpg, DRNTUN] log, d.

not just that no source with entropy rate greater than the 9.7)
capacity can be reliably transmitted, i.e., transmitted with

asymptotic fidelity approaching unity, but would require that[Note thatd here is the dimension of a single copy of the
all such sources have asymptotic fidelity of transmission apsource Hilbert space, so that we have insed&dfor the

and thus

proaching zerg. overall dimensiord of Eq. (7.34).] Taking lim sups on both
sides of the equation completes the proof of the theorem.
IX. UPPER BOUNDS ON THE CHANNEL CAPACITY It is extremely useful to study this result at length, since

. ] ] ) ) the basic techniques employed to prove the bound are the
In this section we investigate a variety of upper bounds orsame as those that appear in a more elaborate guise later in

the capacity of a noisy quantum channel. the paper. In particular, what features of quantum mechanics
necessitate a change in the proof methods used to obtain the
A. Unitary encodings classical bound?

This subsection is concerned with the case where the eq: .tSupfpose:[ thle_ ?cuantljtrn analogtje of the c;lassmal subaddi-
codingC is unitary. ivity of mutual information were true, namely,

For this subsection only we define n
n n n
Co=max|(p,N®"), ©9.1) 1(p" N® )sgl (!, N), (9.9
p
wherep" is any density operator that can be used as input to
n copies of the channel, ang' is the density operator ob-
tained by tracing out all but theh channel. Then it would

follow easily from the definition tha€,,=C; for all n, and
thus

where the maximization is over all inpytsto n copies of the
channel. The bound on the channel capacity proved in thi
section is defined by

- Cy
CW:JL”L? ©32 C(NM)=Cy=maxl(p,N). 9.9
P

It is not immediately obvious that this limit exists. To see
that it does, notice tha€,<n log,d and C,,+C,<C,,.,,
and apply the lemma proved in Appendix A. Notice that

This expression is exactly analogous to the classical expres-
sion for channel capacity as a maximum over input distribu-
C(A) is a function of the channel operation only. tions of the_mutual information between channel input and
We begin with a theorem that places a limit on the en_output_. If this were truly a bound on the_ quantum ghannel
I%apacr[y then it would allow easy numerical evaluations of

bounds on the channel capacity, as the maximization in-

channel. : . .
volved is easy to do numerically, and the coherent informa-

Thneorem. Suppose we con5|_der a SongE:(HS’ tion is not difficult to evaluate.
{---ps---}) and a sequence of unitary encodirigsfor the

. Unfortunately, it is not possible to assume that the quan-
source. Suppose further that there exists a sequence of dt%'m mechanical coherent information is subadditive, as
codingsD" such that y

shown by examplé7.54), and thus in general it is possible

lim Fo( o, Do AP Mo =1. 9.3 that
e C(M>C;. (9.10
Then We will later discuss results of Shor and Smdl2B] (see
S(p") also DiVincenzo, Shor, and Smoli26]) that demonstrate
S)=lim sup——<C(MN). 9.4 thatthe channel capacity can exceed
) n—c n ) ©4 Notice that to evaluate the bour@(N) involves taking

the limit in Eq. (9.2). To numerically evaluate this limit di-
This theorem tells us that we cannot reliably transmitrectly is certainly not a trivial task, in general. The result we
more thanC(N) qubits of information per use of the chan- have presented, that E.2) is an upper bound on channel
nel. capacity, is an important theoretical result that may aid in the
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development of effective numerical procedures for obtainingrhis possibility stems from the failure of the quantum pipe-
general bounds. But it does not yet constitute an effectivdining inequality (7.43. It is clear that the existence of such
procedure. a scheme would cause the line of proof suggested above to
fail. Classically the pipelining inequality holds, and therefore
B. General encodings the complication of having to maximize over encodings does
not arise.
We now consider Fhe case where something more general Having proved tha€(\) is an upper bound on the chan-
than a unitary encoding is allowed. In principle, it is always nel capacity, let us now investigate some of the properties of

possible to perform a nonunitary encodiéigy introducing i hound. First we examine the range over whagtV) can
an extra ancilla system, performing a joint unitary on thevary. Note that

source plus ancilla, and then discarding the ancilla.
We define 0<C,=<n log,d, (9.17

C,=max|(p,N®"(C), (9.11)

o since if p is pure thenl (p,N®"C)=0 for any encoding’,
p,

and for allp andC, 1 (p,N®"C)< logd"=n log,d, since the

oo .
where the maximization is over all inpugsto the encoding channel output had" dimensions. It follows that

operationC, which in turn maps to copies of the channel. - <
The bound on the channel capacity proved in this section is 0<C(N)= log,d. (9.18
defined by This parallels the classical result, which states that the chan-
nel capacity varies between 0 and Jegwheres is the num-
C(N)= Iim&. (9.12 ber of channel symbols. The upper bound on the classical
now N capacity is attained if and only if the classical channel is
noiseless.

Once again, to prove that this limit exists one applies the In the case whe\ takes a constant value,
lemma proved in Appendix A.

To prove that this quantity is a bound on the channel Mp)=o, .19
capacity, one applies almost exactly the same reasoning as
the preceding subsection. The result is the following
Theorem. Suppose we consider a sourc®=(H,,
{---p2---}) and a sequence of encodingsfor the source.
Suppose further that there exists a sequence of decofihgs
such that

f” . i - .

or all channel inputsp it is not difficult to verify that

‘C(NM)=0. This is consistent with the obvious fact that the

capacity for quantum information of such a channel is zero.
The “completely decohering channel” is defined by

Nip)=2 PipPi, (920
lim Fe(p2, Do N®MoCM) =1, (9.13 i

n—oo
with P;=[i){(i| a complete orthonormal set of one-
Then dimensional projectors. This channel is classically noiseless,
yet a straightforward application of E¢7.24 yields C(N)
S(pD) =0, and therefore this channel has zero capacity for the
S(2)=lIlim sustC(/\/). (9.149  transmission of entanglement.
n—ee More generally, if Mp)=3Z;ApA’, where A
_ _ =\i|a;){b;|, thenC(N)=0 by the same argument, and thus
Again, this result places an upper bound on the rate &g channel capacity for such a channel is zero. As a special

which information can be reliably transmitted through acase of this result, it follows that the capacityaofy classical
noisy quantum channel. The proof is very similar to the earghannel as defined in Sec. V to transmit entanglement is
lier proof of a bound for unitary encodings. One simply ap-,qrq

plies Eq.(7.34 with £=N®"C" andD=D", to give Provided the input and output dimensions of the channel

n are the same, it is not difficult to show th@(\) =log,d if
S(ps) <&+ E+4[1—F (p" D A®MeC™] log,d and only if A'is unitary.

n n n elPs: G20 It is also of interest to consider what happens when chan-
(9.19 nelsN; andN, are composed, forming a concatenated chan-

o _ . nel, N= AN, N;. From the data-processing inequality it fol-
Taking lim sups on both sides of the equation completes th@ws that

proof.
It is instructive to see why the proof fails when the maxi- C(ND)=C(N). (9.21

mization is done over channel input states alone, rather than

over all source states and encoding schemes. The basic idkds clear by repeated application of the data-processing in-

is that there may exist source staggesand encoding schemes equality that this result also holds if we compose more than

C, for which two channels together, and even holds if we allow interme-

diate decoding and reencoding stages. Classical channel ca-

1(p,NoC)>1(C(p),N). (9.16 pacities also behave in this way: the capacity of a channel
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made by composing twéor more channels together is no ating side by side in space. Once again it is assumed that the
greater than the capacity of the first part of the channel aloneencoder can perform arbitrary local operations, only this time
Although Eq.(7.43 might seem to suggest otherwise, in two-way classical communication is allowed when perform-
fact, ing the encoding.
For any class of encodingd arguments analogous to
C(N2)=C(N). (9.22  those used above for general and for unitary block coding,

) . ) ensure that the expression
For let us suppose thétis the encoding that achiev€¥N),

so that the total operation BeNeC=DoNyeNi°C. As our Can
encoding for the channél’,, we may useV;°C and decode Ca(M)=lim o (9.29
with D, hence achieving precisely the same total operation. n—ee
Inequalities analogous to Eq®.21) and(9.22 may also
be stated for the actual channel capacity. Clearly these stat¥1€re
ments are true as well.

Ca n= maxl(p,N®"(C), (9.26
C. Other encoding protocols peeh

So far we have considered two allowed classes of encods an upper bound to the rate at which quantum information
ings: encodings where a general unitary operation can bean be reliably transmitted using encodingsAin Thus, in
performed on a block of quantum systems, and encodinggddition to the bounds for general and unitary encodings,
where a general trace-preserving quantum operation can tieere are bound€., ,C_ ,C,. , andC,.. , which provide
performed on a block of quantum systems. If large-scalé!ipper bounds on the rate of quantum information transmis-
quantum computation ever becomes feasible it may be rea$ion for these types of encodingspriori it is not clear what
istic to consider encoding protocols of this sort. However, forthe exact relationships are among these bounds, although
present-day applications of quantum communication such aearious inequalities may easily be proved,
guantum cryptography and teleportation, it is realistic to con-

sider much more restricted classes of encodings. In this sec- Cu=C =<Cy =Cy =Cyeperal (9.27)
tion we describe several such classes.

We begin by considering the class involving local unitary Cu-L=Cunitary (9.28
operations only. We refer to this classldsl. It consists of
the set of operation§ that can be written in the form Cunitary= Cgenerat (9.29

Cp)=(U1®---®Unp(Uie - ®U}), (923  Eyrhermore, note that these bounds allow general decoding
schemes. It is possible that much tighter bounds may result if
we restrict the decoding schemes in the same way we have
restricted the encoding schemes.
An interesting and important question is whether there are
closed-form characterizations of the sets of quantum opera-
2 (A ®B; ®--®Z )p tions corresponding to particular types of encoding schemes
i1 dn b2 " such as 1= and 2L. For example, in the cases bf-L and
L there are explicit form$(9.23),(9.24)] for the classes of

whereU,, ... U, are local unitary operations on systems 1
throughn. Another possibility is the clask of encodings
involving local operations only, i.e., operations of the form

ToBl .. - @z
X(A®B;,® ®Z'n)' (9.24 encodings allowed. For L-the operations take the form
In other words, the overall operation has a tensor product
form A®B® - - ® Z. 2 (A®B @ 8Z i i)p
A more realistic class is 1—encoding by local opera- ERRR
tions with one way classical communication. The idea is that % (Ai‘rl® B;r1’i2® . ®ZiT1’i2' i) (9.30

the encoder is allowed to do encoding by performing arbi-
trary quantum operations on individual membgypically, a : L o . .
single qubif of the strings of quantum systems emitted by A drawback to this expression is that it is not written in a

source. This is not unrealistic with present-day technolog)plose(ljgoim' m%kgwg I d'ﬁ'CLIJIt tol pzlrform (t))pt!mlzatllonsd
for manipulating single qubits. Such operations could in-0Ver 11 [t would be extremely valuable to obtain a close

clude arbitrary unitary rotations, and also generalized mea[©™ for the set of operations in IL- One possible approach

surements. After the qubit is encoded, the results of any med® doing this is to limit the range of the indices in the previ-
surements done during the encoding may be used to assist S €xpression. This is related to the number of rounds of
the encoding of later qubits. This is what we mean by Oné:l_as_smal communication that are involved in the operation.
way communication—the results of the measurement cagmilar remarks to these also apply to the clasis. 2adeed,
only be used to assist in the encoding of later qubits, nolt is not yet clear to us if there is an expression analogous to
earlier qubits. Eq. (9.30 for 2-L encodings. One possibility is

Another possible class is P—encoding by local opera-
tions with two-way classical communication. This may arise E (A®B®-- ~®Z-)p(AT®BT® o ®Z-T). 9.31
in a situation where there are many identical channels oper- i e ! e i
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_ i i i ni - Channel Channel
However, although all 2- operations involving a finite num Presource me.  Source e Oy Receiver

ber of rounds of communication can certainly be put in this 7 N

form, we do not presently see why all operations expressible | P, |—=| Ps |—=| Pc |—| P [—| P;

in this form should be realizable with local operations and

two-way classical Communlcat_lon. . . . FIG. 7. Noisy quantum channel with an extra stage, a restricted
The classes we have described in this subsection are C&ffeencoding/.

tainly not the only realistic classes of encodings. Many more
classes may be considered, and in specific applicat.ior']s this the previous equation with the quantiy0.1, because the
may well be of great interest. What we have done is illus-oherent information is not, in general, subadditive, cf. Eq.
trated a general technique for obtainingundson the chan- 54).
nel capacity for differen_t cla_sses of .encodings. A major dif- 1he coding schemes considered by Lloyd appear to be
ference between classical information theory and quantumugricted to be projections followed by unitaries. We call
information theory is the greater interest in the quantum casg, -, encodinggestricted encodingssince they do not cover
in studying different classes of encodings. Classically itis, inya Il class of encodings possible. For the purposes of
principle, possible to perform an arbitrary encoding and deproying upper bounds it is not sufficient to consider a re-
coding operation using a look-up table. However, quantuniyicied class of encodings, since it is possible that other
mechanically this is far from being the case, so there is COlznding schemes may do better, and therefore that the capac-
respondingly more interest in studying the channel capacitieﬁy is somewhat larger than E€10.2). We suspect that this is
that may result from considering different classes of encod gt the case, but have been unable to provide a rigorous
ings and decodings. proof. A heuristic argument is provided in Sec. X A.
In the light of these remarks it is interesting that the cod-

X. DISCUSSION ing scheme of Shor and Smolj&5] (see also DiVincenzo,
urﬁhor, and Smolif26]) provides an example where the non-
déubadditivity of the coherent information is exploited to

What then can be said about the status of the quant
noisy-channel coding theorem in the light of comments ma ) o .
in the preceding sections? While we have established upp(?l‘:h'eve rates of transmission excee(_jmg 8f.1). N_e\_/er-
bounds, we have not proved achievability of these boundstheless’ the cod_mg schemes considered by DiVincenzo,
How might one prove that these bounds are achievable? Shpr, and Smolin cannot b(_aat the general b01(|9d2)_,.

Lloyd [7] has also proposed an expression involving aWhlch takes nonsubadditivity into account. A full exposition

maximum of the coherent information as the channel capacQf this topic will appear elsewhere.
However, one can still make progress towards a proof that

ity, ! . o
e the expressiori9.12), which bounds the channel capacity, is
max|(p,N), (10.)  the correct capacity. If we accept that it is possible to attain
p rates up to Eq(10.2, then the four-stage construction illus-

) ) . ) ) trated in Fig. 7 shows that E9.12) is a correct expression
and outlines a technique involving random coding forfor the capacity; i.e., that in addition to being an upper bound
achieving rates up to this quantity. The criterion for reliablegs shown in Sec. IX, it is also achievable.
transmission used by Lloyd appears to be the subspace fidel- For 3 fixed block sizen one finds an encoding” for
ity criterion of Eq.(6.7). As noted earlier, this criterion is at \yhich the maximum in
least as strong as the criterion based on entanglement fidelity
that we have been using, that is, asymptotically good coding C,=maxTl(ps,C") (10.4
schemes with respect to subspace fidelity are also asymptoti- " o
cally good with respect to the entanglement fidelity.

Suppose one applies coding schemes to achieve rates ipachieved. One then regards the composifiéii-C" as a
to Eq. (10.1), but with the basic system used in blocking single noisy quantum channel, and applies the achievability
taken to ben of the old systems. Then it is clear that rates upresult on restricted encodings to the joint chank&PeC" to

to achieve an even longenn block coding scheme with high
1(p. ™) entanglement fidelity.
max(p’— (10.2 T_h_is gives a joint coding schenlé“”o(C”)®m,_ Wh_ich for
P n sufficiently large blocksn andn can come arbitrarily close

_ _ _ to achieving the channel capacit9.12. An important open
may be achieved using such coding schemes, where thguestion is whether E¢9.12) is equal to Eq(9.2). Itis clear
maximization is done over density operators flocopies of  that the former expression is at least as large as the latter; we

the source. It follows that rates up to give a heuristic argument for equality in the next subsection,
(o N but rigorous results are needed.
im max P (10.3 Thus, we think it likely that the expressig@f.2) will turn

out to be the maximum achievable rate of reliable transmis-
sion through a quantum channel. But this is still not satisfac-
may be achieved. This quantity is simply the bo@@®) that  tory as an expression for the capacity, because of the diffi-
we found earlier for noisy channels with the class of encod<culty of evaluating the limit involved. At a minimum, we

ings restricted to be unitary. As remarked in the last sectionyould like to know enough about the rate of convergence of
it is in general not possible to identify the quantity appearingC,, to its limit to be able to accurately estimate the error in a

n—oc p
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numerical calculation of capacity, thus providing an effective Observer
procedure for calculating the capacity to any desired degree Result: m
of accuracy. Source / Receiver
. . : C D
A. Unitary versus nonunitary encoding Py |[———| P, N——— P, m P,

For the purposes of obtaining a capacity theorem for gen-
eral encodings and decodings, a restriction on the class of FIG. 8. Noisy quantum channel with a classical observer.
encodings is clearly unacceptable. For example, given a
source density operator whose eigenvalues are not all equql@uipM}, wherePyUTU Py = &Py andPy, is the pro-
we may not even be able to send it reliably through a noisejector ontoM. That is, the operation randomlyvith prob-
less channel whose capacity is just greater than the sourcgyjjiies p.) chooses a unitary that moves the state into one
entropy rate without doing nonunitary compression as degs 4 mutually orthogonal set of subspaces. Hefiein its
scribed in Refs[27—29]|. This compression, which is essen- action on the source’s typical subspads,close to some
tially projection onto thaypical subspac27] of the source, Lo tecty reversible operatiod” consistiné of “randomly

IS not? umtar'ﬁ %peratlon,t.a?ij thli]s we expeﬁt thag.lr.]tonufn![frgicking a unitary into an orthogonal subspace.” Hence the
ggga_(':?]gixl cae ae;tsen 1al 1o showing achievabiiity o eentanglement fidelity of the total operati@nis close to that
Y pactty. of 7, , in which the encoding” is replaced withC} . The

We conjecture that once the projection onto the typicall'nearit of the entanglement fidelity in the operation implies
source subspace is accomplished, nonunitary operations 18 y 9 y P P

of no further use in achieving reliable transmission through uhn&ilttaI?ers ?te kra:siten(t);t?or?fomﬁeuntlatﬁ(relgji rlgvct-:‘r;gibrlinc?ogr]étion
noisy channel. Although we have not yet rigorously shown P P y P

this, we give a heuristic argument below. If the conjecture ISC: . the entanglement fidelity is at least as good if the unitary

true then it can be used to show that expressi®n® and IS substitut_ed foCy . T_hereforg, arbitrary encoding®' are

(9.12 are equal. close to unitary encodings efinto a subspace of the chan-
Our heuristic argument applies only to sources for whichnel’s Hilbert space. Thus the oryly_nonumtanty that it is nec-

atypical subspacg27] exists. This includes all i.i.d. sources, €ssary to consider is the restriction to the source’s typical

for which the output is of the forpZ". Let A be the pro-  Subspace.

jector onto the typical subspace afteruses of the source,

andA the projector onto the orthogonal subspace. Given any  XI. CHANNELS WITH A CLASSICAL OBSERVER

ositive 6 it is true that for sufficiently large, . _ . . .
P yiarg In this section we consider a generalized version of the

tr(Kp®“K)s5. (10.5 quantum noisy-channel coding problem. Suppose that in ad-
s dition to a noisy interaction with the environment there is

Defining the restriction of the source to the typical subspace?!so a classical observer who is able to perform a measure-
ment. This measurement may be on the channel or the envi-

ApE"A ronment of the channel, or possibly on both.
pi= —a (10.6 The result of the measurement is then sent to the decoder,
tr(Aps A) who may use the result to assist in decoding. We assume that

this transmission of classical information is done noiselessly,
although it is also interesting to consider what happens when
the classical transmission also involves noise. It can be
shown[11] that the state received by the decoder is again
, (10.7 related to the statp used as input to the channel by a quan-
(1-6)2 tum operationV;,,, wherem is the measurement result re-
corded by the classical observer,

and applying the continuity lemma for entanglement fidelity
(6.14), we see that

|Fe(p‘nr 18)_ Fe(an a£)|$

for any trace-preserving operatigdh By choosingn suffi-

ciently largeé can be made arbitrarily small, and thus we see No(p)

that for the entanglement fidelity for the source to be high p— —mr (11.1)

asymptotically, it is necessary and sufficient that the en- t{ Nm(p)]

tanglement fidelity be high asymptotically for the restriction

of the source to the typical subspace. The basic situation is illustrated in Fig. 8. The idea is that by
We now come to the heuristic argument. In order that thegiving the decoder access to classical information about the

entanglement fidelity for the total channel be high, it is as-environment responsible for noise in the channel it may be

ymptotically necessary and sufficient that the composite oppossible to improve the capacity of that channel, by allowing

erationD"e A®"C" have high entanglement fidelity when the the decoder to choose different decodifgs depending on

source is restricted to the typical subspaceHence, if an the measurement resuit.

encodingC" is nonunitary onr, it must be “close to revers- We now give a simple example that illustrates that this

ible” on 7, and D"A®" must be close to reversing it. In can be the case. Suppose we have a two-level system in a

[14] it is shown that perfect reversibility of an operation on astatep and an initially uncorrelated four-level environment

subspacéM is equivalent to the statement that the operationjnitially in the maximally mixed staté/4, so the total state of

restricted to that subspace, may be represented by operatdre joint system is
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| when Alice does not send the result of her measurement to
pe 7. (11.2  Bob, the channel is described by the single operatidn
Clearly, in order that causality be preserved we expect that
We fix an orthonormal basid),|2),|3),|4) for the environ-  the channel capacity be zero. On the other hand, in order that

ment. We assume that a unitary interaction between the syeleportation be able to occur we expect that the channel
tem and environment takes place, given by the unitary opcapacityCr, is equal to 1, as was shown above. Teleportation

erator understood in this way as a noisy channel with a classical

side channel offers a particularly elegant way of seeing that

U=13|1)(1|+04®|2)(2[+ 0,®|3)(3|+ o, |4)(4]. the transmission of quantum information may sometimes be
(11 greatly improved by making use of classical information.

The remainder of this section is organized into three sub-
sections. Section XI A proves bounds on the capacity of an
observed channel. This requires nontrivial extensions of the

) (11.4  techniques developed earlier for proving bounds on the ca-
pacity of an unobserved channel. Section Xl B relates work
done on the observed channel to the work done on the un-
observed channel. Section XIC discusses possible exten-
sions to this work on observed channels.

The output of the channel is thus

p—N(p)= trg] U

I
_lyt
p®4)U

The quantum operatiaV" can be given two particularly use-
ful forms,

./\/(p)=4i(|p| +0—xp0'x+0'yp0'y+o'zp0'z) (119
A. Upper bounds on channel capacity

I__ (11.6 We now prove several results bounding the channel ca-
2 pacity of an observed channel, just as we did earlier for the
unobserved channel. The following lemma generalizes the

It is not difficult to show from the second form that earlier entanglement fidelity lemma for quantum operations,

_ which was the foundation of our earlier proofs of upper
CM=0, (127 bounds on the channel capacity.
and thus the channel capacity for the chank@k equal to Lemma (generalized entanglement fidelity lemma for op-

zero. Suppose now that an observer is introduced, who i§rations).Supposet, are a set of quantum operations such
allowed to perform a measurement on the environment. Thif'at=méy iS a trace-preserving quantum operation. Suppose
measurement is a Von Neumann measurement in th&rther thatD,, is a trace-preserving quantum operation for
|1),12),|3),|4) basis, and yields a corresponding measure£achm. Then

ment resultm=1,2,3,4. Then the quantum operations corre-

sponding to these four measurement outcomes are S(p)<2, tExn(p) 1 (p.Em)+2+4[1—Fo(p,T] log.d,
m
Ni(p)=3p (118 (1113
Na(p)=304p0oy (1.9  where
Ni(p)=iopo (11.10
ST 7= Dok, (11.14
Na(p)= %Uzpo'z- (1111 m

Each of these is unitary, up to a constant multiplying factor, By the second step of the data processing inequality

so conditioned on knowing the measurement resultthe  (7.9), 1(p,&n)=1(p,Dne&y) for eachm, and noting also

corresponding channel capaci®y, is perfect. That is, that by the trace-preserving property @f,, t&n(p)]
=tr{(Dre&m) (p)], we obtain

Cn=1 (11.12
for all measurement outcomes. This is an example where S(p)<S(p)+ >, {t{En(P) N (p,Em)
the capacity of the observed channel is strictly greater than m
for the unobserved channel. —t[(DyeEn) ()11 (9, D&} (11.15

This result is particularly clear in the context of telepor-
tation. Nielsen and Cavd40] showed that the problem of
teleportation can be understood as the problem of a quantu
noisy channel with an auxiliary classical channel. In the
single qubit teleportation scheme of Bennettal. [9] there
are four quantum operations relating the state Alice wishes to _ 2 t{ (D &) (p) 11 (s Drelr) < —1(p, T
teleport to the state Bob receives, corresponding to each of m
the four measurement results. In that scheme it happens that (11.18
those four operations are thé€,, we have described above.

Furthermore in the absence of the classical channel, that i¥ye obtain

Applying the generalized convexity theorem for coherent in-
Brmation (7.249) gives
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Nm(PQ)
Pm

S<p><§ t{ En(p) 11 (p,Em) +S(p)—1(p,T). S<pQ’>=H<pm>+§ pmS( ) (11.24

(11.17

since the density matrice,(p?) ® |m)(m| are mutually or-

But 7== D&, IS trace preserving sincB,, is trace pre-
mDm®Em P g m b thogonal. Also,

serving and® .£, is trace preserving, and thus by E@.33),
S(P)_'(P:/Z):S(P)_S(T(P))"'Se(ﬂ']) (1118 pR’Q’Z(I®E ./V?n)(PRQ),

<2S.(p, D). (11.19

Finally, an application of the quantum Fano inequaiyd) ~ Where by definition\/(p) = Nim(p) ®|m){(m|. Thus
along with the observations that the entropy functioap-

pearing in that inequality is bounded above by 1, and .
log, (d2—1)<2 log, d, gives S(pR'° ):H(Pm)+§ PmS

(11.29

(I®Nm)(PRQ))
Pm ’
(11.26

S(p)<> tl(DpeEm)(p)]1(p, Do) +2 . o
m Hence the coherent information is

+4[1-Fe(p,7)] log, d, (11.20
° ’ a0 p | NP _ o TN ()

as we set out to prove. 1(p=, M)=2, P S =S ,

. m Pm Pm

If we define (11.29

CUND=limmax >  t[(Ny @ - ©ONimoC)(p)] which can be rewritten as the average coherent information

n—wen mp, ..., Mn ! " for {Nm},

|(P,le® e ®Nmnocn)
8 n ' (11.29 (P2 M) =3 ol (P2 ). (11.28

we may use Eq(11.13 to easily prove thaC({N,}) is an o
upper bound on the rate of reliable transmission through a© @n application of the boun@®.12) on the rate of trans-

observed channel, in precisely the same way we earlier us€@ission through the unobserved chanidl shows that the
(7.34) to prove bounds for unobserved channels. expression on the right-hand side of Efj1.2]) that bounds
We may derive the same bound in another fashion if wehe capacity of the observed chanfdl,} also bounds the
associate observed channels with trace-preserving uno§apPacity of M. This result provides some evidence for the
served channels in the following fashion suggested by exintuitively reasonable proposition thatt and {Ny} are
amples in[8]. To an observed channg\;,} we associate a equivalent with respect to transmission of quantum informa-

single trace-preserving operatiget from H, to a larger Hil- ~ tlon. o . -

bert spaceH.®M, whereM is a “register” Hilbert space. Bennett, DiVincenzo, and Smol[i8] derive capacities for
Each dimension oM corresponds to a different measure- three simple channels that may be viewed as ta}kmg the form
ment resultm. The operation is specified by (11.29. The quantum erasure channéhkes the input state

to a fixed state orthogonal to the input state with probability

€; otherwise, it transmits the state undisturbed. An equivalent
M(P)Zg Nin(p)®|m){m, (11.22  opserved channel would with probabiligyreplace the input

state with a standard pure std@(0| within the input sub-

where|m) is some set of orthogonal states corresponding t&Pace, and also provide classical information as to whether
the measurement results that may occur. This map is an “althis replacement has occurred or not. Tpiease erasure
quantum” version of the observed channel. channelrandomizes the phase of a qubit with probability
Since our upper bounds to the capacity of an unobserve@nd qther\_/vise transmits the state undisturbed,; it alsq supplies
channel apply also to channels with output Hilbert spaces oflassical mfor_matlon as to which of these alternatives oc-
different dimensionality than the input space, they apply tocurred. Themixed erasure or phase-erasure chanmey
this map as well. It is easily verified that the coherent infor-€ither erase or phase erase, with exclusive probabikteesd
mation for the map\ acting onp is the same as the average 6. Bennett, DiVincenzo, and Smolin note that the capacity

coherent information for the observed channé| acting on  Max(0,1-2¢) of the erasure channel is in fact the one-shot

show this, define pacities they derive for the phase-erasure channel {1
and the mixed erasure or phase-erasure channel max(0,1
Pm=t[Nn(pD]1, (11.23 —2€— ) are the same as the one-shot maximal average co-
herent information for the corresponding observed channels,
where we are again working in tieQ picture of operations. |ending some additional support to the view that the bounds
Thenp® = M(pQ) is given by Eq.(11.22, so that we have derived here are in fact the capacities.
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B. Relationship to unobserved channel that the bounds we have proved in this paper are in fact

Suppose a quantum system passes through a channel, fEhievable, thatis, the true capacities.
teracts with an environment, and then measurements are per-
formed on theenvironment aloneHow is the capacity of this
observed channel related to the capacity of the channel that
results ifno measuremerttad been performed on the envi-  All the questions asked about the bounds on channel ca-
ronment? Physically, it is clear that the capacity when meaPacity for an unobserved channel can be asked again for the
surements are performed must be at least as great as when@@served channel: questions about achievability of bounds,
measurements on the environment are performed, since tfige differences in power achievable by different classes of
decoder can always ignore the result of the measurement. gncodings and decodings, and so on. We do not address
this subsection we show that bounds we have derived oi€se problems here, beyond noting that they are important
channel capacity have this same property: observation of theroblems that need to be addressed by future research.
environment can never decrease the bounds we have ob- Many new twists on the problem of the quantum noisy
tained. channel arise when an observer of the environment is al-

Suppos€gN,,} are the operations describing the different lowed. qu example, one might consider the situation where
possible measurement outcomes. Then the operation descrﬁgLe classical channel connecting the observer to the decoder

ing the same channel, but without any observation of thdS noisy. What then are the resources required to transmit
environment, is coherent quantum information?

It may also be interesting to prove results relating the
classical and quantum resources that are required to perform
a certain task. For example, in teleportation it can be shown
that one requires not only the quantum channel, but also two
Recall the expressions for the bound on the capacity obits of classical information, in order to transmit quantum

C. Discussion

N=D Ny. (11.29

the unobserved channel, information with perfect reliability.
| ,A/®nocn
C(M)= limma (p - ), (11.30 XIl. CONCLUSION
n—een o In this paper we have shown that different information

transmission problems may result in different channel ca-
pacities for the same noisy quantum channel. We have de-
veloped some general techniques for proving upper bounds
C({Nm}) = lim max E tr[(le® . ®/\/mnoc”)(p)] on the amount of information that may be transmitted reli-
n—o e, MMy ably through a noisy quantum channel.
N A oCh Perhaps the most interesting thing about the quantum
% 1(p,Nin,® -+~ @Nip oC") (11.31 noisy-channel problem is to discover what is new and essen-
n ’ : tially quantumabout the problem. The following list summa-
rizes what we believe are the essentially new features.

and the observed channel,

but the generalized convexity theore(®.24) for coherent

information implies that (1) The insight that there are many essentially different

information transmission problems in quantum mechanics,
all of them of interest depending on the application. These

> t (N, ® - - @ Ny 2C") (p)] span a spectrum between two extrem(@sThe transmission
Mavee M of a discrete set of mutually orthogonal quantum states
|(p,le®.  ®N, oC") 1, A oC™) th_ro.ugh the phannel. Suph problems are problems of trans-
% n < , (11.32 mitting classical information through a noisy quantum chan-
n n nel. (i) The transmission of entire subspaces of quantum
and thus states through the channel, which necessarily keeps all other

guantum resources, including entanglement, intact. This is
likely to be of interest in applications such as quantum com-
CM=C({Nm})- (11.33 putation, cryptography, and teleportation where superposi-

To see that this inequality may sometimes be strict, retur§ions of quantum states are crucial. Such problems are prob-
to the example considered earlier in this section in the conl€MS of transmitting coherent quantum information through a

text of teleportation. In that case it is not difficult to verify noisy quantum channel. Both of these cases and a variety of
that intermediate cases are important for specific applications.

For each case, there is great interest in considering different

0=C(M<C{Nm})=1. (11.39 classes of allowed encodings and decodings. For example, it

may be that encoding and decoding can only be done using

What these results show is that our bounds on the chann&dcal operations and one-way classical communication. This
capacity are never made any worse by observing the envinay give rise to a different channel capacity than occurs if
ronment, but sometimes they can be made considerably bette allow nonlocal encoding and decoding. Thus there are

ter. This is a property that we certainly expect the quantundifferent noisy-channel problems depending on what classes

channel capacity to have, and we take as an encouraging sigii encodings and decodings are allowed.
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(2) The use of quantum entanglement to constructhannel, what is the maximum amount of classical informa-
examples where the quantum analogue of the classical pipé&ion that can be sent in this way?
lining inequality H(X:Z)<H(Y:Z) for a Markov process (6) All work done thus far has been for discrete channels,
X—Y—Z, fails to hold[cf. Eq. (7.43]. that is, channels with finite dimensional state spaces. It is an
(3) The use of quantum entanglement to construct eximportant and nontrivial problem to extend these results to
amples where the subadditivity property of mutual informa-channels with infinite dimensional state spaces.
tion, (7) A more thorough study of noisy channels that have a
classical side channel. Can the classical information obtained
by an observer be related to changes in the channel capacity?
H(X1, o XYy, Nn)g; H(Xi:Y), (12D what if the classical side channel is noisy? Many other fas-
cinating problems, too many to enumerate here, suggest

fails to hold[cf. Eq. (7.54)]. themselves in this context.
There are many more interesting open problems associ- |Nere are many other ways the classical results on noisy
ated with the noisy-channel problem than have been ao(;hannels have been extended—considering channels with

dressed here. The following is a sample of those problem&€dback developingrate-distortion theory, understanding
that we believe to be particularly important: networksconsisting of more than one channel, and so on.

Each of these could give rise to highly interesting work on
(1) The development of an effective procedure for deternoisy quantum channels. It is also to be expected that inter-
mining channel capacities. We believe that this is the mosgsting new questions will arise as experimental efforts in the
important problem remaining to be addressed. Assuming oufield of quantum information develop further. Perhaps of

upper bound chief interest to us is to develop a still clearer understanding
Ao of the essential differences between the quantum noisy-
. I(p, N¥TC) i isy- .
C(M)= lim max p - (12.2 channel and the classical noisy-channel problems
n—o p,C
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is to analyze how stable the determination of channel capaci- APPENDIX A: EXISTENCE OF LIMITS

ties is with respect to experimente_ll error. _ . This appendix contains a lemma that can be used to prove
(3) As suggested in Sec. IX C it would be interesting tothe existence of several limits that appear in this paper.
see what channel capacities are attainable for different Lemma.Supposec;,c,, ... is a nonnegative sequence

classes of allowable encodings and/or decodings, for exsuch thatc,<kn for somek=0, and
ample, encodings where the encoder is only allowed to do
local operations and one-way classical communication, or Cmt Cn<Cm+n, (A1)
encodings where the encoder is allowed to do local opera-
tions and two-way classical communication. We have showr" @l m andn. Then
how to prove bounds on the channel capacity in these cases; c
whether these bounds are attainable is unknown. lim— (A2)
(4) The development of rigorous general techniques for n—o
proving attainability of channel capacities, which may be o
applied to different classes of allowed encodings and decod®Xists and is finite.
ings. Proof. Define
(5) Finding the capacity of a noisy quantum channel for c
classical information. A related problem arises in the context c=lim sup—. (A3)
of superdense codingvhere one half of an EPR pair can be n n
used to send two bits of classical information. It would be
interesting to know to what extent this performance is de-This always exists and is finite, sinag=<kn for somek
graded if the pair of qubits shared between sender and re=0. Fix e>0 and choos@ sufficiently large that
ceiver is not an EPR pair, but rather the sharing is done using
a noisy quantum channel, leading to a decrease in the num- &>c—
. . . . €. (A4)
ber of classical bits that can be sent. Given a noisy quantum n
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Supposem is any integer strictly greater than max{/e). given any two points; ,s, e S and any\ such that &xA<1,

Then by Eq.(Al), then theconvex combinatigms;+(1—\)s,, is also an el-
ement ofS. Geometrically, this means that given any two
points in the set, the line joining them is also in the set. An

Cmn) (A5) extremal pointof S is a points that cannot be formed from

' the convex combination of any other two points in the set. A

convex function bn Sis a real-valued function such that for

any \ satisfying O<\ <1,

Using the fact thatc,<c,, [an immediate consequence of

Eqg. (A1)] with |=[m/n]—1 gives

fONS H(1=N)S)=<Af(s1)+(1—N)T(Sy); (B1)

Cm-n %TJ_ 1 (A6) a concave function satisfies the same condition but with the
c, Ln inequality reversed.
The first useful fact about maxima is the following.
Local maximum is a global maximunsupposef is a
_ concave function on a convex sgt Then a local maximum

~n 2, (A7) of f is also a global maximum df. This follows by suppos-
ing that s; and s, are distinct local maxima. Iff(s;)
<f(s,), say, then
where| x| is the integer immediately below. Plugging the
last inequality into Eq(A5) gives
fONS FH(1—N)sp)=Af(s)) +(1—N)f(sy) (B2)

cm>cn( n)
] (A8) >f(sy), (B3)

by concavity off. By choosing sufficiently small values af
But —n/m>—e¢€ andc,/n=c—¢, SO we see that this violates the fact thstis a local maximum.
Thusf has the same value for all local maxima, from which
it follows that all local maxima are also global maxima for
the function.

The following lemma, from{32], is extremely useful in
computing the maxima of convex functions on convex sets.
Convexity LemmaSupposef is a continuous convex

This equation holds for all sufficiently largae, and thus function on a compact, convex s8t Then there is an ex-
tremal point at whichf attains its global maximum.
The proof is obvious. The reason for our interest in the
lim inf ﬁz(c— e)(1—e). (A10) result is becausg for fixepl and trgce-preserving opgrations
no N &, the coherent informatioh(p,£) is a convex, continuous
function of the operatiod. The set of trace-preserving quan-
tum operations forms a compact, convex set, and thus by the
But € was an arbitrary number greater than 0, so letiéng convexity lemmad (p,£) attains its maximum for a quantum
—0 we see that operation £, which is extremal in the set of all trace-
preserving quantum operations.
Choi[13] has proved that any extremal point in the set of

%mz(c—e)(l—e). (A9)

.. .Cp . Cn trace-preserving quantum operations has a set of operation
Ilmnlan>c=l|mnsupF. (AL1) elements{A;} such that(1) there are at mostl elements
A—this is to be contrasted with the general situation, where
It follows that lim,c,/n exists, as claimed. there may be up td” elementsf2) the A; are linearly inde-
pendent.
APPENDIX B: MAXIMA OF THE COHERENT This result provides a considerable saving in the class of
INFORMATION guantum operations that must be optimized over in order to

numerically calculate expressions of the fof@12. Unfor-
Various convexity and concavity properties are useful intunately, this only takes us part of the way towards proving
calculating classical channel capacities, and the same is trubat the expression®.12 and(9.2) are identically equal, or,
in the quantum situation. This appendix is devoted to aralternatively, it suggests a starting point for a search for
explication of the basic properties of convexity and concav-counterexamples to the proposition that the two quantities
ity related to the coherent information and the relation ofare equal. If the extremal points of the set of quantum opera-
these properties to expressions such as(£42. tions were the unitary operations we would be done. How-
A convex set Ss a subset of a vector space such thatever, that is not the case, as the above theorem shows.
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