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Information transmission through a noisy quantum channel
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Noisy quantum channels may be used in many information-carrying applications. We show that different
applications may result in different channel capacities. Upper bounds on several of these capacities are proved.
These bounds are based on thecoherent information, which plays a role in quantum information theory
analogous to that played by the mutual information in classical information theory. Many new properties of the
coherent information and entanglement fidelity are proved. Two nonclassical features of the coherent infor-
mation are demonstrated: the failure of subadditivity, and the failure of the pipelining inequality. Both prop-
erties arise as a consequence of quantum entanglement, and give quantum information new features not found
in classical information theory. The problem of a noisy quantum channel with a classical observer measuring
the environment is introduced, and bounds on the corresponding channel capacity proved. These bounds are
always greater than for the unobserved channel. We conclude with a summary of open problems.
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I. INTRODUCTION

A central result of Shannon’s classical theory of inform
tion @1–3# is the noisy-channel coding theorem. This result
provides aneffective procedurefor determining thecapacity
of a noisy channel—the maximum rate at which classi
information can be reliably transmitted through the chann
There has been much recent work on quantum analogue
this result@4–8#.

This paper has two central purposes. The first purpos
to develop general techniques for proving upper bounds
the capacity of a noisy quantum channel, which are app
to several different classes of quantum noisy-channel p
lems. Second, we point out some essentially new feat
that quantum mechanics introduces into the noisy-chan
problem.

The paper is organized as follows. In Sec. II we give
basic introduction to the problem of the noisy quantum ch
nel, and explain the key concepts. Section III reviews
quantum operationsformalism that is used throughout th
paper to describe a noisy quantum channel, and Sec. IV
views the concept of theentropy exchangeassociated with a
quantum operation. Section V shows how the classical no
channel coding theorem can be put into the quantum
guage, and explains why the capacities that arise in this c
text are not useful for applications such as quant
computing and teleportation. Section VI discusses theen-
tanglement fidelity, which is the measure we use to quant
how well a state and its entanglement are transmitted thro
a noisy quantum channel. Section VII discusses thecoherent
information introduced in@5# as an analogue to the conce
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of mutual informationin classical information theory. Many
new results about the coherent information are proved,
we show that quantum entanglement allows the coheren
formation to have properties that have no classical analog
These properties are critical to understanding what is es
tially quantum about the quantum noisy-channel cod
problem. Section VIII brings us back to noisy-channel co
ing, and formally sets up the class of noisy-channel cod
problems we consider. Section IX proves a variety of up
bounds on the capacity of a noisy quantum channel, depe
ing on what class of coding schemes one is willing to allo
This is followed in Sec. X by a discussion of the achievab
ity of these upper bounds and of earlier work on chan
capacity. Section XI formulates the new problem of a no
quantum channel with measurement, allowing classical
formation about the environment to be obtained by meas
ment, and then used during the decoding process. Up
bounds on the corresponding channel capacity are pro
Finally, Sec. XII concludes with a summary of our results
discussion of the new features that quantum mechanics
to the problem of the noisy channel, and suggestions
further research.

II. NOISY-CHANNEL CODING

The problem of noisy-channel coding will be outlined
this section. Precise definitions of the concepts used will
given in later sections. The procedure is illustrated in Fig

FIG. 1. The noisy quantum channel, together with encodin
and decodings.
4153 © 1998 The American Physical Society
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There is a quantum sourceemitting unknown quantum
states, which we wish to transmit through the channe
some receiver. Unfortunately, the channel is usually sub
to noise, which prevents it from transmitting states with hi
fidelity. For example, an optical fiber suffers losses dur
transmission. Another important example of a noisy quant
channel is the memory of a quantum computer. There
idea is to transmit quantum statesin time. The effect of trans-
mitting a state from timet1 to t2 can be described as a nois
quantum channel. Quantum teleportation@9# can also be de-
scribed as a noisy quantum channel whenever there are
perfections in the teleportation process@6,10#.

The idea of noisy-channel coding is to encode the qu
tum state emitted by the source,rs , which one wishes to
transmit, using someencoding operation, which we denote
C. The encoded state is then sent through the channel, w
operation we denote byN. The output state of the channel
thendecodedusing somedecoding operationD. The objec-
tive is for the decoded state to match with high fidelity t
state emitted by the source. As in the classical theory,
consider the fidelity of large blocks of material produced
repeated emission from the source, and allow the enco
and decoding to operate on these blocks. A channel is sa
transmit a source reliably if a sequence of block-coding a
block-decoding procedures can be found that approac
perfect fidelity in the limit of large block size.

What then is thecapacityof such a channel—the highe
rate at which information can be reliably transmitted throu
the channel? The goal of achannel capacity theoremis to
provide a procedure to answer this question. This proced
must be aneffective procedure, that is, an explicit algorithm
to evaluate the channel capacity. Such a theorem come
two parts. One part proves an upper bound on the rat
which information can be reliably transmitted through t
channel. The other part demonstrates that there are co
and decoding schemes that attain this bound, which is th
fore the channel capacity. We do not prove such a chan
capacity theorem in this paper. We do, however, der
bounds on the rate at which information can be sent thro
a noisy quantum channel.

III. QUANTUM OPERATIONS

What is a quantum noisy channel, and how can it be
scribed mathematically? This section reviews the formal
of quantum operations, which is used to describe noisy ch
nels. Previous papers on the noisy-channel problem@4–8#
have used apparently different formalisms to describe
noisy channel. In fact, all the formalisms can be shown to
equivalent, as we shall see in this section. Historically, qu
tum operations have also sometimes been known ascom-
pletely positive mapsor superscattering operators. The mo-
tivation in all cases has been to describe general s
changes in quantum mechanics.

A simple example of a state change in quantum mech
ics is the unitary evolution experienced by a closed quan
system. The final state of the system is related to the in
state by a unitary transformationU,

r→E~r!5UrU†. ~3.1!
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Although all closed quantum systems are described by
tary evolutions, in accordance with Schro¨dinger’s equation,
more general state changes are possible for open qua
systems, such as noisy quantum channels.

How does one describe a general state change in quan
mechanics? The answer to this question is provided by
quantum operations formalism. This formalism is describ
in detail by Kraus@11# ~see also Hellwig and Kraus@12#! and
is given short but detailed reviews in Choi@13# and in the
Appendix to@4#. In this formalism there is aninput stateand
an output state, which are connected by a map,

r→
E~r!

tr@E~r!#
. ~3.2!

This map is aquantum operationE, a linear, trace-decreasin
map that preserves positivity. The trace in the denominato
included in order to preserve the trace condition, tr(r)51.

The most general form forE that is physically reasonabl
~in addition to being linear and trace decreasing and pres
ing positivity, a physically reasonableE must satisfy an ad-
ditional property called complete positivity!, can be shown to
be @11#

E~r!5(
i

AirAi
† . ~3.3!

The system operatorsAi , which must satisfy( iAi
†Ai<I ,

completely specify the quantum operation. In the particu
case of a unitary transformation, there is only one term in
sumA15U, leaving us with the transformation~3.1!.

A class of operations that is of particular interest is t
trace-preservingor nonselectiveoperations. Physically, thes
arise in situations where the system is coupled to some
vironment that is not under observation; the effect of t
evolution is averaged over all possible outcomes of the
teraction with the environment. Trace-preserving operati
are defined by the requirement that

(
i

Ai
†Ai5I . ~3.4!

This is equivalent to requiring that for all density operato
r,

tr@E~r!#51, ~3.5!

explaining the nomenclature ‘‘trace preserving.’’ Notice th
this means the evolution equation~3.2! reduces to the sim-
pler form

r→E~r!, ~3.6!

whenE is trace preserving.
The following representation theoremis proved in@11#,

@13#, and @4#. It shows the connection between trac
preserving quantum operations and systems interacting
tarily with an environment, and thus provides part of t
justification for the physical interpretation of trace
preserving quantum operations described above.

Theorem (representation theorem for trace-preserv
quantum operations).SupposeE is a trace-preserving quan
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57 4155INFORMATION TRANSMISSION THROUGH A NOISY . . .
tum operation on a system with ad-dimensional state space
Then it is possible to construct an ‘‘environment’’E of at
most d2 dimensions, such that the system and environm
are initially uncorrelated, the environment is initially in
pure states5us&^su, and there exists a unitary evolutionU
on system and environment such that

E~r!5 trE@U~r ^ s!U†#. ~3.7!

Here and elsewhere in the paper a subscript on a trace
cates a partial trace over the corresponding system (E in this
case!.

Conversely, given any initially uncorrelated environme
s ~possibly of more thand2 dimensions, and initially im-
pure!, a unitary interactionU between the system and th
environment gives rise to a trace-preserving quantum op
tion,

E~r!5 trE@U~r ^ s!U†#. ~3.8!

This theorem tells us that any trace-preserving quan
operation can always bemocked upas a unitary evolution by
adding an environment with which the system can inter
unitarily. Conversely, it tells us that any such unitary inte
action with an initially uncorrelated environment gives ri
to a trace-preserving quantum operation. Both of these f
are useful in what follows. The picture we have of a quant
operation is neatly summarized in Fig. 2.

Here,Q denotes the state of the system before the in
action with the environment, andQ8 the state of the system
after the interaction. Unless stated otherwise we follow
convention thatQ and Q8 are d dimensional. The environ
ment systemE and the operatorUQE might be chosen to be
the actual physical environment and its interaction withQ,
but this is not necessary. The only thing that matters for
description of noisy channels is the dynamics ofQ. For any
given quantum operationE there are many possible represe
tations of E in terms of environmentsE and interactions
UQE. We always assume that the initial state ofE is a pure
state, and regardE as a mathematical artifice. Of course, t
actual physical environmentEA may be initially impure, but
the above representation theorem shows that for the purp
of describing the dynamics ofQ, it can be replaced by an
‘‘environment’’ E that is initially pure and gives rise to ex
actly the same dynamics. In what follows it is this latterE
that is most useful.

Shannon’s classical noisy coding theorem is proved
discrete memoryless channels. Discrete means that the cha
nel only has a finite number of input and output states.
analogy we define a discrete quantum channel to be one
has a finite number of Hilbert space dimensions. In the c

FIG. 2. Quantum operations arise when a systemQ interacts
with an environmentE.
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sical case, memoryless means that the output of the cha
is independent of the past, conditioned on knowing the s
of the source. Quantum mechanically we take this to m
that the output of the channel is completely determined
the encoded state of the source, and is not affected by
previous history of the source.

Phrased in the language of quantum operations, we
sume that there is a quantum operationN describing the
dynamics of the channel. The inputr i of the channel is re-
lated to the outputro by the equation

r i→ro5N~r i !. ~3.9!

For the majority of this paper we assume, as in the previ
equation, that the operation describing the action of the ch
nel is trace preserving. This corresponds to the physical
sumption that no classical information about the state of
system or its environment is obtained by an external class
observer. All previous work on noisy-channel coding wi
the exception of@14# has assumed that this is the case, a
we do so for the majority of the paper. In Sec. XI we co
sider the case of a noisy channel that is being observed
some classical observer.

In addition to the environmentE it is also extremely use-
ful to introduce areference system Rin the following way.
One might imagine that the systemQ is initially part of a
larger systemRQ and that the total is in a pure stateucRQ&
satisfying

rQ5 trR~ ucRQ&^cRQu!. ~3.10!

Such a stateucRQ& is called apurification of rQ, and it can
be shown@15# that such a systemR and purificationsucRQ&
always exist. From our point of viewR is introduced simply
as a mathematical device to purify the initial state. The jo
systemRQ evolves according to the dynamicsIR^E given
by

rR8Q85~IR^E!~rRQ!, ~3.11!

whereIR is the identity dynamics for the reference systemR.
The overall picture we have of a trace-preserving qu

tum operation is shown in Fig. 3.
The picture we have described thus far applies only

trace-preservingquantum operations. Later in the paper w
will also be interested in quantum operations that are
trace preserving. That is, they do not satisfy the relat

FIG. 3. Quantum operations in the presence of a reference
tem R.
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4156 57HOWARD BARNUM, M. A. NIELSEN, AND BENJAMIN SCHUMACHER
( iAi
†Ai5I , and thus tr@E(r)#Þ1 in general. Such quantum

operations arise in the theory ofgeneralized measurement.
To each outcomem of a measurement there is an associa
quantum operationEm with an operator-sum representation

Em~r!5(
i

AmirAmi
† . ~3.12!

The probability of obtaining outcomem is postulated to be

Pr~m!5 tr@Em~r!#5 trS (
i

Ami
† Amir D . ~3.13!

The completeness relation for probabilities(m Pr(m)51 is
equivalent to the completeness relation for the operators
pearing in the operator-sum representations

(
mi

Ami
† Ami5I . ~3.14!

Thus for eachm,

(
i

Ami
† Ami<I . ~3.15!

As an aside, it is interesting to note that the formulation
quantum measurement based on the projection postu
@16–18#, taught in most classes on quantum mechanics,
special case of the quantum operations formalism, obtain
by using a single projectorAm5Pm in the operator-sum rep
resentation forEm . The formalism of positive operator va
ued measures~POVM’s! @15# is also related to the genera
ized measurements formalism:Em[( iAmi

† Ami are the
elements of the POVM that is measured.

A result analogous to the earlier representation theo
for trace-preserving quantum operations can be proved
general operations.

Theorem (general representation theorem for operation
SupposeE is a general quantum operation. Then it is possi
to find an environmentE initially in a pure states5us&^su
uncorrelated with the system, a unitaryUQE, a projectorPE

onto the environment alone, and a constantc.0, such that

E~r!5c trE@PEUQE~r ^ s!UQE†PE#. ~3.16!

Furthermore, in the case of a generalized measuremen
scribed by operationsEm it is possible to do so in such a wa

FIG. 4. Trace decreasing quantum operations.
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that for eachm the corresponding constantcm51, and the
projectorsPm

E form a complete orthogonal set,(mPm
E5I ,

Pm
E Pm8

E
5dm,m8Pm

E .
Conversely, any map of the form~3.16! is a quantum

operation.
Once again, introducing a reference systemR that purifies

rQ we are left with a picture of the dynamics that looks lik
that shown in Fig. 4.

A few miscellaneous remarks will be useful later on.

~1! A prime always denotes anormalizedstate. For in-
stance,

rR8Q85
~IR^E!~rRQ!

tr@~IR^E!~rRQ!#
. ~3.17!

~2! The total state of the systemRQE starts and remains
pure. That is,rR8Q8E8 is a pure state. Purity gives very us
ful relations among Von Neumann entropiesS(r)
[2 tr(r log2r), such asS(rR8Q8)5S(rE8) and all other
permutations amongR,Q andE. These are used frequentl
in what follows.

~3! Generically we denote quantum operations byE and
the dimension of the quantum systemQ by d.

~4! Trace-preservingquantum operations arise when
system interacts with an environment, andno measuremen
is performed on the system plus environment. Non-tra
preserving operations arise when classical information ab
the state of the system is made available by such a meas
ment. For most of this paper the noisy quantum channe
described by a trace-preserving quantum operation.

~5! Sometimes we consider the composition of two~or
more! quantum operations. Generically we use the notat
E1 ,E2 , . . . for the different operations, and the notatio
E2+E1 to denote composition of operations,

~E2+E1!~r![E2„E1~r!…. ~3.18!

Furthermore it is sometimes useful to use theRQEpicture of
quantum operations to discuss compositions. We denote
environment corresponding to operationEi by Ei , and as-
sume environments corresponding to different values ofi are
independent and initially pure. So, for example, the init
state for a two-stage composition would be

rRQE1E25ucRQ&^cRQu ^ us1&^s1u ^ us2&^s2u. ~3.19!

A single prime denotes the state of the system after the
plication of E1, and a double prime denotes the state of
system after the application ofE2+E1, and so on.

IV. ENTROPY EXCHANGE

This section briefly reviews the definition and some ba
results about theentropy exchange, which was independently
introduced by Schumacher@4# and Lloyd @7#. The entropy
exchange turns out to be central to understanding the n
quantum channel.

The entropy exchangeof a quantum operationE with in-
put r is defined to be

Se~r,E![S~rE8!, ~4.1!
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whererE8 is the state of an initially pure environment~the
‘‘mock’’ environment of the previous section! after the op-
eration, andS(r)[2 tr(r log2r) is the Von Neumann en
tropy. If E(r)5( iAirAi

† then a convenient form for the en
tropy exchange is found by defining a matrixW with
elements

Wi j [
tr~AirAj

†!

tr@E~r!#
. ~4.2!

It can be shown@4,14# that

Se~r,E!5S~W![2 tr~W log2W!. ~4.3!

The last equation is frequently useful when performing c
culations.

V. CLASSICAL NOISY CHANNELS
IN A QUANTUM SETTING

In this section we show how classical noisy channels
be formulated in terms of quantum mechanics. We begin
reviewing the formulation in terms of classical informatio
theory.

A classical noisy channel is described in terms of dist
guishable channel states, which we label byx. If the input to
the channel is symbolx then the output is symboly with
probability pyux . The channel is assumed to act indepe
dently on each input. For eachx, the probability sum rule
(ypyux51 is satisfied. Theseconditional probabilities pyux
completely describe the classical noisy channel.

Suppose the input to the channelx is represented by som
classical random variableX and the output by a random var
ableY. The mutual information betweenX andY is defined
by

H~X:Y![H~X!1H~Y!2H~X,Y!, ~5.1!

whereH(X) is the Shannon information of the random va
ableX defined by

H~X![2(
x

p~x! log2p~x!, ~5.2!

with 0 log20[ limp→0p log2p50.
Shannon showed that the capacity of a noisy class

channel is given by the expression

CS5max
p~x!

H~X:Y!, ~5.3!

where the maximum is taken over all possible distributio
p(x) for the channel inputX. Notice that although this is no
an explicit expression for the channel capacity in terms
the conditional probabilitiespxuy , the maximization can eas
ily be performed using well-known techniques from nume
cal mathematics. That is, Shannon’s result provides an ef
tive procedure for computing the capacity of a noisy class
channel.

All these results may be reexpressed in terms of quan
mechanics. We suppose the channel has some preferre
thonormal basisux& of signal states. For convenience we a
sume the set of input statesux& is the same as the set o
l-

n
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output statesuy& of the channel, although more gener
schemes are possible. For the purpose of illustration
present level of generality suffices. A classical input rand
variableX corresponds to an input density operator for t
quantum channel,

rX[(
x

p~x!ux&^xu. ~5.4!

The statistics ofX are recoverable by measuringrX in the
ux& basis. Defining operatorsExy by

Exy[uy&^xu, ~5.5!

we find that the channel operation defined by

N~r![(
xy

pyuxExyrExy
† ~5.6!

is a trace-preserving quantum operation, and that

N~rX!5rY5(
y

p~y!uy&^yu, ~5.7!

whererY is the density operator corresponding to the ra
dom variableY that would have been obtained fromX given
a classical channel with probabilitiespyux . This gives a
quantum mechanical formalism for describing classi
sources and channels. It is interesting to see what form
mutual information and channel capacity take in the quant
formalism.

Notice that

H~X!5S~rX!, ~5.8!

H~Y!5S~rY!5S„N~rX!…. ~5.9!

Next we compute the entropy exchange associated with
channel operating on inputrX , by computing theW matrix
given by Eq.~4.2!. TheW matrix corresponding to the chan
nel with inputrX has entries

W~xy!~x8y8!5dx,x8dy,y8p~x!p~yux!, ~5.10!

but the joint distribution of (X,Y) satisfies p(x)p(yux)
5p(x,y). Thus W is diagonal with eigenvaluesp(x,y), so
the entropy exchange is given by

Se~rX ,N!5H~X,Y!. ~5.11!

It follows that

H~X:Y!5S~rX!1S„N~rX!…2Se~rX ,N!, ~5.12!

and thus the Shannon capacityCS of the classical channel is
given in the quantum formalism by

CS5max
rX

@S~rX!1S„N~rX!…2Se~rX ,N!#, ~5.13!

where the maximization is over all input states for the ch
nel rX that are diagonal in theux& basis.

The problem we have been considering is that of tra
mitting a discrete set of orthogonal states~the statesux&)
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through the channel. In many quantum applications on
not only interested in transmitting a discrete set of states,
also arbitrary superpositions of those states. That is,
wants to transmit entiresubspacesof states. In this case, th
capacity of interest is the maximum rate of transmission
subspace dimensions. This may occur in quantum com
ing, cryptography, and teleportation. It is also interesting
these applications to transmit theentanglementof states.
This cannot be done by considering the transmission of a
of orthogonal pure states alone.

It is not difficult to see thatCS is not correct as a measur
of how many subspace dimensions may be reliably trans
ted through a quantum channel. For example, consider
classical noiseless channel,

N~r!5(
x

ux&^xurux&^xu, ~5.14!

whereux& is an orthonormal set of basis states for the ch
nel. It is easily seen that

CS5 log2d, ~5.15!

whered is the number of channel dimensions. Yet it is int
itively clear, and is later proved in a more rigorous fashio
that such a channel cannot be used to transmit any nontr
subspace of state space, nor can it be used to transmit
entanglement, and thus its capacity for transmitting th
types of quantum resources is zero.

VI. ENTANGLEMENT FIDELITY

In this section we review a quantity known as theen-
tanglement fidelity@4#. It is this quantity that we use to stud
the effectiveness of schemes for sending information thro
a noisy quantum channel.

The entanglement fidelity is defined for aprocess, speci-
fied by a quantum operationE acting on some initial stater.
We denote it byFe(r,E). The concerns motivating the defi
nition of the entanglement fidelity are twofold:~1! Fe(r,E)
measures how well thestater is preserved by the operatio
E. An entanglement fidelity close to one indicates that
process preserves the state well.~2! Fe(r,E) measures how
well the entanglementof r with other systems is preserve
by the operationE. An entanglement fidelity close to on
indicates the process preserves the entanglement well.

Conversely, an entanglement fidelity close to zero in
cates that the state or its entanglement were not well
served by the operationE.

Formally, the entanglement fidelity is defined by

Fe~r,E![^cRQu~IR^E!~ ucRQ&^cRQu!ucRQ&. ~6.1!

That is, the entanglement fidelity is the overlap between
initial purification ucRQ& of the statebeforeit is sent through
the channel with the state of the joint systemRQ afterit has
been sent through the channel. The entanglement fidelity
pends only onr and E, not on the particular purification
ucRQ& of r that is used@4#. If E has operation elements$Ai%
then the entanglement fidelity has the expression@4,14#
is
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Fe~r,E!5
( i u tr~Air!u2

tr@E~r!#
. ~6.2!

This expression simplifies for trace-preserving quantum
erations since the denominator is 1. The entanglement fi
ity has the following properties@4,5,14#: ~1! 0<Fe(r,E)
<1. ~2! Fe(r,E)51 if and only if for all pure statesuc&
lying in the support ofr,

E~ uc&^cu!5uc&^cu. ~6.3!

~3! The entanglement fidelity is a lower bound on the fidel
defined by Jozsa@19# in the following sense:

Fe~r,E!<F„r,E~r!…. ~6.4!

~4! Suppose$uc i&,pi% is an ensemble realizingr,

r5(
i

pi uc i&^c i u. ~6.5!

Then the entanglement fidelity is a lower bound on the
erage fidelity for the pure statesuc i&,

Fe~r,E!<(
i

pi^c i uE~ uc i&^c i u!uc i&. ~6.6!

~5! Again suppose$uc i&,pi% is an ensemble realizingr. Then
if the pure-state fidelitŷcuE(uc&^cu)uc&>12h for all uc&
in the support of r, Fe(r,E)>12(3/2)h ~Knill and
Laflamme@20#!.

There are several reasons for using the entanglemen
delity as our measure of success in transmitting quan
states. If we succeed in sending a sourcers with high en-
tanglement fidelity, we can sendany ensemble forrs with
high average pure-state fidelity, by item~4! above. Entangle-
ment fidelity is thus a more severe requirement of quant
coherence than average pure-state fidelity. Moreover,
ability to preserve entanglement is of great importance
applications of quantum coding to, say, quantum compu
tion, where one would like to be able to apply error corre
tion in a modular fashion to small portions of a quantu
computer despite the fact that they may, in the course
quantum computation, become entangled with other part
the computer@21#. ~Of course, the general problem of findin
the capacity of a noisy quantum channel for agiven en-
semble with average pure-state fidelity as the reliability m
sure is also worth investigating.!

An appropriate measure of how well asubspaceof quan-
tum states is transmitted is thesubspace fidelity,

Fs~P,E![min
uc&

^cuE~ uc&^cu!uc&, ~6.7!

where the minimization is over all pure statesuc& in the
subspace whose projector isP. Item ~5! above implies that if
the subspace fidelity is close to one, the entanglement fide
is also close to one. The converse is not in general true. T
is, reliable transmission of subspaces is a more stringen
quirement than transmission of entanglement. Therefore
ing entanglement fidelity as our criterion for reliable tran
mission yields capacities at least as great as those obta
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when subspace fidelity is used as the criterion. We conjec
that these two capacities are identical.

As an alternative measure of subspace fidelity, one m
consider the average pure-state fidelity,

E duc&^cuE~ uc&^cu!uc&, ~6.8!

where the integration is done using the unitarily invaria
measure on the subspace of interest. By item~4! above, the
capacity resulting from this measure of reliability is at lea
as great as that which results when entanglement fidelit
used as the measure of reliability. We do not know whet
these two capacities are equal.

The lesson to be learned from this discussion is that th
are many different measures that may be used to qua
how reliably quantum states are transmitted, and differ
measures may result in different capacities. Which meas
is used depends on what resource is most important for
application of interest. For the remainder of this paper,
use the entanglement fidelity as our measure of reliabilit

There is a very useful inequality, thequantum Fano in-
equality, which relates the entropy exchange and the
tanglement fidelity. It is@4#

Se~r,E!<h„Fe~r,E!…1@12Fe~r,E!# log2~d221!,
~6.9!

whereh(p)[2p log2 p2(12p) log2(12p) is the dyadic
Shannon information associated withp. It is useful to note
for our later work that 0<h(p)<1 and log2 (d221)
< 2 log2 d, so from the quantum Fano inequality,

Se~r,E!<112@12Fe~r,E!# log2 d. ~6.10!

The proof of the quantum Fano inequality~6.9! is simple
enough that for convenience we repeat it here. Conside
orthonormal set ofd2 basis statesuc i& for the systemRQ.
This basis set is chosen so thatuc1&5ucRQ&. If we form the
quantitiespi[^c i urR8Q8uc i&, then it is possible to show~see,
for example,@22#, p. 240!

S~rR8Q8!<H~p1 , . . . ,pd2!, ~6.11!

whereH(pi) is the Shannon information of the setpi . But
by easily verified grouping properties of the Shannon
tropy,

H~p1 , . . . ,pd2!5h~p1!1~12p1!HS p2

12p1
, . . . ,

pd2

12p1
D ,

~6.12!

and it is easy to show that

HS p2

12p1
, . . . ,

pd2

12p1
D< log~d221!.

Combining these results and noting thatp15Fe(r,E) by
definition of the entanglement fidelity,

Se~r,E!<h„Fe~r,E!…1@12Fe~r,E!# log2 ~d221!,
~6.13!
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which is the quantum Fano inequality.
For applications it is useful to understand the continu

properties of the entanglement fidelity. To that end we pro
the following lemma.

Lemma (continuity lemma for entanglement fidelity).Sup-
poseE is a trace-preserving quantum operation,r is a density
operator, andD is a Hermitian operator with trace zero. The

uFe~r1D,E!2Fe~r,E!u<2 tr~ uDu!1 tr~ uDu!2.
~6.14!

To prove the lemma we apply Eq.~6.2! to obtain

uFe~r1D,E!2Fe~r,E!u<2(
i

u tr~Air!u u tr~Ai
†D!u

1(
i

u tr~AiD!u2. ~6.15!

Applying a Cauchy-Schwarz inequality to each sum, the fi
with respect to the complex inner product( ixi* yi , the sec-
ond with respect to the Hilbert-Schmidt inner produ
tr(X†Y), we obtain

uFe~r1D,E!2Fe~r,E!u

<2S (
i

u tr~Air!u2(
j

u tr~Aj
†D!u2D 1/2

1(
i

u tr~Ai uDuAi
†!u u tr~ uDu!u, ~6.16!

where uDu[AD†D. Applying Eq. ~6.2! and Fe(r,E)<1 to
the first sum and the trace-preserving property ofE to the
final sum gives

uFe~r1D,E!2Fe~r,E!u<2A(
j

u tr~Aj
†D!u21 tr~ uDu!2.

~6.17!

One final application of the Cauchy-Schwarz inequality a
the trace-preserving property ofE gives

uFe~r1D,E!2Fe~r,E!u<2 tr~ uDu!1 tr~ uDu!2,
~6.18!

as required.
This result gives bounds on the change in the entan

ment fidelity when the input state is perturbed. Note, in
dentally, that during the proof a coefficientAFe(r,E) was
dropped from the first term on the right-hand side of t
inequality. For some applications it may be useful to ap
the inequality with this coefficient in place.

VII. COHERENT INFORMATION

In this section we investigate thecoherent information.
The coherent information was defined in@5#, where it was
suggested that the coherent information plays a role in qu
tum information theory analogous to the role played by m
tual information in classical information theory in the fo
lowing sense. Consider a classical random process,
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X→
M

Y, ~7.1!

in which the random variableX is used as the input to som
process that produces as output the random variableY. The
distributions of X and Y are related by a linear mapM
determined by the conditional probabilities of the proce
An example of such a process is a noisy classical cha
with input X and outputY. As discussed earlier, an importa
quantity in information theory is the mutual informatio
H(X:Y) between the inputX and the outputY of the pro-
cess. Note thatH(X:Y) can be regarded as a function of th
input X and the mapM only, since the joint distribution of
X andY is determined by these.

Quantum mechanically we can consider a process defi
by an inputr, and outputr8, with the process described by
quantum operationE,

r→
E

r85E~r!. ~7.2!

We assert that the coherent information, defined by

I ~r,E![SS E~r!

tr@E~r!# D2Se~r,E!, ~7.3!

plays a role in quantum information theory analogous to t
played by the mutual informationH(X:Y) in classical infor-
mation theory. This is not obvious from the definition, a
one goal of this section is to make it appear plausible t
this is the case. Of course, the true justification for regard
the coherent information as the quantum analogue of
mutual information is its success as the quantity appearin
results on channel capacity, as discussed in later sect
This is the true motivation for all definitions in informatio
theory, whether classical or quantum: their success at q
tifying the resources needed to perform some interes
physical task, not some abstract mathematical motivation

In Sec. VII A we review the data-processing inequal
that provides motivation for regarding the coherent inform
tion as a quantum analogue of the mutual information, a
whose application is crucial to later reasoning. Section VI
studies in detail the properties of the coherent information
particular, we prove several results related to convexity t
are useful both as calculational aids, and also for prov
later results. Section VII C proves a lemma about the
tanglement fidelity that glues together many of our la
proofs of upper bounds on the channel capacity. Fina
Secs. VII D and VII E describe two important ways that t
behavior of the coherent information differs from the beha
ior of the mutual information when quantum entanglemen
allowed.

A. Quantum data-processing inequality

The role of coherent information in quantum informatio
theory is intended to be similar to that of mutual informati
in classical information theory. This is not obvious from t
definition, but can be given an operational motivation
terms of a procedure known asdata processing. The classical
data-processing inequality@3# states that any three variab
Markov process,
.
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X→Y→Z, ~7.4!

satisfies a data-processing inequality,

H~X!>H~X:Y!>H~X:Z!. ~7.5!

The idea is that the operationY→Z represents some kind o
‘‘data processing’’ ofY to obtainZ, and the mutual infor-
mation after processing,H(X:Z), can be no higher than th
mutual information before processing,H(X:Y). Further-
more, suppose we have a Markov process,

X→Y, ~7.6!

such thatH(X)5H(X:Y). Intuitively, one might expect tha
it should be possible to do data processing onY to recoverX.
It is not difficult to show that it is possible, usingY alone, to
construct a third variableZ forming a third stage in the Mar
kov process,

X→Y→Z, ~7.7!

such thatX5Z with probability 1, if and only if H(X)
5H(X:Y).

An analogous quantum result has been proved by Sc
macher and Nielsen@5#. It states that given trace-preservin
quantum operationsE1 andE2 defining a quantum process,

r→E1~r!→~E2+E1!~r!, ~7.8!

then

S~r!>I ~r,E1!>I ~r,E2+E1!. ~7.9!

Furthermore, it was shown in@5# that given a process

r→E1~r!, ~7.10!

it is possible to find an operationE2 that reversesE1 if and
only if

S~r!5I ~r,E1!. ~7.11!

The close analogy between the classical and quantum d
processing inequalities provides a strong operational mot
tion for considering the coherent information to be the qu
tum analogue of the classical mutual information.

The proof of the quantum data-processing inequality
repeated here in order to address the issue of what hap
when E1 and E2 are not trace preserving. The proof of th
first inequality is to apply the subadditivity inequality@22#

S(rR8E8)<S(rR8)1S(rE8) in the RQE picture of opera-
tions to obtain

I ~r,E1!5S@E1~r!#2Se~r,E1! ~7.12!

5S~rQ8!2S~rE8! ~7.13!

5S~rR8E8!2S~rE8! ~7.14!

<S~rR8!5S~rR!5S~r!.
~7.15!
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It is clear that this part of the inequality need not hold wh
E1 is not trace preserving. The reason for this is that it is
longer necessarily the case thatrR85rR, and thus it may not
be possible to make the identificationS(rR8)5S(rR). For
example, suppose we have a three-dimensional state s
with orthonormal statesu1&, u2&, and u3&. Let P12 be the
projector onto the two-dimensional subspace spanned byu1&
and u2&, andP3 the projector onto the subspace spanned
u3&. Let r5(p/2)P121(12p)P3, where 0,p,1, and
E(r)5P12rP12. Then by choosingp small enough we can
makeS(r)'0, but I (r,E)51, so we have an example of
non-trace-preserving operation that does not obey the d
processing inequality.

The proof of the second part of the data-processing
equality is to apply the strong subadditivity inequality@22#,

S~rR9E19E29!1S~rE19!<S~rR9E19!1S~rE19E29!, ~7.16!

where we are now using anRQE1E2 picture of the opera-
tions. From purity of the total state ofRQE1E2 it follows
that

S~rR9E19E29!5S~rQ9!. ~7.17!

Neither of the systemsR or E1 are involved in the second
stage of the dynamics in whichQ andE2 interact unitarily.

Thus, their state does not change during this stage:rR9E19

5rR8E18. But from the purity ofRQE1 after the first stage o
the dynamics,

S~rR9E19!5S~rR8E18!5S~rQ8!. ~7.18!

The remaining two terms in the subadditivity inequality a
now recognized as entropy exchanges,

S~rE19!5S~rE18!5Se~r,E1!, ~7.19!

S~rE19E29!5Se~r,E2+E1!. ~7.20!

Making these substitutions into the inequality obtained fr
strong subadditivity~7.16! yields

S~rQ9!1Se~r,E1!<S~rQ8!1Se~r,E2+E1!, ~7.21!

which can be rewritten as the second stage of the d
processing inequality,

I ~r,E1!>I ~r,E2+E1!. ~7.22!

Notice that this inequality holds providedE2 is trace pre-
serving, and does not require any assumption thatE1 is trace
preserving. This is very useful in our later work.

B. Properties of coherent information

The set of completely positive maps forms a posit
cone, that is, ifEi is a collection of completely positive map
andl i is a set of non-negative numbers then( il iEi is also a
completely positive map. In this section we prove two ve
useful properties of the coherent information. First, it is ea
to see that for any quantum operationE and non-negativel,
n
o

ace

y

ta-

-

a-

y

I ~r,lE!5I ~r,E!. ~7.23!

This follows immediately from the definition of the cohere
information. A slightly more difficult property to prove is th
following.

Theorem (generalized convexity theorem for coherent
formation).SupposeEi are quantum operations. Then

I S r,(
i
Ei D<

( i tr@Ei~r!#I ~r,Ei !

tr@( iEi~r!#
. ~7.24!

This result is extremely useful in our later work. An im
portant and immediate corollary is the following.

Corollary (convexity theorem for coherent information
If a trace-preserving operationE5( i piEi is a convex sum
(pi>0,( i pi51) of trace-preserving operationsEi , then the
coherent information is convex,

I S r,(
i

piEi D<(
i

pi I ~r,Ei !. ~7.25!

The proof of the corollary is immediate from the theore
The theorem follows from the concavity of theconditional
entropy~see references cited in@22#, pages 249–250!, which
for two systems 1 and 2 is defined by

S~2u1![S~r12!2S„ tr2~r12!…. ~7.26!

This expression is concave inr12. Now notice that

I ~r,E!5S~rQ8!2S~rR8Q8!52S~R8uQ8!. ~7.27!

The theorem now follows from the concavity of the cond
tional entropy.

A further useful result concerns the additivity of cohere
information.

Theorem (additivity for independent channels).Suppose
E1 , . . . ,En are quantum operations andr1 , . . . ,rn are den-
sity operators. Then

I ~r1^ •••^ rn ,E1^ •••En!5(
i

I ~r i ,Ei !. ~7.28!

The proof is immediate from the additivity property of e
tropies for product states.

C. A lemma about entanglement fidelity

The following lemma is the glue that holds together mu
of our later work on proving upper bounds to channel capa
ties. In this section we prove the lemma only for the spec
case of trace-preserving operations. A similar but more co
plicated result is true for general operations, and is given
Sec. XI.

We begin by repeating the proof of a simple inequal
that was first proved in@4#, which states that the decrease~if
any! in system entropy must be bounded above by the
crease in the entropy of a pure environment. This app
only for trace-preserving operationsE. Applying the subad-
ditivity inequality @22# S(rQ8E8)<S(rQ8)1S(rE8) and the
relationshipS(rR8)5S(rQ8E8), that follows from purity we
obtain
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S~r!5S~rR!, ~7.29!

5S~rR8!, ~7.30!

5S~rQ8E8!, ~7.31!

<S~rQ8!1S~rE8!. ~7.32!

Rewriting this slightly gives

S~r!2S„E~r!…<Se~r,E!, ~7.33!

for any trace-preserving quantum operationE.
Lemma (entanglement fidelity lemma for operation

SupposeE is a trace-preserving quantum operation, andr is
some quantum state. Then for all trace-preserving quan
operationsD,

S~r!<I ~r,E!1214@12Fe~r,D+E!# log2 d. ~7.34!

This lemma is extremely useful in obtaining proofs
bounds on the channel capacity. In order for the entan
ment fidelity to be close to 1, the quantity appearing on
right-hand side must be close to zero. This shows that
entropy ofr cannot greatly exceed the coherent informat
I (r,E) if the entanglement fidelity is to be close to 1.

To prove the lemma, notice that by the second part of
data-processing inequality~7.9!,

S~r!2I ~r,E!<S~r!2S„~D+E!~r!…1Se~r,D+E!.
~7.35!

Applying inequality~7.33! gives

S~r!2S„~D+E!~r!…<Se~r,D+E!, ~7.36!

and combining the last two inequalities gives

S~r!2I ~r,E!<2Se~r,D+E! ~7.37!

<2h@Fe~r,D+E!#12~12Fe~r,D+E!! log2 ~d221!,
~7.38!

where the second step follows from the quantum Fano
equality~6.9!. But the dyadic Shannon entropyh is bounded
above by 1 and log2 (d221)<2 log2 d, so

S~r!<I ~r,E!1214@12Fe~r,D+E!# log2 d. ~7.39!

This completes the proof.
This inequality is strong enough to prove the asympto

bounds that are of most interest for our later work. T
somewhat stronger inequality~7.38! is also useful when
proving one-shot results, that is, when no block coding
being used.

D. Quantum characteristics of the coherent information I

There are at least two important respects in which
coherent information behaves differently from the classi
mutual information. In this subsection and the next we
plain what these differences are.

Classically, suppose we have a Markov process,
).
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X→Y→Z. ~7.40!

Intuitively we expect that

H~X:Z!<H~Y:Z!, ~7.41!

and, indeed, it is not difficult to prove such a ‘‘pipelinin
inequality,’’ based on the definition of the mutual inform
tion. The idea is that any information aboutX that reachesZ
must go throughY, and therefore is also information thatZ
has aboutY. However, the quantum mechanical analogue
this result fails to hold. We shall see that the reason it fails
due to quantum entanglement.

Example 1.Suppose we have a two-part quantum proc
described by quantum operationsE1 andE2:

r→E1~r!→~E2+E1!~r!. ~7.42!

Then, in general

I ~r,E2+E1!<I „E1~r!,E2…. ~7.43!

An explicit example showing that this is the case is giv
below. It is not possible to prove a general inequality of th
sort for the coherent information—examples may be fou
where a,,. or 5 sign could occur in the last equation. W
now show how the purely quantum mechanical effect of
tanglement is responsible for this property of coherent inf
mation.

Notice that the truth of the equation

I ~r,E2+E1!<I „E1~r!,E2… ~7.44!

is equivalent to

Se„E1~r!,E2…<Se~r,E2+E1!. ~7.45!

This last equation makes it easy to see why Eq.~7.44! may
fail. It is because the entropy of the joint environment f
processesE1 andE2 ~the quantity on the right-hand side! may
be less than the entropy of the environment for processE2
alone~the quantity on the left!. This is a property peculiar to
quantum mechanics, which is caused by entanglement; t
is no classical analogue. An example of this type of pheno
enon is provided by an EPR pair, where the entropy of eit
system alone~one bit! is greater than that of the entire sy
tem, which is pure and thus has zero bits of entropy.

An example of Eq.~7.43! is as follows. For convenience
we use the language of coding and channel operations, s
that language is most convenient later.E1 is to be identified
with the coding operation,C, andE2 is to be identified with
the channel operation,N.

Suppose we have a four-dimensional state space. We
pose that we have an orthonormal basisu1&,u2&,u3&,u4&, and
that P12 is the projector onto the space spanned byu1& and
u2&, andP34 is the projector onto the space spanned byu3&
and u4&. Let U be a unitary operator defined by

U[u3&^1u1u4&^2u1u1&^3u1u2&^4u. ~7.46!

The channel operation is

N~r!5P12rP121U†P34rP34U, ~7.47!
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and we use an encoding defined by

C~r!5 1
2 P12rP121

1
2 UP12rP12U

†1P34rP34. ~7.48!

It is easily checked that for any stater whose support lies
wholly in the space spanned byu1& and u2&,

~N+C!~r!5r. ~7.49!

It follows that

I ~r,N+C!5S~r!. ~7.50!

It is also easy to verify that

I „C~r!,N…52S~r!21. ~7.51!

Thus there exist statesr such that

I ~r,N+C!.I „C~r!,N…, ~7.52!

providing an example of Eq.~7.43!.

E. Quantum characteristics of the coherent information II

The second important difference between coherent in
mation and classical mutual information is related to
property known classically assubadditivity of mutual infor-
mation. Suppose we have several independent channels
erating. Figure 5 shows the case of two channels.

These channels are numbered 1, . . . ,n and take as inputs
random variablesX1 , . . . ,Xn . The channels might be sepa
rated spatially, as shown in the figure, or in time. The ch
nels are assumed to act independently on their respe
inputs, and produce outputsY1 , . . . ,Yn . It is not difficult to
show that

H~X1 , . . . ,Xn :Y1 , . . . ,Yn!<(
i

H~Xi :Yi !. ~7.53!

This property is known as thesubadditivityof mutual infor-
mation. It is used, for example, in proofs of the weak co
verse to Shannon’s noisy-channel coding theorem. We n
show that the corresponding quantum statement about co
ent information fails to hold.

Example 2.There exists a quantum operationE and a
density operatorr12 such that

I ~r12,E^E!<” I ~r1 ,E!1I ~r2 ,E!, ~7.54!

wherer1[ tr2(r12) andr2[ tr1(r12) are the usual reduce
density operators for systems 1 and 2.

FIG. 5. Dual classical channels operating on inputsX1 andX2

produce outputsY1 andY2.
r-
e
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An example of Eq.~7.54! is the following. Suppose sys
tem 1 consists of two qubits,A andB. System 2 consists o
two more qubits,C andD. As the initial state we choose

r125
I A

2
^ ucBD&^cBDu ^

I C

2
, ~7.55!

whereucBD& is a Bell state shared between systemsB andD.
The action of the channel onA andB is as follows: it sets

bit B to some standard state,u0&, and allowsA through un-
changed. This is achieved by swapping the state ofB out into
the environment. Formally,

E~rAB!5rA^ u0&^0u. ~7.56!

The same channel is now set to act on systemsC andD:

E~rCD!5rC^ u0&^0u. ~7.57!

A straightforward though slightly tedious calculation show
that with this channel setup

I ~r1 ,E!5I ~r2 ,E!50, ~7.58!

and

I ~r12,E^E!52. ~7.59!

Thus this setup provides an example of Eq.~7.54!.

VIII. NOISY-CHANNEL CODING REVISITED

In this section we return to noisy-channel coding. Rec
the basic procedure for noisy channel coding, as illustrate
Fig. 6.

Suppose a quantum source has outputrs . A quantum
operation, which we shall denoteC, is used toencodethe
source, giving the input state to the channel,rc[C(rs). The
encoded state is used as input to the noisy channel, givi
channel outputro[N(rc). Finally, a decoding quantum op
erationD is used to decode the output of the channel, giv
a received state, r r[D(ro). The goal of noisy-channel cod
ing is to find out what source states can be sent with h
entanglement fidelity. That is, we want to know for wh
statesrs encoding and decoding operations can be fou
such that

Fe~rs ,D+N+C!'1. ~8.1!

If large blocks of source states with entropyR per use of the
channel can be sent through the channel with high fidel
we say the channel is transmitting at the rateR.

Shannon’s noisy-channel coding theorem is an exam
of a channel capacitytheorem. Such theorems come in tw
parts: ~1! An upper boundis placed on the rate at whic
information can be sent reliably through the channel. Th

FIG. 6. The noisy quantum channel, together with encodin
and decodings.
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should be an effective procedure for calculating this up
bound.~2! It is proved that a reliable scheme for encodi
and decoding exists that comes arbitrarily close toattaining
the upper bound found in~1!.

This maximum rate at which information can be reliab
sent through the channel is known as thechannel capacity.

Channel capacity results may be understood in the
guage of error correcting codes~see@23# for a review of the
classical theory of error correcting codes, or@24# for a re-
view and many references for the quantum theory!. In order
to protect information against the effects of noise, it is e
coded using an error correcting code, with the encoding
eration represented byC, then subjected to the noise, repr
sented byN, and finally the encoding is undone using t
decoding operationD. Finding a good error correcting cod
means finding a pairC andD that preserves the informatio
being encoded. A channel capacity theorem places an
mate achievable limit on the effectiveness of these error
recting codes, for a given noise modelN.

In this paper we consider only the first of these two tas
the placing of upper bounds on the rate at which quan
information can be reliably sent through a noisy quant
channel. The results we prove are analogous to the w
converse of the classical noisy coding theorem, but canno
considered true converses until attainability of our bound
demonstrated. We do consider it likely that our bounds
equal to the true quantum channel capacity.

A. Mathematical formulation of noisy-channel coding

Up to this point the procedure for doing noisy-chann
coding has been discussed in broad outline but we have
made all of our definitions mathematically precise. This s
section gives a precise formulation for the most import
concepts appearing in our work on noisy-channel coding

Define aquantum sourceS5(Hs ,Y) to consist of a Hil-
bert spaceHs and a sequenceY5$rs

1 ,rs
2 , . . . ,rs

n , . . . %
wherers

1 is a density operator onHs , rs
2 a density operator

on Hs^ Hs , and rs
n a density operator onHs

^ n , etc . . . .
Using, for example, ‘‘tr34’’ to denote the partial trace ove
the third and fourth copies ofHs , we require as part of ou
definition of a quantum source that for allj and alln. j ,

trj 11, . . . ,n~rs
n!5rs

j , ~8.2!

i.e., that density operators in the sequence be consistent
each other in the sense that earlier ones be derivable
later ones by an appropriate partial trace. Thenth density
operator is meant to represent the state ofn emissions from
the source, normally thought of as takingn units of time.
~We could have used a single density operator on a co
ably infinite tensor product of spacesHs , but we wish to
avoid the technical issues associated with such products.! We
define theentropy rateof a general sourceS as

S~S![ lim sup
n→`

S~rs
n!

n
. ~8.3!

A special case of this general definition of a quantu
source is the i.i.d. source (Hs ,$rs ,rs^ rs , . . . , rs

^ n , . . . %),
for some fixedrs . Such a source corresponds to the class
r

n-

-
p-

ti-
r-

,
m

ak
be
is
e

l
ot
-
t

ith
m

t-

al

notion of an independent, identically distributedclassical
source, thus the term i.i.d. The entropy rate of this sourc
simply S(rs).

A discrete memoryless channel(Hc ,N) consists of a
finite-dimensional Hilbert spaceHc and a trace-preserving
quantum operationN. The nth extensionof that channel is
given by the pair (Hs

^ n ,N^ n), where^ n is used to denote
n-fold tensor products. The memoryless nature of the ch
nel is reflected in the fact that the operation performed on
n copies of the channel system is a tensor product of in
pendent single-system operations.

Define ann code(C,D) from Hs into Hc to consist of a
trace-preserving quantum operationC from Hs

^ n to Hc
^ n , and

a trace-preserving quantum operationD from Hc
^ n to Hs

^ n .
We refer toC as theencodingandD as thedecoding.

The total coding operationT is given by

T[D+N^ n+C. ~8.4!

The measure of success we use for the total procedure is
total entanglement fidelity,

Fe~rs
n ,T!. ~8.5!

In practice we frequently abuse notation, usually by om
ting explicit mention of the Hilbert spacesHs andHc . Note
also that, in principle, the channel could have different inp
and output Hilbert spaces. To ease notational clutter we
not consider that case here, but all the results we prove
through without change.

Given a source staters and a channelN, the goal of
noisy-channel coding is to find an encodingC and a decoding
D such thatFe(rs ,T) is close to 1; that is,rs and its en-
tanglement is transmitted almost perfectly. In general this
not possible to do. However, Shannon showed in the cla
cal context that by considering blocks of output from t
source and performing block encoding and decoding it
possible to considerably expand the class of source staters
for which this is possible. The quantum mechanical vers
of this procedure is to find a sequence ofn codes (Cn,Dn)
such that asn→`, the measure of successFe(rs

n ,Tn) ap-
proaches 1, whereTn5Dn+N^ n+Cn ~we will sometimes refer
to such a sequence as acoding scheme!.

Suppose such a sequence of codes exists for a g
sourceS. In this case the channel is said to transmitS reli-
ably. We also say that the channel can transmit reliably a
rate R5S(S). ~Note that this definition does not require th
the channel be able to transmit reliablyany source with en-
tropy rate less than or equal toR; that is a different potentia
definition of what it means for a channel to transmit reliab
at rateR. We conjecture that the two definitions are equiv
lent in the contexts considered in this paper.!

A noisy-channel coding theorem enables one to de
mine, for any source and channel, whether or not the sou
can be transmitted reliably on that channel. Classically,
is determined by comparing the entropy rate of the sourc
the capacity of the channel. If the entropy rate of the sou
is greater than the capacity, the source cannot be transm
reliably. If the entropy rate is less than the capacity, it c
The conjunction of these two statements is precisely
noisy-channel coding theorem.~The case when the entrop
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rate of the source equals the capacity requires separate
sideration; sometimes reliable transmission is achieva
and sometimes not.! We expect that in quantum mechanic
the entropy rateS(S) of the source will play the role of the
classical entropy rate. A channel will be able to transm
reliably any source with entropy rate less than the capac
furthermore,no source with entropy rate greater than t
capacity will be reliably transmissible~i.e., the channel will
be unable to transmit reliably at a rate greater than the
pacity!. The first part of this would constitute a quantu
noisy-channel coding theorem; the second, a ‘‘weak c
verse’’ of the theorem.~A ‘‘strong converse’’ would require
not just that no source with entropy rate greater than
capacity can be reliably transmitted, i.e., transmitted w
asymptotic fidelity approaching unity, but would require th
all such sources have asymptotic fidelity of transmission
proaching zero.!

IX. UPPER BOUNDS ON THE CHANNEL CAPACITY

In this section we investigate a variety of upper bounds
the capacity of a noisy quantum channel.

A. Unitary encodings

This subsection is concerned with the case where the
codingC is unitary.

For this subsection only we define

Cn[max
r

I ~r,N^ n!, ~9.1!

where the maximization is over all inputsr to n copies of the
channel. The bound on the channel capacity proved in
section is defined by

C~N![ lim
n→`

Cn

n
. ~9.2!

It is not immediately obvious that this limit exists. To se
that it does, notice thatCn<n log2d and Cm1Cn<Cm1n
and apply the lemma proved in Appendix A. Notice th
C(N) is a function of the channel operation only.

We begin with a theorem that places a limit on the e
tropy rate of a source that can be sent through a quan
channel.

Theorem. Suppose we consider a sourceS5~Hs ,
$•••rs

n
•••%) and a sequence of unitary encodingsUn for the

source. Suppose further that there exists a sequence o
codingsDn such that

lim
n→`

Fe~rs
n ,Dn+N^ n+Un!51. ~9.3!

Then

S~S![ lim sup
n→`

S~rs
n!

n
<C~N!. ~9.4!

This theorem tells us that we cannot reliably transm
more thanC(N) qubits of information per use of the chan
nel.
on-
e,
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For unitaryUn we have

I ~rs ,N^ n+Un!5I „Un~rs!,N^ n
…, ~9.5!

and thus

I ~rs ,N^ n+Un!<Cn . ~9.6!

By Eq. ~7.34! with E[N^ n+Un, and the fact that
I „Un(rs),N^ n

…<maxrI(r,N^ n)[Cn , it now follows that

S~rs
n!

n
<

Cn

n
1

2

n
14@12Fe~rs

n ,Dn+N^ n+Un!# log2 d.

~9.7!

@Note thatd here is the dimension of a single copy of th
source Hilbert space, so that we have inserteddn for the
overall dimensiond of Eq. ~7.34!.# Taking lim sups on both
sides of the equation completes the proof of the theorem

It is extremely useful to study this result at length, sin
the basic techniques employed to prove the bound are
same as those that appear in a more elaborate guise la
the paper. In particular, what features of quantum mecha
necessitate a change in the proof methods used to obtain
classical bound?

Suppose the quantum analogue of the classical suba
tivity of mutual information were true, namely,

I ~rn,N^ n!<(
i 51

n

I ~r i
n ,N!, ~9.8!

wherern is any density operator that can be used as inpu
n copies of the channel, andr i

n is the density operator ob
tained by tracing out all but thei th channel. Then it would
follow easily from the definition thatCn5C1 for all n, and
thus

C~N!5C15max
r

I ~r,N!. ~9.9!

This expression is exactly analogous to the classical exp
sion for channel capacity as a maximum over input distrib
tions of the mutual information between channel input a
output. If this were truly a bound on the quantum chan
capacity then it would allow easy numerical evaluations
bounds on the channel capacity, as the maximization
volved is easy to do numerically, and the coherent inform
tion is not difficult to evaluate.

Unfortunately, it is not possible to assume that the qu
tum mechanical coherent information is subadditive,
shown by example~7.54!, and thus in general it is possibl
that

C~N!.C1 . ~9.10!

We will later discuss results of Shor and Smolin@25# ~see
also DiVincenzo, Shor, and Smolin@26#! that demonstrate
that the channel capacity can exceedC1.

Notice that to evaluate the boundC(N) involves taking
the limit in Eq. ~9.2!. To numerically evaluate this limit di-
rectly is certainly not a trivial task, in general. The result w
have presented, that Eq.~9.2! is an upper bound on channe
capacity, is an important theoretical result that may aid in
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development of effective numerical procedures for obtain
general bounds. But it does not yet constitute an effec
procedure.

B. General encodings

We now consider the case where something more gen
than a unitary encoding is allowed. In principle, it is alwa
possible to perform a nonunitary encodingC by introducing
an extra ancilla system, performing a joint unitary on t
source plus ancilla, and then discarding the ancilla.

We define

Cn[max
r,C

I ~r,N^ n+C!, ~9.11!

where the maximization is over all inputsr to the encoding
operationC, which in turn maps ton copies of the channel
The bound on the channel capacity proved in this sectio
defined by

C~N![ lim
n→`

Cn

n
. ~9.12!

Once again, to prove that this limit exists one applies
lemma proved in Appendix A.

To prove that this quantity is a bound on the chan
capacity, one applies almost exactly the same reasoning
the preceding subsection. The result is the followin
Theorem. Suppose we consider a sourceS5(Hs ,
$•••rs

n
•••%) and a sequence of encodingsCn for the source.

Suppose further that there exists a sequence of decodingDn

such that

lim
n→`

Fe~rs
n ,Dn+N^ n+Cn!51. ~9.13!

Then

S~S![ lim sup
n→`

S~rs
n!

n
<C~N!. ~9.14!

Again, this result places an upper bound on the rate
which information can be reliably transmitted through
noisy quantum channel. The proof is very similar to the e
lier proof of a bound for unitary encodings. One simply a
plies Eq.~7.34! with E5N^ n+Cn andD5Dn, to give

S~rs
n!

n
<

Cn

n
1

2

n
14@12Fe~rs

n ,Dn+N^ n+Cn!# log2d.

~9.15!

Taking lim sups on both sides of the equation completes
proof.

It is instructive to see why the proof fails when the ma
mization is done over channel input states alone, rather
over all source states and encoding schemes. The basic
is that there may exist source statesrs and encoding scheme
C, for which

I ~r,N+C!.I „C~r!,N…. ~9.16!
g
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This possibility stems from the failure of the quantum pip
lining inequality ~7.43!. It is clear that the existence of suc
a scheme would cause the line of proof suggested abov
fail. Classically the pipelining inequality holds, and therefo
the complication of having to maximize over encodings do
not arise.

Having proved thatC(N) is an upper bound on the chan
nel capacity, let us now investigate some of the propertie
this bound. First we examine the range over whichC(N) can
vary. Note that

0<Cn<n log2d, ~9.17!

since if r is pure thenI (r,N^ n+C)50 for any encodingC,
and for allr andC, I (r,N^ n+C)< logdn5n log2d, since the
channel output hasdn dimensions. It follows that

0<C~N!< log2d. ~9.18!

This parallels the classical result, which states that the ch
nel capacity varies between 0 and log2s, wheres is the num-
ber of channel symbols. The upper bound on the class
capacity is attained if and only if the classical channel
noiseless.

In the case whenN takes a constant value,

N~r!5s, ~9.19!

for all channel inputsr it is not difficult to verify that
C(N)50. This is consistent with the obvious fact that th
capacity for quantum information of such a channel is ze

The ‘‘completely decohering channel’’ is defined by

N~r!5(
i

PirPi , ~9.20!

with Pi[u i &^ i u a complete orthonormal set of one
dimensional projectors. This channel is classically noisele
yet a straightforward application of Eq.~7.24! yields C(N)
50, and therefore this channel has zero capacity for
transmission of entanglement.

More generally, if N(r)5( iAirAi
† , where Ai

5l i uai&^bi u, thenC(N)50 by the same argument, and thu
the channel capacity for such a channel is zero. As a spe
case of this result, it follows that the capacity ofanyclassical
channel as defined in Sec. V to transmit entanglemen
zero.

Provided the input and output dimensions of the chan
are the same, it is not difficult to show thatC(N)5 log2d if
and only ifN is unitary.

It is also of interest to consider what happens when ch
nelsN1 andN2 are composed, forming a concatenated ch
nel,N5N2+N1. From the data-processing inequality it fo
lows that

C~N1!>C~N!. ~9.21!

It is clear by repeated application of the data-processing
equality that this result also holds if we compose more th
two channels together, and even holds if we allow interm
diate decoding and reencoding stages. Classical channe
pacities also behave in this way: the capacity of a chan
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made by composing two~or more! channels together is n
greater than the capacity of the first part of the channel alo

Although Eq.~7.43! might seem to suggest otherwise,
fact,

C~N2!>C~N!. ~9.22!

For let us suppose thatC is the encoding that achievesC(N),
so that the total operation isD+N+C[D+N2+N1+C. As our
encoding for the channelN2, we may useN1+C and decode
with D, hence achieving precisely the same total operati

Inequalities analogous to Eqs.~9.21! and~9.22! may also
be stated for the actual channel capacity. Clearly these s
ments are true as well.

C. Other encoding protocols

So far we have considered two allowed classes of enc
ings: encodings where a general unitary operation can
performed on a block of quantum systems, and encod
where a general trace-preserving quantum operation ca
performed on a block of quantum systems. If large-sc
quantum computation ever becomes feasible it may be r
istic to consider encoding protocols of this sort. However,
present-day applications of quantum communication suc
quantum cryptography and teleportation, it is realistic to c
sider much more restricted classes of encodings. In this
tion we describe several such classes.

We begin by considering the class involving local unita
operations only. We refer to this class asU-L. It consists of
the set of operationsC that can be written in the form

C~r!5~U1^ •••^ Un!r~U1
†

^ •••^ Un
†!, ~9.23!

whereU1 , . . . ,Un are local unitary operations on systems
through n. Another possibility is the classL of encodings
involving local operations only, i.e., operations of the form

(
i 1 , . . . ,i n

~Ai 1
^ Bi 2

^ •••^ Zi n
!r

3~Ai 1
†

^ Bi 2
†

^ •••^ Zi n
† !. ~9.24!

In other words, the overall operation has a tensor prod
form A^B^ •••^Z.

A more realistic class is 1-L—encoding by local opera
tions with one way classical communication. The idea is t
the encoder is allowed to do encoding by performing ar
trary quantum operations on individual members~typically, a
single qubit! of the strings of quantum systems emitted by
source. This is not unrealistic with present-day technolo
for manipulating single qubits. Such operations could
clude arbitrary unitary rotations, and also generalized m
surements. After the qubit is encoded, the results of any m
surements done during the encoding may be used to ass
the encoding of later qubits. This is what we mean by o
way communication—the results of the measurement
only be used to assist in the encoding of later qubits,
earlier qubits.

Another possible class is 2-L—encoding by local opera
tions with two-way classical communication. This may ar
in a situation where there are many identical channels o
e.

.
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ating side by side in space. Once again it is assumed tha
encoder can perform arbitrary local operations, only this ti
two-way classical communication is allowed when perfor
ing the encoding.

For any class of encodingsL arguments analogous t
those used above for general and for unitary block codi
ensure that the expression

CL~N![ lim
n→`

CL,n

n
, ~9.25!

where

CL,n[ max
r,CPL

I ~r,N^ n+C!, ~9.26!

is an upper bound to the rate at which quantum informat
can be reliably transmitted using encodings inL. Thus, in
addition to the bounds for general and unitary encodin
there are boundsCU-L ,CL ,C1-L , andC2-L , which provide
upper bounds on the rate of quantum information transm
sion for these types of encodings.A priori it is not clear what
the exact relationships are among these bounds, altho
various inequalities may easily be proved,

CU-L<CL<C1-L<C2-L<Cgeneral ~9.27!

CU-L<Cunitary ~9.28!

Cunitary<Cgeneral. ~9.29!

Furthermore, note that these bounds allow general deco
schemes. It is possible that much tighter bounds may resu
we restrict the decoding schemes in the same way we h
restricted the encoding schemes.

An interesting and important question is whether there
closed-form characterizations of the sets of quantum op
tions corresponding to particular types of encoding schem
such as 1-L and 2-L. For example, in the cases ofU-L and
L there are explicit forms@~9.23!,~9.24!# for the classes of
encodings allowed. For 1-L the operations take the form

(
i 1 , . . . i n

~Ai 1
^ Bi 1 ,i 2

^ •••^ Zi 1 ,i 2 , . . . i n
!r

3~Ai 1
†

^ Bi 1 ,i 2
†

^ •••^ Zi 1 ,i 2 , . . . i n
† !. ~9.30!

A drawback to this expression is that it is not written in
closed form, making it difficult to perform optimization
over 1-L. It would be extremely valuable to obtain a close
form for the set of operations in 1-L. One possible approac
to doing this is to limit the range of the indices in the prev
ous expression. This is related to the number of rounds
classical communication that are involved in the operati
Similar remarks to these also apply to the class 2-L. Indeed,
it is not yet clear to us if there is an expression analogou
Eq. ~9.30! for 2-L encodings. One possibility is

(
i

~Ai ^ Bi ^ •••^ Zi !r~Ai
†

^ Bi
†

^ •••^ Zi
†!. ~9.31!
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However, although all 2-L operations involving a finite num
ber of rounds of communication can certainly be put in t
form, we do not presently see why all operations express
in this form should be realizable with local operations a
two-way classical communication.

The classes we have described in this subsection are
tainly not the only realistic classes of encodings. Many m
classes may be considered, and in specific applications
may well be of great interest. What we have done is illu
trated a general technique for obtainingboundson the chan-
nel capacity for different classes of encodings. A major d
ference between classical information theory and quan
information theory is the greater interest in the quantum c
in studying different classes of encodings. Classically it is
principle, possible to perform an arbitrary encoding and
coding operation using a look-up table. However, quant
mechanically this is far from being the case, so there is c
respondingly more interest in studying the channel capac
that may result from considering different classes of enc
ings and decodings.

X. DISCUSSION

What then can be said about the status of the quan
noisy-channel coding theorem in the light of comments m
in the preceding sections? While we have established u
bounds, we have not proved achievability of these boun
How might one prove that these bounds are achievable?

Lloyd @7# has also proposed an expression involving
maximum of the coherent information as the channel cap
ity,

max
r

I ~r,N!, ~10.1!

and outlines a technique involving random coding
achieving rates up to this quantity. The criterion for reliab
transmission used by Lloyd appears to be the subspace fi
ity criterion of Eq.~6.7!. As noted earlier, this criterion is a
least as strong as the criterion based on entanglement fid
that we have been using, that is, asymptotically good cod
schemes with respect to subspace fidelity are also asymp
cally good with respect to the entanglement fidelity.

Suppose one applies coding schemes to achieve rate
to Eq. ~10.1!, but with the basic system used in blockin
taken to ben of the old systems. Then it is clear that rates
to

max
r

I ~r,N^ n!

n
~10.2!

may be achieved using such coding schemes, where
maximization is done over density operators forn copies of
the source. It follows that rates up to

lim
n→`

max
r

I ~r,N^ n!

n
~10.3!

may be achieved. This quantity is simply the bound~9.2! that
we found earlier for noisy channels with the class of enc
ings restricted to be unitary. As remarked in the last sect
it is in general not possible to identify the quantity appear
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in the previous equation with the quantity~10.1!, because the
coherent information is not, in general, subadditive, cf. E
~7.54!.

The coding schemes considered by Lloyd appear to
restricted to be projections followed by unitaries. We c
such encodingsrestricted encodings, since they do not cove
the full class of encodings possible. For the purposes
proving upper bounds it is not sufficient to consider a
stricted class of encodings, since it is possible that ot
coding schemes may do better, and therefore that the ca
ity is somewhat larger than Eq.~10.2!. We suspect that this is
not the case, but have been unable to provide a rigor
proof. A heuristic argument is provided in Sec. X A.

In the light of these remarks it is interesting that the co
ing scheme of Shor and Smolin@25# ~see also DiVincenzo,
Shor, and Smolin@26#! provides an example where the no
subadditivity of the coherent information is exploited
achieve rates of transmission exceeding Eq.~10.1!. Never-
theless, the coding schemes considered by DiVincen
Shor, and Smolin cannot beat the general bound~9.12!,
which takes nonsubadditivity into account. A full expositio
of this topic will appear elsewhere.

However, one can still make progress towards a proof t
the expression~9.12!, which bounds the channel capacity,
the correct capacity. If we accept that it is possible to att
rates up to Eq.~10.2!, then the four-stage construction illus
trated in Fig. 7 shows that Eq.~9.12! is a correct expression
for the capacity; i.e., that in addition to being an upper bou
as shown in Sec. IX, it is also achievable.

For a fixed block sizen one finds an encodingCn for
which the maximum in

Cn[max
Cn,rs

TI~rs ,Cn! ~10.4!

is achieved. One then regards the compositionN^ n+Cn as a
single noisy quantum channel, and applies the achievab
result on restricted encodings to the joint channelN^ n+Cn to
achieve an even longermn block coding scheme with high
entanglement fidelity.

This gives a joint coding schemeUmn+(Cn) ^ m, which for
sufficiently large blocksm andn can come arbitrarily close
to achieving the channel capacity~9.12!. An important open
question is whether Eq.~9.12! is equal to Eq.~9.2!. It is clear
that the former expression is at least as large as the latter
give a heuristic argument for equality in the next subsecti
but rigorous results are needed.

Thus, we think it likely that the expression~9.2! will turn
out to be the maximum achievable rate of reliable transm
sion through a quantum channel. But this is still not satisf
tory as an expression for the capacity, because of the d
culty of evaluating the limit involved. At a minimum, we
would like to know enough about the rate of convergence
Cn to its limit to be able to accurately estimate the error in

FIG. 7. Noisy quantum channel with an extra stage, a restric
preencodingU.
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numerical calculation of capacity, thus providing an effect
procedure for calculating the capacity to any desired deg
of accuracy.

A. Unitary versus nonunitary encoding

For the purposes of obtaining a capacity theorem for g
eral encodings and decodings, a restriction on the clas
encodings is clearly unacceptable. For example, give
source density operator whose eigenvalues are not all eq
we may not even be able to send it reliably through a no
less channel whose capacity is just greater than the so
entropy rate without doing nonunitary compression as
scribed in Refs.@27—29#. This compression, which is esse
tially projection onto thetypical subspace@27# of the source,
is not a unitary operation, and thus we expect that nonuni
operations will be essential to showing achievability of t
noisy-channel capacity.

We conjecture that once the projection onto the typi
source subspace is accomplished, nonunitary operation
of no further use in achieving reliable transmission throug
noisy channel. Although we have not yet rigorously sho
this, we give a heuristic argument below. If the conjecture
true then it can be used to show that expressions~9.2! and
~9.12! are equal.

Our heuristic argument applies only to sources for wh
a typical subspace@27# exists. This includes all i.i.d. source
for which the output is of the formrs

^ n . Let L be the pro-
jector onto the typical subspace aftern uses of the source
andL̄ the projector onto the orthogonal subspace. Given
positived it is true that for sufficiently largen,

tr~L̄rs
^ nL̄ !<d. ~10.5!

Defining the restriction of the source to the typical subspa

rT
n[

Lrs
^ nL

tr~Lrs
^ nL!

, ~10.6!

and applying the continuity lemma for entanglement fide
~6.14!, we see that

uFe~rT
n ,E!2Fe~rs

^ n ,E!u<
4d

~12d!2
, ~10.7!

for any trace-preserving operationE. By choosingn suffi-
ciently larged can be made arbitrarily small, and thus we s
that for the entanglement fidelity for the source to be h
asymptotically, it is necessary and sufficient that the
tanglement fidelity be high asymptotically for the restricti
of the source to the typical subspace.

We now come to the heuristic argument. In order that
entanglement fidelity for the total channel be high, it is a
ymptotically necessary and sufficient that the composite
erationDn+N^ n+Cn have high entanglement fidelity when th
source is restricted to the typical subspacet. Hence, if an
encodingCn is nonunitary ont, it must be ‘‘close to revers-
ible’’ on t, andDn+N^ n must be close to reversing it. I
@14# it is shown that perfect reversibility of an operation on
subspaceM is equivalent to the statement that the operati
restricted to that subspace, may be represented by oper
ee
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$ApiUi PM%, wherePMU j
†Ui PM5d i j PM andPM is the pro-

jector ontoM . That is, the operation randomly~with prob-
abilities pi) chooses a unitary that moves the state into o
of a mutually orthogonal set of subspaces. HenceCn, in its
action on the source’s typical subspace,is close to some
perfectly reversible operationC

*
n consisting of ‘‘randomly

picking a unitary into an orthogonal subspace.’’ Hence
entanglement fidelity of the total operationT is close to that
of T

*
n , in which the encodingCn is replaced withC

*
n . The

linearity of the entanglement fidelity in the operation impli
that for at least one of the unitariesUi in the random-
unitaries representation of the perfectly reversible opera
C
*
n , the entanglement fidelity is at least as good if the unit

is substituted forC
*
n . Therefore, arbitrary encodingsCn are

close to unitary encodings oft into a subspace of the chan
nel’s Hilbert space. Thus the only nonunitarity that it is ne
essary to consider is the restriction to the source’s typ
subspace.

XI. CHANNELS WITH A CLASSICAL OBSERVER

In this section we consider a generalized version of
quantum noisy-channel coding problem. Suppose that in
dition to a noisy interaction with the environment there
also a classical observer who is able to perform a meas
ment. This measurement may be on the channel or the e
ronment of the channel, or possibly on both.

The result of the measurement is then sent to the deco
who may use the result to assist in decoding. We assume
this transmission of classical information is done noiseles
although it is also interesting to consider what happens w
the classical transmission also involves noise. It can
shown @11# that the state received by the decoder is ag
related to the stater used as input to the channel by a qua
tum operationNm , wherem is the measurement result re
corded by the classical observer,

r→
Nm~r!

tr@Nm~r!#
. ~11.1!

The basic situation is illustrated in Fig. 8. The idea is that
giving the decoder access to classical information about
environment responsible for noise in the channel it may
possible to improve the capacity of that channel, by allow
the decoder to choose different decodingsDm depending on
the measurement resultm.

We now give a simple example that illustrates that t
can be the case. Suppose we have a two-level system
stater and an initially uncorrelated four-level environme
initially in the maximally mixed stateI /4, so the total state o
the joint system is

FIG. 8. Noisy quantum channel with a classical observer.
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r ^
I

4
. ~11.2!

We fix an orthonormal basisu1&,u2&,u3&,u4& for the environ-
ment. We assume that a unitary interaction between the
tem and environment takes place, given by the unitary
erator

U5I ^ u1&^1u1sx^ u2&^2u1sy^ u3&^3u1sz^ u4&^4u.
~11.3!

The output of the channel is thus

r→N~r![ trEFUS r ^
I

4DU†G . ~11.4!

The quantum operationN can be given two particularly use
ful forms,

N~r!5 1
4 ~ IrI 1sxrsx1syrsy1szrsz! ~11.5!

5
I

2
. ~11.6!

It is not difficult to show from the second form that

C~N!50, ~11.7!

and thus the channel capacity for the channelN is equal to
zero. Suppose now that an observer is introduced, wh
allowed to perform a measurement on the environment. T
measurement is a Von Neumann measurement in
u1&,u2&,u3&,u4& basis, and yields a corresponding measu
ment result,m51,2,3,4. Then the quantum operations cor
sponding to these four measurement outcomes are

N1~r!5 1
4 r ~11.8!

N2~r!5 1
4 sxrsx ~11.9!

N3~r!5 1
4 syrsy ~11.10!

N4~r!5 1
4 szrsz . ~11.11!

Each of these is unitary, up to a constant multiplying fact
so conditioned on knowing the measurement resultm, the
corresponding channel capacityCm is perfect. That is,

Cm51 ~11.12!

for all measurement outcomesm. This is an example where
the capacity of the observed channel is strictly greater t
for the unobserved channel.

This result is particularly clear in the context of telepo
tation. Nielsen and Caves@10# showed that the problem o
teleportation can be understood as the problem of a quan
noisy channel with an auxiliary classical channel. In t
single qubit teleportation scheme of Bennettet al. @9# there
are four quantum operations relating the state Alice wishe
teleport to the state Bob receives, corresponding to eac
the four measurement results. In that scheme it happens
those four operations are theNm we have described above
Furthermore in the absence of the classical channel, tha
s-
-
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is
e
-
-

,

n

m

to
of

hat

is,

when Alice does not send the result of her measuremen
Bob, the channel is described by the single operationN.
Clearly, in order that causality be preserved we expect
the channel capacity be zero. On the other hand, in order
teleportation be able to occur we expect that the chan
capacityCm is equal to 1, as was shown above. Teleportat
understood in this way as a noisy channel with a class
side channel offers a particularly elegant way of seeing t
the transmission of quantum information may sometimes
greatly improved by making use of classical information.

The remainder of this section is organized into three s
sections. Section XI A proves bounds on the capacity of
observed channel. This requires nontrivial extensions of
techniques developed earlier for proving bounds on the
pacity of an unobserved channel. Section XI B relates w
done on the observed channel to the work done on the
observed channel. Section XI C discusses possible ex
sions to this work on observed channels.

A. Upper bounds on channel capacity

We now prove several results bounding the channel
pacity of an observed channel, just as we did earlier for
unobserved channel. The following lemma generalizes
earlier entanglement fidelity lemma for quantum operatio
which was the foundation of our earlier proofs of upp
bounds on the channel capacity.

Lemma (generalized entanglement fidelity lemma for
erations).SupposeEm are a set of quantum operations su
that (mEm is a trace-preserving quantum operation. Supp
further thatDm is a trace-preserving quantum operation f
eachm. Then

S~r!<(
m

tr@Em~r!#I ~r,Em!1214@12Fe~r,T!# log2d,

~11.13!

where

T[(
m
Dm+Em . ~11.14!

By the second step of the data processing inequa
~7.9!, I (r,Em)>I (r,Dm+Em) for each m, and noting also
that by the trace-preserving property ofDm , tr@Em(r)#
5tr@(Dm+Em)(r)], we obtain

S~r!<S~r!1(
m

$tr@Em~r!#I ~r,Em!

2tr@~Dm+Em!~r!#I ~r,Dm+Em!%. ~11.15!

Applying the generalized convexity theorem for coherent
formation ~7.24! gives

2(
m

tr@~Dm+Em!~r!#I ~r,Dm+Em!<2I ~r,T!.

~11.16!

We obtain
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S~r!<(
m

tr@Em~r!#I ~r,Em!1S~r!2I ~r,T!.

~11.17!

But T5(mDm+Em is trace preserving sinceDm is trace pre-
serving and(mEm is trace preserving, and thus by Eq.~7.33!,

S~r!2I ~r,T!5S~r!2S„T~r!…1Se~r,T! ~11.18!

<2Se~r,T!. ~11.19!

Finally, an application of the quantum Fano inequality~6.9!
along with the observations that the entropy functionh ap-
pearing in that inequality is bounded above by 1, a
log2 (d221)<2 log2 d, gives

S~r!<(
m

tr@~Dm+Em!~r!#I ~r,Dm+Em!12

14@12Fe~r,T!# log2 d, ~11.20!

as we set out to prove.
If we define

C~$Nm%![ lim
n→`

max
Cn,r

(
m1 , . . . ,mn

tr@~Nm1
^ •••^Nmn

+Cn!~r!#

3
I ~r,Nm1

^ •••^Nmn
+Cn!

n
, ~11.21!

we may use Eq.~11.13! to easily prove thatC($Nm%) is an
upper bound on the rate of reliable transmission through
observed channel, in precisely the same way we earlier u
~7.34! to prove bounds for unobserved channels.

We may derive the same bound in another fashion if
associate observed channels with trace-preserving u
served channels in the following fashion suggested by
amples in@8#. To an observed channel$Nm% we associate a
single trace-preserving operationM from Hc to a larger Hil-
bert spaceHc^ M , whereM is a ‘‘register’’ Hilbert space.
Each dimension ofM corresponds to a different measur
ment resultm. The operation is specified by

M~r!5(
m
Nm~r! ^ um&^mu, ~11.22!

whereum& is some set of orthogonal states corresponding
the measurement results that may occur. This map is an ‘
quantum’’ version of the observed channel.

Since our upper bounds to the capacity of an unobser
channel apply also to channels with output Hilbert space
different dimensionality than the input space, they apply
this map as well. It is easily verified that the coherent inf
mation for the mapM acting onr is the same as the averag
coherent information for the observed channelNm acting on
r, which appears in Eq.~11.13! and in the bound~11.21!. To
show this, define

pm[tr@Nm~rQ!#, ~11.23!

where we are again working in theRQ picture of operations.
ThenrQ85M(rQ) is given by Eq.~11.22!, so that
d

n
ed

e
b-
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S~rQ8!5H~pm!1(
m

pmSSNm~rQ!

pm
D , ~11.24!

since the density matricesNm(rQ) ^ um&^mu are mutually or-
thogonal. Also,

rR8Q85S I^ (
m
Nm* D ~rRQ!, ~11.25!

where by definitionNm* (r)5Nm(r) ^ um&^mu. Thus

S~rR8Q8!5H~pm!1(
m

pmSS ~I^Nm!~rRQ!

pm
D .

~11.26!

Hence the coherent information is

I ~rQ,M!5(
m

pmFSSNm~rQ!

pm
D2SS ~I^Nm!~rRQ!

pm
D G ,

~11.27!

which can be rewritten as the average coherent informa
for $Nm%,

I ~rQ,M!5(
m

pmI ~rQ,Nm!. ~11.28!

So an application of the bound~9.12! on the rate of trans-
mission through the unobserved channelM shows that the
expression on the right-hand side of Eq.~11.21! that bounds
the capacity of the observed channel$Nm% also bounds the
capacity ofM. This result provides some evidence for th
intuitively reasonable proposition thatM and $Nm% are
equivalent with respect to transmission of quantum inform
tion.

Bennett, DiVincenzo, and Smolin@8# derive capacities for
three simple channels that may be viewed as taking the f
~11.22!. The quantum erasure channeltakes the input state
to a fixed state orthogonal to the input state with probabi
e; otherwise, it transmits the state undisturbed. An equiva
observed channel would with probabilitye replace the input
state with a standard pure stateu0&^0u within the input sub-
space, and also provide classical information as to whe
this replacement has occurred or not. Thephase erasure
channelrandomizes the phase of a qubit with probabilityd,
and otherwise transmits the state undisturbed; it also supp
classical information as to which of these alternatives
curred. Themixed erasure or phase-erasure channelmay
either erase or phase erase, with exclusive probabilitiese and
d. Bennett, DiVincenzo, and Smolin note that the capac
max(0,122e) of the erasure channel is in fact the one-sh
maximal coherent information. We have verified that the
pacities they derive for the phase-erasure channel (12d)
and the mixed erasure or phase-erasure channel max
22e2d) are the same as the one-shot maximal average
herent information for the corresponding observed chann
lending some additional support to the view that the bou
we have derived here are in fact the capacities.
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B. Relationship to unobserved channel

Suppose a quantum system passes through a channe
teracts with an environment, and then measurements are
formed on theenvironment alone. How is the capacity of this
observed channel related to the capacity of the channel
results if no measurementhad been performed on the env
ronment? Physically, it is clear that the capacity when m
surements are performed must be at least as great as wh
measurements on the environment are performed, since
decoder can always ignore the result of the measuremen
this subsection we show that bounds we have derived
channel capacity have this same property: observation of
environment can never decrease the bounds we have
tained.

Suppose$Nm% are the operations describing the differe
possible measurement outcomes. Then the operation des
ing the same channel, but without any observation of
environment, is

N5(
m
NM . ~11.29!

Recall the expressions for the bound on the capacity
the unobserved channel,

C~N!5 lim
n→`

max
Cn,r

I ~r,N^ n+Cn!

n
, ~11.30!

and the observed channel,

C~$Nm%!5 lim
n→`

max
Cn,r

(
m1 , . . . mn

tr@~Nm1
^ •••^Nmn

+Cn!~r!#

3
I ~r,Nm1

^ •••^Nmn
+Cn!

n
, ~11.31!

but the generalized convexity theorem~7.24! for coherent
information implies that

(
m1 , . . . ,mn

tr@~Nm1
^ •••^Nmn

+Cn!~r!#

3
I ~r,Nm1

^ •••^Nmn
+Cn!

n
<

I ~r,N^ n+Cn!

n
, ~11.32!

and thus

C~N!<C~$Nm%!. ~11.33!

To see that this inequality may sometimes be strict, ret
to the example considered earlier in this section in the c
text of teleportation. In that case it is not difficult to verif
that

05C~N!,C~$Nm%!51. ~11.34!

What these results show is that our bounds on the cha
capacity are never made any worse by observing the e
ronment, but sometimes they can be made considerably
ter. This is a property that we certainly expect the quant
channel capacity to have, and we take as an encouraging
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that the bounds we have proved in this paper are in
achievable, that is, the true capacities.

C. Discussion

All the questions asked about the bounds on channel
pacity for an unobserved channel can be asked again for
observed channel: questions about achievability of boun
the differences in power achievable by different classes
encodings and decodings, and so on. We do not add
these problems here, beyond noting that they are impor
problems that need to be addressed by future research.

Many new twists on the problem of the quantum noi
channel arise when an observer of the environment is
lowed. For example, one might consider the situation wh
the classical channel connecting the observer to the dec
is noisy. What then are the resources required to trans
coherent quantum information?

It may also be interesting to prove results relating t
classical and quantum resources that are required to per
a certain task. For example, in teleportation it can be sho
that one requires not only the quantum channel, but also
bits of classical information, in order to transmit quantu
information with perfect reliability.

XII. CONCLUSION

In this paper we have shown that different informati
transmission problems may result in different channel
pacities for the same noisy quantum channel. We have
veloped some general techniques for proving upper bou
on the amount of information that may be transmitted re
ably through a noisy quantum channel.

Perhaps the most interesting thing about the quan
noisy-channel problem is to discover what is new and ess
tially quantumabout the problem. The following list summa
rizes what we believe are the essentially new features.

~1! The insight that there are many essentially differe
information transmission problems in quantum mechan
all of them of interest depending on the application. The
span a spectrum between two extremes:~i! The transmission
of a discrete set of mutually orthogonal quantum sta
through the channel. Such problems are problems of tra
mitting classical information through a noisy quantum cha
nel. ~ii ! The transmission of entire subspaces of quant
states through the channel, which necessarily keeps all o
quantum resources, including entanglement, intact. Thi
likely to be of interest in applications such as quantum co
putation, cryptography, and teleportation where superp
tions of quantum states are crucial. Such problems are p
lems of transmitting coherent quantum information throug
noisy quantum channel. Both of these cases and a varie
intermediate cases are important for specific applicatio
For each case, there is great interest in considering diffe
classes of allowed encodings and decodings. For examp
may be that encoding and decoding can only be done u
local operations and one-way classical communication. T
may give rise to a different channel capacity than occur
we allow nonlocal encoding and decoding. Thus there
different noisy-channel problems depending on what clas
of encodings and decodings are allowed.
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~2! The use of quantum entanglement to constr
examples where the quantum analogue of the classical p
lining inequality H(X:Z)<H(Y:Z) for a Markov process
X→Y→Z, fails to hold@cf. Eq. ~7.43!#.

~3! The use of quantum entanglement to construct
amples where the subadditivity property of mutual inform
tion,

H~X1 , . . . ,Xn :Y1 , . . . ,Yn!<(
i

H~Xi :Yi !, ~12.1!

fails to hold @cf. Eq. ~7.54!#.
There are many more interesting open problems ass

ated with the noisy-channel problem than have been
dressed here. The following is a sample of those proble
that we believe to be particularly important:

~1! The development of an effective procedure for det
mining channel capacities. We believe that this is the m
important problem remaining to be addressed. Assuming
upper bound

C~N!5 lim
n→`

max
r,C

I ~r,N^ n+C!
n

~12.2!

is, in fact, the channel capacity for general encodings, it s
remains to find an effective procedure for evaluating t
quantity. Both maximizations can be done relatively eas
since they are of a continuous function over a compact
However, we do not yet understand the convergence of
limit well enough to have an effective procedure for eva
ating this quantity.

~2! Estimation of channel capacities for realistic channe
This work could certainly be done theoretically and perha
also experimentally. Recent work onquantum process to
mography@30,31# points the way toward experimental dete
mination of the quantum channel capacity. A related probl
is to analyze how stable the determination of channel cap
ties is with respect to experimental error.

~3! As suggested in Sec. IX C it would be interesting
see what channel capacities are attainable for diffe
classes of allowable encodings and/or decodings, for
ample, encodings where the encoder is only allowed to
local operations and one-way classical communication
encodings where the encoder is allowed to do local op
tions and two-way classical communication. We have sho
how to prove bounds on the channel capacity in these ca
whether these bounds are attainable is unknown.

~4! The development of rigorous general techniques
proving attainability of channel capacities, which may
applied to different classes of allowed encodings and dec
ings.

~5! Finding the capacity of a noisy quantum channel
classical information. A related problem arises in the cont
of superdense coding, where one half of an EPR pair can b
used to send two bits of classical information. It would
interesting to know to what extent this performance is
graded if the pair of qubits shared between sender and
ceiver is not an EPR pair, but rather the sharing is done u
a noisy quantum channel, leading to a decrease in the n
ber of classical bits that can be sent. Given a noisy quan
t
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channel, what is the maximum amount of classical inform
tion that can be sent in this way?

~6! All work done thus far has been for discrete channe
that is, channels with finite dimensional state spaces. It is
important and nontrivial problem to extend these results
channels with infinite dimensional state spaces.

~7! A more thorough study of noisy channels that have
classical side channel. Can the classical information obtai
by an observer be related to changes in the channel capa
What if the classical side channel is noisy? Many other f
cinating problems, too many to enumerate here, sug
themselves in this context.

There are many other ways the classical results on n
channels have been extended—considering channels
feedback, developingrate-distortion theory, understanding
networksconsisting of more than one channel, and so
Each of these could give rise to highly interesting work
noisy quantum channels. It is also to be expected that in
esting new questions will arise as experimental efforts in
field of quantum information develop further. Perhaps
chief interest to us is to develop a still clearer understand
of the essential differences between the quantum no
channel and the classical noisy-channel problems.
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APPENDIX A: EXISTENCE OF LIMITS

This appendix contains a lemma that can be used to pr
the existence of several limits that appear in this paper.

Lemma.Supposec1 ,c2 , . . . is a nonnegative sequenc
such thatcn<kn for somek>0, and

cm1cn<cm1n , ~A1!

for all m andn. Then

lim
n→`

cn

n
~A2!

exists and is finite.
Proof. Define

c[ lim sup
n

cn

n
. ~A3!

This always exists and is finite, sincecn<kn for somek
>0. Fix e.0 and choosen sufficiently large that

cn

n
.c2e. ~A4!
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Supposem is any integer strictly greater than max(n,n/e).
Then by Eq.~A1!,

cm

m
>

cn

n

n

mS 11
cm2n

cn
D . ~A5!

Using the fact thatlcn<cln @an immediate consequence
Eq. ~A1!# with l 5 bm/nc21 gives

cm2n

cn
> b m

n c21 ~A6!

>
m

n
22, ~A7!

where bxc is the integer immediately belowx. Plugging the
last inequality into Eq.~A5! gives

cm

m
>

cn

n S 12
n

mD . ~A8!

But 2n/m.2e andcn /n>c2e, so

cm

m
>~c2e!~12e!. ~A9!

This equation holds for all sufficiently largem, and thus

lim inf
n

cn

n
>~c2e!~12e!. ~A10!

But e was an arbitrary number greater than 0, so lettinge
→0 we see that

lim inf
n

cn

n
>c5 lim sup

n

cn

n
. ~A11!

It follows that limncn /n exists, as claimed.

APPENDIX B: MAXIMA OF THE COHERENT
INFORMATION

Various convexity and concavity properties are useful
calculating classical channel capacities, and the same is
in the quantum situation. This appendix is devoted to
explication of the basic properties of convexity and conc
ity related to the coherent information and the relation
these properties to expressions such as Eq.~9.12!.

A convex set Sis a subset of a vector space such th
ue
n
-
f

t

given any two pointss1 ,s2PS and anyl such that 0,l,1,
then theconvex combination, ls11(12l)s2, is also an el-
ement ofS. Geometrically, this means that given any tw
points in the set, the line joining them is also in the set.
extremal pointof S is a points that cannot be formed from
the convex combination of any other two points in the set
convex function fon S is a real-valued function such that fo
any l satisfying 0,l,1,

f „ls11~12l!s2…<l f ~s1!1~12l! f ~s2!; ~B1!

a concave function satisfies the same condition but with
inequality reversed.

The first useful fact about maxima is the following.
Local maximum is a global maximum.Supposef is a

concave function on a convex setS. Then a local maximum
of f is also a global maximum off . This follows by suppos-
ing that s1 and s2 are distinct local maxima. Iff (s1)
, f (s2), say, then

f „ls11~12l!s2…>l f ~s1!1~12l! f ~s2! ~B2!

. f ~s1!, ~B3!

by concavity off . By choosing sufficiently small values ofl
we see that this violates the fact thats1 is a local maximum.
Thus f has the same value for all local maxima, from whi
it follows that all local maxima are also global maxima f
the function.

The following lemma, from@32#, is extremely useful in
computing the maxima of convex functions on convex se

Convexity Lemma.Supposef is a continuous convex
function on a compact, convex setS. Then there is an ex-
tremal point at whichf attains its global maximum.

The proof is obvious. The reason for our interest in t
result is because for fixedr and trace-preserving operation
E, the coherent informationI (r,E) is a convex, continuous
function of the operationE. The set of trace-preserving quan
tum operations forms a compact, convex set, and thus by
convexity lemmaI (r,E) attains its maximum for a quantum
operation E, which is extremal in the set of all trace
preserving quantum operations.

Choi @13# has proved that any extremal point in the set
trace-preserving quantum operations has a set of opera
elements$Ai% such that~1! there are at mostd elements
Ai—this is to be contrasted with the general situation, wh
there may be up tod2 elements;~2! theAi are linearly inde-
pendent.

This result provides a considerable saving in the class
quantum operations that must be optimized over in orde
numerically calculate expressions of the form~9.12!. Unfor-
tunately, this only takes us part of the way towards prov
that the expressions~9.12! and~9.2! are identically equal, or,
alternatively, it suggests a starting point for a search
counterexamples to the proposition that the two quanti
are equal. If the extremal points of the set of quantum ope
tions were the unitary operations we would be done. Ho
ever, that is not the case, as the above theorem shows.
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