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Minimal irreversible quantum mechanics: The mixed states and the diagonal singularity
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A formalism for minimal irreversible quantum mechanics is extended from pure states to mixed states. In the
latter case the problem of their diagonal singularity is explained and solved. In addition to the pure and mixed
states of the usual approach, more general states are obtained. The Friedrichs model is studied. Decoherence is
found and decoherence characteristic times are comp8&6850-29478)03505-1
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I. INTRODUCTION Hardy class functions, introduced by Bohih6-19. We
have developed these ideas for pure states in [R6f. The
The diagonal singularity of operators in large quantumaim of this work is to extend the results of Rg20] to the
systems, having continuous energies, was discovered by vdnixed states and to apply the formalism of quantum systems
Hove [1-4]. At the same time, Prigogine and co-workers With diagonal singularity to the Friedrichs model, which is a
[5—8] emphasized the importance of states with diagonal sinprototype model for the decay problem in quantum mechan-
gularity in nonequilibrium statistical physics. A key point in ics, and through this approach clarify the role of the complex
the approach to this problem is the projection onto the diagspectral decomposition in the description of the time evolu-
onal part of states, for which the Pauli master equation idion of unstable states of quantum systems.
obtained through the thermodynamic limit, because direct In Sec. Il we present a brief description of the formalism
calculation on the continuous spectrum gives rise to diverdeveloped by Antonioet al.[9-11], and already used by us
gencies_ In recent papers Antonieual. [9_1];| deve|oped a in Ref. [12], for quantum systems with diagonal singularities.
formulation of quantum theory that allows a natural defini- e give the definitions of states and observables, the gener-
tion of states and observables with diagona| singu]arity, proa”ZEd definition of the trace for the states, the mean values
jections onto the diagona| and off-diagona| parts, genera“ze&)l’ the observables, and the time evolution. The weak limit
traces of states, mean values of observables, and the coi@r t— of the time evolution turns out to be a diagonal

struction of a continuous orthonormal basis for states angtate. Therefore decoherence appears as a weak limit. This is
observables. a first manifestation that the formalism already contains the

In this formalism, the expectation valy®), of an ob- base for irreversibility. States and observables with diagonal
servableO in the statep is represented by the action of a Singularity, time evolution, and asymptotic states are dis-
functional (p| on an operatotO) [(O),=p[O]=(p|O)], cussed in Sec. Il for the Friedrichs model. In. Sec. IV we
which opens the possibility, by the rigging of the space oféndow the set of observables and states with analyticity
observables, to obtain generalized spectral decompositior¥operties that break the time symmetry, as in R2@], and
with complex eigenvalues of the Liouville—Von Neumann they allow us to formulate a generalized spectral decompo-
operator with a dominant contribution in the approach tosition with complex eigenvalues and to compute decoherence
equilibrium of macroscopic systems or in the decay prodimes. In Sec. V we state our main conclusions.
cesses of microscopic systems. We have used this kind of
formalism to study the evolution of an oscillator coupled
with a field in Ref.[12]. Il. STATES AND OBSERVABLES WITH DIAGONAL

On the other hand, for the Friedrichs model, Petrosky, SINGULARITY
Prigogine, and TasaklL3] obtained explicit formulas of gen-
eralized eigenvectors of the Hamiltonian with complex ei-
genvalues, using a perturbative scheme based on a time or- Let us consider a system with a Hamiltonian having a
dering rule. The eigenvectors for the Friedrichs model wergontinuous spectrum
constructed by Sudarshan, Chiu, and Gofisf] using ana- .
lytic co_ntinuation techniques. Later,_ Antoqiou and Prigoging H:f dEE[E)E], (1)
[15] pointed out that these generalized eigenvectors acquire 0
meaning in suitable rigged Hilbert spaces, associated with

A. The usual formalism and its problems

|E) ((E|) being generalized rightleft) eigenvectors oH
*Electronic address: laura@ifir.ifir.edu.ar with eigenvaluet.
TElectronic address: castagni@iafe.uba.ar The time evolution of a pure state is given by
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[Wy=e M wo)= J:d E|E)W(E), (0)=Tr(p:0)

- [ 43 perelwovyie o

W(E)=e""Y(E|Wy). ¥y
1 a—i(E—E)t (a) (a)
The wave function¥,(E) has an oscillatory time depen- +f f dE dE'e ; P (E[Wg")
dence, and therefore it does not have a well-defined limit
whent— . However, it is possible to obtain a well-defined X{(¥{Y|E")Og /.

limit for the mean value of any observable, within a space of
observableg), represented by self-adjoint operators with alf the conditions given in the Appendix are fulfilled, the limit
form that generalizes the one Bif; precisely, t—co of the last expression is well defined:

o=f dEoE|E><E|+f dEf dE'Oge/|EXE’]. (3) Iim(O)FJ dEY, p(E[T@WPWIE)OL. (6)
0 0 0 tsoo a
We explicitly include a diagonal singularity and assume that_et us present some problems with this formalism to moti-
Og=0f and Oge =Of, are ordinary functions. The vate the different approach we shall present in Sec. II B.
Hamiltonian (1) is of the form given in Eq.(3) with Og (i) As Eq.(6) gives the final mean value of the observable
=E andOgg =0. O, we may try to find a density operator

The time evolution of the mean value &f in the pure
state(2) is given b - L on ,

(2)is given by po | | 0B dE e lEE
(O)=(W{|O| V) . . . )
such that lim_,.{O);=Tr(p..0), which would imply

- [ deElwg v lErOL
| dES peEle v ey o
+ | [ dEdEe g (vl Oe. )

(4) ZJ dE(bw)EEOE+f f dE dE,(ﬁO@)EE’OEE’ ' (7)

Under mild conditions [for example, if go(E,E’)  But there is no regular functiorp()ges satisfying the pre-
=(E|Wo){(Wo|E')O/g is a Schwartz function inf0%)  vious equation for arbitrarDg and Ogg: .
X[0,»), see Appendik the last term in Eq(4) goes to zero (i) The state corresponding to a well-defined vaief
whent—o, and we obtain the energy is represented by the generalized eigenvigyor
of the Hamiltonian. However|E) is not in the space of
_ normalized vectors. Expressions such(B$E) or (E|H|E)
“m(O)t:J dE(E|W o)(Wo|E)Ok. () are not well defined, since essentially they are products of
i distributions.

If we consider a mixture, i.e., a set of normalized state
vectors (¥ with probabilitiesp® (2 ,p{¥=1, p()=0),
the time-dependent density operator is It is possible to eliminate the difficulties presented at the
end of Sec. Il A with an extended definition of the states as
_ functionals acting on the operators representing observables.
pi=2 P TN W| Wiy =g Hp M)y If the observable is represented by a self-adjoint operator
“ having diagonal singularity, as is the case for expres&n
. the statep of the system can be represented in similar fashion
Trp=1. by two ordinary functiongg and pges, such that the mean
value(O), of the observable is given by

B. The functional approach

Therefore, we have
<O>p:(P|O):f dEPEOE+f f dE dE pge Oger
(Elp|E")=e " E-ENY pl(E[W{ ) (W(V|E), ®
This definition is based in the following physical argu-
with no well-defined limit fort— oo, ments: we do not measure the quantum states directly, we

The mean value in the mixed state of an observable repanly measure the mean values of observables in states. Only
resented by an operator of the form given by Bj.is in order to obtain these values we must define the notion of
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state. Therefore the state is just a functional over the space of . -
observablesp[ O]=(p|0), such thatpt=p[|E)E|] and <O>p:(P|O):J dEpEOE+J j dE dE pge/Oer -
pee=PLIEXE']]. (16)

The mean valugO),, is real if . i - *
Additional conditions should be satisfied p{ , pg./,

PE=PE, Prp=PEE- (9) Og, and Oges, SO that the integrals in Eq16) are well
defined. These conditions depend on the class of observables
We also havel),=(JdE[E)(E]),=(p|l)=1 if and states of the model for which we expect well-defined

mean valued.For example, if the energy and its dispersion
are to be well defined,pg should satisfy p/H")

= [dEpEE"<x. Eventually, the conditions stated in the
Appendix will also be imposed, so that the time evolution of
Moreover,pg can be interpreted as the probability density ofthe system has a well-defined limit for- .

the system of being in the generalized state veldr and Conditions(9) and (10) can be written as

we should have

f dEpt=1. (10)
0

(p|O)=(plO)* if OF=0, (17)
pEBO. (11)

Therefore, the states are represented by functionals of the (p||)=(p|f dE|E)=1. (18)
space®’ acting on the space of operatafs representing _ _ o
observables. These states can be expressed in terms of thgpression(18) can be considered asgeneralization of the

functionals €| and EE’|, defined by the relations concept of trace for the state functional
In the functional approach, the time evolution of the states
(E|O)=0g, (EE'|O)=0Ogg. is determined by an operatdi acting onp and defined by
From these expressions we obtain (p/0) = (Uipo|0) = (po| U} 0) = (po|eO)
(EIE")=8(E-E"), (E|E'E")=0, =(polettoe MY, (19
(EE’'|E"E”)=8(E—E")S(E'—E"), (EE'|E")=0, which also gives the relation between the Sclimger and

(12 Heisenberg pictures.
The generalized Liouville—Von Neumann equation can be
where deduced from the previous equation

[E)=[EXE[. [EE")=|EXE|. 13 d

-1 a(Pt|:(LPt|:(Pt|LT, L'Oo=H'O-0H. (20
After these introductory reasonings let us give some defi-

nitions. Using(13), we can gi\_/e the following ket (_exprt_ession The bras E| and EE'| [Kets|E) and|EE')] are gener-

for an operatofO) representing an observat®ewith diag-  yjizeqd left (right) eigenvectors of the Liouville—Von New-

onal singularity: mann superoperatdr’
T T — T t—= _E ’
|0):f dEoE|E)+f f dE dE'Oge/|EE'). (14) (E|L'=0, LYE)=0, (EE'|L'=(E-E")(EE,
LTEE")=(E—E')|EE"),
If Og=0¢, OEE,=O’,§,E are ordinary functions, we will say
thatO e O, the space of observables and therefore
Using Eq.(12), the following bra expression can be given
for a functional p| representing a state (Pt|=f dE(Pt)E(E|+f J' dEdE (py)Xe (EE']

1= | depeEl+ | [ ae aevteiee. as - [ aepozcel+ | [ e aEoze

If pE=pE>O,'pEEr=pE,E., andfngp’g:l, wherepg and el E-ENEE, 21)
pees are ordinary function$,we will say thatpe S, the
space of the state®©bviouslySC @', the dual space ab.

Using Egs.(12), (14), and (15 we can easily prove, as ) _ o )
expected, that However, the toy model with the Hamiltonian given by E#),

in which we based our presentation of the functional approach, does
not allow us to discuss further the characteristics of the measure-
_ ) ment and preparation apparatuses. In IRE2], we considerO as
In some very exceptional cases we will allow thaf  the space of intensive observables to describe the thermodynamic
=5(E-E). limit of the Friedrichs model.
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The time evolution of the mean value of an observable is This mixed state can also be described using the functional
approach, if we define

(O)p= | dE(po)£O
’ f T (pmix|EJ dEX pl(E[V @) (W “|E)(E|

+f f dEdE (po)fe € 0 . (22
+f f dE dE Y, p!(E|¥ (@) ¥@|E')EE|.
It is interesting to point out that the formalism defined “

above already contains the usual approach of quantum me- (26)
chanics with its pure and mixed states. _ _
(i) Consider apure state represented by a normalized !t is easy to verify that

vector (pmd O =TI(30),  (pmdD=1, (P 0)=(prix| O)* .

|\p>:f dE¥(E)|E), (\p|\p>:f dEV(E)*W(E)=1. As we see from Eq925) and (26), the functional repre-
sentation of pure or mixed states satisfi@s=pgg, and

23 therefore the diagonal and the regular parts @f,.d or
Using the standard formalism for an observaBlewith di-  (Pmixl are not independentHowever, the functional ap-
agonal singularity as in Ed3), we obtain proach allows more general states represented by function-
als (p| for which pg# pgg, i.e., states which cannot be rep-
(O)y=(¥[O|W) resented by normalized vectors or by density operators

These generalized states are discussed in Sec. Il C.

:J dEV(E)*W¥(E)Og
C. Generalized states in the functional approach

The functional approach allows us to have well-defined
expressions fogeneralized statethat are not defined in the
] ) ) usual formalism.
(of course, the first term of the right-hand side would be (i) consider in the first place the state corresponding to a
absent if the observable did not have diagonal singulariye|l-defined value of the energy. As we have explained, if
ty). In the functional approach, the pure state is representeg represent this state by the generalized eigenvéEjoof

+fdedE'\p(E)*«1f(E')oEE, (24)

by the functional the Hamiltonian,(E|E) and (E|H|E) are not defined. The
standard procedure in the usual formalism is to make the
(ppureJEJ dEV(E)*W(E)(E| spectrum of the Hamiltonian discrete by putting the system

in a box where|E) can be normalized, and to make the

volume of the box very big after all the relevant calculations.
+f f dEJE'W(E)*W(E')(EE'|. (25 This is not necessary in the functional approach, where

the “bra” (E| represent a state with energyand general-

It is easy to verify, from the definitiori25), that (o0t  ized trace equal to 1: Using E(L2) we obtain

:(Ppure)EZO and (Opure)EEI:(Ppure)E’Ev and therefore
(ppurd satisfies Eqs(9) and(11). Condition(10) is also veri- <H”>=(E|H”)=(E|f dE'|E")(E")"
fied by (popud @s a consequence of the normalizatias) of
the vector|¥). The functional p,,d acting on|O) gives

=f dE’'S(E—E')(E")"=E",
(ppur40)=<\l’|0|‘1’>,
from which we easily deduce that the stafg has a well-
defined valueE of the energy(i.e., with no deviation from
the mean value

as expected.
(ii) If the state is amixture represented in the standard
formalism by a density operator

(H)=(E[H)=E, ((H=(H)"=(E|(H—(H)"=0.

= (@) | (a)yp(e)
P Z, P A E For the generalized trace we obtain

the mean value of an observalfleis given by (E|I)=(E|f dE’|E’)=f dE' S(E—E')=1.
(0)=Tr(p0) ) _ _ R _
(i) As we pointed out in Sec. Il A, it is impossible to give
_ (@) (@ /gy (@) a description of the state fdr—o using the pure or mixed
f dE};‘ pXEIW N (WIE) O states of the usual formalism. However, the asymptotic states
are well defined in the functional approach.
" dE dE (@) E|p @\ (§ (@ ENO.r, In the Appendix we prove that if the “components” pf
f J' % pE] " [B')Oce and O are such thago(E,E’)E(po)EE,OEE, is a Schwartz
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function in[0,2) X[0,), the second term of the right-hand classical evolutions To obtain a real-time asymmetric quan-

side in Eq.(22) vanishes when—c, and therefore we ob- tum mechanics we must endow the spa@eandS with the

tain theweak limit time-asymmetric analyticity properties, as we have done in
Ref.[20], and as we will see in Sec. IV. In doing so we will

. solve yet another problem.
im (p0)=(p.10), (p.]= | dE(poIE(EL. (27 y P
t—o

Ill. FRIEDRICHS MODEL
Notice that p..| is neither a pure nor a mixed state, because
(p)e# (p)err, but it is a well-defined state functional

with “trace” equal to 1[(p.|l)=1].

Up to now we have expressed the operators representing
observables in terms 9E)=|E){E| and |EE")=|E)(E’|,
|E) ((E|) being generalized righfleft) eigenvectors of the
total HamiltonianH of the system. Equatior42) define the
corresponding functionalsE( and (EE’| that we can use to
The existence of weak limits for the state functionalsexpand the states. It is not the usual situation to know the
whent—o makes this formalism specially suitable to de- generalized eigenvectors bf. Usually, we just have at our
scribing the time evolution of decaying quantum systems andisposal a complete set of generalized eigenvectond of
the approach to equilibrium in quantum-statistical mechanthe unperturbedHamiltonian. This is not only a technical
ics. It is also reminiscent of the weak equilibrium limit of problem of calculation: the eigenvectorstdf are usually of
mixing classical system21]. practical importance if they are eigenvectors of observables
A standard result of ordinary quantum mechanics is that dhat can be realized in the laboratory. For these reasons it
pure state(i.e., a state that can be represented by a normaWwould be convenientand somehow necessatg implement
ized vectoy remains pure during time evolution. However, the generalized formalism in terms of the eigenvectors of
this is no more valid for weak limits than Eq27). The Hy. This will be done in this section for the Friedrichs
asymptotic form of the state functional obtained for model.
has only diagonal componentgp..)ge#0, (p»)ger=0].
Therefore, p.. cannot be represented by a pure or mixed A. States and observables with diagonal singularity
state of the usual formalisnbecause if this were the case we
should have f..)e=(p.)ge- An initially pure statewith
wave function(E|¥,) evolves fort— into a generalized
stategiven by the functional

D. Equilibrium and decoherence

Let us consider the Friedrichs model, with the Hamil-
tonian

H=Ho+V, Ho=m|1)(1|+ J':w|w>(w|dw,
(p-= [ dE(Elwo) W lE)El

in which the generalized stateg|(defined above are distrib- V= JO Vollw){(1]+[1)(w[ldo. (28

uted with probability densityE|W¥ o){(W,|E).

This formalism is an alternative explanation of quantumas (w|H|w"Y=0d(w—w'), there is a diagonal singularity
decoherence, where the usual role of coarse graining is now H. Let us call
played out by the fact that the limit is reallp{O) —(p..| O)

for all observables G O. As theseO are all the possible [)=[11], |o)=|loXo|, |oo)=lw)}e'],
observables, among them we may choose some observables

that only take into consideration the states of some subspace |[lw)=|1Nw|, |ol)=|w)(1]. (29
of S (sometimes called the relevant subspaaed neglect

the states of the complementary subspgice irrelevant sub- The form of the Hamiltonian operator given in E@8)

spacg. In this case we would obtain a coarse-graining for-suggests that we give the following definition: any element
malism. The new formalism avoids the problem of choosingo belonging to the spac® of observables with diagonal
one particular relevant subspace, since it works &ittpos-  singularity can be written as
sible observables of spa@® at the same time. As is well
known, decoherence is a very important phenomenon, since 40 e g
it allows the creation of a bridge between quantum and clas- 0=0"+0% O Eol|1)+f O,|w)dw,
sical mechanics. This is possible since in diagonal matrixes
we can use the typical Boolean probability theory of classical
physics® OCEJ Olw/|1w’)dm’+f O,1lwl)dw
The presence of decoherence shows that we are near the
formulation of a time-asymmetric quantum mechanics, but it
is not yet so, since really we can repeat the li(@if) for t +f Ouulwo)dode’. (30)
— —oo and we will obtain the same resuls in the mixing

where 0,=07% , and 0,=0%, 0,,=0%,, 0,, =0%,_
are ordinary functions of the variables and »’. SinceH
SWe will further discuss decoherence using the functional ap-has a diagonal paH = H, of the form given in Eq(30), H

proach elsewhere. belongs toO.
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We also assume diagonal singularities in the space of
states, which are represented by functionakting on ob- (P||)=(P|l)+J dw(plw)=1, ||)E|1)+J lw)do.
servablegO: (35)

The condition p|I)=1 on the states can be interpreted as a
generalization of the concept of trace, expressing the total
probability condition. p|1)=p, is the probability of the
+J’ dij)lowﬁf f dwdw’p? 0, - state being in the pure stajé)(1| and (p]w)zpw is the
probability density of the state being in the pure state
Hal.
As in the previous section the new formalism contains the
usual approach of quantum mechanics. In fact, let us con-
sider a pure state represented by the wave function

(p|0)=p’I01+f deZOerf do’p7, O,

For this purpose it is convenient to define a set of functionaléw
(1, (0|, (1o|, (01| and (@w'| with the following properties
[11]:

(11)=1, (1o)=(1|10)=(1jel)=(1ww’)=0,

D=1+ [ dovlo,
(0|o")=d(w-0"),

(0|]l)=(0]|le)=(w|o'l)=(v]|o’»")=0, <1/f|(//>=1//’fz/f1+fdwl/fz¢w=l. (36)
(lo|le)=8w—w'),

For an observabl®, having diagonal singularity as in ex-

pression(30), we have
(lo|l)=(lo|o')=(lo|o'l)=(lo|o’ ©")=0,

(@10 1)= 80— "), (WO =y .01+ [ doysu,0,+ [ do' vt v, Ou

(011 =(01]0")=(01)10) = (01]0" ") =0, [ do 0. [ dodo s 40

(00’77 )=8(0—n)d(0'—7'), (37)

(wo'|l)=(wo'|7)=(0wo'|17)=(ww’|71)=0. The mean valu¢37) of O in the pure statéy), can be writ-
(31)  ten as py,d0), if we define the functional

In terms of these functionals, any elemégltof the space . N . ,
S of states §C ') is assumed to have the following form  (Ppurd =¥7 4//1(1|+f dwl//wl//w(w|+f do'y7 ¢y (lo'|
[11]:

+ [ dogzun(on]
p=p2+p°, pd:p’{(1|+fpfu(w|dw,
+f dodw’ ¥, (0o'|. (38
o= [ ptatorldo [ 1,10
Acting with (pp,.d. given in Eq.(38), on an observabl),
given by Eq. (30), we easily prove that p(punJ 0)
+f ph (0o |dode’, (32 =(y|O|y). Following the arguments of the previous sec-
tion, it is easy to show that the mixed states of the usual
where approach can also be represented by a functional acting on
the observables with diagonal singularity.
Expressions such dsv|w) or (w|H|w) are not defined.
(33) However, the generalized stdie| has a well-defined energy
and generalized trace, i.e.,

plzp'i‘;o, Pm:PZZOv pwl:prv pmw’:p:,’wl

Py, Pl Pui, andp’ , being ordinary functions of the
variablesw andw’, and also <|>=(w||)=(w|{|1)+f dw’l“”)}:f do'8(w—w')=1,

+ | podo=1. 34
P1 Jp © 34 (H)Z(w|H)=(w|{m|l)+fdw’w'|w’)
Then we will say thap e S.
Equations(33) are the conditions fop to be a positive +j do'V,[|lo')+|e'1l)]=w.
functional, while Eq(34) is a consequence of the total prob-
ability condition (39
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B. Time evolution and asymptotic states showing the complete decay of th&| component of the

The time evolution of the states is determined by an op_State and the simultaneous appearance of an additional part
eratorU, acting onp, as defined in Eq(19). We are going in the diagonalw| component, with a maximum a=m.
to consider observable® € O, as in Eq.(30), having a di- [In fact, it is easy to show tha¥/?/ 7. (w) 7_(w) =~ 8(w
agonal singularity. In addition, we assume, as usual, that-m) for very smallV,, see Ref[20], Eq. (80)]. In other
O,, 0,1, Oy, , andO,,, are regular functions of the vari- words, the unstable stafé| decays in the state of the con-

ablesw andw’. tinuous spectrum, as the electrons decay in the electromag-
The Lippmann-Schwinger generalized eigenvectors of theetic field, giving its energy to the continuous radiation
Hamiltonian are[14] mode corresponding to this energy; a well-established ex-
do'V,| perimental phenomenon, already explained in R&{).
|w+>:|w>+ [11)+ f do'Vy o) The time evolution for thel| component of the state is
) ‘w—o' +i0"
el s V, 1 +J do'V,{o'|
(=l o Mt | omo=io) (D =(pol1) [ [ dodarere o
dw’'V2, V4 V2
ﬂi(w)Ew—m—f —w’ (40) X ad 7 o - 45
wEi0—0 @ (@ 7))+

If these conditions are fulfilled, it can be proved that the
generalized eigenvectofd0) form a complete orthonormal
system[14], which we can use to expand the observablesas is well known, no pure exponential decay is obtained
We obtain from the previous expression, but it has a dominant exponen-
tial behavior. The deviations from this exponential behavior
=J dwO' o™ o™ are more important for small timé&Zeno effect and for long
times (Khalfin effec).
()1 4vs o+ Now we can see in detail how a pure state becomes a
f f do 'O, |07 ) (e’ (4D generalized state. For example, the initial state given by the
functional (og|=(1| is a pure state, because it can also be

Comparing Eq(30) with Eq. (41), it is easy to show that opresented by the wave functith, but the weak limit for

ol)'=0,. t—o of (Upol is (p-/=fdo[VZ/7.(0)7-(0)](w],
. o which is not a pure state, but a generalized state, where the
The time evolution is given by state(w| has probability density/2/ 7. () 7_(w). Then, in
(pO)=(po| O this way, it is possible for a pure state to became a general-

ized one and the phenomenon of decoherence is feasible.
= | de(pyl|0 N )0 This nonstandard result suggests that this formalism may be
@lpoll@ N 10 useful for the description of the approach to equilibrium in
guantum-statistical mechanif$2].

+f dode’ (pol|e* )’ e o™ .

(42 IV. GENERALIZED COMPLEX SPECTRAL

. . DECOMPOSITION AND TIME EVOLUTION
Using the results of the Appendix, the second term goes to

zero whent—o, and we obtain Equation (42) is an exact expression containing all the
information about the time evolution of the Friedrichs model,
lim (p,|0) = (p.,|0), . :f de o Mo Dol mcludl_ng the asymptotlc_statg dego. Neverthele_ss the
t_m(pt| )=(p=10), (o] (poll” e (w] evolution can be better visualized using a generalized spec-

(43)  tral expansion that allows us to compute the characteristic

e . decaying times of the process. Moreover, to obtain this ex-
For the initial condition

(pol = (o)1 + [ (ool (w]do

“The Hamiltonian(28) corresponds to the one excited mode of the
Hamiltonian:

(Po|1)+f (po|w)dw=1,

H=mb'b+ f dowa'a,+ f dwV,[b'a,+a’b],

representing a generalized mixture of discrete and continu-

ous modes, we obtain

(pml—J do

[bb'=1, [a,.a] ]=6w—w').
2
(w| Therefore, the field is at zero temperature and the exited rfipde
decays. This is not the case if the field has an infinite number of
(44) exited modes, as we discussed in Rég].

(Po|1) +(pol )

w)?? (@)
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pansion we somehow are forced to introduce time asymme- _ .

try into the play® |:|f1><f1|+J dol|f,)(f.l,
With the interaction ternV of the Hamiltonian(28), the

Lippmann-Schwinger solutiong0) form a generalized com- [see Eq(33) of Ref.[20]]. Then

plete orthonormal system for which the Hamiltonian is given

by H=[dww|o™ )} w*|. The discrete eigenvalua of the R —~

Hamiltonian Ho=m|1)(1|+ f[5dw|w){w| is eliminated Onue= |fl><f1|+f dw|f“’><f“’|}of'“°

from the expansion oH by the interaction. If we consider

the analytic extension to the lower half plane of the resolvent % |f1><"f'1|+f dw|fw><ri)|}' (47)
of the Hamiltonian, it is possible to show that the simple pole

atz=m for the unperturbed case is translated by the interac- where[13,15

tion with a pole atz;=w;,— (i/2) y,eC™, for which

7+ (2z1) =0. In this subsection we present a generalized spec- 1
tral decomposition including, andz; as generalized eigen- [f)= —||1) f dwvw(_) lw) |,
values, in order to make explicit the “pure exponential com- Vnl(zY) 0 ®w—S 2
ponent” of the decay. i i

Let us first go to the Heisenberg picture and consider the

expansion(41) of an observablé(t) e O, and define the (f1|=—=| (1] f doV ( ) (]
singular invariant(inv) and the regular fluctuatingfluc) n(z7) 0 @S/
parts by ) |

|fw>_|w+>_|w>+

~ vV, |1>+J°° do'Vo' deVel o,
= = w
On= [ d00( o) o], 7() ot

dw’Vwr ,
Oﬂuczo—omvzf f do do'0 ) |0 )Wo' *| (46) (fol=(o|l+ —= o {(1| fo m(w ||, (48
O;,v being the invariant part o® under the time evolution 1 \+
(Ut"OmV=OinV). It can be easily proved using Eqg0) that |f)= —— |1>_J doV (_) lw) |,
if Oqyc is represented in the unperturbed ba$ls,|w)), we Vnl(zy) | 0 “lo-s Z
obtain ’
~ 1 [ o 1 \" ]
(Ofluc)wzo. ( 1|E— <1|—f dwvw(—> <a)| ,
. 773—(21) 0 0—S z;
In what follows we assume that the functio,,, , :
0,1, andO, . appearing in the expansidB80) of O in the v do'V
unperturbed basis can be analytically extended to the upper [f ) =)+ — |1>+f #M»l’
(lower) complex half plane in the variabte(w’). This is an 77+( ) 0 w—w'+io
extra condition that we impose on the observables of space
O, the one that introduces time asymmetry, and allows us to ~ \V;
define a rigging in the theoryMoreover, if we would like to (fo|=(ot|=(0|+ —"—
decompose the evolution group into two semigroups, we 7-()
may choose the analytic functions in the Hardy classes, as in > dw'V,
Ref.[20], but we will discuss this possibility elsewher@ur X <1|+j0 m(‘ﬂ . (49

assumption implies that the function®4,c) o’ » (Ofiuc) w1,

and Osud 1.’ €an also be analytically extended to the upper
(lower) complex half plane in the variable(w'’). Therefore
these analytical properties make it possible to premultlplyh

In the last expressiong, e G~ is the single solution of
7+(2)=0, 7,.(2) being the analytic extension to the lower
alf plane of the functior;, (w) defined in Eq(40). In Egs.

Ofuc BY (48) and (49) the distributions 1/(w—s)1;., [1/(@—5)]:,
1
~ ~ 7+ (), and7n_(w) are used. They are defined by the equa-
=it [ doff)r, 7o), and-() Y v the ed
[see Eq(39) of Ref.[20]] and to postmultiplyOy,. by f dw( ) ()= f do— (p(w)+ 2mio(2)

SFor the sake of simplicity the functio¥,, is chosen in such a
way that 7. (w) does not vanish for anweR* [and also the f dw(
analytic extension to the lower half complex plane(z) of 7, (w)

has just one simple zero atz, e C™] (50

- ) =|d - H *
w—5s Z*Qo(w):f ww_z,{ e(w)—2mie(z7),
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-1 -1
1 1 z - Y1 Y1
f do— (p(w)Efdw o(w)+27i (P,( v , 71lv (?) , (?) %
74+ () 7+ (o) 7. (21)
1 1 o(Z¥) respectively. The lagicontinuous term has an infinite prac-
f do— (p(w)EJ’ do (@) =27 ———. tical decaying time(if computed in the exponential peripd
7-(w) 7-(w) 7-(z1) since the interaction couples modés and|w) but does not

(51)  couple the modes of the continuous among themselves.

, . . The time evolution of an observable given by E(4)
The vectors defined in Eq&48) and(49) are generalized ‘and (55), together with Eq.(19) relating Schidinger and

eigenvectors of the Hamiltonian, obtained by Petrosky, Pr'Heisenberg pictures, allow us to obtain our main result,

gogine, and TasaKil3] using a time ordering rule, and pre- namel . ; ) ;
) . y, the following expressions for the time evolution of
viously constructed by Sudarshan, Chiu, and Gdd us- -0 "in the Schdi ger representation:

ing analytic continuation techniques. They satisfy the

equations
(falf)=1, <i|fw’>:5(w_w,)v (Pt|:(P0|U;r:f dw(Po|Hw+ei(ZI_Zl)t(Po| Iy,
(i) =Tl =o0, + [ doet o (ool T,
H=zlt) @+ [ doolt )T 62 [ dwere it ol 1,
(faff)=1, (f,|fo)=80—w"), +fdwdw'ei<w*w’“(po|nw,. (57)

<f1|fw>:<fw|’fl>zol
For the previous expression to be well defined, we need to
HT:Z;-cﬁ'lell_{_J dww'ﬂ:)(fwl (53) Com%tewboﬂfw)(fwbw, r@_/0||fl><fl|)a (p0||fl><fw|)r
(pollfu){f1]), and (pol|f,){f.|). Taking into account Egs.
(48) and(49), we conclude that it is necessary to restrict the
spaceSC O’ of states in such a way that the functiqrﬁsw, ,

prLs andp’l‘w, appearing in Eq(32) have well-defined ana-

As Ulo=eM"t0e Mt andO=0;,,+ Ogye, We obtain

TUtTOim,z Oin\,zf dowll O, (54 lytic extensions to the uppeflower) half of the complex
plane in the variables(w'). This is a consequence of the
and time-asymmetric structure we have added to the sgace
The characteristic decaying times are the same as those listed
U;roﬂuf eiHTtoﬂuc e iHt under Eq.(56).

Moreover, the formalism developed in Sec. Il givesl ]
as a generalized definition of the trace of states with diagonal
singularity, wherd is the identity operator. This definition
can be used to obtain the generalized trace of the compo-
+f dewei(@- 20t nents of the state appearing in E&7). In terms of the
wl Lippmann-Schwinger solutiong40), or the generalized
eigenvectors given in Eq$48) and (49), the identity opera-

+fdwdw'ei<ww’>tnw,]o, (55 toris

:[ei(z’l*zl)tl—[ll_’_f dwei(z{—w)tnlw

where |=Imv=f dolo* )’
HwOE|fw>ow<fw|! HlloE|?1><f1|ofluc|f1><fl|i

_ —_ and thereford ,=1 andl,=0. Taking into account that
leOE|fl><fl|ofluc|fw><fw|’ |w+>:|fw> and<w+|:<fw|, we also have

leoE|fw><fw|oﬂuc|f1><f1|a

~ — 1= [ dlTE
wa’OE|fw><fw|ofluc|fw’><fw’|' (56)

Then asz; = w;,— (i/2)y, we conclude that the characteristic ~ With the definitions(56) of the projectors and the gener-
decaying times of the four terms in the right-hand side of Egalized orthogonality conditions given in Eq&2) and (53),
(55) are we obtain
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~ e~ limIl,, =|wo')(0o']. (61
(pol [ o) = (ool [ dot [TED) W
~ o~ Moreover, for smallV, z;= m—iwvfn is an approximated
:(Po|f do[f,){f.)=(polN=1, solution of %, (z;) =0, and the weak limit$61) for the pro-

jectors can be used in E(7) to obtain
(polTL111) = (pol[F1)(F1ll e F1){F1)) =0,

= | dw(polw)(w|+e 2™Vt(po|1) (1
(polllrol) = (polTlual) = (po| My )=0.  (58) (P f @(pol)(o] pol1) (1]

—omV2
As we can see, the time-independent pagl (dwII,, of the +{1—e 2™l (po|1)(m|
state contains all the generalized trace pf|,( while the i
time-dependent components have zero trace. This is consis- +J doe 2™Vntel M=) (511 4) (1o

tent with the conservation of the trace by time evolution.

Moreover, these results also tell us that the time evolving .

part (po|{I— fdwII,} cannot be considered a physical state; +f dwe 2™Vt (@M Y pilwl)(wl]

it is just a fluctuation around the time-independent part

(polfdwII,, . All these results coincide with those already TP ) )

obtained in Ref[20] for the pure-state case. +f d“’f do’ e'“"(polww’) (0 o'|.
Even more generally, for any observalile commuting

with the HamiltonianH, we can write (62

- The first three terms in the previous equation give the
sz dewlw*><w*|=f dwQ,|f ){f,]; (59  time evolution of the diagonal part of the state. The discrete
mode(1] has an exponential decay, and simultaneously there

thereforeQy,.= 0, and is a growing part in the continuum with=m. There is also
a continuum time-independent part, keeping the memory of
the initial condition. But here the pure exponential decay is

(PO|J doll,Q)=(polQ), just an approximation.

The last three terms in E¢62) give the time evolution of

(polT111Q) = (po| 1, Q)= (po|11,1Q)=(po|l, .- Q)=0,  the nondiagonal part of the state. Thel| and (1w| compo-
(60) nents have exponential decay together with an oscillating

o . ) factor. There is no exponential decay for the«’| compo-
which is consistent with 4 Q) = (po|Q). Then the observ-  nent for the reasons we have already explained below in Eq.
ables that commute witH are not only constants of motion, (56), put this term gives a vanishing contribution to the mean

but their “fluctuation components” are just fluctuations yajue of observables far—o due to the oscillating factor
around the time-independent pap,[Q), since their mean el (0= o)t

values vanish. This conclusion is, of course, also valid for Then we obtain theveaklimit

Q=H.
S0 (po|Tl1z, (po|M1s, (Pol w1, @nd (ool (Nnamely, _
the generalized left eigenvectors of the Liouville operatbr lim (Pt|”=‘J dw(po|@)(@|+(po|1)(w=m[. (63

t—oo

with eigenvalues; —z,, z{ — o, w—2;, ando— ') have
no trace, no energy, a_nd the zero mean valge of any Obser‘ﬂwe previous approximated expression coincides with the ex-
able that commutes witH. Therefore these eigenvectors, as ct expressioid4) for smallV
any fluctuation, cannot be considered alone as physica?l '
states.

Finally the formalism presented in Sec. Il for states and
observables with diagonal singularity, applied to the e have applied the formalism of quantum theory of

Friedrichs model in Liouville space, shows that there is NoRefs.[9—11] to a simple “toy” model with Hamiltonian
place for physical states with pure exponential decay. How-

V. CONCLUSIONS

ever, the pure exponential decay appears for physical states *
as an approximation when the interactidns very small. In H= fo dEE[EX(E|. (64)
this case, using the results of Rg20], we obtain the fol-
lowing weak limitsfor the projectors defined in E¢56) For this system we defined the cladsof observables with
im T, = | @) (] +|1)8(0—m)(w], diagonal singularity
V—0

) |O)=f dEOE|E)+JJdEdE’OE e |EE’),
lim I1;,=1)(1] = [1)(0=m|,
V—0
OeO, |E)=|E)XE|, |EE")=|EXE’|, (65)
limIl;,=|lo)(lo|, limIl,;=|wl)(wl],
V-0 V—0 and the class of statesC O’ of the form
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(ol= [ aEt(El+ [ [ 0B dE pte € EL 60 (l=pitl+ [ pitoldo [ plywtlde
where +f pr,(lw’|+f pr (0o |dodo’, pes,
(E|0)=0g, (EE'|0)=0Ogg . (67)
. . . (1|O):Oli (w|o):Oa)1 (wllo)zowli
In this formalism we can represent the following.
(i) A pure statei.e., a state that in the usual approach is (lo'|0)=04,, (00'|0)=0,, . (73

represented by a normalized vecfd)= [dE|E)(E|W¥). In

the functional approach this state is represented by a func- We obtained exact expressions for the time evolution of

tional of the form(66) with

PE=(VIEXEIW), pge =(VI[EXE'[¥). (68
(ii) A mixed statei.e., a state that in the usual approach is

represented by a mixture of normalized vectpls®) with

probabilities p{®. In the functional approach this state is

given by a functional of the forn66) with

pE=2 PV WIENE[V ),

pe=3 PV IENE W),

a

(69

(iii) A generalized statef the form given in Eq(66) with
PE#pee - The state E|, with energyE is a generalized
state, as we have in this ca;aéza‘(E—E) and pEE,IO.

Another example of a generalized state is the weak limit for

t—oo of an initially pure state, given by

(v [ dEE v wENEL (70

This result also shows the possibility for a pure state to be
come a generalized state for very big times.

We also applied the functional approach to the Friedrich
model, with Hamiltonian

©

H=m|1>(1I+J w|o)(w|do+ f:Vw““’Xl'

0

+ 1N w|]dw. (71

In this case, we considered the sp&®f observables with
diagonal singularity

|O)=Ol|1)+j O,|w) dw-l—f O1,]1l0') do’

+ [ 0ulen) do+ [ 0, 4 w)do o,

0e0,
1)=[1K1], [w)=lo)], [wo')=|o)o],
|lw)=[1)Ko|, |ol)=|w)(1], (72

and the class of stat€s_ O’ of the form

any state functional. For example, we can consider the initial
state po| = (1|, which is a pure state, as it can be represented
by the normalized vectofl) in the usual approach. Fdr
—oo this state evolves into

(poo|=f d

This is a generalized state where the staigf ffave prob-
ability denSityVi/n+(w)7]_(w). For small interaction pa-
rameter, this probability density is a sharp peak centered in
the valuew=m, corresponding to the unperturbed energy of
the decaying state (1

The “final” state given in Eq(74) is invariant under time
inversion and also invariant under time evolution. Then the
formalism itself makes evident the intrinsic irreversibility of
the decay process.

The generalized statéw| has well-defined energy and
generalized trace in this formalism, i.e.,

(y=(w|l)=1.

The exact expressions we obtained for the time evolution
show that it is impossible to have pure exponential decays.
However, the decay of the stat# deviates from the expo-
nential only for small and large values of tinggeno and
Khalfin effects. Therefore, it is useful to obtain spectral de-

2

w

(@7 (@) 74

(w].

(H)=(o|H)=o,

Scompositions including the contributions of the single pole at

z, of the analytic extension to the lower half plane of the
matrix. This spectral decomposition is possible if we con-
sider the observabled e O and statep e SCO’ for which
the nondiagonal componer®s,;, O1,/, Opprs Pr1, p’l*w, .
andp:)w, in the unperturbed basis are ordinary functions that
can be analytically extended to the upgiawer) complex
half plane for the variable» (®’).

For the Friedrichs model we obtained a generalized spec-
tral decomposition of the form

(pi = (pol Y,

U;r:f dem_’_ei(Z’I*Zl)tHll_’_f do ei(szw)tl—llw

—I—f dow ele 2t Hw1+J dw dw’ei(“’f“”)tﬂw o -

We proved that go|ll11, (polll1,, (polll,1, and
(pol11,,,  are generalized left eigenvectors of the Liouville—
Von Newmann operatot.” with eigenvaluesz} —z,, z%
—w, w—2;, andw— ', and they have no trace, no energy,
and zero mean value of any observable commuting Wwlith
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Therefore these eigenvectors, as any fluctuation, cannot be E’
considered alone as physical states.

There is no place in this formalism for physical states
with pure exponential decay. However, we recover the pure
exponential decay of the unstable state as an approximation C,
for small interactions, i.e.,

: cy 7
(pl= [ dotpdw)(]+e 25 (pol1) (1]
+{1—e 27El ol 1) (i R
2, . >
+ J dwe 2™Vnle! M=) (5 110) (1] Cy E

FIG. 1. Domain and boundary for ECA6).
2 .
+ J dwe 2™Vt @M {5l wl)(wl]

where?P is the boundary oD with exterior normaN. In our
+J dwj do'e@ M poloo’) (wo'|. case we need to compute

N F e % i(E—E/t
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which is Eg.(A1) with

A=it, X=(E,E’), D=[0p)X[0®),

and therefore

APPENDIX: VANISHING OF THE NONDIAGONAL L
PARTS OF MEAN VALUES FOR T — V.¢=(1,-1), Ho==go(E,E')(1,—1)
—1), 590(E, —1),

In this section we give the conditions under which the
limits for t— < in expression$4) and(22) give the results of __ 1 _
Egs. (5) and (27). The proof follows the arguments of Ref. V-Hozz(l,— 1)-Vgo(E,E").
[22]. Let us start, considering the expression

The bidimensional domai#® and the boundary are repre-

|()\):f dxgo(X)exg A (X)], (A1)  sented in Fig. 1, wittP=C;+C,+Cg, for someR> 1.
D Using Eq.(A4) we obtain

whereD is a subset oR", ¢, andg, are differentiable func-
tions inD, andX is a complex parameter.
ProvidedV - ¢# 0 we can easily prove the following iden-

2itF(t)=fo dEgy(E,0)eE+ lim L dle'E-Etg (E,E’)
2

R— o

tity: ><(1,—1)N+f dE'go(0E e E"
0
_ - 1 - _— _ - 1 - —
N . N0y (V7. N b(X)
go(x)e N V- (Ho(x)e**) )\(V Ho(x))e* v, ~im f f dEJE el(E-ENt
(AZ) R—o D
h g _ 9 ,
where L X(E—E)QO(E,E ). (AB)
— — — V(%)
Ho(X)=go(X) ==, (A3) . _ o
V(%) If go(E,E')=pge Oges is @ Schwartz function irf0,°)

and therefore X[0,°), the modulus of the right-hand side of the previous
expression is a bounded functiontgfand therefore

|<>\>=% Lewﬁoﬂds—% fDeW(Vﬁo)dZ (A4) limF(t)=0.

t—oo
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