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Minimal irreversible quantum mechanics: The mixed states and the diagonal singularity
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A formalism for minimal irreversible quantum mechanics is extended from pure states to mixed states. In the
latter case the problem of their diagonal singularity is explained and solved. In addition to the pure and mixed
states of the usual approach, more general states are obtained. The Friedrichs model is studied. Decoherence is
found and decoherence characteristic times are computed.@S1050-2947~98!03505-7#
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I. INTRODUCTION

The diagonal singularity of operators in large quantu
systems, having continuous energies, was discovered by
Hove @1–4#. At the same time, Prigogine and co-worke
@5–8# emphasized the importance of states with diagonal
gularity in nonequilibrium statistical physics. A key point
the approach to this problem is the projection onto the di
onal part of states, for which the Pauli master equation
obtained through the thermodynamic limit, because dir
calculation on the continuous spectrum gives rise to div
gencies. In recent papers Antoniouet al. @9–11# developed a
formulation of quantum theory that allows a natural defi
tion of states and observables with diagonal singularity, p
jections onto the diagonal and off-diagonal parts, generali
traces of states, mean values of observables, and the
struction of a continuous orthonormal basis for states
observables.

In this formalism, the expectation value^O&r of an ob-
servableO in the stater is represented by the action of
functional (ṙu on an operatoruO) @^O&r5r@O#5(ruO)#,
which opens the possibility, by the rigging of the space
observables, to obtain generalized spectral decomposit
with complex eigenvalues of the Liouville–Von Neuman
operator with a dominant contribution in the approach
equilibrium of macroscopic systems or in the decay p
cesses of microscopic systems. We have used this kin
formalism to study the evolution of an oscillator coupl
with a field in Ref.@12#.

On the other hand, for the Friedrichs model, Petros
Prigogine, and Tasaki@13# obtained explicit formulas of gen
eralized eigenvectors of the Hamiltonian with complex
genvalues, using a perturbative scheme based on a tim
dering rule. The eigenvectors for the Friedrichs model w
constructed by Sudarshan, Chiu, and Gorini@14# using ana-
lytic continuation techniques. Later, Antoniou and Prigog
@15# pointed out that these generalized eigenvectors acq
meaning in suitable rigged Hilbert spaces, associated w
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Hardy class functions, introduced by Bohm@16–19#. We
have developed these ideas for pure states in Ref.@20#. The
aim of this work is to extend the results of Ref.@20# to the
mixed states and to apply the formalism of quantum syste
with diagonal singularity to the Friedrichs model, which is
prototype model for the decay problem in quantum mech
ics, and through this approach clarify the role of the comp
spectral decomposition in the description of the time evo
tion of unstable states of quantum systems.

In Sec. II we present a brief description of the formalis
developed by Antoniouet al. @9–11#, and already used by u
in Ref. @12#, for quantum systems with diagonal singularitie
We give the definitions of states and observables, the ge
alized definition of the trace for the states, the mean val
for the observables, and the time evolution. The weak li
for t→` of the time evolution turns out to be a diagon
state. Therefore decoherence appears as a weak limit. Th
a first manifestation that the formalism already contains
base for irreversibility. States and observables with diago
singularity, time evolution, and asymptotic states are d
cussed in Sec. III for the Friedrichs model. In Sec. IV w
endow the set of observables and states with analyti
properties that break the time symmetry, as in Ref.@20#, and
they allow us to formulate a generalized spectral decom
sition with complex eigenvalues and to compute decohere
times. In Sec. V we state our main conclusions.

II. STATES AND OBSERVABLES WITH DIAGONAL
SINGULARITY

A. The usual formalism and its problems

Let us consider a system with a Hamiltonian having
continuous spectrum

H5E
0

`

dEEuE&^Eu, ~1!

uE& (^Eu) being generalized right~left! eigenvectors ofH
with eigenvalueE.

The time evolution of a pure state is given by
4140 © 1998 The American Physical Society
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57 4141MINIMAL IRREVERSIBLE QUANTUM MECHANICS: . . .
uC t&5e2 iHt uC0&5E
0

`

dEuE&C t~E!,

C t~E!5e2 iEt^EuC0&. ~2!

The wave functionC t(E) has an oscillatory time depen
dence, and therefore it does not have a well-defined li
when t→`. However, it is possible to obtain a well-define
limit for the mean value of any observable, within a space
observablesO, represented by self-adjoint operators with
form that generalizes the one ofH; precisely,

O5E
0

`

dEOEuE&^Eu1E
0

`

dEE
0

`

dE8OEE8uE&^E8u. ~3!

We explicitly include a diagonal singularity and assume t
OE5OE* and OEE85OE8E

* are ordinary functions. The
Hamiltonian ~1! is of the form given in Eq.~3! with OE
5E andOEE850.

The time evolution of the mean value ofO in the pure
state~2! is given by

^O& t5^C tuOuC t&

5E dE^EuC0&^C0uE&OE

1E E dEdE8e2 i ~E2E8!t^EuC0&^C0uE8&OE8E .

~4!

Under mild conditions @for example, if g0(E,E8)
5^EuC0&^C0uE8&OE8E is a Schwartz function in@0,̀ )
3@0,̀ ), see Appendix#, the last term in Eq.~4! goes to zero
when t→`, and we obtain

lim
t→`

^O& t5E dE^EuC0&^C0uE&OE . ~5!

If we consider a mixture, i.e., a set of normalized st
vectorsC (a) with probabilitiesp(a) ~(ap(a)51, p(a)>0!,
the time-dependent density operator is

r̂ t5(
a

p~a!uC t
~a!&^C t

~a!u, uC t
~a!&5e2 iHt uC0

~a!&,

Trr̂ t51.

Therefore, we have

^Eur̂ tuE8&5e2 i ~E2E8!t(
a

p~a!^EuC0
~a!&^C0

~a!uE8&,

with no well-defined limit fort→`.
The mean value in the mixed state of an observable

resented by an operator of the form given by Eq.~3! is
it

f

t

e

p-

^O& t5Tr~ r̂ tO!

5E dE(
a

p~a!^EuC0
~a!&^C0

~a!uE&OE

1E E dE dE8e2 i ~E2E8!t(
a

p~a!^EuC0
~a!&

3^C0
~a!uE8&OE8E .

If the conditions given in the Appendix are fulfilled, the lim
t→` of the last expression is well defined:

lim
t→`

^O& t5E dE(
a

p~a!^EuC0
~a!&^C0

~a!uE&OE . ~6!

Let us present some problems with this formalism to mo
vate the different approach we shall present in Sec. II B.

~i! As Eq.~6! gives the final mean value of the observab
O, we may try to find a density operator

r̂`5E E dE dE8~ r̂`!EE8uE^E8u,

such that limt→`^O& t5Tr( r̂`O), which would imply

E dE(
a

p~a!^EuC0
~a!&^C0

~a!uE&OE

5E dE~ r̂`!EEOE1E E dE dE8~ r̂`!EE8OEE8 . ~7!

But there is no regular function (r̂`)EE8 satisfying the pre-
vious equation for arbitraryOE andOEE8 .

~ii ! The state corresponding to a well-defined valueE of
the energy is represented by the generalized eigenvectoruE&
of the Hamiltonian. However,uE& is not in the space of
normalized vectors. Expressions such as^EuE& or ^EuHuE&
are not well defined, since essentially they are products
distributions.

B. The functional approach

It is possible to eliminate the difficulties presented at t
end of Sec. II A with an extended definition of the states
functionals acting on the operators representing observab
If the observableO is represented by a self-adjoint operat
having diagonal singularity, as is the case for expression~3!,
the stater of the system can be represented in similar fash
by two ordinary functionsrE andrEE8 , such that the mean
value ^O&r of the observable is given by

^O&r5~ruO!5E dErE* OE1E E dE dE8rEE8
* OEE8 .

~8!

This definition is based in the following physical arg
ments: we do not measure the quantum states directly,
only measure the mean values of observables in states.
in order to obtain these values we must define the notion
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4142 57ROBERTO LAURA AND MARIO CASTAGNINO
state. Therefore the state is just a functional over the spac
observablesr@O#5(ruO), such thatrE* [r@ uE&^Eu# and
rEE8
* [r@ uE&^E8u#.

The mean valuêO&r is real if

rE* 5rE , rEE8
* 5rE8E . ~9!

We also havê I &r5^*dEuE&^Eu&r5(ruI )51 if

E
0

`

dErE* 51. ~10!

Moreover,rE* can be interpreted as the probability density
the system of being in the generalized state vectoruE&, and
we should have

rE* >0. ~11!

Therefore, the statesr are represented by functionals of th
spaceO8 acting on the space of operatorsO representing
observables. These states can be expressed in terms o
functionals (Eu and (EE8u, defined by the relations

~EuO!5OE , ~EE8uO!5OEE8 .

From these expressions we obtain

~EuE8!5d~E2E8!, ~EuE8E9!50,

~EE8uE9E-!5d~E2E9!d~E82E-!, ~EE8uE9!50,
~12!

where

uE)[uE&^Eu, uEE8![uE&^E8u. ~13!

After these introductory reasonings let us give some d
nitions. Using~13!, we can give the following ket expressio
for an operatoruO) representing an observableO with diag-
onal singularity:

uO)5E dEOEuE)1E E dE dE8OEE8uEE8). ~14!

If OE5OE* , OEE85OE8E
* are ordinary functions, we will say

that OPO, the space of observables.
Using Eq.~12!, the following bra expression can be give

for a functional (ru representing a stater:

(ru5E dErE* (Eu1E E dE dE8rEE8
* ~EE8u. ~15!

If rE5rE* >0, rEE85rE8E
* , and*0

`dErE* 51, whererE and
rEE8 are ordinary functions,1 we will say that rPS, the
space of the states. ObviouslyS,O8, the dual space ofO.

Using Eqs.~12!, ~14!, and ~15! we can easily prove, a
expected, that

1In some very exceptional cases we will allow thatrE*

5d(E2Ẽ).
of

f

the

-

^O&r5~ruO!5E dErE* OE1E E dE dE8rEE8
* OEE8 .

~16!

Additional conditions should be satisfied byrE* , rEE8
* ,

OE , and OEE8 , so that the integrals in Eq.~16! are well
defined. These conditions depend on the class of observa
and states of the model for which we expect well-defin
mean values.2 For example, if the energy and its dispersio
are to be well defined,rE* should satisfy (ruHn)
5*dErE* En,`. Eventually, the conditions stated in th
Appendix will also be imposed, so that the time evolution
the system has a well-defined limit fort→`.

Conditions~9! and ~10! can be written as

~ruO!5~ruO!* if O†5O, ~17!

~ruI !5(ru E dEuE)51. ~18!

Expression~18! can be considered as ageneralization of the
concept of trace for the state functionalr.

In the functional approach, the time evolution of the sta
is determined by an operatorUt acting onr and defined by

~r tuO!5~Utr0uO!5~r0uUt
† O!5~r0ueiL†tO!

5~r0ueiH †tOe2 iHt !, ~19!

which also gives the relation between the Schro¨dinger and
Heisenberg pictures.

The generalized Liouville–Von Neumann equation can
deduced from the previous equation

2 i
d

dt
~r tu5~Lr tu5~r tuL†, L†O[H†O2OH. ~20!

The bras (Eu and (EE8u @kets uE) and uEE8)# are gener-
alized left ~right! eigenvectors of the Liouville–Von New
mann superoperatorL†

~EuL†50, L†uE!50, ~EE8uL†5~E2E8!~EE8u,

L†uEE8)5~E2E8!uEE8),

and therefore

(r tu5E dE~r t!E* (Eu1E E dEdE8~r t!EE8
* (EE8u

5E dE~r0!E* (Eu1E E dE dE8~r0!EE8
*

3ei ~E2E8!t~EE8u. ~21!

2However, the toy model with the Hamiltonian given by Eq.~1!,
in which we based our presentation of the functional approach, d
not allow us to discuss further the characteristics of the meas
ment and preparation apparatuses. In Ref.@12#, we considerO as
the space of intensive observables to describe the thermodyn
limit of the Friedrichs model.
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The time evolution of the mean value of an observable i

^O&r t
5E dE~r0!E* OE

1E E dEdE8~r0!EE8
* ei ~E2E8!tOEE8 . ~22!

It is interesting to point out that the formalism define
above already contains the usual approach of quantum
chanics with its pure and mixed states.

~i! Consider apure state, represented by a normalize
vector

uC&5E dEC~E!uE&, ^CuC&5E dEC~E!* C~E!51.

~23!

Using the standard formalism for an observableO with di-
agonal singularity as in Eq.~3!, we obtain

^O&C5^CuOuC&

5E dEC~E!* C~E!OE

1E E dEdE8C~E!* C~E8!OEE8 ~24!

~of course, the first term of the right-hand side would
absent if the observable did not have diagonal singul
ty!. In the functional approach, the pure state is represe
by the functional

(rpureu[E dEC~E!* C~E!(Eu

1E E dEdE8C~E!* C~E8!~EE8u. ~25!

It is easy to verify, from the definition~25!, that (rpure)E*
5(rpure)E>0 and (rpure)EE8

* 5(rpure)E8E , and therefore
(rpureu satisfies Eqs.~9! and~11!. Condition~10! is also veri-
fied by (rpureu as a consequence of the normalization~23! of
the vectoruC&. The functional (rpureu acting onuO) gives

~rpureuO!5^CuOuC&,

as expected.
~ii ! If the state is amixture, represented in the standa

formalism by a density operator

r̂5(
a

p~a!uC~a!&^C~a!u,

the mean value of an observableO is given by

^O&5Tr~ r̂O!

5E dE(
a

p~a!^EuC~a!&^C~a!uE&OE

1E E dE dE8(
a

p~a!^EuC~a!&^C~a!uE8&OEE8 .
e-

i-
ed

This mixed state can also be described using the functio
approach, if we define

(rmixu[E dE(
a

p~a!^EuC~a!&^C~a!uE&(Eu

1E E dE dE8(
a

p~a!^EuC~a!&^C~a!uE8&~EE8u.

~26!

It is easy to verify that

~rmixuO!5Tr~ r̂O!, ~rmixuI !51, ~rmixuO!5~rmixuO!* .

As we see from Eqs.~25! and ~26!, the functional repre-
sentation of pure or mixed states satisfiesrE5rEE , and
therefore the diagonal and the regular parts of(rpureu or
(rmixu are not independent. However, the functional ap-
proach allows more general states represented by funct
als (ru for which rEÞrEE , i.e., states which cannot be rep
resented by normalized vectors or by density operato.
These generalized states are discussed in Sec. II C.

C. Generalized states in the functional approach

The functional approach allows us to have well-defin
expressions forgeneralized statesthat are not defined in the
usual formalism.

~i! Consider in the first place the state corresponding t
well-defined valueE of the energy. As we have explained,
we represent this state by the generalized eigenvectoruE& of
the Hamiltonian,̂ EuE& and ^EuHuE& are not defined. The
standard procedure in the usual formalism is to make
spectrum of the Hamiltonian discrete by putting the syst
in a box whereuE& can be normalized, and to make th
volume of the box very big after all the relevant calculation

This is not necessary in the functional approach, wh
the ‘‘bra’’ ( Eu represent a state with energyE and general-
ized trace equal to 1: Using Eq.~12! we obtain

^Hn&5~EuHn!5(Eu E dE8uE8)~E8!n

5E dE8d~E2E8!~E8!n5En,

from which we easily deduce that the state (Eu has a well-
defined valueE of the energy~i.e., with no deviation from
the mean value!

^H&5~EuH !5E, Š~H2^H&!n
‹5„Eu~H2^H&!n

…50.

For the generalized trace we obtain

~EuI !5(Eu E dE8uE8)5E dE8d~E2E8!51.

~ii ! As we pointed out in Sec. II A, it is impossible to giv
a description of the state fort→` using the pure or mixed
states of the usual formalism. However, the asymptotic st
are well defined in the functional approach.

In the Appendix we prove that if the ‘‘components’’ ofr
andO are such thatg0(E,E8)[(r0)EE8

* OEE8 is a Schwartz



d
-

s
l

ls
e-
an
an
f

at
a

r,

ed
e

-

m
no

ab
pa

or
in

l
in
la
xe
ica

r
t

-

in
ill

ting

the
r

l

les
s it

of
s

il-

nt
l

ap

4144 57ROBERTO LAURA AND MARIO CASTAGNINO
function in @0,̀ )3@0,̀ ), the second term of the right-han
side in Eq.~22! vanishes whent→`, and therefore we ob
tain theweak limit

lim
t→`

~r tuO!5~r`uO!, (r`u[E dE~r0!E* ~Eu. ~27!

Notice that (r`u is neither a pure nor a mixed state, becau
(r`)EÞ(r`)EE8 , but it is a well-defined state functiona
with ‘‘trace’’ equal to 1@(r`uI )51#.

D. Equilibrium and decoherence

The existence of weak limits for the state functiona
when t→` makes this formalism specially suitable to d
scribing the time evolution of decaying quantum systems
the approach to equilibrium in quantum-statistical mech
ics. It is also reminiscent of the weak equilibrium limit o
mixing classical systems@21#.

A standard result of ordinary quantum mechanics is th
pure state~i.e., a state that can be represented by a norm
ized vector! remains pure during time evolution. Howeve
this is no more valid for weak limits than Eq.~27!. The
asymptotic form of the state functional obtained fort→`
has only diagonal components@(r`)EÞ0, (r`)EE850#.
Therefore,r` cannot be represented by a pure or mix
state of the usual formalism, because if this were the case w
should have (r`)E5(r`)EE . An initially pure statewith
wave function^EuC0& evolves fort→` into a generalized
stategiven by the functional

(r`u5E dE^EuC0&^C0uE&~Eu,

in which the generalized states (Eu defined above are distrib
uted with probability densitŷEuC0&^C0uE&.

This formalism is an alternative explanation of quantu
decoherence, where the usual role of coarse graining is
played out by the fact that the limit is really (r tuO)→(r`uO)
for all observables OPO. As theseO are all the possible
observables, among them we may choose some observ
that only take into consideration the states of some subs
of S ~sometimes called the relevant subspace! and neglect
the states of the complementary subspace~the irrelevant sub-
space!. In this case we would obtain a coarse-graining f
malism. The new formalism avoids the problem of choos
one particular relevant subspace, since it works withall pos-
sible observables of spaceO at the same time. As is wel
known, decoherence is a very important phenomenon, s
it allows the creation of a bridge between quantum and c
sical mechanics. This is possible since in diagonal matri
we can use the typical Boolean probability theory of class
physics.3

The presence of decoherence shows that we are nea
formulation of a time-asymmetric quantum mechanics, bu
is not yet so, since really we can repeat the limit~27! for t
→2` and we will obtain the same result~as in the mixing

3We will further discuss decoherence using the functional
proach elsewhere.
e

d
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a
l-

w

les
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-
g
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s
l
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classical evolutions!. To obtain a real-time asymmetric quan
tum mechanics we must endow the spacesO andS with the
time-asymmetric analyticity properties, as we have done
Ref. @20#, and as we will see in Sec. IV. In doing so we w
solve yet another problem.

III. FRIEDRICHS MODEL

Up to now we have expressed the operators represen
observables in terms ofuE)[uE&^Eu and uEE8)[uE&^E8u,
uE& (^Eu) being generalized right~left! eigenvectors of the
total HamiltonianH of the system. Equations~12! define the
corresponding functionals (Eu and (EE8u that we can use to
expand the states. It is not the usual situation to know
generalized eigenvectors ofH. Usually, we just have at ou
disposal a complete set of generalized eigenvectors ofH0 ,
the unperturbedHamiltonian. This is not only a technica
problem of calculation: the eigenvectors ofH0 are usually of
practical importance if they are eigenvectors of observab
that can be realized in the laboratory. For these reason
would be convenient~and somehow necessary! to implement
the generalized formalism in terms of the eigenvectors
H0 . This will be done in this section for the Friedrich
model.

A. States and observables with diagonal singularity

Let us consider the Friedrichs model, with the Ham
tonian

H5H01V, H05mu1&^1u1E
0

`

vuv&^vudv,

V5E
0

`

Vv@ uv&^1u1u1&^vu#dv. ~28!

As ^vuHuv8&5vd(v2v8), there is a diagonal singularity
in H. Let us call

u1)[u1&^1u, uv![uv&^vu, uvv8![uv&^v8u,

u1v)[u1&^vu, uv1![uv&^1u. ~29!

The form of the Hamiltonian operator given in Eq.~28!
suggests that we give the following definition: any eleme
O belonging to the spaceO of observables with diagona
singularity can be written as

O5Od1Oc, Od[O1u1)1E Ovuv)dv,

Oc[E O1v8u1v8)dv81E Ov1uv1)dv

1E Ovv8uvv8)dvdv8. ~30!

where O15O1* , and Ov5Ov* , O1v5Ov1* , Ovv85Ov8v
*

are ordinary functions of the variablesv and v8. SinceH
has a diagonal partHd5H0 of the form given in Eq.~30!, H
belongs toO.
-
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We also assume diagonal singularities in the space
states, which are represented by functionalsr acting on ob-
servablesO:

~ruO!5r1* O11E dvrv* Ov1E dv8r1v8
* O1v8

1E dvrv1* Ov11E E dvdv8rvv8
* Ovv8 .

For this purpose it is convenient to define a set of function
~1u, ~vu, ~1vu, ~v1u and (vv8u with the following properties
@11#:

~1u1!51, ~1uv!5~1u1v!5~1uv1!5~1uvv8!50,

~vuv8!5d~v2v8!,

~vu1!5~vu1v8!5~vuv81!5~vuv8v9!50,

~1vu1v8!5d~v2v8!,

~1vu1!5~1vuv8!5~1vuv81!5~1vuv8v9!50,

~v1uv81!5d~v2v8!,

~v1u1!5~v1uv8!5~v1u1v8!5~v1uv8v9!50,

~vv8uhh8!5d~v2h!d~v82h8!,

~vv8u1!5~vv8uh!5~vv8u1h!5~vv8uh1!50.
~31!

In terms of these functionals, any element~ru of the space
S of states (S,O8) is assumed to have the following form
@11#:

r5rd1rc, rd5r1* (1u1E rv* ~vudv,

rc5E rv1* (v1udv1E r1v8
* (1v8u

1E rvv8
* ~vv8udvdv8, ~32!

where

r15r1* >0, rv5rv* >0, rv15r1v* , rvv85rv8v
* ,

~33!

rv* , r1v8
* , rv1* , and rvv8

* being ordinary functions of the
variablesv andv8, and also

r11E rvdv51. ~34!

Then we will say thatrPS.
Equations~33! are the conditions forr to be a positive

functional, while Eq.~34! is a consequence of the total pro
ability condition
of

ls

~ruI !5~ru1!1E dv~ruv!51, uI )[u1)1E uv)dv.

~35!

The condition (ruI )51 on the states can be interpreted a
generalization of the concept of trace, expressing the t
probability condition. (ru1)5r1 is the probability of the
state being in the pure stateu1&^1u and (ruv)5rv is the
probability density of the state being in the pure sta
uv&^vu.

As in the previous section the new formalism contains
usual approach of quantum mechanics. In fact, let us c
sider a pure state represented by the wave function

uc&5c1u1&1E dvcvuv&,

^cuc&5c1* c11E dvcv* cv51. ~36!

For an observableO, having diagonal singularity as in ex
pression~30!, we have

^cuOuc&5c1* c1O11E dvcv* cvOv1E dv8c1* cv8O1v8

1E dvcv* c1Ov11E dvdv8cv* cv8Ovv8 .

~37!

The mean value~37! of O in the pure stateuc&, can be writ-
ten as (rpureuO), if we define the functional

(rpureu[c1* c1(1u1E dvcv* cv(vu1E dv8c1* cv8(1v8u

1E dvcv* c1(v1u

1E dvdv8cv* cv8~vv8u. ~38!

Acting with (rpureu, given in Eq.~38!, on an observableuO),
given by Eq. ~30!, we easily prove that (rpureuO)
5^cuOuc&. Following the arguments of the previous se
tion, it is easy to show that the mixed states of the us
approach can also be represented by a functional acting
the observables with diagonal singularity.

Expressions such aŝvuv& or ^vuHuv& are not defined.
However, the generalized state~vu has a well-defined energ
and generalized trace, i.e.,

^I &5~vuI !5(vu$u1)1E dv8uv8)%5E dv8d~v2v8!51,

^H&5~vuH !5(vu$mu1)1E dv8v8uv8)

1E dv8Vv8@ u1v8!1uv81)]5v.

~39!
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B. Time evolution and asymptotic states

The time evolution of the states is determined by an
eratorUt acting onr, as defined in Eq.~19!. We are going
to consider observablesOPO, as in Eq.~30!, having a di-
agonal singularity. In addition, we assume, as usual,
Ov , Ov1 , O1v8 , andOvv8 are regular functions of the vari
ablesv andv8.

The Lippmann-Schwinger generalized eigenvectors of
Hamiltonian are@14#

uv1&5uv&1
Vv

h1~v!
[ u1&1E dv8Vv8uv8&

v2v81 i0
,

^v1u5^vu1
Vv

h2~v!
[ ^1u1E dv8Vv8^v8u

v2v82 i0
,

h6~v![v2m2E dv8Vv8
2

v6 i02v8
. ~40!

If these conditions are fulfilled, it can be proved that t
generalized eigenvectors~40! form a complete orthonorma
system@14#, which we can use to expand the observab
We obtain

O5E dvOv
~1 !uv1&^v1u

1E E dv dv8Ovv8
~1 ! uv1&^v81u. ~41!

Comparing Eq.~30! with Eq. ~41!, it is easy to show tha

Ov
~1 !5Ov .

The time evolution is given by

~r tuO!5~r0uOt!

5E dv~r0uuv1&^v1u!Ov

1E dvdv8~r0uuv1&^v81u!ei ~v2v8!tOvv8
~1 ! .

~42!

Using the results of the Appendix, the second term goe
zero whent→`, and we obtain

lim
t→`

~r tuO!5~r`uO!, (r`u5E dv~r0uuv1&^v1u!~vu.

~43!

For the initial condition

(r0u5(r0u1)(1u1E ~r0uv!(vudv,

~r0u1!1E ~r0uv!dv51,

representing a generalized mixture of discrete and cont
ous modes, we obtain

(r`u5E dvF ~r0u1!
Vv

2

h1~v!h2~v!
1~r0uv!G~vu,

~44!
-

at

e

.

to

u-

showing the complete decay of the~1u component of the
state,4 and the simultaneous appearance of an additional
in the diagonal~vu component, with a maximum atv5m.
@In fact, it is easy to show thatVv

2 /h1(v)h2(v) 'd(v
2m) for very smallVv , see Ref.@20#, Eq. ~80!#. In other
words, the unstable state~1u decays in the state of the con
tinuous spectrum, as the electrons decay in the electrom
netic field, giving its energy to the continuous radiatio
mode corresponding to this energy; a well-established
perimental phenomenon, already explained in Ref.@20#.

The time evolution for the~1u component of the state is

~r tu1!5~r0u1!E E dvdv8ei ~v2v8!t

3
Vv

2

h1~v!h2~v!

Vv8
2

h1~v8!h2~v8!
. ~45!

As is well known, no pure exponential decay is obtain
from the previous expression, but it has a dominant expon
tial behavior. The deviations from this exponential behav
are more important for small times~Zeno effect! and for long
times ~Khalfin effect!.

Now we can see in detail how a pure state become
generalized state. For example, the initial state given by
functional (r0u5(1u is a pure state, because it can also
represented by the wave functionu1&, but the weak limit for
t→` of (Utr0u is (r`u5*dv @Vv

2 /h1(v)h2(v)# (vu,
which is not a pure state, but a generalized state, where
state~vu has probability densityVv

2 /h1(v)h2(v). Then, in
this way,it is possible for a pure state to became a gener
ized one, and the phenomenon of decoherence is feasi
This nonstandard result suggests that this formalism may
useful for the description of the approach to equilibrium
quantum-statistical mechanics@12#.

IV. GENERALIZED COMPLEX SPECTRAL
DECOMPOSITION AND TIME EVOLUTION

Equation ~42! is an exact expression containing all th
information about the time evolution of the Friedrichs mod
including the asymptotic state fort→`. Nevertheless the
evolution can be better visualized using a generalized sp
tral expansion that allows us to compute the characteri
decaying times of the process. Moreover, to obtain this

4The Hamiltonian~28! corresponds to the one excited mode of t
Hamiltonian:

H5mb†b1Edvvav
†av1EdvVv@b†av1av

†b#,

@b,b†#51, @av ,av8
†

#5d~v2v8!.

Therefore, the field is at zero temperature and the exited modeu1&
decays. This is not the case if the field has an infinite numbe
exited modes, as we discussed in Ref.@12#.
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pansion we somehow are forced to introduce time asym
try into the play.5

With the interaction termV of the Hamiltonian~28!, the
Lippmann-Schwinger solutions~40! form a generalized com
plete orthonormal system for which the Hamiltonian is giv
by H5*0

`dvvuv1&^v1u. The discrete eigenvaluem of the
Hamiltonian H05mu1&^1u1*0

`dvuv&^vu is eliminated
from the expansion ofH by the interaction. If we conside
the analytic extension to the lower half plane of the resolv
of the Hamiltonian, it is possible to show that the simple p
at z5m for the unperturbed case is translated by the inter
tion with a pole at z15v12 ( i /2) g1PC2, for which
h1(z1)50. In this subsection we present a generalized sp
tral decomposition includingz1 andz1* as generalized eigen
values, in order to make explicit the ‘‘pure exponential co
ponent’’ of the decay.

Let us first go to the Heisenberg picture and consider
expansion~41! of an observableO(t)PO, and define the
singular invariant~inv! and the regular fluctuating~fluc!
parts by

Oinv[E dvOv
~1 !uv1&^v1u,

Ofluc[O2Oinv5E E dv dv8Ovv8
~1 ! uv1&^v81u ~46!

Oinv being the invariant part ofO under the time evolution
(Ut

†Oinv5Oinv). It can be easily proved using Eqs.~40! that
if Ofluc is represented in the unperturbed basis~u1&,uv&!, we
obtain

~Ofluc!v50.

In what follows we assume that the functionsOvv8 ,
Ov1 , andO1v8 appearing in the expansion~30! of O in the
unperturbed basis can be analytically extended to the u
~lower! complex half plane in the variablev(v8). This is an
extra condition that we impose on the observables of sp
O, the one that introduces time asymmetry, and allows u
define a rigging in the theory.~Moreover, if we would like to
decompose the evolution group into two semigroups,
may choose the analytic functions in the Hardy classes, a
Ref. @20#, but we will discuss this possibility elsewhere.! Our
assumption implies that the functions (Ofluc)vv8 , (Ofluc)v1 ,
and (Ofluc)1v8 can also be analytically extended to the upp
~lower! complex half plane in the variablev(v8). Therefore
these analytical properties make it possible to premulti
Ofluc by

I †5u f̃ 1&^ f 1u1E dvu f̃ v&^ f vu

@see Eq.~39! of Ref. @20## and to postmultiplyOfluc by

5For the sake of simplicity the functionVv is chosen in such a
way that h6(v) does not vanish for anyvPR1 @and also the
analytic extension to the lower half complex planeh1(z) of h1(v)
has just one simple zero atz5z1PC2#
e-

t
e
c-

c-

-

e

er

ce
to

e
in

r

y

I 5u f 1&^ f̃ 1u1E dvu f v&^ f̃ vu,

@see Eq.~33! of Ref. @20##. Then

Ofluc5F u f̃ 1&^ f 1u1E dvu f ṽ&^ f vu GOfluc

3F u f 1&^ f̃ 1u1E dvu f v&^ f ṽu G , ~47!

where@13,15#

u f 1̃&[
1

Ah28 ~z1* ! F u1&2E
0

`

dvVvS 1

v2sD
z
1*

2

uv&G ,

^ f 1u[
1

Ah28 ~z1* ! F ^1u2E
0

`

dvVvS 1

v2sD
z
1*

2

^vuG ,

u f ṽ&[uv1&5uv&1
Vv

h1~v!
F u1&1E

0

` dv8Vv8

v2v81 io
uv8&G ,

^ f vu[^vu1
Vv

h2~v !̃
F ^1u1E

0

` dv8Vv8

v2v82 io
^v8uG , ~48!

u f 1&[
1

Ah18 ~z1!
F u1&2E

0

`

dvVvS 1

v2s
D

z1

1

uv&G ,

^ f 1̃u[
1

Ah18 ~z1!
F ^1u2E

0

`

dvVvS 1

v2s
D

z1

1

^vuG ,

u f v&[v&1
Vv

h1~v !̃
F u1&1E

0

` dv8Vv8

v2v81 io
uv8&G ,

^ f ṽu[^v1u5^vu1
Vv

h2~v!

3F ^1u1E
0

` dv8Vv8
v2v82 io

^v8uG . ~49!

In the last expressionsz1PC2 is the single solution of
h1(z)50, h1(z) being the analytic extension to the lowe
half plane of the functionh1(v) defined in Eq.~40!. In Eqs.
~48! and ~49! the distributions@1/(v2s)#z1

1 , @1/(v2s)#z
1*

2
,

h̃1(v), andh̃2(v) are used. They are defined by the equ
tions

E dvS 1

v2sD
z1

1

w~v![E dv
1

v2z1
w~v!12p iw~z1!,

E dvS 1

v2sD
z
1*

2

w~v![E dv
1

v2z1*
w~v!22p iw~z1* !,

~50!
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E dv
1

h1̃~v!
w~v![E dv

1

h1~v!
w~v!12p i

w~z1!

h18 ~z1!
,

E dv
1

h2̃~v!
w~v![E dv

1

h2~v!
w~v!22p i

w~z1* !

h28 ~z1* !
.

~51!

The vectors defined in Eqs.~48! and~49! are generalized
eigenvectors of the Hamiltonian, obtained by Petrosky, P
gogine, and Tasaki@13# using a time ordering rule, and pre
viously constructed by Sudarshan, Chiu, and Gorini@14# us-
ing analytic continuation techniques. They satisfy t
equations

^ f̃ 1u f 1&51, ^ f ṽu f v8&5d~v2v8!,

^ f̃ 1u f v&5^ f ṽu f 1&50,

H5z1u f 1&^ f̃ 1u1E dvvu f v&^ f ṽu, ~52!

^ f 1u f̃ 1&51, ^ f vu f v 8̃&5d~v2v8!,

^ f 1u f ṽ&5^ f vu f̃ 1&50,

H†5z1* u f̃ 1&^ f 1u1E dvvu f ṽ&^ f vu. ~53!

As Ut
†O5eiH †tOe2 iHt andO5Oinv1Ofluc , we obtain

Ut
†Oinv5Oinv5E dvPvO, ~54!

and

Ut
†Ofluc5eiH †tOfluc e2 iHt

5 Hei ~z1* 2z1!tP111E dvei ~z1* 2v!tP1v

1E dvei ~v2z1!tPv1

1E dvdv8ei ~v2v8!tPvv8J O, ~55!

where

PvO[u f ṽ&Ov^ f ṽu, P11O[u f̃ 1&^ f 1uOflucu f 1&^ f 1ũ,

P1vO[u f̃ 1&^ f 1uOflucu f v&^ f ṽu,

Pv1O[u f ṽ&^ f vuOflucu f 1&^ f 1̃u,

Pvv8O[u f ṽ&^ f vuOflucu f v8&^ f v 8̃u. ~56!

Then asz15v12 ( i /2)g1 we conclude that the characterist
decaying times of the four terms in the right-hand side of E
~55! are
i-

.

g1
21 , S g1

2 D 21

, S g1

2 D 21

, `,

respectively. The last~continuous! term has an infinite prac
tical decaying time~if computed in the exponential period!,
since the interaction couples modesu1& anduv& but does not
couple the modes of the continuous among themselves.

The time evolution of an observable given by Eqs.~54!
and ~55!, together with Eq.~19! relating Schro¨dinger and
Heisenberg pictures, allow us to obtain our main res
namely, the following expressions for the time evolution
states in the Schro¨dinger representation:

(r tu5(r0uUt
†5E dv(r0uPv1ei ~z1* 2z1!t(r0u P11

1E dvei ~z1* 2v!t (r0u P1v

1E dvei ~v2z1!t (r0u Pv1

1E dvdv8ei ~v2v8! t ~r0uPvv8 . ~57!

For the previous expression to be well defined, we need
compute (r0uu f ṽ&^ f ṽu), (r0uu f̃ 1&^ f̃ 1u), (r0uu f̃ 1&^ f ṽu),
(r0uu f ṽ&^ f 1ũ), and (r0uu f ṽ&^ f v 8̃u). Taking into account Eqs
~48! and~49!, we conclude that it is necessary to restrict t
spaceS,O8 of states in such a way that the functionsrvv8

* ,
rv1* , andr1v8

* appearing in Eq.~32! have well-defined ana
lytic extensions to the upper~lower! half of the complex
plane in the variablev(v8). This is a consequence of th
time-asymmetric structure we have added to the spaceO.
The characteristic decaying times are the same as those l
under Eq.~56!.

Moreover, the formalism developed in Sec. II gives (ruI )
as a generalized definition of the trace of states with diago
singularity, whereI is the identity operator. This definition
can be used to obtain the generalized trace of the com
nents of the state appearing in Eq.~57!. In terms of the
Lippmann-Schwinger solutions~40!, or the generalized
eigenvectors given in Eqs.~48! and ~49!, the identity opera-
tor is

I 5I inv5E dvuv1&^v1u

and thereforeI v51 and I fluc50. Taking into account tha
uv1&5u f ṽ& and ^v1u5^ f ṽu, we also have

I 5E dvu f ṽ&^ f ṽu.

With the definitions~56! of the projectors and the gene
alized orthogonality conditions given in Eqs.~52! and ~53!,
we obtain
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(r0u E dvPvI )5(r0u E dvI vu f ṽ&^ f ṽu)

5(r0u E dvu f ṽ&^ f ṽu)5~r0uI !51,

~r0uP11I !5~r0uu f̃ 1&^ f 1uI flucu f 1&^ f̃ 1u!50,

~r0uP1vI !5~r0uPv1I !5~r0uPvv8I !50. ~58!

As we can see, the time-independent part (r0u*dvPv of the
state contains all the generalized trace of (r tu, while the
time-dependent components have zero trace. This is co
tent with the conservation of the trace by time evolutio
Moreover, these results also tell us that the time evolv
part (r0u$I2*dvPv% cannot be considered a physical sta
it is just a fluctuation around the time-independent p
(r0u*dvPv . All these results coincide with those alread
obtained in Ref.@20# for the pure-state case.

Even more generally, for any observableQ commuting
with the HamiltonianH, we can write

Q5E dvQvuv1&^v1u5E dvQvu f ṽ&^ f ṽu; ~59!

thereforeQfluc50, and

(r0u E dvPvQ)5~r0uQ!,

~r0uP11Q!5~r0uP1v Q!5~r0uPv1Q!5~r0uPv v8 Q!50,
~60!

which is consistent with (r tuQ)5(r0uQ). Then the observ-
ables that commute withH are not only constants of motion
but their ‘‘fluctuation components’’ are just fluctuation
around the time-independent part (r0uQ), since their mean
values vanish. This conclusion is, of course, also valid
Q5H.

So (r0uP11, (r0uP1v , (r0uPv1 , and (r0uPvv8 ~namely,
the generalized left eigenvectors of the Liouville operatorL†

with eigenvaluesz1* 2z1 , z1* 2v, v2z1 , andv2v8! have
no trace, no energy, and the zero mean value of any obs
able that commutes withH. Therefore these eigenvectors,
any fluctuation, cannot be considered alone as phys
states.

Finally the formalism presented in Sec. II for states a
observables with diagonal singularity, applied to t
Friedrichs model in Liouville space, shows that there is
place for physical states with pure exponential decay. Ho
ever, the pure exponential decay appears for physical s
as an approximation when the interactionV is very small. In
this case, using the results of Ref.@20#, we obtain the fol-
lowing weak limitsfor the projectors defined in Eq.~56!

lim
V→0

Pv5uv)~vu1u1!d~v2m!~vu,

lim
V→0

P115u1)~1u2u1!~v5mu,

lim
V→0

P1v5u1v)~1vu, lim
V→0

Pv15uv1!~v1u,
is-
.
g
;
t

r

rv-

al

d

o
-

tes

lim
V→0

Pvv85uvv8)~vv8u. ~61!

Moreover, for smallV, z1>m2 ipVm
2 is an approximated

solution ofh1(z1)50, and the weak limits~61! for the pro-
jectors can be used in Eq.~57! to obtain

(r tu>E dv~r0uv!(vu1e22pVm
2 t~r0u1! (1u

1$12e22pVm
2 t%~r0u1!(mu

1E dve22pVm
2 tei ~m2v! t~r0u1v! (1vu

1E dve22pVm
2 t ei ~v2m! t~r0uv1!(v1u

1E dvE dv8 ei ~v2v8!t~r0uvv8! ~v v8u.

~62!

The first three terms in the previous equation give
time evolution of the diagonal part of the state. The discr
mode~1u has an exponential decay, and simultaneously th
is a growing part in the continuum withv5m. There is also
a continuum time-independent part, keeping the memory
the initial condition. But here the pure exponential decay
just an approximation.

The last three terms in Eq.~62! give the time evolution of
the nondiagonal part of the state. The~v1u and~1vu compo-
nents have exponential decay together with an oscilla
factor. There is no exponential decay for the (vv8u compo-
nent for the reasons we have already explained below in
~56!, but this term gives a vanishing contribution to the me
value of observables fort→` due to the oscillating factor
ei (v2v8)t.

Then we obtain theweaklimit

lim
t→`

(r tu>E dv~r0uv!~vu1~r0u1!~v5mu. ~63!

The previous approximated expression coincides with the
act expression~44! for small V.

V. CONCLUSIONS

We have applied the formalism of quantum theory
Refs.@9–11# to a simple ‘‘toy’’ model with Hamiltonian

H5E
0

`

dEEuE&^Eu. ~64!

For this system we defined the classO of observables with
diagonal singularity

uO)5E dEOEuE)1E E dEdE8OE E8uEE8),

OPO, uE)[uE&^Eu, uEE8![uE&^E8u, ~65!

and the class of statesS,O8 of the form
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(ru5E dErE* (Eu1E E dE dE8 rEE8
* ~E E8u, ~66!

where

~EuO!5OE , ~EE8uO!5OEE8 . ~67!

In this formalism we can represent the following.
~i! A pure state, i.e., a state that in the usual approach

represented by a normalized vectoruC&5*dEuE&^EuC&. In
the functional approach this state is represented by a fu
tional of the form~66! with

rE* 5^CuE&^EuC&, rEE8
* 5^CuE&^E8uC&. ~68!

~ii ! A mixed state, i.e., a state that in the usual approach
represented by a mixture of normalized vectorsuC (a)& with
probabilities p(a). In the functional approach this state
given by a functional of the form~66! with

rE* 5(
a

p~a!^C~a!uE&^EuC~a!&,

rEE8
* 5(

a
p~a!^C~a!uE&^E8uC~a!&. ~69!

~iii ! A generalized stateof the form given in Eq.~66! with
rE* ÞrEE8

* . The state (Ẽu, with energyẼ is a generalized

state, as we have in this caserE* 5d(E2Ẽ) and rEE8
* 50.

Another example of a generalized state is the weak limit
t→` of an initially pure state, given by

(r`u5E dE^EuC0&^C0uE&~Eu. ~70!

This result also shows the possibility for a pure state to
come a generalized state for very big times.

We also applied the functional approach to the Friedri
model, with Hamiltonian

H5mu1&^1u1E
0

`

vuv&^vudv1E
0

`

Vv@ uv&^1u

1u1&^vu#dv. ~71!

In this case, we considered the spaceO of observables with
diagonal singularity

uO)5O1u1)1E Ovuv) dv1E O1 v8u1v8) dv8

1E Ov1uv1) dv1E Ov v8uvv8)dv dv8,

OPO,

u1)[u1&^1u, uv![uv&^vu, uvv8![uv&^v8u,

u1v)[u1&^vu, uv1![uv&^1u, ~72!

and the class of statesS,O8 of the form
c-

r

-

s

(ru5r1* (1u1E rv* (vudv1E rv1* (v1udv

1E r1v8
* (1v8u1E rvv8

* ~vv8udvdv8, rPS,

~1uO!5O1 , ~vuO!5Ov , ~v1uO!5Ov1 ,

~1v8uO!5O1v8 , ~vv8uO!5Ovv8 . ~73!

We obtained exact expressions for the time evolution
any state functional. For example, we can consider the in
state (r0u5(1u, which is a pure state, as it can be represen
by the normalized vectoru1& in the usual approach. Fort
→` this state evolves into

(r`u5E dv
Vv

2

h1~v!h2~v!
~vu. ~74!

This is a generalized state where the states (vu have prob-
ability densityVv

2 /h1(v)h2(v). For small interaction pa-
rameter, this probability density is a sharp peak centere
the valuev5m, corresponding to the unperturbed energy
the decaying state (1u.

The ‘‘final’’ state given in Eq.~74! is invariant under time
inversion and also invariant under time evolution. Then
formalism itself makes evident the intrinsic irreversibility o
the decay process.

The generalized state~vu has well-defined energy an
generalized trace in this formalism, i.e.,

^H&5~vuH !5v, ^I &5~vuI !51.

The exact expressions we obtained for the time evolut
show that it is impossible to have pure exponential deca
However, the decay of the state~1u deviates from the expo
nential only for small and large values of time~Zeno and
Khalfin effects!. Therefore, it is useful to obtain spectral d
compositions including the contributions of the single pole
z1 of the analytic extension to the lower half plane of theS
matrix. This spectral decomposition is possible if we co
sider the observablesOPO and statesrPS,O8 for which
the nondiagonal componentsOv1 , O1v8 , Ovv8 , rv1* , r1v8

* ,
andrvv8

* in the unperturbed basis are ordinary functions t
can be analytically extended to the upper~lower! complex
half plane for the variablev (v8).

For the Friedrichs model we obtained a generalized sp
tral decomposition of the form

~r tu5~r0uUt
† ,

Ut
†5E dvPv1ei ~z1* 2z1!tP111E dv ei ~z1* 2v!tP1v

1E dv ei ~v2z1! t Pv11E dv dv8ei ~v2v8!tPv v8 .

We proved that (r0uP11, (r0uP1v , (r0uPv1 , and
(r0uPvv8 are generalized left eigenvectors of the Liouville
Von Newmann operatorL† with eigenvaluesz1* 2z1 , z1*
2v, v2z1 , andv2v8, and they have no trace, no energ
and zero mean value of any observable commuting withH.



t

es
ur
ti

1-
D
-
,

ta

he

f.

-

us

57 4151MINIMAL IRREVERSIBLE QUANTUM MECHANICS: . . .
Therefore these eigenvectors, as any fluctuation, canno
considered alone as physical states.

There is no place in this formalism for physical stat
with pure exponential decay. However, we recover the p
exponential decay of the unstable state as an approxima
for small interactions, i.e.,

(r tu>E dv~r0uv!(vu1e22pVm
2 t~r0u1! (1u

1$12e22pVm
2 t%~r0u1!(mu

1E dve22pVm
2 tei ~m2v! t~r0u1v! (1vu

1E dve22pVm
2 t ei ~v2m! t~r0uv1!(v1u

1E dvE dv8ei ~v2v8!t~r0uvv8! ~vv8u.
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APPENDIX: VANISHING OF THE NONDIAGONAL
PARTS OF MEAN VALUES FOR T ˜`

In this section we give the conditions under which t
limits for t→` in expressions~4! and~22! give the results of
Eqs. ~5! and ~27!. The proof follows the arguments of Re
@22#. Let us start, considering the expression

I ~l!5E
D

dx̄g0~ x̄!exp@lf~ x̄!#, ~A1!

whereD is a subset ofRn, f, andg0 are differentiable func-
tions in D̄, andl is a complex parameter.

Provided¹̄•fÞ0̄ we can easily prove the following iden
tity:

g0~ x̄!elf~ x̄!5
1

l
¹̄•„H̄0~ x̄!elf~ x̄!

…2
1

l
„¹̄•H̄0~ x̄!…elf~ x̄!,

~A2!

where

H̄0~ x̄![g0~ x̄!
¹̄f~ x̄!

u¹̄f~ x̄!u2
, ~A3!

and therefore

I ~l!5
1

l E
P
elfH̄0•N̄ds2

1

l E
D

elf~¹̄•H̄0!dx̄, ~A4!
be

e
on

-

le

whereP is the boundary ofD with exterior normalN̄. In our
case we need to compute

F~ t !5E
0

`

dEE
0

`

dE8rEE8
* OEE8e

i ~E2E8!t, ~A5!

which is Eq.~A1! with

l5 i t , x̄5~E,E8!, D5@0,̀ !3@0,̀ !,

f~E,E8!5E2E8, g0~E,E8!5rEE8
* OEE8 ,

and therefore

¹̄•f5~1,21!, H̄05
1

2
g0~E,E8!~1,21!,

¹̄•H̄05
1

2
~1,21!•¹̄g0~E,E8!.

The bidimensional domainD and the boundaryP are repre-
sented in Fig. 1, withP5C11C21C3 , for someR@1.

Using Eq.~A4! we obtain

2i tF ~ t !5E
0

`

dEg0~E,0!eiEt1 lim
R→`

E
C2

dlei ~E2E8!tg0~E,E8!

3~1,21!•N̄1E
0

`

dE8g0~0,E8!e2 iE8t

2 lim
R→`

E E
D

dEdE8ei ~E2E8!t

3S ]

]E
2

]

]E8Dg0~E,E8!. ~A6!

If g0(E,E8)5rEE8
* OEE8 is a Schwartz function in@0,̀ )

3@0,̀ ), the modulus of the right-hand side of the previo
expression is a bounded function oft, and therefore

lim
t→`

F~ t !50.

FIG. 1. Domain and boundary for Eq.~A6!.
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