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Measurement of time of arrival in quantum mechanics
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It is argued that the time of arrival cannot be precisely defined and measured in quantum mechanics. By
constructing explicit toy models of a measurement, we show that for a free particle it cannot be measured more
accurately themt,~1/E,, whereE, is the initial kinetic energy of the particle. With a better accuracy,
particles reflect off the measuring device, and the resulting probability distribution becomes distorted. It is
shown that a time-of-arrival operator cannot exist, and that approximate time-of-arrival operators do not
correspond to the measurements considered [81€50-294{©8)03105-9

PACS numbegs): 03.65—w

[. INTRODUCTION whereE, is the initial kinetic energy of the particle and we
use units withi =1. The basic reason is that, unlike a clas-

Consider a beam of free particles, upon which a measuresical mechanical clock, in quantum mechanics the uncer-
ment is performed to determine the time of arrival xo tainty in the clock’s energy grows when its accuracy im-
=Xa - The time of arrival can be recorded by a clock situatedproves[2]. We find that particles with initial kinetic energy
at x=x, which switches off when the particle reaches it. In Ey are reflected without switching off a clock if this clock is
classical mechanics we could, in principle, achieve this withset to record the time of arrival with accuracy better than in
the smallest nonvanishing interaction between the particl&q. (1). (The occurrence of a similar phenomenon is well
and the clock, and hence measure the time of arrival wittknown in optics as an impedance mismatch which causes
arbitrary accuracy. reflection in wave guidesFurthermore, for the small frac-

In classical mechanics there is also another indirection of the ensemble that does manage to turn off the clock,
method to measure the time of arrival. First invert the equathe resulting probability distribution becomes distorted. A
tion of motion of the particle and obtain the time in terms of detailed discussion of direct time-of-arrival measurements is
the location and momentui, (x(t),p(t),X,). This function  given in Sec. Il.
can be determined any time { either by a simultaneous Still, one can imagine an indirect determination of arrival
measurement of(t) andp(t) and evaluation o5, or by a  time as described above, by a measurement of some regular-
direct coupling toT A(x(t),p(t),Xa). ized time-of-arrival operatof o(X(t),p(t),xa) [3]. An obvi-

These two different methods, namely, the direct measuresus requirement of 4 is that it be a constant of motion; i.e.,
ment and indirect measurement, are classically equivalenthe time of arrival cannot change in time. As we shall show
They give rise to the same classical time of arrival. They arén Sec. Ill, a Hermitian time-of-arrival operator, with a con-
not equivalent, however, in quantum mechanics tinuous spectrum, can satisfy this requirement only for sys-

In quantum mechanics the corresponding operatotems with an unbounded Hamiltonian. This difficulty can,
TaA(X(1),p(t),Xa), if well defined, can in principle be mea- however, be circumvented by “projecting out” the singular-
sured to any accuracy. On the other hand, it has been arguégl at p=0 and by using only measurementsTgf which do
by Allcock [1] that a direct measurement cannot determinenot cause a “shift” of the energy towards the ground state.
the time of arrival of free particles to any accuracy. In Sec.Nevertheless, unlike the classical case, in quantum mechan-
Il B, we argue that Allcock’s arguments are not sufficient toics the result of such a measurement may have nothing to do
limit the accuracy of time-of-arrival measurements. Onewith the time of arrival tox=x,. As is argued in Sec. IV,
needs to consider models with physical clocks. Using thesseinceT, can be measured with arbitrary accuracy it does not
models, we shall argue that the accuracy of time-of-arrivacorrespond to the result obtained by the direct measurement

measurements cannot be better than discussed in Sec. Il. We conclude in Sec. V with a discussion
of the main results. An explicit calculation of the clock’s
At,>1/E,, (1) final probability distribution is given in the Appendix.

. . . Il. MEASUREMENT OF TIME OF ARRIVAL
*Electronic address: jono@physics.ubc.ca

TElectronic address: sp230@newton.cam.ac.uk In this section we consider toy models of a measurement
*Electronic address: reznik@t6-serv.lanl.gov of time of arrival. To begin with, assume that a beam of
$Electronic address: unruh@physics.ubc.ca particles interacts with a detector that is locatestai0 and
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is coupled to a clock. Initially, as the beam is prepared, théThe classical time of arrival isp=y..= —mx(tg)/p,. The
clock is set to show=0. Our purpose is to design a particu- same result would have been obtained by measuring the clas-
lar setup such that as a particle crosses the poid the  sical variable—mxy/p,=—mx(t)/py,+ (t—ty), at arbitrary
detector stops the clock. Since the masses of the particime t. Consequently, the continuous and the indirect mea-
detector and the clock are unlimited we can ignore the unsurements alluded to in Sec. |, are classically equivalent.
certainty in the position of the measurement device. We shall On the other hand, in quantum mechanics the uncertainty
consider four models. The first model describes a direct infelation dictates a strong back reaction, i.e., in the limit of
teraction of the particle with the clock. In the second model Ay=At,—0, p, in Eq. (3) must have a large uncertainty,
the particle is detected by a two-level detector, which turnsand the state of the particle must be strongly affected by the
the clock off. To avoid the reflection due to “impedance act of measuring. Therefore, the two classically equivalent
mismatch,” we look next at the possibility of boosting the measurements become inequivalent in quantum mechanics.
energy of the particle in order to turn off the clock. We shall Before we proceed to examine the continuous measure-
also consider the case of a “smeared” interaction, and conment process in more detail, we note that a more symmetric

clude with a general discussion. formulation of the above measurement exists in which
knowledge of the direction from which particles are arriving
A. Measurement with a clock is not needed. We can consider

The simplest model which describes a direct interaction of 1
a particle and a clocf4], without additional “detector” de- H= 2—PX2+ 0(—Xx) Py, + 0(X) Py, !
grees of freedom, is described by the Hamiltonian m

1, As before, the particle’s motion is confined to one spatial
H= =P+ 6(=Xx)P,. (2)  dimensionx. Two clocks are represented By, andP, , and

2m X
time is recorded on the conjugate variabjesandy,, respec-

Here, the particle’s motion is confined to one spatial dimenfively. o
sionx and 6(x) is a step function. The clock’s Hamiltonian The first clock operates only when the particle is located

is represented b, and the time is recorded on the conju- &t x<0 and the second clock at>0. For example, if we
gate variabley.! start with a beam of particle at<0, a measurement at

The equations of motion read — of y; gives the time of arrival. Alternatively we could
measurd—y,. As a check we have, +y,=t. It is harder to
determine the time of arrival if the particle arrives from both

X=Pym, - Py= =Py o), @ girections. If, however, it is known that initialljx| <L, we
) . can measurg,; andy, aftert>L/v. The time of arrival will
y=6(x), Py=0. (4 then be given bya=min(y;,Y,).
Let us examine this system in more detail. For simplicity
At t—oo the clock shows the time of arrival: we shall consider the case of only one clock and a particle
initially at x<<0, which travels towards the clock a&=0.
Vo= y(to) + ftx o(—x(1))dt, ) The eigenstates of the Hamiltonian are
0

(eikx+ARe—iKX)eipy—iw(t), x<0,

A crucial difference between the classical and the quan- Prp(X.Y.1) = Aqelaxripy=io(t), x=0, ®)
tum case can be noted from E®). In the classical case the
back-reaction can be made negligibly small by choos$t)g  \wherek and p, are the momentum of the particle and the
—0. In this case, the particle follows the undisturbed solu-cjock, respectively, ando(t)=k?t/2m+ pt. Continuity of
andx(ty) <0 the clock finally reads

2k
* mx(t = )
ymZY(t0)+f 0 _X(to)_&(t_to) dt=— ( 0)- T kg
to m Px
(6) k—q
AR—k+q, 9

1 . I

y We_r;)avtf] rgprgsentgd here the ideal clqck_ by a Ham”tqmar\]lvhereq=\/k2+2mp: \/2m(Ek+ o).
dock= Py that is linear in the momentum. This linear Hamiltonian The solution of the Schidinger equation is

can be obtained approximately for a free particle vkl P§/2M. 9 4

For a given durationt we can approximateH=((P,)/M)P, . "

+const by letting the mass be sufficiently large. One could also -

consider a Larmor clock with a bounded Hamiltonidg,q= wJ vy fowdkfo dpf(p)g(k)¢kp(x,y,t), (10

[4]. The Hilbert space is spanned by21 vectors wherg is a

natural number, and the clock’s resolution can be made arbitrarilyvhereN is a normalization constant arfdp) andg(k) are

fine by increasing. some distributions. For example, with
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f(p):e—AyZm—po)Z When the back reaction causes a small disturbance to the
’ particle, the clock records the time of arrival. What happens
o A2(K—K)2+ ik when we wish to make more accurate measurements? Con-
g(k)=e" A tkko"+ikxg (12) . e o 5
’ sider the exact transition probability=q/k|A+|*, which
and x>0, the particle is initially localized on the lefix( also determines the probability to stop the clock. The latter is

<0) and the clockwith probability close to Lruns. The 9iven by
normalization in Eq(10) is thusN?= AxAy/27>. By choos-

ing po~1/A,, we can now set the the clock’s energy in the /Ek+ p 2\/E_k
range 0<p<2/A, . Ex | VEx+ VExtp
Let us first show that in the stationary point approxima-

tion the clock’s final wave function is indeed centeredSince the possible values obtained pyare of the order
around the classical time of arrival. Thus we assumeaat  1/A =1/At,, the probability to trigger the clock remains of
and A, are large such that(p) andg(k) are sufficiently  order 1 only if

peaked. Fox>0, the integrand in Eq10) has an imaginary

phase EAta>1. (19)

2
. (18

2
0= qx+kxo+ py— %_ pt. (120  HereAt, stands for the initial uncertainty in position of the

dial y of the clock, and is interpreted as the accuracy of the

de/dk=0 implies clock. Ek can be taken as the typical initial kinetic energy of

the particle.
q(ko) q(ko)t In measurements with accuracy better the®, the prob-
Xpeal P) = — Ko Xot — (13 ability to succeed drops to zero @& ,At,, and the time of
arrival of most of the particles cannot be detected. Further-
andd@/dp=0 gives more, the probability distribution of the fraction which has

been detected depends on the accudatyand can become
distorted with increased accuracy. This observation becomes
Ypeal k) =1— q_o' (14 apparent in the following simple example. Consider an initial
wave packet that is composed of a superposition of two
Hence atx=X,cq the clock coordinatey is peaked at the Gaussians centered arouke-k; and k=k,>k;. Let the
classical time of arrival classical time of arrival of the two Gaussians theandt,,
respectively. When the inequalitg9) is satisfied, two peaks
_MX (15) aroundt; andt, will show up in the final probability distri-
y= ko - bution. On the other hand, fornk?>At,>2m/k3, the
time of arrival of the less energetic peak will contribute less
To see that the clock yields a reasonable record of thep the distribution iny, because it is less likely to trigger the
time-of-arrival, let us consider further the probability distri- clock. Thus, the peak i will be suppressed. Clearly, when

bution of the clock the precision is finer than E/ we shall obtain a distribution
which is considerably different from that obtained for the

P(y,)/)x>o=f dx|y(x>0y,t)|% (16)  caseAt,>1/E, when the two peaks contribute equally.

In the case of inaccurate measurements with a small back B. Two-level detector with a clock
reaction on the particl&;=1. The clocks density matrix is

; A more realistic setup for a time-of-arrival measurement
then found(see the Appendixto be given by P

is one that also includes a particle detector which switches
the clock off as the particle arrives. We shall describe the
p(Y,Y)=0= ef(yftc)2/2y(y) (17) particle detector as a two-level spin degree of freedom. The
V27 y(y) particle will flip the state of the trigger from on to off, i.e.,
from 7, to |,. First let us consider a model for the trigger
where the width isy(y)=Ay2+ (mAx/ko)2+ (y/2koAX)?.  without including the clock:
As expected, the distribution is centered around the classical
time of arrivalt,=xym/ky. The spread ity has a term due to
the initial width Ay in clock positiony. The second and third
terms iny(y) are due to the kinematic spread in the time of
arrival IdE=m/kdk and are given bydx(y)m/k, where  The particle interacts with the repulsive Dirac delta function
dx(y)?=Ax?+ (y/2mAx)2. They dependence in the width potential atx=0, only if the spin is in theT,) state, or with
in x arises because the wave function is spreading as tima vanishing potential if the state $,). In the limit a— o
increases, so that at latgr the wave packet is wider. As a the potential becomes totally reflectivAlternatively, one
result, the distribution differs slightly from a Gaussian, al-could have considered a barrier of heigiftand width 14.)
though this effect is suppressed for particles with largein this limit, consider a state of an incoming particle and the
mass. trigger in the on statg)|1,). This state evolves to

1 a
Huigger= 5 Pt 5 (105 (). (20
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1 Since we can have> P, it would seem that the triggering
W1 — =l T0+¥nl L], (21)  mechanism need not be affected by the clock. If the final
V2 wave function includes a nonvanishing amplitude| of the

clock will be turned off and the time of arrival recorded.
where iz and 1 are the reflected and transmitted wave However, the exact solution shows that this is not the case.
functions of the particle, respectively. Consider, for example, an initial state of an incoming wave
The latter equation can be rewritten as from the left and the spin in thg, state.
The eigenstates of the Hamiltonian in the basisrpfare

eika_,_ d)LTefika
eipy,

1 1
§|Tz>(|¢R>+|l//T>)+§|lz>(|¢’R>_|'ﬁT>)- (22)
W (x)= ¢Lle‘ikix

(29

Since 1, denotes the on state of the trigger, anddenotes

the off state, we have flipped the trigger from the on state tqgr x<0 and

the off state with probability 1/2. By increasing the number _

of detectors, this probability can be made as close as we like ¢>R1e'ka

to one. To see this, considirspins as\ triggers and set the Yi(X)= b €KX Py, (26)
Hamiltonian to be !

P.2/2m+ (/2 (1+ ™M) 8(x). 23 for x>0. Herek,;=\2m(E-p)=y2mE, and k= y2mE
X (al2)TT( Ux)() (23 :\/W-

We will say that the particle has been detected if at least one Matching conditions ax=0 yield

of the spins has flipped. One can verify that in this case the 2k, Ima—k; /k,
robability that at least one spin has flipped is now 1 =
PR b 'Ppea 1S how PRI= 2K Tma—(1+k, /K" @7
So far we have succeeded in recording the event of arrival K. /K
to a point. We have no information at all on the time of d’Rl:_T(d’RT_l): [ )
arrival. It is also worth noting that the net energy exchange k| 2ky Ima—(1+k; /k))
between the trigger and the particle is zero, i.e., the particle’s
energy is unchanged. an
This model leads us to reject the arguments of Allcock. b= 29)
He considers a detector which is represented by a pure LI ¥Rl
imaginary absorbeH;,,=iV 6(—Xx). Allcock’s claim is that bui=bri—1. (30)

measuring the time of arrival is equivalent to absorbing a

particle in a finite region. If you can absorb the particle in anye fing that in the limita— = the transmitted amplitude is
arbitrarily short time, then you have succeeded in transfer-

ring the particle from an incident channel into a detector \/E_k
channel and the time of arrival can then be recorded. Using PR =~ Pri=—F——F—. (31
his interaction Hamiltonian one finds that the particle is ab- VE+ VE+p

sorbed in a rate proportional %~ 1. One can increase the Precisel in th . . h . babil
rate of absorption by increasing, but the particle will be recisely as in the previous section, the transition probability

reflected unles¥/<E, . He therefore claims that since you decays as/E/p. From Eqs.(29),(30) we get thatd, | —0,

cannot absorb the particle in an arbitrarily short time, you2d ¢1;—1 as the accuracy of the clock increases. Hence

cannot record the time of arrival with arbitrary accuracy. 1€ particle is mostly reflected back and the spin remains in
However, our two-level detector is equivalent to a detecthe I state; i.e., the clock remains in the on state.

tor which absorbs a particle in an arbitrarily short period of "€ present model gives rise to the same difficulty as the

time, and then transfers the information to another channePr€vious model. Without the clock, we can flip the “trigger”

The particle is instantaneously converted from one kind offPin by means of a localized interaction, but when we couple
particle (spin up to another kind of particléspin down. A the patrticle to the clock, the probability to flip the spin and

model for arbitrarily fast absorption is also given[#i, al- UM :che clock off decreases gradually to zero when the
though in this case, the absorber does not work for arbitrar§/0CK's precision is improved.

wave functions. We therefore see that considerations of ab-

sorption alone do not place any restrictions on measuring the C. Local amplification of kinetic energy

time of arrival. The difficulty with the previous examples seems to be that

However, we shall see that when we proceed to couplgne particle’s kinetic energy is not sufficiently large, and en-
the trigger to a clock we do find a limitation on the time of grqy cannot be exchanged with the clock. To overcome this
arrival. The total Hamiltonian is now given by difficulty one can imagine introducing a “prebooster” de-
vice just before the particle arrives at the clock. If it could
boost the particle’s kinetic energy arbitrarily high, without
distorting the incoming probability distributiofi.e., ampli-
(24)  fying all wave componentk with the same probability and

1 a 1
Htrigger—%—clock:% Pi"” E( 1+0y)0(x)+ §(1+ ay) I::'y-
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at an arbitrary short distance from the clock, then the time ofrherefore, the wave has been fully transmitted and the spin
arrival could be measured to arbitrary accuracy. Thus, amhas flipped with probability 1.
equivalent problem is, can we boost the energy of a particle So far we have considered an incoming wave with fixed

by using only localizedtime-independentinteractions?
Let us consider the following toy model of an energy
booster described by the Hamiltonian

1
H= —

P+ ao 5(x)+v—vt9(x)(l+cr )+1[v 6(—x)
2m X X 2 z 2 1

—V20(x)[(1—0). (32

Herea, W, Vi, andV, are positive constants. Let us con-

momentumk. For a general incoming wave packet only a
part of the wave will be transmitted and amplified. Further-
more one can verify that the amplified transmitted wave has
a different form than the original wave function since differ-
ent momenta have been amplified with different probabili-
ties. Thus, in general, although amplification is possible and
indeed will lead to a much higher rate of detection, it will
give rise to a distorted probability distribution for the time of
arrival.

There is, however, one limiting case in which the method

sider an incoming wave packet propagating from left 104oes seem to succeed. Consider a narrow wave peaked

right. The role of the termwo,6(x) is to flip the spinT, to

l,. The T, component of the wave function is damped out
exponentially by thaV term forx>0. The |, component is
damped out fox<<0 by the termV, but increases its kinetic
energy forx>0 by V,. As we shall see, for a given momen-

aroundk with a width 8k. To first order indk, the probabil-
ity T, that the particle is successfully boosted is given by

25k

=1+

(39

tum k, one can choose the four free parameters above such

that the wave is transmitted through the booster with prob
ability 1, while the gain in energy, can be made arbitrarily
large. On the other hand, the potential bartécan be made
arbitrarily large. The last requirement means that the un
flipped component decays fae>0 on arbitrary short scales,

Therefore in the special case thlHt/k<1, the transmission
probability is still close to 1. If in this case we know in
advance the value & up to Ak<<k, we can indeed use the
booster to improve the bour{d9) on the accuracy.

The reason why this seems to work in this limiting case is

which allows us to locate the booster arbitrarily close to theys follows. The probability of flipping the particle’s spin de-
clock, while preventing destructive interference between théyends on how long it spends in the magnetic field described

flipped and unflipped transmitted waves.
The eigenstates of E¢32), in the basis ofr,, are given

by
eikx+ ¢LTefikx
‘I’L(x)=( e ) (33
for x<0 and
¢RTe_)\X
Pa(x)= d)Rleik’x (39
for x>0, where k®=V;—q?=—-A?2+W=—-V,+k'2

Matching conditions ak=0 we find

L, KKFan ik —a?
I R N S Rl

(39

a

bri=dL =104

q (36)

(1+ ).

For a givenk, W, andV, (or givenk, \, andk’) we still
are free to choose andV; (or gq). We now demand that

!

a=k'k+q\, qz)\?. (37
With this choice we obtain
k’ 5
J =0, JRl:?|¢R1| =1 (38

by thea term in Eq.(32). If, however, we know beforehand,
how long the particle will be in this field, then we can tune
the strength of the magnetic fieldr) so that the spin gets
flipped. The requirement thatk/k<1 is thus equivalent to
having a small uncertainty in the “interaction time” with
this field. It must be emphasized however, that these mea-
surements cannot be used for general wave functions, and
that even in the special case above, one still requires some
prior information of the incoming wave function.

D. Gradual triggering of the clock

In order to avoid the reflection found in the previous two
models, we shall now replace the sharp step-function inter-
action between the clock and particle by a more gradual tran-
sition.

When the WKB condition is satisfied,

dX\(x)
dx

=e<], (40)

where \(x) "?=2m[Ey,—V(x)], the reflection amplitude
vanishes as

~exp(— 1/€?). (41)

Solving the equation for the potential with a givenwe
obtain

1

V(x)=Ep— Sme X2

(42

Now we observe that any particle with=E, also satisfies
the WKB condition(40) above for thesamepotential V..
Furthermorep, V. also satisfies the condition for amy>1.
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These considerations suggest that we should replace the Xa—Xi By
Hamiltonian in Eq.(7) with —A= +O(—). 49)
V2mE E (
H=P2/2m+V(x)P,, (43

The time of arrival can hence be measured provided that
EAt>1. On the other hand, when the detector’s accuracy is
At<1/E, the particle still triggers the clock. However, the
—xf\/xz, X<Xa, mgasured quantit)A no longer corresponds to the time of
V(X)= (44) arrival. Again, we see that when we ask for too much accu-
-1, X=Xp - racy, the particle is strongly disturbed and the result has
nothing to do with the time of arrival of a free particle.

where

Herexj >=2me?.

Thus t_his model describes a gradugl triggeramgof the E. General considerations
clock which takes place when the particles propagates from .
X— — o towardsx=X,. In this case the arrival time is ap- = We have examined several models for a measurement of

proximately given byt—y, wheret=t;—t;. Since without time of arrival and found a limitation,
limiting the accuracy of the clock we can demand that —

>1, the reflection amplitude off the potential step is expo- Ata=>1/Ey, (50
nentially small forany initial kinetic energyg.

The problem is, however, that the final valuetefy does
not always correspond to the time of arrival since it contain
errors due to the affect of the potentM{x) on the particle
which we shall now proceed to examine.

In the following we shall ignore ordering problems an
solve for the classical equations of motion for E43). We
have

on the accuracy thdj, can be measured. Is this limitation a
Sgeneral feature of quantum mechanics?

First we should notice that Eq50) does not seem to
follow from the uncertainty principle. Unlike the uncertainty
d principle, whose origin is kinematic, E¢50) follows from

the nature of thelynamicevolution of the system during a
measurement. Furthermore, here we are considering a re-
striction on the measurement of a single quantity. While it is
4 difficult to provide a general proof, in the following we shall
y(ty) —y(t) = f V(x(t"))dt’ (45) indicate why Eq(50) is expected to hold under more general
ti circumstances.

Let us examine the basic features that gave rise to Eq.
which can be decomposed to (50). In the toy models considered in Secs. Il A and Il B, the
clock and the particle had to exchange enepgy- 1/At,.

The final kinetic energy of the particle is larger py. As a
result, the effective interaction by which the clock switches
off looks from the point of view of the particle similar to a
=A+B+C, (46)  step function potential. This led to “nondetection” when Eq.
(50) was violated.
where Can we avoid this energy exchange between the particle
and the clock? Let us try to deliver this energy to some other
1 > > ~ = system without modifying the energy of the particle. For
A= \/HE[\/XAJr PyYWE— X +PyXi/E]  (47) example, consider the following Hamiltonian for a clock
with a reservoir:

t
Yt ~y(t) = (t o)+ (t—t) + | Vex(e)dr

is the time that the particle travels frory to x, in the po- p2
tential p,V(x), B is the total time, and H= ﬁ + 0(—X)H o+ Hoct Vied(X). (51)
[ 1+1¥E/ - o . .
=_ XA In > Py > +|nﬁ . (48 The idea is that when the clock stops, it dumps its energy
v2m pl 1+ V1+EX IpyXa XA into the reservoir, which may include many other degrees of

freedom, instead of delivering it to the particle. In this

The last termC, corresponds to an error due to the imper-model, the particle is coupled directly to the clock and res-
fection of the clock, i.e., the motion of the clock prior to ervoir; however, we could as well use the idea of Sec. II B
arrival tox, . By makingp, large we can minimize the error above. In this case
from this term to~ (xalnp,/v2mp,) .

Inspecting Eq(46) we see that by measuring—y; and Pﬁ a 1
then subtractingB=t;—t; (which is measured by another H=om ™ §(1+ ) 8(X) + §(1+ o2)He+ Hres
clock) we can determine the tintg—t; , which is the time of
arrival for a particle in a potentig,V(x), up to the correc-
tion C. However, this time reflects the motion in the pres-
ence of an externgunknown potential, while we are inter-
ested in the time of arrival for a free particle. The particle detector has the role of providing a coupling

Nevertheless, ip,/E<1 we obtain between the clock and reservaoir.

1
+ E(l_o'z)vres- (52
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Now we notice that in order to transfer the clock’s energywill be given by prob,) =|g(t,)|?>. We shall now also as-
to the reservoir without affecting the free particle, we mustsume that the spectrum @f, is continuous and unbounded:
also prepare the clock and reservoir in an initial state that-co<t,<ce.

satisfies the condition ShouldT 4 correspond to time of arrival it must satisfy the
following obvious conditionT, must be a constant of mo-
H.—V,s=0. (53 tion and in the Heisenberg representation
However, this condition does not commute with the clock dTA_a'r_A+1[T H]=0 (56)
time variabley. We can measure initially— R, whereR is a dt — gt it AT

collective degree of freedom of the reservoir such that

[R,V,ed =i, butin this case we shall not gain information on That is, the time of arrival cannot change in time.

the time of arrivaly sinceR is unknown. We therefore see ~ For a time-independent Hamiltonian, time translation in-
that in the case of a sharp transition, i.e., for a localizedvariance implies that the eigenkefs); depend only ort
interaction with the particle, one cannot avoid a shift in the—ta, i.€., the eigenkets cannot depend on the absolute time
particle’s energy. The “nontriggering(or reflection effect t. This means, for example, that at the time of arrival

cannot be avoided. |tA)t:tA= |t,’\>t:t;\. Time-translation invariance impliés
We have also seen that the idea of boosting the particle .
“just before” it reaches the detector, fails in the general ta)i=€"¢|0)o, (57)

case. What happens in this case is that while the detection . -
rate increases, one generally destroys the initial informatiovhereG=G(t—t,) is a Hermitian operator. Thereforis),
stored in the incoming wave packet. Thus, although highegatisfies the differential equations
accuracy measurements are now possible, they do not reflect
directly the time of arrival of the initial wave packet. i—— [ta) :ﬁh b= — _G|t ) iilt ) :_G|t )
Finally we note that, in reality, measurements usually in- dta' ' ata At ot AL Tt PAET g BATL

volve some type of cascade effect, which leads to signal (58
amplification and finally allows a macroscopic clock to be
triggered. A typical example of this type would be the pho-
tomultiplier where an initially small energy is amplified
gradually and finally detected. Precisely this type of process

; ; ; G dG i
occurs also in the model of Sec. Il D. In this case the particle T A [ta) = — ta— [ta)e+i[ta) (59)

: « . ” A A/t A A/t A/t
gains energy gradually by “rolling down” a smooth step at at
function. It hence always triggers the clock. The basic prob-
lem with such a detector is that when E§O) is violated, the ~and
“back reaction” of the detector on the particle, during the
i ; AN G aG

gradual detection, becomes large. The relation between the i— [tad i+ Ta= | ta) e =ta— | ta): (60)
final record to the quantity we wanted to measure is lost. ot ot ot

Now act on the eigenstate equati@) with the differential
operators dy, andid,. This yields

By adding the two equations above, the dependence on
IIl. CONDITIONS ON A TIME-OF-ARRIVAL dGl/at drops off, and after using the constancy f [Eq.
OPERATOR (56)] we get

As discussed in the Introduction, although a direct mea-
surement of the time of arrival may not be possible, one can
still try to observe it indirectly by measuring some operator
Ta(p,X,Xa)- In the next two sections we shall examine this

([TaHI+D)|ta)=0. (62)

Since the eigenkets,) span, by assumption, the full Hilbert

operator and its relation to the continuous measurements dgpace

scribed in the previous sections. First in this section we show [TaH]=—i. (62
that an exact time-of-arrival operator cannot exist for sys-

tems with bounded Hamiltonian. HenceT, is a generator of energy translations. From Eg.

To begin with, let us start with the assumption that the(56) we haveTA=t—f, whereT is the “time operator” of
time-of-arrival is described, as other observables in quanturg,e system whose Hamiltoniank It is well known that Eq.
mechanics, by a Hermitian operaf®x: (62) is inconsistent unless the Hamiltonian is unbounded

from above and beloy7].
Ta(D)[ta)i=talta):- (54

Here the subscrip}; denotes the time dependence of the 2y ajicock's proof [5] of the nonexistence of a time-of-arrival

eigenkets, and , may depend explicitly on time. Hence for qgperator for the special case of a free Hamiltonian, he assumes that
example, the probability distribution for the time of arrival |t,+ 7y=e"™M|t,). However, by definition, a time-of-arrival eigen-
for the state state which will arrive at the time, will remain an eigenstate
which arrives at, as the system evolves. Allcock’s proof is thus a
. N , proof of the nonexistence of a time operator—not time-of-arrival
) J' 9(ta)lta)dts (59 operators.
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IV. MEASURING THE TIME-OF-ARRIVAL OPERATOR A measurement of the time-of-arrival operator is not equiva-
VS CONTINUOUS MEASUREMENTS lent to continuously monitoring the point of arrival. Further-
more, if one measures a time-of-arrival operator at a time
before the particle arrives, then one needs to know the full
Hamiltonian from timet’ until t5. Even if one knows the
full Hamiltonian, and can find an approximate time-of-
arrival operator, one has to have faith that the Hamiltonian
will not be perturbed after the measurement has been made.
m 1 1 On th_e other hand, the c_ontinuous measurements we have
— — —x(0)—. (63  described can be used with any Hamiltonian.
2 \p Jp Finally, how does the resulting measurement of a time-of-
arrival operator compare with that of a continuous measure-
The choice for the time operator is clearly not unique. Anment? From the discussion in Sec. Il A, it should be clear
equally valid choice is—m((1/p)x+x(1/p)), etc. Further- that in the limit of high precision, continuous measurements

Although formally there cannot exist a time-of-arrival op-
eratorT 4, it may be possible to approximale, to arbitrary
accuracy|[3]. Kinematically, one expects that the time-of-
arrival operator for a free particle arriving at the location
Xa=0 might be given by

TA:

more, sinceT , is ill defined atp=0, its eigenvalues respond very differently in comparison to the time operator.
At the limit of dt,— 0 all the particles bounce back from the

(KT = 6(+K) /Lei(TkZIZm) (64) det_ector. Such a behavior does not occur for the time_-of-

- 27m arrival operator. Nevertheless, one may still hope that since

the eigenstates df 5 have an infinite spread in energy, they
are not orthogonal: do trigger a clock, even iit,— 0. For the type of models we
have been considering, we can show, however, that this con-
nection is questionable.
For example, we assume that the interaction of one eigen-
state ofT, with the clock(of, say, Sec. Il A evolves as

Thus, T, is not Hermitian. We can, however, define the ,

regularized Hermitian operatof,'=0TO, where O=1 [taly=to)=[x(t)ly=ta)+|x'(ta)ly=t). (68
—|p=0){p=0|. Its eigenvalues are complete and orthogo-
nal, and it circumvents the proof given above, because i
satisfies[ T,',H]=i#0, i.e., it is not conjugate tdd at p
=0. Although T, is not always the shift operator of the .
energy, the measurement can be carried out in such a wég/the clock has not stopped.

that this will not be of consequence. To see this, consider the Since the eigenstates @i, form a complete set, we can
interaction Hamiltonian express any state of the particle|@s = [dtaC(ta)|ta). We
then obtain

(TIT)=8(T-T")— (65)

m(T-T")

l[-|ere, ly=to) denotes an initial state of the clock wittt,
—0, |x(ta)) denotes the final state of the particle if the
clock has stopped, ang’(ta)) the final state of the particle

Hmeas™ a(tH)aTa’, (66)

which modifies the initial wave functio— exp(—igT’)y. f thC(tA)hAMy:tO)_)f daC(t) X (t)Y =ta)

We need to demand thdt, act as a shifts operator of the

energy ofy during the measurement. Therefore we require +( J’ thC(tA)|X'(tA)>|Y=t)-
that g> —E,,, WhereE,, is the minimal energy in the
energy distribution off. In this way, the measurement does (69

not shift the energy down t&=0 whereT, is no longer

conjugate tcH. The value ofT , is recorded on the conjugate The final probabzility to measure the time of arrival is hence
of g—call it P,. Now the uncertainty is given byl T, Jdts|C(ta) x(ta)|°. On the other hand, we found that for a
=d(Py)=1/dg, thus naively fromdg=1/dTh<Epp, we ge_n_eral wave fu_nct|0rqb,_ in the I|_m|t of dt,—0, the prob-
getE,}dT'>1. However, here, the average) was taken ability for detection van!sheg. Smpe the _statgs of the clock,
to be zero. There is no reason not to tdkp to be much |y=t_a>, are orthogonal in this limit, this implies tha{(t,)
larger tharE ,,, S0 that(q)— dg> — Eqyn. If we do so, the =0 in Eq.(68) for all t,. Therefore, the eigenstates Bf
measurement increases the energyjofind T, is always cannot trigger the clock.

conjugate tdH. The limitation on the accuracy is in this case

dT,>1Kq) which can be made as small as we like. V. CONCLUSION

Nevertheless, there are still problems with this time-of-  \ye have examined various models for the measurement
arrival operator. One finds that at the time of arrival, thesf time of arrivalt,, and found a basic limitation on the

eigenstates of , (x| T(ta)) are not delta functions(x) but  accuracy with whicht, can be determined reliablAt,
are proportional tox %2, Furthermore, ifP, is the projector

ontox=0, one finds that >1/E,. This limitation is quite different in origin from that

due to the uncertainty principle; here it applies tsiagle
. quantity. Furthermore, unlike the kinematic nature of the un-
(W[ Ta,Poll )= — ! Re{ z//(x=0)f dky* (k) m]_ certainty principle, in our case the limitation is essentially
2 k? dynamical in its origin; it arises when the time of arrival is
(67) measured by means of a continuous interaction between the
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measuring device and the particle. comparison with the exponential terms and can be replaced
We w.ould also like to stress that contipuqus measureby its average value/k02+ 2mpy=Kky. Integrating overp
ments differ both conceptually and quantitatively from agives
measurement of the time-of-arrival operator. Operationally
one performs here two completely different measurements. 5
While the time-of-arrival operator is a formally constructed 27Nk ™
o : - - _ P Y)x=0= dkdk
perator which can be measured by an impulsive von Neu m 2Ay?
mann interaction, it seems that continuous measurements are

much closer to actual experimental setups. Furthermore, we ><e‘AV2/8m2<k+k’)2<k‘k'>zg(k)g*(k’)
have seen that the results of these two measurements do not s
need to agree, in particular in the high accuracy limit; con- x gl (K “~kSy/2m (A3)

tinuous measurements give rise to entirely different behav-

ior. This suggests that as in the case of the problem of ﬁ”dSinceAyk>1 for a wave packet peaked aroukglwe can
ing a “time operator”[8] for closed quantum systems, the 5pnroximate the argument of the first exponential by
time-of-arrival operator has a somewhat limited physical Ay2k§/2m2(k—k’)2. This allows us to integrate oves

meaning. andk’
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Israel Academy of Sciences and Humanities. where the width isy(y)=Ay2+ (MAx/Kg)2+ (y/2koAX)2.
As expected, the distribution is centered around the classical
APPENDIX time of arrivalt,=xym/ky. The spread ity has a term due to

) ) the initial widthAy in clock positiony. The second and third
Using the simple model of Sec. Il £2), we now calculate  terms iny(y) are due to the kinematic spread in the time of
the probability distribution of a clock which measures theyriyal 1HE=m/kdk and are given bydx(y)m/k, where
time of arrival of a Gaussian wave packet. We will perform qy(y)2— Ax2+ (y/2mAx)2. They dependence on the width
the calculation in the limits when the clock is extremely i, x arises because the wave packet is spreading as time
accurate and e.xtre_melly inaccurate. The wave _fun.ctio_n of th?ncreases, so that at latgr the wave packet is wider. As a
clock and particle is given by Eq10) and the distributions  req ¢, the distribution differs slightly from a Gaussian, al-

are both Gaussians given by EJ). In the inaccurate limit, hough this effect is suppressed for particles with larger
whenpy<k, Ar~1. We trace over the position of the par- pass.

ticle on the condition that the clock was triggered, ix., When the clock is extremely accurate, i.po>k, we
>0: haveAr~ky/2/mp:

p(y,y)x>o=J dX| p(x>0y,t)|? KK’
X

2N2f°° dkdk’fmd dp'd
p(yvy)x>O_W . 0 pdp \/W

:sz dkdk’f dpdp dxg(k)g* (k') f(p)
—® 0

xXg(k)g* (k") f(p)f*(p")

X £*(p’)ei(@-a")x+i(p=p y-i(a®=q'%)t2m x @l (@=a")x+i(p=p"y=i(a®~a’?t/2m
(A) 477sz e K2+ 2mp
After a sufficiently long time, i.e.t>t, the wave function m Pm p(p+ (k2—k'2)/2m)
has no support on the negatixeaxis, and ifpo>1/Ay, then 5 1o
it will not have support in negativp. We can thus integrate % g(k)g* (K F(p)F*| p+ k“—k )
p and x over the entire axis. Integrating overgives aé 2m
function ing. We can then integrate over to give o o
el (K" 2= k?)(y/2m)_ (A5)
ZWNZJ dkdK dpyKkZ+ 2mpgk
= m
PLY:Y)x=0 m P Pgk) Sincepy>Kkgy, we can approximate this integral as

2_ 12

2m

2

Xg* (k") f(p)f*| p+

)ei(k’2k2)<y/2m)
(A6)

A .
P(Y,Y)x>0= EU dkkgk)e(Ky2m)
(A2)

where we have used the fact thétf(z))=8(z—z,)/f'(z  whereA=4=/(2/m)N2f(dp/\/p)|f(p)|?. We can approxi-
=2z,) when f(zy)=0. The square root term varies little in matep by p, to take it outside the integrand, giving
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T 2AX where the widthy(y) = Ax?+ (y/2koAx)? is independent of
= m? (A7) Ay because the kinematic spread in the time of arrivdEL/
is much larger than the spread in the position of the clock. In
The final integration ovek yields this limit we see two additional factors. The amplitude de-
cays asvEq/py so that improved accuracy decreases our
/ kg Y(to) 1 257 chances of detecting the particle. Also, there is a minor cor-
P(YY)=0=4 2mpo (y) \/Ty(y)e Y2, rection of y(t.)/y(y). More energetic particles with faster

(A8) arrival times are more likely to trigger the clock.
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