
Z1

PHYSICAL REVIEW A JUNE 1998VOLUME 57, NUMBER 6
Measurement of time of arrival in quantum mechanics
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It is argued that the time of arrival cannot be precisely defined and measured in quantum mechanics. By
constructing explicit toy models of a measurement, we show that for a free particle it cannot be measured more
accurately thenDtA;1/Ek , whereEk is the initial kinetic energy of the particle. With a better accuracy,
particles reflect off the measuring device, and the resulting probability distribution becomes distorted. It is
shown that a time-of-arrival operator cannot exist, and that approximate time-of-arrival operators do not
correspond to the measurements considered here.@S1050-2947~98!03105-9#
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I. INTRODUCTION

Consider a beam of free particles, upon which a meas
ment is performed to determine the time of arrival tox
5xA . The time of arrival can be recorded by a clock situa
at x5xA which switches off when the particle reaches it.
classical mechanics we could, in principle, achieve this w
the smallest nonvanishing interaction between the part
and the clock, and hence measure the time of arrival w
arbitrary accuracy.

In classical mechanics there is also another indir
method to measure the time of arrival. First invert the eq
tion of motion of the particle and obtain the time in terms
the location and momentumTA„x(t),p(t),xA…. This function
can be determined atany time t, either by a simultaneou
measurement ofx(t) andp(t) and evaluation ofTA , or by a
direct coupling toTA„x(t),p(t),xA….

These two different methods, namely, the direct meas
ment and indirect measurement, are classically equiva
They give rise to the same classical time of arrival. They
not equivalent, however, in quantum mechanics

In quantum mechanics the corresponding opera
TA„x(t),p(t),xA…, if well defined, can in principle be mea
sured to any accuracy. On the other hand, it has been ar
by Allcock @1# that a direct measurement cannot determ
the time of arrival of free particles to any accuracy. In S
II B, we argue that Allcock’s arguments are not sufficient
limit the accuracy of time-of-arrival measurements. O
needs to consider models with physical clocks. Using th
models, we shall argue that the accuracy of time-of-arri
measurements cannot be better than

DtA.1/Ek , ~1!
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whereEk is the initial kinetic energy of the particle and w
use units with\51. The basic reason is that, unlike a cla
sical mechanical clock, in quantum mechanics the unc
tainty in the clock’s energy grows when its accuracy im
proves@2#. We find that particles with initial kinetic energ
Ek are reflected without switching off a clock if this clock
set to record the time of arrival with accuracy better than
Eq. ~1!. ~The occurrence of a similar phenomenon is w
known in optics as an impedance mismatch which cau
reflection in wave guides.! Furthermore, for the small frac
tion of the ensemble that does manage to turn off the clo
the resulting probability distribution becomes distorted.
detailed discussion of direct time-of-arrival measurement
given in Sec. II.

Still, one can imagine an indirect determination of arriv
time as described above, by a measurement of some reg
ized time-of-arrival operatorTA„x(t),p(t),xA… @3#. An obvi-
ous requirement ofTA is that it be a constant of motion; i.e
the time of arrival cannot change in time. As we shall sh
in Sec. III, a Hermitian time-of-arrival operator, with a con
tinuous spectrum, can satisfy this requirement only for s
tems with an unbounded Hamiltonian. This difficulty ca
however, be circumvented by ‘‘projecting out’’ the singula
ity at p50 and by using only measurements ofTA which do
not cause a ‘‘shift’’ of the energy towards the ground sta
Nevertheless, unlike the classical case, in quantum mec
ics the result of such a measurement may have nothing t
with the time of arrival tox5xA . As is argued in Sec. IV,
sinceTA can be measured with arbitrary accuracy it does
correspond to the result obtained by the direct measurem
discussed in Sec. II. We conclude in Sec. V with a discuss
of the main results. An explicit calculation of the clock
final probability distribution is given in the Appendix.

II. MEASUREMENT OF TIME OF ARRIVAL

In this section we consider toy models of a measurem
of time of arrival. To begin with, assume that a beam
particles interacts with a detector that is located atx50 and
4130 © 1998 The American Physical Society
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57 4131MEASUREMENT OF TIME OF ARRIVAL IN QUANTUM . . .
is coupled to a clock. Initially, as the beam is prepared,
clock is set to showt50. Our purpose is to design a partic
lar setup such that as a particle crosses the pointx50 the
detector stops the clock. Since the masses of the par
detector and the clock are unlimited we can ignore the
certainty in the position of the measurement device. We s
consider four models. The first model describes a direct
teraction of the particle with the clock. In the second mod
the particle is detected by a two-level detector, which tu
the clock off. To avoid the reflection due to ‘‘impedanc
mismatch,’’ we look next at the possibility of boosting th
energy of the particle in order to turn off the clock. We sh
also consider the case of a ‘‘smeared’’ interaction, and c
clude with a general discussion.

A. Measurement with a clock

The simplest model which describes a direct interaction
a particle and a clock@4#, without additional ‘‘detector’’ de-
grees of freedom, is described by the Hamiltonian

H5
1

2m
Px

21u~2x!Py. ~2!

Here, the particle’s motion is confined to one spatial dim
sion x andu(x) is a step function. The clock’s Hamiltonia
is represented byPy, and the time is recorded on the conj
gate variabley.1

The equations of motion read

ẋ5Px /m, Ṗx52Pyd~x!, ~3!

ẏ5u~x!, Ṗy50. ~4!

At t→` the clock shows the time of arrival:

y`5y~ t0!1E
t0

`

u„2x~ t !…dt, ~5!

A crucial difference between the classical and the qu
tum case can be noted from Eq.~3!. In the classical case th
back-reaction can be made negligibly small by choosingPy
→0. In this case, the particle follows the undisturbed so
tion x(t)5x(t0)1(px /m)(t2t0). If initial we set y(t0)5t0
andx(t0),0 the clock finally reads

y`5y~ t0!1E
t0

`

uF2x~ t0!2
px

m
~ t2t0!Gdt52

mx~ t0!

px
.

~6!

1We have represented here the ideal clock by a Hamilton
Hclock5Py that is linear in the momentum. This linear Hamiltonia
can be obtained approximately for a free particle withH5Py

2/2M .
For a given durationt we can approximateH.(^Py&/M )Py

1const by letting the mass be sufficiently large. One could a
consider a Larmor clock with a bounded HamiltonianHclock5vJ
@4#. The Hilbert space is spanned by 2j 11 vectors wherej is a
natural number, and the clock’s resolution can be made arbitra
fine by increasingj .
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The classical time of arrival istA5y`52mx(t0)/px . The
same result would have been obtained by measuring the
sical variable2mx0 /px52mx(t)/px1(t2t0), at arbitrary
time t. Consequently, the continuous and the indirect m
surements alluded to in Sec. I, are classically equivalent

On the other hand, in quantum mechanics the uncerta
relation dictates a strong back reaction, i.e., in the limit
Dy5DtA→0, py in Eq. ~3! must have a large uncertainty
and the state of the particle must be strongly affected by
act of measuring. Therefore, the two classically equival
measurements become inequivalent in quantum mechan

Before we proceed to examine the continuous meas
ment process in more detail, we note that a more symme
formulation of the above measurement exists in wh
knowledge of the direction from which particles are arrivin
is not needed. We can consider

H5
1

2m
Px

21u~2x!Py1
1u~x!Py2

. ~7!

As before, the particle’s motion is confined to one spa
dimensionx. Two clocks are represented byPy1

andPy2
, and

time is recorded on the conjugate variablesy1 andy2, respec-
tively.

The first clock operates only when the particle is loca
at x,0 and the second clock atx.0. For example, if we
start with a beam of particle atx,0, a measurement att
→` of y1 gives the time of arrival. Alternatively we could
measuret2y2. As a check we havey11y25t. It is harder to
determine the time of arrival if the particle arrives from bo
directions. If, however, it is known that initiallyuxu,L, we
can measurey1 andy2 after t@L/v. The time of arrival will
then be given bytA5min(y1 ,y2).

Let us examine this system in more detail. For simplic
we shall consider the case of only one clock and a part
initially at x,0, which travels towards the clock atx50.
The eigenstates of the Hamiltonian are

fkp~x,y,t !5H ~eikx1ARe2 ikx!eipy2 iv~ t !, x,0,

ATeiqx1 ipy2 iv~ t !, x>0,
~8!

where k and p, are the momentum of the particle and th
clock, respectively, andv(t)5k2t/2m1pt. Continuity of
fkp requires that

AT5
2k

k1q
,

AR5
k2q

k1q
, ~9!

whereq5Ak212mp5A2m(Ek1p).
The solution of the Schro¨dinger equation is

c~x,y,t !5NE
2`

`

dkE
0

`

dp f~p!g~k!fkp~x,y,t !, ~10!

whereN is a normalization constant andf (p) andg(k) are
some distributions. For example, with
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4132 57AHARONOV, OPPENHEIM, POPESCU, REZNIK, AND UNRUH
f ~p!5e2Dy
2~p2p0!2

,

g~k!5e2Dx
2~k2k0!21 ikx0, ~11!

and x0.0, the particle is initially localized on the left (x
,0) and the clock~with probability close to 1! runs. The
normalization in Eq.~10! is thusN25DxDy/2p3. By choos-
ing p0'1/Dy , we can now set the the clock’s energy in t
range 0,p,2/Dy .

Let us first show that in the stationary point approxim
tion the clock’s final wave function is indeed center
around the classical time of arrival. Thus we assume thaDy
and Dx are large such thatf (p) and g(k) are sufficiently
peaked. Forx.0, the integrand in Eq.~10! has an imaginary
phase

u5qx1kx01py2
k2t

2m
2pt. ~12!

du/dk50 implies

xpeak~p!52
q~k0!

k0
x01

q~k0!t

m
, ~13!

anddu/dp50 gives

ypeak~k!5t2
mx

q0
. ~14!

Hence atx5xpeak the clock coordinatey is peaked at the
classical time of arrival

y5
mx0

k0
. ~15!

To see that the clock yields a reasonable record of
time-of-arrival, let us consider further the probability dist
bution of the clock

r~y,y!x.05E dxuc~x.0,y,t !u2. ~16!

In the case of inaccurate measurements with a small b
reaction on the particleAT.1. The clocks density matrix is
then found~see the Appendix! to be given by

r~y,y!.0.
1

A2pg~y!
e2~y2tc!2/2g~y! ~17!

where the width isg(y)5Dy21(mDx/k0)21(y/2k0Dx)2.
As expected, the distribution is centered around the class
time of arrivaltc5x0m/k0. The spread iny has a term due to
the initial widthDy in clock positiony. The second and third
terms ing(y) are due to the kinematic spread in the time
arrival 1/dE5m/kdk and are given bydx(y)m/k0 where
dx(y)25Dx21(y/2mDx)2. The y dependence in the width
in x arises because the wave function is spreading as
increases, so that at latery, the wave packet is wider. As
result, the distribution differs slightly from a Gaussian,
though this effect is suppressed for particles with lar
mass.
-
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When the back reaction causes a small disturbance to
particle, the clock records the time of arrival. What happe
when we wish to make more accurate measurements? C
sider the exact transition probabilityT5q/kuATu2, which
also determines the probability to stop the clock. The latte
given by

AEk1p

Ek
F 2AEk

AEk1AEk1p
G 2

. ~18!

Since the possible values obtained byp are of the order
1/Dy[1/DtA , the probability to trigger the clock remains o
order 1 only if

ĒkDtA.1. ~19!

HereDtA stands for the initial uncertainty in position of th
dial y of the clock, and is interpreted as the accuracy of
clock. Ēk can be taken as the typical initial kinetic energy
the particle.

In measurements with accuracy better than 1/Ēk the prob-
ability to succeed drops to zero asAEkDtA, and the time of
arrival of most of the particles cannot be detected. Furth
more, the probability distribution of the fraction which ha
been detected depends on the accuracyDtA and can become
distorted with increased accuracy. This observation beco
apparent in the following simple example. Consider an init
wave packet that is composed of a superposition of t
Gaussians centered aroundk5k1 and k5k2@k1. Let the
classical time of arrival of the two Gaussians bet1 and t2,
respectively. When the inequality~19! is satisfied, two peaks
aroundt1 and t2 will show up in the final probability distri-
bution. On the other hand, for 2m/k1

2.DtA.2m/k2
2, the

time of arrival of the less energetic peak will contribute le
to the distribution iny, because it is less likely to trigger th
clock. Thus, the peak att1 will be suppressed. Clearly, whe
the precision is finer than 1/Ēk we shall obtain a distribution
which is considerably different from that obtained for th
caseDtA.1/Ēk when the two peaks contribute equally.

B. Two-level detector with a clock

A more realistic setup for a time-of-arrival measureme
is one that also includes a particle detector which switc
the clock off as the particle arrives. We shall describe
particle detector as a two-level spin degree of freedom. T
particle will flip the state of the trigger from on to off, i.e
from ↑z to ↓z . First let us consider a model for the trigge
without including the clock:

H trigger5
1

2m
Px

21
a

2
~11sx!d~x!. ~20!

The particle interacts with the repulsive Dirac delta functi
potential atx50, only if the spin is in theu↑x& state, or with
a vanishing potential if the state isu↓x&. In the limit a→`
the potential becomes totally reflective~Alternatively, one
could have considered a barrier of heighta2 and width 1/a.!
In this limit, consider a state of an incoming particle and t
trigger in the on state:uc&u↑z&. This state evolves to
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57 4133MEASUREMENT OF TIME OF ARRIVAL IN QUANTUM . . .
uc&u↑z& →
1

A2
[ ucR&u↑x&1ucT&u↓x&], ~21!

where cR and cT are the reflected and transmitted wa
functions of the particle, respectively.

The latter equation can be rewritten as

1

2
u↑z&~ ucR&1ucT&)1

1

2
u↓z&~ ucR&2ucT&). ~22!

Since↑z denotes the on state of the trigger, and↓z denotes
the off state, we have flipped the trigger from the on state
the off state with probability 1/2. By increasing the numb
of detectors, this probability can be made as close as we
to one. To see this, considerN spins asN triggers and set the
Hamiltonian to be

Px
2/2m1~a/2!Pn~11sx

~n!!d~x!. ~23!

We will say that the particle has been detected if at least
of the spins has flipped. One can verify that in this case
probability that at least one spin has flipped is now
222N.

So far we have succeeded in recording the event of arr
to a point. We have no information at all on the time
arrival. It is also worth noting that the net energy exchan
between the trigger and the particle is zero, i.e., the partic
energy is unchanged.

This model leads us to reject the arguments of Allco
He considers a detector which is represented by a p
imaginary absorberH int5 iVu(2x). Allcock’s claim is that
measuring the time of arrival is equivalent to absorbing
particle in a finite region. If you can absorb the particle in
arbitrarily short time, then you have succeeded in trans
ring the particle from an incident channel into a detec
channel and the time of arrival can then be recorded. Us
his interaction Hamiltonian one finds that the particle is a
sorbed in a rate proportional toV21. One can increase th
rate of absorption by increasingV, but the particle will be
reflected unlessV!Ek . He therefore claims that since yo
cannot absorb the particle in an arbitrarily short time, y
cannot record the time of arrival with arbitrary accuracy.

However, our two-level detector is equivalent to a det
tor which absorbs a particle in an arbitrarily short period
time, and then transfers the information to another chan
The particle is instantaneously converted from one kind
particle ~spin up! to another kind of particle~spin down!. A
model for arbitrarily fast absorption is also given in@6#, al-
though in this case, the absorber does not work for arbitr
wave functions. We therefore see that considerations of
sorption alone do not place any restrictions on measuring
time of arrival.

However, we shall see that when we proceed to cou
the trigger to a clock we do find a limitation on the time
arrival. The total Hamiltonian is now given by

H trigger1clock5
1

2m
Px

21
a

2
~11sx!d~x!1

1

2
~11sz!Py.

~24!
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Since we can havea@Py it would seem that the triggering
mechanism need not be affected by the clock. If the fi
wave function includes a nonvanishing amplitude of↓z , the
clock will be turned off and the time of arrival recorde
However, the exact solution shows that this is not the ca
Consider, for example, an initial state of an incoming wa
from the left and the spin in the↑z state.

The eigenstates of the Hamiltonian in the basis ofsz are

CL~x!5S eik↑x1fL↑e
2 ik↑x

fL↓e
2 ik↓x D eipy, ~25!

for x,0 and

CR~x!5S fR↑e
ik↑x

fR↓e
ik↓xD eipy, ~26!

for x.0. Here k↑5A2m(E2p)5A2mEk and k↓5A2mE
5A2m(Ek1p).

Matching conditions atx50 yield

fR↑5
2k↑ /ma2k↑ /k↓

2k↑ /ma2~11k↑ /k↓!
, ~27!

fR↓5
k↑
k↓

~fR↑21!5
k↑ /k↓

2k↑ /ma2~11k↑ /k↓!
, ~28!

and

fL↓5fR↓ , ~29!

fL↑5fR↑21. ~30!

We find that in the limita→` the transmitted amplitude is

fR↓52fR↑5
AEk

AEk1AEk1p
. ~31!

Precisely as in the previous section, the transition probab
decays asAEk /p. From Eqs.~29!,~30! we get thatfL↓→0,
and fL↑→1 as the accuracy of the clock increases. Hen
the particle is mostly reflected back and the spin remain
the ↑z state; i.e., the clock remains in the on state.

The present model gives rise to the same difficulty as
previous model. Without the clock, we can flip the ‘‘trigger
spin by means of a localized interaction, but when we cou
the particle to the clock, the probability to flip the spin an
turn the clock off decreases gradually to zero when
clock’s precision is improved.

C. Local amplification of kinetic energy

The difficulty with the previous examples seems to be t
the particle’s kinetic energy is not sufficiently large, and e
ergy cannot be exchanged with the clock. To overcome
difficulty one can imagine introducing a ‘‘prebooster’’ de
vice just before the particle arrives at the clock. If it cou
boost the particle’s kinetic energy arbitrarily high, witho
distorting the incoming probability distribution~i.e., ampli-
fying all wave componentsk with the same probability!, and



o
a

ic

gy

n-
to

u

-
u

ob

un
,
th
th

pin

ed
a
r-

has
r-
ili-
nd
ill
of

od
aked

n
e

is
-

bed
,
e

ea-
and

ome

o
ter-
an-

4134 57AHARONOV, OPPENHEIM, POPESCU, REZNIK, AND UNRUH
at an arbitrary short distance from the clock, then the time
arrival could be measured to arbitrary accuracy. Thus,
equivalent problem is, can we boost the energy of a part
by using only localized~time-independent! interactions?

Let us consider the following toy model of an ener
booster described by the Hamiltonian

H5
1

2m
Px

21asxd~x!1
W

2
u~x!~11sz!1

1

2
@V1u~2x!

2V2u~x!#~12sz!. ~32!

Herea, W, V1, andV2 are positive constants. Let us co
sider an incoming wave packet propagating from left
right. The role of the termasxd(x) is to flip the spin↑z to
↓z . The ↑z component of the wave function is damped o
exponentially by theW term for x.0. The↓z component is
damped out forx,0 by the termV1, but increases its kinetic
energy forx.0 by V2. As we shall see, for a given momen
tum k, one can choose the four free parameters above s
that the wave is transmitted through the booster with pr
ability 1, while the gain in energyV2 can be made arbitrarily
large. On the other hand, the potential barrierW can be made
arbitrarily large. The last requirement means that the
flipped component decays forx.0 on arbitrary short scales
which allows us to locate the booster arbitrarily close to
clock, while preventing destructive interference between
flipped and unflipped transmitted waves.

The eigenstates of Eq.~32!, in the basis ofsz , are given
by

CL~x!5S eikx1fL↑e
2 ikx

fL↓e
qx D ~33!

for x,0 and

CR~x!5S fR↑e
2lx

fR↓e
ik8xD ~34!

for x.0, where k25V12q252l21W52V21k82.
Matching conditions atx50 we find

fL↑5fR↑215
k8k1ql1 i ~kq2k8l!2a2

k8k2ql1 i ~k8l1kq!1a2 , ~35!

fR↓5fL↓5
a

ik82q
~11fL↑!. ~36!

For a givenk, W, andV2 ~or givenk, l, andk8) we still
are free to choosea andV1 ~or q). We now demand that

a5k8k1ql, q5l
k8

k
. ~37!

With this choice we obtain

JL↑50, JR↓5
k8

k
ufR↓u251. ~38!
f
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Therefore, the wave has been fully transmitted and the s
has flipped with probability 1.

So far we have considered an incoming wave with fix
momentumk. For a general incoming wave packet only
part of the wave will be transmitted and amplified. Furthe
more one can verify that the amplified transmitted wave
a different form than the original wave function since diffe
ent momenta have been amplified with different probab
ties. Thus, in general, although amplification is possible a
indeed will lead to a much higher rate of detection, it w
give rise to a distorted probability distribution for the time
arrival.

There is, however, one limiting case in which the meth
does seem to succeed. Consider a narrow wave pe
aroundk with a widthdk. To first order indk, the probabil-
ity T↓ that the particle is successfully boosted is given by

JR↓.11
2dk

k
. ~39!

Therefore in the special case thatdk/k!1, the transmission
probability is still close to 1. If in this case we know i
advance the value ofk up to Dk!k, we can indeed use th
booster to improve the bound~19! on the accuracy.

The reason why this seems to work in this limiting case
as follows. The probability of flipping the particle’s spin de
pends on how long it spends in the magnetic field descri
by thea term in Eq.~32!. If, however, we know beforehand
how long the particle will be in this field, then we can tun
the strength of the magnetic field (a) so that the spin gets
flipped. The requirement thatDk/k!1 is thus equivalent to
having a small uncertainty in the ‘‘interaction time’’ with
this field. It must be emphasized however, that these m
surements cannot be used for general wave functions,
that even in the special case above, one still requires s
prior information of the incoming wave function.

D. Gradual triggering of the clock

In order to avoid the reflection found in the previous tw
models, we shall now replace the sharp step-function in
action between the clock and particle by a more gradual tr
sition.

When the WKB condition is satisfied,

dl~x!

dx
5e!1, ~40!

where l(x)2252m@E02V(x)#, the reflection amplitude
vanishes as

;exp~21/e2!. ~41!

Solving the equation for the potential with a givene we
obtain

Ve~x!5E02
1

2me2

1

x2 . ~42!

Now we observe that any particle withE>E0 also satisfies
the WKB condition~40! above for thesamepotentialVe .
FurthermorepyVe also satisfies the condition for anypy.1.
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57 4135MEASUREMENT OF TIME OF ARRIVAL IN QUANTUM . . .
These considerations suggest that we should replace
Hamiltonian in Eq.~7! with

H5Px
2/2m1V~x!Py, ~43!

where

V~x!5H 2xA
2/x2, x,xA ,

21, x>xA .
~44!

HerexA
2252me2.

Thus this model describes a gradual triggeringon of the
clock which takes place when the particles propagates f
x→2` towardsx5xA . In this case the arrival time is ap
proximately given byt2y, where t5t f2t i . Since without
limiting the accuracy of the clock we can demand thatpy
@1, the reflection amplitude off the potential step is exp
nentially small forany initial kinetic energyEk .

The problem is, however, that the final value oft2y does
not always correspond to the time of arrival since it conta
errors due to the affect of the potentialV(x) on the particle
which we shall now proceed to examine.

In the following we shall ignore ordering problems an
solve for the classical equations of motion for Eq.~43!. We
have

y~ t f !2y~ t i !5E
t i

t f
V„x~ t8!…dt8 ~45!

which can be decomposed to

y~ t f !2y~ t i !5~ t i2t0!1~ t f2t i !1E
t i

t0
V„x~ t8!…dt8

[A1B1C, ~46!

where

A5
1

A2mE
@AxA

21pyxA
2/E2Axi

21pyxA
2/E# ~47!

is the time that the particle travels fromxi to xA in the po-
tential pyV(x), B is the total time, and

C52
xA

A2mpy
F ln

11A11E/py

11A11Exi
2/pyxA

2
1 ln

xi

xA
G . ~48!

The last termC, corresponds to an error due to the impe
fection of the clock, i.e., the motion of the clock prior
arrival toxA . By makingpy large we can minimize the erro
from this term to;(xAlnpy /A2mpy) .

Inspecting Eq.~46! we see that by measuringyf2yi and
then subtractingB5t f2t i ~which is measured by anothe
clock! we can determine the timet02t i , which is the time of
arrival for a particle in a potentialpyV(x), up to the correc-
tion C. However, this time reflects the motion in the pre
ence of an external~unknown! potential, while we are inter-
ested in the time of arrival for a free particle.

Nevertheless, ifpy /E!1 we obtain
he

m

-

s

-

-

2A5
xA2xi

A2mE
1OS py

E D . ~49!

The time of arrival can hence be measured provided
EkDt@1. On the other hand, when the detector’s accurac
Dt,1/E, the particle still triggers the clock. However, th
measured quantityA no longer corresponds to the time o
arrival. Again, we see that when we ask for too much ac
racy, the particle is strongly disturbed and the result h
nothing to do with the time of arrival of a free particle.

E. General considerations

We have examined several models for a measuremen
time of arrival and found a limitation,

DtA.1/Ēk , ~50!

on the accuracy thattA can be measured. Is this limitation
general feature of quantum mechanics?

First we should notice that Eq.~50! does not seem to
follow from the uncertainty principle. Unlike the uncertain
principle, whose origin is kinematic, Eq.~50! follows from
the nature of thedynamicevolution of the system during a
measurement. Furthermore, here we are considering a
striction on the measurement of a single quantity. While i
difficult to provide a general proof, in the following we sha
indicate why Eq.~50! is expected to hold under more gener
circumstances.

Let us examine the basic features that gave rise to
~50!. In the toy models considered in Secs. II A and II B, t
clock and the particle had to exchange energypy;1/DtA .
The final kinetic energy of the particle is larger bypy . As a
result, the effective interaction by which the clock switch
off looks from the point of view of the particle similar to
step function potential. This led to ‘‘nondetection’’ when E
~50! was violated.

Can we avoid this energy exchange between the par
and the clock? Let us try to deliver this energy to some ot
system without modifying the energy of the particle. F
example, consider the following Hamiltonian for a cloc
with a reservoir:

H5
Px

2

2m
1u~2x!Hc1H res1Vresu~x!. ~51!

The idea is that when the clock stops, it dumps its ene
into the reservoir, which may include many other degrees
freedom, instead of delivering it to the particle. In th
model, the particle is coupled directly to the clock and re
ervoir; however, we could as well use the idea of Sec. I
above. In this case

H5
Px

2

2m
1

a

2
~11sx!d~x!1

1

2
~11sz!Hc1H res

1
1

2
~12sz!Vres. ~52!

The particle detector has the role of providing a coupli
between the clock and reservoir.
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Now we notice that in order to transfer the clock’s ener
to the reservoir without affecting the free particle, we mu
also prepare the clock and reservoir in an initial state t
satisfies the condition

Hc2Vres50. ~53!

However, this condition does not commute with the clo
time variabley. We can measure initiallyy2R, whereR is a
collective degree of freedom of the reservoir such t
@R,Vres#5 i , but in this case we shall not gain information o
the time of arrivaly sinceR is unknown. We therefore se
that in the case of a sharp transition, i.e., for a localiz
interaction with the particle, one cannot avoid a shift in t
particle’s energy. The ‘‘nontriggering’’~or reflection! effect
cannot be avoided.

We have also seen that the idea of boosting the par
‘‘just before’’ it reaches the detector, fails in the gene
case. What happens in this case is that while the detec
rate increases, one generally destroys the initial informa
stored in the incoming wave packet. Thus, although hig
accuracy measurements are now possible, they do not re
directly the time of arrival of the initial wave packet.

Finally we note that, in reality, measurements usually
volve some type of cascade effect, which leads to sig
amplification and finally allows a macroscopic clock to
triggered. A typical example of this type would be the ph
tomultiplier where an initially small energy is amplifie
gradually and finally detected. Precisely this type of proc
occurs also in the model of Sec. II D. In this case the part
gains energy gradually by ‘‘rolling down’’ a smooth ste
function. It hence always triggers the clock. The basic pr
lem with such a detector is that when Eq.~50! is violated, the
‘‘back reaction’’ of the detector on the particle, during th
gradual detection, becomes large. The relation between
final record to the quantity we wanted to measure is lost

III. CONDITIONS ON A TIME-OF-ARRIVAL
OPERATOR

As discussed in the Introduction, although a direct m
surement of the time of arrival may not be possible, one
still try to observe it indirectly by measuring some opera
TA(p,x,xA). In the next two sections we shall examine th
operator and its relation to the continuous measurements
scribed in the previous sections. First in this section we sh
that an exact time-of-arrival operator cannot exist for s
tems with bounded Hamiltonian.

To begin with, let us start with the assumption that t
time-of-arrival is described, as other observables in quan
mechanics, by a Hermitian operatorTA:

TA~ t !utA& t5tAutA& t . ~54!

Here the subscript& t denotes the time dependence of t
eigenkets, andTA may depend explicitly on time. Hence fo
example, the probability distribution for the time of arriv
for the state

uc&5E g~ tA8 !utA8 &dtA8 ~55!
t
t

t
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will be given by prob(tA)5ug(tA)u2. We shall now also as-
sume that the spectrum ofTA is continuous and unbounded
2`,tA,`.

ShouldTA correspond to time of arrival it must satisfy th
following obvious condition.TA must be a constant of mo
tion and in the Heisenberg representation

dTA

dt
5

]TA

]t
1

1

i
@TA,H#50. ~56!

That is, the time of arrival cannot change in time.
For a time-independent Hamiltonian, time translation

variance implies that the eigenketsutA& t depend only ont
2tA , i.e., the eigenkets cannot depend on the absolute
t. This means, for example, that at the time of arriv
utA& t5tA

5utA8 & t5t
A8

. Time-translation invariance implies2

utA& t5e2 iGu0&0 , ~57!

whereG5G(t2tA) is a Hermitian operator. Therefore,utA& t
satisfies the differential equations

i
]

]tA
utA& t5

]G

]tA
utA& t52

]G

]t
utA& t , i

]

]t
utA& t5

]G

]t
utA& t .

~58!

Now act on the eigenstate equation~54! with the differential
operatorsi ] tA

and i ] t . This yields

2TA

]G

]t
utA& t52tA

]G

]t
utA& t1 i utA& t , ~59!

and

i
]TA

]t
utA& t1TA

]G

]t
utA& t5tA

]G

]t
utA& t . ~60!

By adding the two equations above, the dependence
]G/]t drops off, and after using the constancy ofTA @Eq.
~56!# we get

~@TA,H#1 i !utA&50. ~61!

Since the eigenketsutA& span, by assumption, the full Hilber
space

@TA,H#52 i . ~62!

HenceTA is a generator of energy translations. From E
~56! we haveTA5t2T̂, whereT̂ is the ‘‘time operator’’ of
the system whose Hamiltonian isH. It is well known that Eq.
~62! is inconsistent unless the Hamiltonian is unbound
from above and below@7#.

2In Allcock’s proof @5# of the nonexistence of a time-of-arriva
operator for the special case of a free Hamiltonian, he assumes
uta1t&5e2 i tHuta&. However, by definition, a time-of-arrival eigen
state which will arrive at the timeta will remain an eigenstate
which arrives atta as the system evolves. Allcock’s proof is thus
proof of the nonexistence of a time operator—not time-of-arri
operators.
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IV. MEASURING THE TIME-OF-ARRIVAL OPERATOR
VS CONTINUOUS MEASUREMENTS

Although formally there cannot exist a time-of-arrival o
eratorTA, it may be possible to approximateTA to arbitrary
accuracy@3#. Kinematically, one expects that the time-o
arrival operator for a free particle arriving at the locati
xA50 might be given by

TA52
m

2

1

Ap
x~0!

1

Ap
. ~63!

The choice for the time operator is clearly not unique.
equally valid choice is2m„(1/p)x1x(1/p)…, etc. Further-
more, sinceTA is ill defined atp50, its eigenvalues

^kuT6&5u~6k!A k

2pm
ei ~Tk2/2m! ~64!

are not orthogonal:

^TuT8&5d~T2T8!2
i

p~T2T8!
. ~65!

Thus, TA is not Hermitian. We can, however, define th
regularized Hermitian operatorTA85OTO, where O51
2up50&^p50u. Its eigenvalues are complete and orthog
nal, and it circumvents the proof given above, becaus
satisfies@TA8,H#5 i\O, i.e., it is not conjugate toH at p
50. Although TA is not always the shift operator of th
energy, the measurement can be carried out in such a
that this will not be of consequence. To see this, consider
interaction Hamiltonian

Hmeas5d~ t !qTA8, ~66!

which modifies the initial wave functionc→exp(2iqT8)c.
We need to demand thatTA8 act as a shifts operator of th
energy ofc during the measurement. Therefore we requ
that q.2Emin , where Emin is the minimal energy in the
energy distribution ofc. In this way, the measurement do
not shift the energy down toE50 whereTA8 is no longer
conjugate toH. The value ofTA8 is recorded on the conjugat
of q—call it Pq . Now the uncertainty is given bydTA8
5d(Pq)51/dq, thus naively fromdq51/dTA8,Emin , we
get EmindT8.1. However, here, the average^q& was taken
to be zero. There is no reason not to take^q& to be much
larger thanEmin , so that̂ q&2dq@2Emin . If we do so, the
measurement increases the energy ofc and TA8 is always
conjugate toH. The limitation on the accuracy is in this cas
dTA8.1/̂ q& which can be made as small as we like.

Nevertheless, there are still problems with this time-
arrival operator. One finds that at the time of arrival, t
eigenstates ofTA, ^xuT(tA)& are not delta functionsd(x) but
are proportional tox23/2. Furthermore, ifP0 is the projector
onto x50, one finds that

^c@TA,P0#uc&52
i

2
ReH c~x50!E dkc* ~k!

m

k2J .

~67!
-
it

ay
e

e

-

A measurement of the time-of-arrival operator is not equi
lent to continuously monitoring the point of arrival. Furthe
more, if one measures a time-of-arrival operator at a timet8
before the particle arrives, then one needs to know the
Hamiltonian from timet8 until tA . Even if one knows the
full Hamiltonian, and can find an approximate time-o
arrival operator, one has to have faith that the Hamilton
will not be perturbed after the measurement has been m
On the other hand, the continuous measurements we h
described can be used with any Hamiltonian.

Finally, how does the resulting measurement of a time-
arrival operator compare with that of a continuous measu
ment? From the discussion in Sec. II A, it should be cle
that in the limit of high precision, continuous measureme
respond very differently in comparison to the time operat
At the limit of dtA→0 all the particles bounce back from th
detector. Such a behavior does not occur for the time
arrival operator. Nevertheless, one may still hope that si
the eigenstates ofTA have an infinite spread in energy, the
do trigger a clock, even ifdtA→0. For the type of models we
have been considering, we can show, however, that this c
nection is questionable.

For example, we assume that the interaction of one eig
state ofTA with the clock~of, say, Sec. II A! evolves as

utA&uy5t0&→ux~ tA!&uy5tA&1ux8~ tA!&uy5t&. ~68!

Here, uy5t0& denotes an initial state of the clock withdtA
→0, ux(tA)& denotes the final state of the particle if th
clock has stopped, andux8(tA)& the final state of the particle
if the clock has not stopped.

Since the eigenstates ofTA form a complete set, we ca
express any state of the particle asuc&5*dtAC(tA)utA&. We
then obtain

E dtAC~ tA!utA&uy5t0&→E dtAC~ tA!ux~ tA!&uy5tA&

1S E dtAC~ tA!ux8~ tA!L uy5t&.

~69!

The final probability to measure the time of arrival is hen
*dtauC(ta)x(ta)u2. On the other hand, we found that for
general wave functionc, in the limit of dta→0, the prob-
ability for detection vanishes. Since the states of the clo
uy5ta&, are orthogonal in this limit, this implies thatx(ta)
50 in Eq. ~68! for all tA . Therefore, the eigenstates ofTA
cannot trigger the clock.

V. CONCLUSION

We have examined various models for the measurem
of time of arrival tA , and found a basic limitation on th
accuracy with whichtA can be determined reliably:DtA

.1/Ēk . This limitation is quite different in origin from tha
due to the uncertainty principle; here it applies to asingle
quantity. Furthermore, unlike the kinematic nature of the u
certainty principle, in our case the limitation is essentia
dynamical in its origin; it arises when the time of arrival
measured by means of a continuous interaction between
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measuring device and the particle.
We would also like to stress that continuous measu

ments differ both conceptually and quantitatively from
measurement of the time-of-arrival operator. Operationa
one performs here two completely different measureme
While the time-of-arrival operator is a formally construct
operator which can be measured by an impulsive von N
mann interaction, it seems that continuous measurement
much closer to actual experimental setups. Furthermore
have seen that the results of these two measurements d
need to agree, in particular in the high accuracy limit; co
tinuous measurements give rise to entirely different beh
ior. This suggests that as in the case of the problem of fi
ing a ‘‘time operator’’ @8# for closed quantum systems, th
time-of-arrival operator has a somewhat limited physi
meaning.
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APPENDIX

Using the simple model of Sec. II A~2!, we now calculate
the probability distribution of a clock which measures t
time of arrival of a Gaussian wave packet. We will perfor
the calculation in the limits when the clock is extreme
accurate and extremely inaccurate. The wave function of
clock and particle is given by Eq.~10! and the distributions
are both Gaussians given by Eq.~11!. In the inaccurate limit,
when p0!k, AT;1. We trace over the position of the pa
ticle on the condition that the clock was triggered, i.e.,x
.0:

r~y,y!x.05E dxuc~x.0,y,t !u2

.N2E
2`

`

dkdk8E
0

`

dpdp8dxg~k!g* ~k8! f ~p!

3 f * ~p8!ei ~q2q8!x1 i ~p2p8!y2 i ~q22q82!t/2m.

~A1!

After a sufficiently long time, i.e.,t@ta the wave function
has no support on the negativex axis, and ifp0.1/Dy, then
it will not have support in negativep. We can thus integrate
p and x over the entire axis. Integrating overx gives ad
function in q. We can then integrate overp8 to give

r~y,y!x.0.
2pN2

m E dkdk8dpAk212mpg~k!

3g* ~k8! f ~p! f * S p1
k22k82

2m Dei ~k822k2!~y/2m!,

~A2!

where we have used the fact thatd„f (z)…5d(z2z0)/ f 8(z
5z0) when f (z0)50. The square root term varies little i
-

y
s.

u-
are
e

not
-
v-
d-

l

s
ic
he

e

comparison with the exponential terms and can be repla
by its average valueAk0

212mp0.k0. Integrating overp
gives

r~y,y!x.0.
2pN2k0

m
A p

2Dy2E dkdk8

3e2Dy2/8m2~k1k8!2~k2k8!2
g~k!g* ~k8!

3ei ~k822k2!y/2m. ~A3!

SinceDyk@1, for a wave packet peaked aroundk0 we can
approximate the argument of the first exponential
2Dy2k0

2/2m2(k2k8)2. This allows us to integrate overk
andk8

r~y,y!.0.
1

A2pg~y!
e2~y2tc!2/2g~y!, ~A4!

where the width isg(y)5Dy21(mDx/k0)21(y/2k0Dx)2.
As expected, the distribution is centered around the class
time of arrivaltc5x0m/k0. The spread iny has a term due to
the initial widthDy in clock positiony. The second and third
terms ing(y) are due to the kinematic spread in the time
arrival 1/dE5m/kdk and are given bydx(y)m/k0 where
dx(y)25Dx21(y/2mDx)2. The y dependence on the widt
in x arises because the wave packet is spreading as
increases, so that at latery, the wave packet is wider. As
result, the distribution differs slightly from a Gaussian, a
though this effect is suppressed for particles with larg
mass.

When the clock is extremely accurate, i.e.,p0@k0 we
haveAT;kA2/mp:

r~y,y!x.0.
2N2

m E
2`

`

dkdk8E
0

`

dpdp8dx
kk8

App8

3g~k!g* ~k8! f ~p! f * ~p8!

3ei ~q2q8!x1 i ~p2p8!y2 i ~q22q82!t/2m

.
4pN2

m E dkdk8dp
kk8

m
A k212mp

p„p1~k22k82!/2m…

3g~k!g* ~k8! f ~p! f * S p1
k22k82

2m D
3ei ~k822k2!~y/2m!. ~A5!

Sincep0@k0, we can approximate this integral as

r~y,y!x.0.
A

m
U E dkkg~k!e2 i ~k2y/2m!U2

, ~A6!

whereA[4pA(2/m)N2*(dp/Ap)u f (p)u2. We can approxi-
matep by p0 to take it outside the integrand, giving
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A.A p

mp0

2Dx

p2
. ~A7!

The final integration overk yields

r~y,y!.0.4A k0
2

2mp0

g̃~ tc!

g̃~y!

1

A2pg̃~y!
e2~y2tc!2/2g̃~y!,

~A8!
he

24
where the widthg̃(y)5Dx21(y/2k0Dx)2 is independent of
Dy because the kinematic spread in the time of arrival 1/dE
is much larger than the spread in the position of the clock
this limit we see two additional factors. The amplitude d
cays asAE0 /p0 so that improved accuracy decreases o
chances of detecting the particle. Also, there is a minor c

rection of g̃(tc)/g̃(y). More energetic particles with faste
arrival times are more likely to trigger the clock.
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