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Quantum effects in four-wave mixing in a cavity
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The four-wave-mixing signal at@; — w, from a collective system dfl two-level atoms dissipating through
spontaneous emission and dephasing and driven by weak external fields of frequgnaigsw, in a cavity
of arbitraryQ is found by evaluating exactly the susceptibilift?’ (w1, w1, — w,). The exact results show that
the customarily employed secular approximation for treating the problem of a strongly coupled atom-cavity
system is hopelessly inadequate for describing the process of four-wave ni&ir@h0-294708)04805-7

PACS numbes): 42.50—p

In a recent papefl] we addressed the issue of true sig- of atoms with the external weak bichromatic probe having
natures of the nonlinear and quantum effects in the interadrequenciesw; and w, is described by the Hamiltonian
tion of a two-level atom with a single mode field in a cavity. ) _
As has been discussed in detail in that reference, the charac- He(t) =d[e1eXp(—iw t) + e,exp( —iw,t) ]S, +H.c.,
teristic features of the field quantization and the two-level (@)

nature of the atom are contained in the structure of the Spe%hereel ande, are the field amplitudes ardiis the atomic

trum of the second and higher excited manifolds of the: : e
dressed states. We showed there that the method of foug-lc?\?;?ngg T;; T;'eTC;S\t/ﬁﬂ;and the field also dissipate energy

wave mixing provides a useful means of probing the
manifolds up to the second one. The signatures of the | p=x(2apa’—a'ap—pa'a)+y(2S_pS,—S,S_p
guantum and the nonlinear effects are provided by the posi-

tions of the resonances in the third-order susceptibility —pS:S.)+¥:(2S5,pS,~ Sip—pS), €)
x®(w;,01,—w,) as a function ofv, wherew; andw, are

the frequencies constituting the bichromatic field used as ¥/N€ré 2 is the rate of the loss of photonsys the rate of
probe. the atomic radiative decay and describes the losses due to

The evaluation of the susceptibility in that paper is, how-&tomic dephasing. The dephasing may arise, for example, by

ever, restricted to the case when each atom interacts indepedlomic collisions. The dynamics of the system is then gov-
dently with the fields and is based on the secular approxime€™ed by the equation

tion. That approximation(see [1-4] and the references d
therein is applicable when the atom-cavity coupling is much P i[Ho+He,p]+Lp (4)
stronger than the dissipations. We subsequently carried out dt

Ty o o o U for e ity . Here we are ereste i the -
. 9 y witt ' PNIS” octeristics of the four-wave-mixing signal at the frequency
ingly, that the predictions based on the secular approximaz,” " . . ; :

: . Co L - =2w,— w,. That signal is determined by the third-order
tion are in significant qualitative and quantitative usceptibility ¥ —wp)=d* Tr[p™S_] where
disagreement with the exact results for all N even when thal s pth yl X taéjl’wl't’ wzt_— o th ?h' 3 order of
approximation is expected to hold. In this paper we preserf[f b '?_ e rli ev:im ensity matrix i the third order ot per-
the results of the exact calculation ¢f®(w;,w;,— w,) urv\? lon 'T ?[(;') _ .1 b following Ref.[11. T
along with the predictions of the secular approximation for W€ evaluatey'™ (s, q,— ;) by following Ref.[1]. To

an arbitrary numbeN of atoms and highlight the differences that enc_i It Is con_vement to work in the basis of the d_ressed
between the two. states, i.e., the eigenstateskbf. The lowest state ol is,

Following Ref.[1] we consider a system & two-level of course,| —N/2,0). The first excited manifold consists of
atoms, each of transition frequenay, interacting collec- e Stateslyg), which correspond to the eigenvalurg
tively with a cavity mode of frequency,=wo. The quan- = @o(—N/2+1)=gN. The explicit expression fou; ) is
tized cavity mode is described by the operatya’, which ~ givenin Ref[1]. The second excited manifold of the dressed
obey the bosonic commutation relations whereas the atomigates is thregtwo) dimensional forN>1 (N=1). That
system is described by the spin operatts,S, that obey ~ space foN>1 is spanned by the eigenstafd$
the angular momentum commutation relations. The atom- 3
ialn)ty field interaction is governed by the Hamiltoniaf ( |¢i>:j§=:1 aijl—N/2+3—j,j—1> (5)

of Hy where the explicit form of they; is given in Ref.[4].
The corresponding eigenvalues afe.=(—N/2+2)w,
+gV4N—2 andEy=(—N/2+2)w,. The eigenstatef); )
whereg is the atom-field coupling constant. The interactionof H, for the second excited manifold fdf=1 correspond

Ho=woS,+ wpata+g(S,a+a's.), (1)
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to the eigenvalue& . = (—N/2+2)wo+g+2 [1]. Next one 1.0 7
determines the action of the field and the collective atomic

operators on the dressed states and uses it to find how the

dressed states transform under the action of the damping op- 0.8 1
eratorL. It can be shown that the operatotransforms each

of the vectors

0.6
(W1, W) =(] g )(—N/2,0,| g )( = N/2,0]); S
(X1:X2: X3 Xa)=([hg )5 | = —N/2,0)(=N/2,0[;| ¢y ) 0.4 1
X (o | == NI2,0)(=N/2,0}; |5 )
0.2 4

Xt |3 b Wi )

(Y1:Y2:Y3)=(|#h1)(0,— N/2|;[465)(0,— N/2|;| 1h3) 0.0 rJ.L 1 J|L
0

X (0,—N/2|); =3 -2 y 1 2 3
X/ 9

FIG. 1. S=|x®X)|/|x®(g)| as a function of X/g=(w,

(21122123124125126)1

whereZi=|yi\(¢g | Zisa=|wi) {1 |; 1=1,2,3 onto itself. —wo)/g for N=1, wy=w,; y=0.01g, k=0.03, and y.=0. The

The susceptibilityy®(w;,w;,— w,) can now be evaluated Solid curve is the result of exact calculation whereas the dashed one

by following Ref.[1]. is obtained by making the secular approximation with
As discussed in Ref.[1] , the resonances in [X®(9) lsoia/ [ ¥ (@) dasned=0-0018.

x®(wy,01,— wy) as a function ofw, can provide informa-

tion about the dressed-state spectrum if the dissipative loss&t€ Spectrum does not carry any signature either of the non-
are small compared with the atom-cavity coupling, i.e., ifllne_arlty of thg atom-field interaction or qf the fle_ld quanti-
«,Ny,7.<Ng. Under those conditions, the secular ap_zanon. The signature of those_ effects is contained in th_e
proximation[1—4] is expected to hold. The explicit expres- nature of the spectrum of the higher excited states, which is
sion for the susceptibility in the secular approximation forf€vealed by the resonances and (d). We, therefore, refer
N=1 is given in Ref[1]. On generalizing the arguments of to resonancer) and(d) as “quantum resonances. .
Ref.[1] for N=1 to N>1, it follows that the resonances in (3I)_et us now present the results of num_erlcal evaluation of
the susceptibility in anN-atom system are expected X by cons]der!ng first the case of (2) single atom_ system.
to OcCUr at(a) w,=wo+ JNg; (b) wy=2w;— w* NG We present in Figs. 1-4 the plots pf'®)| as a function of

(©) @y=2w1— ot g(VAN—2— N): (d) @p=2w;— g ws—wg for N=1, 1= wo, y=0.0lg_, x=0.03 and for dif-

. . - ferent rates of the atomic dephasing. The curves are drawn
=9(VAN=2+ \N); (0 wp=0y; () p=w122g\N. The  jq i fie maimum peak height in each case to
resonancesa) and(b) correspond to transitions between the one. The solid gcurves are the r%sults ofgevaluatio &
first excited doublet and the ground state in the cas#l of withbut making the secular approximation wherrgas the
=1. In the case of a multiatom system, contributions to thos%ashed curves are the predictions of the secular
resonances arise also from transitions from the dtate P
corresponding to the eigenvalue N/2+ 2)wq in the second
excited manifold to the first excited one. Note that in a single
atom system there is no transition from the second manifold
to the first that has the same frequency as a transition from
the first manifold to the ground state. The resonariceand
(d) correspond to transitions between the first and the second
excited manifolds. The resonancgs and (f) do not corre-
spond to any allowed transition. As shown in Rf], the
resonancese) and (f) disappear foN=1 if y.=0. Those
are thus like the collision-induced Bloembergen resonances
[5]. On generalizing the arguments of REf] for N=1 to
N>1 it follows that the resonancé) is due to atomic
dephasing induced processes between the pair of dressed
states|, ), which are separated by\Ng and the ground
state. Those types of resonances have also been reported by \
Agarwal[6] in the case of second-order responsé\afvo- N 7N
level atoms in a cavity to a modulated field in the secular -3 -2
approximation.

Thus the resonancéas), (b), (e), and(f) reveal the nature
of the dressed-state spectrum up to the first excited state. AS FIG. 2. The same as Fig. 1 but foy,=0.04 with
has already been pointed out earlier, that part of the dressedy®(g)|soiia| x> (9) | gasned 0-0078.
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FIG. 3. The same as Fig. 1 but fory,=0.08 with FIG. 5. |x®(X)|/|x®(gyN]) on a logarithmic scale as a func-
|X(3)(g)|so|id/|X(3)(g)|dashed:0-0018- tion of X/g=(w,—wg)/g for w;=wy, «=0.01, Ny=0.02, v,

=0.01 forN=2 (solid), 50 (long dashey] 100 (small dashes
approximation. Note first from the figure captions that the
scaling factors for the dashed and the solid curves differ b¥he weight of the quantum resonancesgt- wy= = g(y2
orders of magnitude. Figure 1 for,=0 exhibits resonances +1) ag well asqthe Bloember en&;@ o ?esgngances at
only at w,— wo=*g for the exact as well as the secular = ™’/ — 49 | learl ger pr >_4 Thus th
approximation calculations even though both of them predic{*”2 @o==£J aré also cliearly seen In Figs. - 'hus the

yantum resonances seem to be observable only in the pres-
other resonances. We have not been able to observe a y P

; efice of atomic dephasing even in the exact description.
other resonance for any other value of the damping rates as The disagreement between the exact results and those ob-

long as y.=0. Those other resonances seem to be SUPiined in the secular approximation seems surprising. How-
pressed by the observed ones in the absence of the atomic pp P 9.

dephasing. The quantum as well as the Bloembergen typ%zver’ a close examination of the expression for the suscepti-

resonances are exhibited in Figs. 2—4 {g#= 0. Note, how- llity (not given here because of lack of spaceveals the

ever, the significantly large differences between the predicoy o of the stated discrepency. We find that any term con-

tions of the exact and the approximate results. Note in art_ributing to a resonance is multiplied by a sum of terms that
. Ppro ’ € 1N PATZ e off the given resonance. That sum of terms contains di-
ticular that the exact calculation does not exhibit any

. .. .2 agonal as well as nondiagonal elements of the inverse of the
resonance ab;= w, whereas that resonance is exhibited in . : . ; .
o matrices representing the action lof-iz, wherez is linear
the secular approximation. We have not been able to observe

. combination of frequencies, on the vectors introduced to-
that resonance by exact calculations even for many othef

, : . . Wwards the end of the text following E@5). Since the off-
values of the damping rates. The differences in the predic- - . ;
resonance contribution of the diagonal elements is of the
10 same order of magnitude as that of the off-diagonal ones, it
follows that the secular approximation, which is based on
ignoring the off-diagonal elements, is unjustified in this case.
The secular approximation holds good, however, for the
first-order perturbation as in that case there are no “product
of sums” type of terms.

Next, forN>1, we find thaty(®) remains close to zero for
v.=0 if it is evaluated without making the secular approxi-
mation but is finite and exhibits resonanceswgt: \Ng in
the secular approximation for al. Varadaet al. [4], work-
ing in the secular approximation, have also reported similar
resonances for largd. That result of the secular approxima-
tion is evidently misleading because the nonlinear suscepti-
bility is expected to approach zero in the limit of larbje
That is because in that limit the eigenvalues of the second
manifold, given after Eq.(5), approach N/2+2)wg
+2g4N, (= N/2+2)wg, Which, together with the eigenval-
ues of the lower eigenstates define the energy levels of a
harmonic oscillator. For a general proof of the linearity of

FIG. 4. The same as Fig. 1 but foy,=0.2g with  the spectrum of aiN-atom system interacting with a single-
[X®(9)|soia? | X (9) | dashes 0-0018. mode field see Schaff7]. Since, as is well known, a har-

tions of the exact and the approximate calculations as regards
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monic oscillator cannot lead to any nonlinear wave mixing, itthe presence of a third level in the second excited manifold
follows thaty(® should approach zero for larde Our exact  for N>1. The transitions involving that level appear to be
calculations thus confirm that the conclusions of Varadglaying a crucial role in suppressing the wave mixing per-
et al.[4] are the artifact of the secular approximation. haps by way of causing destructive interference between two
The susceptibility is found to be finite for smallsrex-  channels of transition. However, we leave that as an open
hibiting some of the expected resonancesyif*0 as is  question.
shown by the plots in Fig. 5 for a given set of rates of
damping and different values of the numié¢rof atoms.
We are, however, unable to explain why the susceptibility
is finite for N=1 but vanishingly small, not only for largé
but for allN>1 in the absence of the atomic dephasing, i.e., One of us(R.R.P) is grateful to Professor G.S. Agarwal
for v.=0. A crucial difference betweeN=1 andN>1 is  for useful discussions.
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