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Analytical asymptotic structure of the correlation-kinetic component
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The contribution of Pauli and Coulomb correlations to the asymptotic structure of the Kohn-Sham density-
functional theory exchange-correlation potential in the classically forbidden region of atoms is well estab-
lished. In this paper we derive the analytical asymptotic structure of the correlation-kinetic component of the
potential to decay in this region ascgy/sr>, wherexélz is the ionization potential ang is an expectation
value of the resulting ion.S1050-294{©8)09905-3

PACS numbd(s): 31.15.Ew, 03.65-w

The Kohn-Shanj1] (KS) density-functional theory2,3]  tributions. At present there is nexplicit understanding of
exchange-correlation energy functiorif>[p] of the den- how the latter effects contribute to the asymptotic structure
sity p(r) and its functional derivative(potentia) v,.(r) of the exchange-correlation potentigl(r). In this paper we
:5553[9]/513(” incorporate electron correlations due to derive analytically the exact asymptotic structure of the
the Pauli exclusion principle, Coulomb repulsion, and thecorrelation-kinetic component af(r) in the classically for-
correlation contribution to the kinetic energy. The bidden region, and show it to be @(1/r°). The result is
asymptotic structure of the potentiaj(r) in the classically again obtained for the case when both the and
forbidden region of atoms and iorfgnd here we restrict (N—1)-electron systems are orbitally nondegenerate, but it
ourselves to these systeis of significance for properties is also valid for degenerate atoms and ions in the central field
such as the ionization potential, electron affinity, diamag-approximation/11]. We perform our calculations within the
netic susceptibility, and multipole polarizabilities. The un- framework of the rigorous physical interpretatift?—14,7
derstanding of the contributions of the various correlations t®f KS density-functional theory. The interpretatigi®,13 is
this asymptotic structure also constitutes an important inpuih terms of fields whichseparatelyrepresent the quantum-
to the constructiorf4] of approximate exchange-correlation mechanical electron-interaction and correlation-kinetic con-
energy functionals and potentials. Aimbladh and von BartHributions. This description thus delineates between the
[5] have shown via a quantum-mechanical derivation that foPauli-Coulomb and correlation-kinetic parts of the KS
an N-electron atom for which thé&l- and (N—1)-electron  €xchange-correlation energy functional and derivative, and
ground states are orbitally nondegenerate, the potential ~ thereby allows for the explicit determination of the

correlation-kinetic component.
v(1) ~ — 1 —al2r%, In the physical descriptiofiL2], the correlation-kinetic en-
f=e ergy T¢p] and potential Wtc(r) both arise from the

where is the dipole polarizability of the resulting ion. The correlation-kinetic fieldZ, (r). Thus, the energy is written in
leading (—1/r) term is due tdg 6] the exchange component virial form in terms of the field as
vy(r)=6EXI p1/8p(r), whereEX[p] is the KS exchange
energy functional, and attributab]6—8] in this asymptotic )
region to Pauli correlations, i.e., correlations that arise due to Telpl= Ef dr p(r)r-Z; (r), (1)
the Pauli exclusion principld.Note that the functional de-
tr;://:tl\cl)? Végalils g;?;?:tis:rig] :;;W&;erg;ﬁé?nz rgz:f ngnt?h_ eand the potential is the work done to move an electron from
correlation-kinetic component. There is no explicit infinity to its position atr in the force of this field:
correlation-kinetic contribution to the exchange energy
EX[p]]. As a consequence, the correlation component J'r o

! . : W (rn)=—1| Z.(r")-dI'. 2
ve(r)=6EXS[ p1/8p(r), whereEX[ p] is the KS correlation t(") ) @
energy functional, decays as-@/2r%). A comparison of

this result with that of a classical calculation, in which the Note that for the systems considered, the work done is path-
asymptotic electron is treated as a charge external to the io'ihdependent. The field, (r) is defined as the difference of
leads to the conclusiofb] that theO(1/r#) term is due to wo field A and (r“) for the KS noninteracting and
Coulomb correlations. An extensidd Q] of this argument ;vhalj S ZS.( ) 1z ! II Ing

shows that higher-order contributions due to Coulomb corre= chralinger interacting systems, respectively, as

lations will be of O(1/r®,1/8), etc., and therefore of even
order. However, the energgs~[p] and potentialv(r) in-
corporate both Coulomb as well as correlation-kinetic con-

1

2=

[z(r)—2z(r)], ()
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wherezg(r) andz(r) in turn are defined in terms of the cor- wheres enumerates the complete $hit—1,s) of eigenstates
responding noninteracting and interacting system kineticof the (N— 1)-electron system. In the asymptotic limit when
energy-density tensoniﬁ(r;[ys]) andt,g(r;[y]), respec- bothr,r’'—co, the density matrix

tively. Thus, for example, the componenj(r) of the field

z(r) is 1 .
ry(xlx’):fo(x)fé‘(x’) 1+ ZiE] ri JX”)a (9)
2,(1)= 22 ~Lap(rily), )
where
were —=(N-1/d L dIN-1 10
YT Xy =\ N=1d pmg o 4N (0
taﬁ(r'[ﬂ)—z mem y(r' ) e ey B . o
(5) i,j denote Cartesian coordinatgs,is a component of the

unit vectorr, d= fré p(r)dr is the dipole moment operator,
andy(r,r') is the spinless single-particle density matrix de- sp(r)=p(r)—(N—1|p(r)[N—1), p(r)==;8(r—r;) is the
fined in terms of the N-electron wave functionW  density operator, an®=|N—1)(N—1| the projector onto

(X1,X2,...Xy) (With x=ro, [dx=3,fdr) as the (N—1)-electron ground state. Note that the coefficient
Xij s an expectation value with respect to the
N N—1)-electron ground state. Other than thgg, does not
r,r'y=N P*(ro,x X ( . . Ay
(e 201 J’ (ro Xz, Xn) appear to have a physical interpretation. Since the

) (N—1)-electron system is spherically symmetric, the coeffi-
XW(r' o,Xy,... XN)AXo, ..., dXy - (6) cient x;; is diagonal,y;; = &; x-
Asymptotically then, the interacting system kinetic-

The KS theory noninteracting tenstiyﬁ(r;[ys]) is similarly energy-density tensor is

defined in terms of the idempotent Dirac density matrix
ye{rr') as taﬁ<r-m>

V=3 S g roB(r'o) @ =i [ () ()

”
ar! 8,3

constructed from the KS orbitalé;(x). We note[12] that
the workWt (r) is not equivalent to the functional derivative

5Tc[p]/5p(l‘) [The KS energyES> p] may be writter{12]

asE [p] E.dpl+Tlpl, whereE,Jp] is the quantum- 7

mechanical exchange-correlation energy. The derivative of ar gara

Exclp] is then v,(r)=38E.Jpl/dp(r)+ ST pl/ 5p(r).

This potential may also be expressed as(r)

=—[L[ELr)+2Zi (r)]-dI",  where [12]  E(r)

=[dr’p(r,r)(r=r")|r—r'|® is the field due to the

qguantum-mechanical Fermi-Coulomb hole chapggr,r’). Performing the partial derivatives, we obtain after consider-

The field of the sum€,.(r) +Z; (r) is conservative. For the able algebra

systems considered, vxc(r)zwxc(r)+wtc(r), where .

W, (r)=—[LEr")-dI" is the work done in the field _1f rﬁz o) (7T 0} [ x
tap(r;Ly]D) +7

Exe(r)] or or r

Although there has been recent wofld5] on the .y 3

asymptotic structure of the ground-state wave functibn _ X f fx + X f =

(X1,X5,....Xy) and single-particle density matrix(r,r'), [FoX)o )1+ 75 foX)fo ()

from which the asymptotic structure of the tengqp(r)

pould, in principle, be det_erml_ned, we perform our derlvatlor_l L6 5%2 fo(X) 2 (X). (12)

instead in terms of quasiparticle amplitudes. The asymptotic 2r

structure of these amplitudes, which are the interacting sys-

tem counterparts of the single-particle orbitals of the noninin deriving Eq. (120 we have used the fact that the

teracting system, is exactly known. Thus, following Alm- asymptotic structure df,(x) depends only on [see Eq(17)
bladh and von Bartlj5] (and their notatioy the reduced below].

1
1+_rﬁ22 ]le”

(?2
fo(x") 5 (X)

(11)

1 A/A//
1+_12722 ]XU)

]r’=r"=r,o"=0'"=0'

density matrixy(x,x") is written in terms of the quasiparti- For the KS noninteracting system, the asymptotic struc-
cle amplituded4(x) as ture of both the density(r) and idempotent density-matrix
vs(x,x") are governedl6] by the highest occupied KS orbital
xx =S f.(0F*(x), 8 dn(X). As the densities of the interacting and noninteracting
" ) Zs s fs () ® systems are the same, the asymptotic structurggk) is
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1+ 2] (13

dn(X)=To(X) 2r4

Thus, the noninteracting system kinetic-energy-density ten-

sor is

32 (92
—+—
ar LI arkar’;)
Xd’N(X/)¢;§1(X”)|r’=r”=r,o—’=a":a1 (14)

which on substitution of Eq13) reduces to

( f7fo(X)) ( Jfs (X))
ar ar

1
tpilvl=7 2 (

lr,r
v =5 7" 2

o

2x

1+ -z
r5

x| 147

r

X2
T ars

|~

X| 1+

d
7| oo [Fo(0f5(X)]

N

4)(2 N
+ <1 To(0T5 () [ (15)

Thus on neglecting terms @(1/r®) and higher order, we
have

IZB(ri[')’s])_taﬁ(r;[‘)’])

3r,r O,
=2 (73—B+ %)f()(x)fz)*(x). (16

r
Z,(1) ~ Brox 7 19

r—o
and the corresponding potential to vanish as

Brox
5r° -

W, (r) ~ (20

r—o

Thus, we see that the asymptotic structure of the correlation-
kinetic component of the functional derivative.(r) decays
asO(1/r%), and depends upon the ionization potential and an
expectation value taken with respect to tie—<1)-electron
system ground state. Correlation-kinetic effects in atoms are
thereforeshort-ranged Furthermore, the field and potential
both vanish as positive functiof$7]. Now to prove[5] that
the highest occupied KS eigenvalue is minus the ionization
potential requires an expansion of,(r) only to O(1/r%).
Thus, correlation-kinetic effects are of less significance than
those of Pauli and Coulomb correlations for properties such
as the ionization potential, electron affinity, etc., when deter-
mined from the highest occupied eigenvalue. Further, since
the correlation-kinetic field and that due to the Coulomb hole
are the same order of magnitude3,18 and both are short-
ranged, the corresponding correlation-kinefig[p] and
Coulomb energies are about the same. These understandings,
and the fact that in the classically forbidden region of atoms,
correlation-kinetic effects are shorter-ranged than those of
Coulomb correlations, ought now to be incorporated into ap-
proximate energy functionals and potentials.

Finally, for the atomic systems considered, it is stated in
the literaturg 3,15,16,19that in the limitr, r’ —, both the

Observe the similarity of the interacting and noninteractinginteracting and noninteracting density matricgs,r’) and
system tensors. An important difference, however, is theys(r,r’), respectively, tend in leading order to(r)p(r").

term with the & function in the expression far,g(r;[ v]),

It is evident from our derivation that to obtain the difference

which is absent irt; 4(r;[ ys]). This term contributes to the pepween the interacting and noninteracting system kinetic-

kinetic-energy-density(r) =3 ,t,.(r), and thus to the dif-

energy-density tensors, and hence the kinetic-energy densi-

ference in kinetic energy of the two systems. Asymptotically.ties and kinetic energies in this limit, the higher-order con-

this difference [ty(r)—t(r)] is precisely 3x/
r®)= fo(X) 3 ().
With the asymptotic structure df,(x) known[5,16] to be
fo(X)~crite o (1+Ayr 1+ Ayr "2+ Agr 3+ 1),

17

whereh=(Zy—N+1)/kg—1, Z is the total charge of the
nuclei, k3/2=E(N—1)—E(N), and theA; are coefficients,
we have from Egs(3), (4), and(16) that

J S
P(NZ; (=22 5 [Ty ~tap(TIYD].
(18)

Since asymptoticallyp(r)~=,|fo(x)|?, we then obtain the
correlation-kinetic field to decay as

tributions to this leading term must be taken in account.
In conclusion, we have derived the exact analytical
asymptotic structure of the correlation-kinet¢, (r) com-

ponent of the KS exchange-correlation potentigl(r) to
decay asO(1/r®) in the classically forbidden region of at-
oms. It thus vanishes more rapidly than the Coulomb corre-
lation component. The structure of the correlation-kinetic po-
tential is, of course, a function of the choice of external
potential. Thus, for example, in the case of Hooke’s atom
[20], for which the external potential is harmonic, the poten-
tial W, (r) decayd21] asymptotically more slowly than the

Coulomb correlation component. This is in contrast to the
case of Coulomb external potential considered here.
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