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Analytical asymptotic structure of the correlation-kinetic component
of the Kohn-Sham exchange-correlation potential in atoms
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The contribution of Pauli and Coulomb correlations to the asymptotic structure of the Kohn-Sham density-
functional theory exchange-correlation potential in the classically forbidden region of atoms is well estab-
lished. In this paper we derive the analytical asymptotic structure of the correlation-kinetic component of the
potential to decay in this region as 8k0x/5r 5, wherek0

2/2 is the ionization potential andx is an expectation
value of the resulting ion.@S1050-2947~98!09905-3#

PACS number~s!: 31.15.Ew, 03.65.2w
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The Kohn-Sham@1# ~KS! density-functional theory@2,3#
exchange-correlation energy functionalExc

KS@r# of the den-
sity r~r ! and its functional derivative~potential! nxc(r )
5dExc

KS@r#/dr(r ) incorporate electron correlations due
the Pauli exclusion principle, Coulomb repulsion, and
correlation contribution to the kinetic energy. Th
asymptotic structure of the potentialnxc(r ) in the classically
forbidden region of atoms and ions~and here we restric
ourselves to these systems! is of significance for properties
such as the ionization potential, electron affinity, diama
netic susceptibility, and multipole polarizabilities. The u
derstanding of the contributions of the various correlations
this asymptotic structure also constitutes an important in
to the construction@4# of approximate exchange-correlatio
energy functionals and potentials. Almbladh and von Ba
@5# have shown via a quantum-mechanical derivation that
an N-electron atom for which theN- and (N21)-electron
ground states are orbitally nondegenerate, the potential

nxc~r ! ;
r→`

21/r 2a/2r 4,

wherea is the dipole polarizability of the resulting ion. Th
leading (21/r ) term is due to@6# the exchange componen
nx(r )5dEx

KS@r#/dr(r ), whereEx
KS@r# is the KS exchange

energy functional, and attributable@5–8# in this asymptotic
region to Pauli correlations, i.e., correlations that arise du
the Pauli exclusion principle.@Note that the functional de
rivative nx(r ) is comprised@9# of two terms, one representa
tive of Pauli correlations and the other a part of t
correlation-kinetic component. There is no explic
correlation-kinetic contribution to the exchange ener
Ex

KS@r##. As a consequence, the correlation compon
nc(r )5dEc

KS@r#/dr(r ), whereEc
KS@r# is the KS correlation

energy functional, decays as (2a/2r 4). A comparison of
this result with that of a classical calculation, in which t
asymptotic electron is treated as a charge external to the
leads to the conclusion@5# that theO(1/r 4) term is due to
Coulomb correlations. An extension@10# of this argument
shows that higher-order contributions due to Coulomb co
lations will be of O(1/r 6,1/r 8), etc., and therefore of eve
order. However, the energyEc

KS@r# and potentialnc(r ) in-
corporate both Coulomb as well as correlation-kinetic c
571050-2947/98/57~5!/4041~4!/$15.00
e

-

o
ut

h
r

to

y
t

n,

-

-

tributions. At present there is noexplicit understanding of
how the latter effects contribute to the asymptotic struct
of the exchange-correlation potentialnxc(r ). In this paper we
derive analytically the exact asymptotic structure of the
correlation-kinetic component ofnxc(r ) in the classically for-
bidden region, and show it to be ofO(1/r 5). The result is
again obtained for the case when both theN- and
(N21)-electron systems are orbitally nondegenerate, bu
is also valid for degenerate atoms and ions in the central fi
approximation@11#. We perform our calculations within the
framework of the rigorous physical interpretation@12–14,7#
of KS density-functional theory. The interpretation@12,13# is
in terms of fields whichseparatelyrepresent the quantum
mechanical electron-interaction and correlation-kinetic c
tributions. This description thus delineates between
Pauli-Coulomb and correlation-kinetic parts of the K
exchange-correlation energy functional and derivative, a
thereby allows for the explicit determination of th
correlation-kinetic component.

In the physical description@12#, the correlation-kinetic en-
ergy Tc@r# and potential Wtc

(r ) both arise from the

correlation-kinetic fieldZtc
(r ). Thus, the energy is written in

virial form in terms of the field as

Tc@r#5 1
2 E dr r~r !r•Ztc

~r !, ~1!

and the potential is the work done to move an electron fr
infinity to its position atr in the force of this field:

Wtc
~r !52 È r

Ztc
~r 8!•dl8. ~2!

Note that for the systems considered, the work done is p
independent. The fieldZtc

(r ) is defined as the difference o

two fields zs(r ) and z~r ! for the KS noninteracting and
Schrödinger interacting systems, respectively, as

Ztc
~r !5

1

r~r !
@zs~r !2z~r !#, ~3!
4041 © 1998 The American Physical Society
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wherezs(r ) andz~r ! in turn are defined in terms of the co
responding noninteracting and interacting system kine
energy-density tensorstab

s (r ;@gs#) and tab(r ;@g#), respec-
tively. Thus, for example, the componentza(r ) of the field
z~r ! is

za~r !52(
b

]

]r b
tab~r ;@g#!, ~4!

where

tab~r ;@g#!5
1

4 S ]2

]r a8]r b9
1

]2

]r b8]r a9
Dg~r 8,r 9!ur85r95r ,

~5!

andg(r ,r 8) is the spinless single-particle density matrix d
fined in terms of the N-electron wave function C
(x1 ,x2 ,...,xN) ~with x[rs, *dx[Ss*dr ! as

g~r ,r 8!5N(
s

E C* ~rs,x2 ,...,xN!

3C~r 8s,x2 ,...,xN!dx2 ,...,dxN . ~6!

The KS theory noninteracting tensortab
s (r ;@gs#) is similarly

defined in terms of the idempotent Dirac density mat
gs(r ,r 8) as

gs~r ,r 8!5(
i

(
s

f i* ~rs!f i~r 8s!, ~7!

constructed from the KS orbitalsf i(x). We note@12# that
the workWtc

(r ) is not equivalent to the functional derivativ

dTc@r#/dr(r ). @The KS energyExc
KS@r# may be written@12#

as Exc
KS@r#5Exc@r#1Tc@r#, whereExc@r# is the quantum-

mechanical exchange-correlation energy. The derivative
Exc

KS@r# is then nxc(r )5dExc@r#/dr(r )1dTc@r#/dr(r ).
This potential may also be expressed asnxc(r )
52*`

r @Exc(r 8)1Ztc
(r 8)#•dl8, where @12# Exc(r )

5*dr 8rxc(r ,r 8)(r2r 8)/ur2r 8u3 is the field due to the
quantum-mechanical Fermi-Coulomb hole chargerxc(r ,r 8).
The field of the sumExc(r )1Ztc

(r ) is conservative. For the

systems considered, nxc(r )5Wxc(r )1Wtc
(r ), where

Wxc(r )52*`
r Exc(r 8)•dl8 is the work done in the field

Exc(r ).#
Although there has been recent work@15# on the

asymptotic structure of the ground-state wave functionC
(x1 ,x2 ,...,xN) and single-particle density matrixg(r ,r 8),
from which the asymptotic structure of the tensortab(r )
could, in principle, be determined, we perform our derivati
instead in terms of quasiparticle amplitudes. The asympt
structure of these amplitudes, which are the interacting s
tem counterparts of the single-particle orbitals of the non
teracting system, is exactly known. Thus, following Alm
bladh and von Barth@5# ~and their notation!, the reduced
density matrixg(x,x8) is written in terms of the quasiparti
cle amplitudesf s(x) as

g~x,x8!5(
s

f s~x! f s* ~x8!, ~8!
-

-

of

ic
s-
-

wheres enumerates the complete setuN21,s& of eigenstates
of the (N21)-electron system. In the asymptotic limit whe
both r ,r 8→`, the density matrix

g~x,x8!5 f 0~x! f 0* ~x8!S 11
1

r 2r 82 (
i , j

r̂ i r̂ j8x i j D , ~9!

where

x i j 5 K N21Udj

12P

@H2E~N21!#2 diUN21L , ~10!

i , j denote Cartesian coordinates,r̂ i is a component of the
unit vectorr̂ , d5*rd r̂(r )dr is the dipole moment operator
dr̂(r )5 r̂(r )2^N21ur̂(r )uN21&, r̂(r )5( id(r2r i) is the
density operator, andP5uN21&^N21u the projector onto
the (N21)-electron ground state. Note that the coefficie
x i j is an expectation value with respect to th
(N21)-electron ground state. Other than that,x i j does not
appear to have a physical interpretation. Since
(N21)-electron system is spherically symmetric, the coe
cient x i j is diagonal,x i j 5d i j x.

Asymptotically then, the interacting system kineti
energy-density tensor is

tab~r ;@g#!

5
1

4 (
s

H ]2

]r a8]r b9
F f 0~x8! f 0* ~x9!

3S 11
1

r 82r 92 (
i , j

r̂ i8 r̂ j9x i j D G
1

]2

]r b8]r a9
F f 0~x8! f 0* ~x9!

3S 11
1

r 82r 92 (
i , j

r̂ i8 r̂ j9x i j D G J
r85r95r ,s85s95s

. ~11!

Performing the partial derivatives, we obtain after consid
able algebra

tab~r ;@g#!5
1

2

r ar b

r 2 (
s

H S ] f 0~x!

]r D S ] f 0* ~x!

]r D S 11
x

r 4D
2

2x

r 5

]

]r
@ f 0~x! f 0* ~x!#1

3x

r 6 f 0~x! f 0* ~x!J
1

x

2r 6 dab(
s

f 0~x! f 0* ~x!. ~12!

In deriving Eq. ~12! we have used the fact that th
asymptotic structure off 0(x) depends only onr @see Eq.~17!
below#.

For the KS noninteracting system, the asymptotic str
ture of both the densityr(r ) and idempotent density-matri
gs(x,x8) are governed@6# by the highest occupied KS orbita
fN(x). As the densities of the interacting and noninteract
systems are the same, the asymptotic structure offN(x) is
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fN~x!5 f 0~x!S 11
x

2r 4D . ~13!

Thus, the noninteracting system kinetic-energy-density t
sor is

tab
s ~r ;@gs# !5

1

4 (
s

S ]2

]r a8]r b9
1

]2

]r b8]r a9
D

3fN~x8!fN* ~x9!ur85r95r ,s85s95s , ~14!

which on substitution of Eq.~13! reduces to

tab
s ~r ;@gs# !5

1

2

r ar b

r 2 (
s

H S ] f 0~x!

]r D S ] f 0* ~x!

]r D
3S 11

x

r 4 1
x2

4r 8D2
2x

r 5

3S 11
x

2r 4D ]

]r
@ f 0~x! f 0* ~x!#

1
4x2

r 10 f 0~x! f 0* ~x!J . ~15!

Thus on neglecting terms ofO(1/r 8) and higher order, we
have

tab
s ~r ;@gs# !2tab~r ;@g#!

52 1
2 x(

s
S 3r ar b

r 8 1
dab

r 6 D f 0~x! f 0* ~x!. ~16!

Observe the similarity of the interacting and noninteract
system tensors. An important difference, however, is
term with thed function in the expression fortab(r ;@g#),
which is absent intab

s (r ;@gs#). This term contributes to the
kinetic-energy-densityt(r )5(ataa(r ), and thus to the dif-
ference in kinetic energy of the two systems. Asymptotica
this difference @ ts(r )2t(r )# is precisely (23x/
r 6)(s f 0(x) f 0* (x).

With the asymptotic structure off 0(x) known@5,16# to be

f 0~x!;crle2k0r~11A1r 211A2r 221A3r 231¯ !,
~17!

wherel5(ZN2N11)/k021, ZN is the total charge of the
nuclei, k0

2/25E(N21)2E(N), and theAi are coefficients,
we have from Eqs.~3!, ~4!, and~16! that

r~r !Ztc ,a~r !52(
b

]

]r b
@ tab

s ~r ;@gs# !2tab~r ;@g#!#.

~18!

Since asymptoticallyr(r );(su f 0(x)u2, we then obtain the
correlation-kinetic field to decay as
n-

g
e

,

Ztc
~r ! ;

r→`

8k0x
r

r 7 ~19!

and the corresponding potential to vanish as

Wtc
~r ! ;

r→`

8k0x

5r 5 . ~20!

Thus, we see that the asymptotic structure of the correlat
kinetic component of the functional derivativenxc(r ) decays
asO(1/r 5), and depends upon the ionization potential and
expectation value taken with respect to the (N21)-electron
system ground state. Correlation-kinetic effects in atoms
thereforeshort-ranged. Furthermore, the field and potentia
both vanish as positive functions@17#. Now to prove@5# that
the highest occupied KS eigenvalue is minus the ionizat
potential requires an expansion ofnxc(r ) only to O(1/r 4).
Thus, correlation-kinetic effects are of less significance th
those of Pauli and Coulomb correlations for properties s
as the ionization potential, electron affinity, etc., when det
mined from the highest occupied eigenvalue. Further, si
the correlation-kinetic field and that due to the Coulomb h
are the same order of magnitude@13,18# and both are short-
ranged, the corresponding correlation-kineticTc@r# and
Coulomb energies are about the same. These understand
and the fact that in the classically forbidden region of atom
correlation-kinetic effects are shorter-ranged than those
Coulomb correlations, ought now to be incorporated into
proximate energy functionals and potentials.

Finally, for the atomic systems considered, it is stated
the literature@3,15,16,19# that in the limitr , r 8→`, both the
interacting and noninteracting density matricesg(r ,r 8) and
gs(r ,r 8), respectively, tend in leading order toAr(r )r(r 8).
It is evident from our derivation that to obtain the differen
between the interacting and noninteracting system kine
energy-density tensors, and hence the kinetic-energy de
ties and kinetic energies in this limit, the higher-order co
tributions to this leading term must be taken in account.

In conclusion, we have derived the exact analytic
asymptotic structure of the correlation-kineticWtc

(r ) com-

ponent of the KS exchange-correlation potentialnxc(r ) to
decay asO(1/r 5) in the classically forbidden region of at
oms. It thus vanishes more rapidly than the Coulomb co
lation component. The structure of the correlation-kinetic p
tential is, of course, a function of the choice of extern
potential. Thus, for example, in the case of Hooke’s at
@20#, for which the external potential is harmonic, the pote
tial Wtc

(r ) decays@21# asymptotically more slowly than the
Coulomb correlation component. This is in contrast to t
case of Coulomb external potential considered here.
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