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Selection rules for transverse-mode excitation in nonlinear ring and Fabry-Perot resonators

A. Gahl,* T. Ackemann, W. Grosse-Nobis, G. L. Lippi,† L. M. Hoffer,‡ M. Möller, and W. Lange
Institut für Angewandte Physik, Westfa¨lische Wilhelms–Universität Münster, Corrensstraße 2/4, D–48149 Münster, Germany

~Received 27 October 1997!

We establish that the energy transfer between transverse modes in nonlinear Fabry-Perot resonators with
curved mirrors, having degenerate or nearly degenerate modes, is governed by selection rules. Although these
rules are derived in a perturbative limit, assuming a thin medium centered in the resonator, we have found
numerically and experimentally that they still account for the otherwise unexpected enhancement or suppres-
sion of certain modes in more realistic cases. The existence of selection rules constitutes a fundamental
difference between standing wave and traveling wave cavities and therefore prevents, in principle, the possi-
bility of describing experiments on transverse effects performed in Fabry-Perot cavities with~simpler! ring
resonator models.@S1050-2947~98!10605-4#

PACS number~s!: 42.65.Sf, 42.65.Pc, 42.60.Da, 42.60.Jf
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I. INTRODUCTION

Transverse effects in nonlinear resonators have been s
ied in depth both experimentally and theoretically in the p
decade@1–5#. Whereas the first investigations focused on
basic scenarios and on the physical mechanism of pa
formation and therefore stressed the universality of the
served phenomena, some more recent work has dem
strated the significance of those details of the experime
setup that one may be tempted to disregard in a first anal
Mathis et al. recently demonstrated that the number of m
rors~odd or even! of a ring resonator affects the symmetry
the patterns observed in a laser@6#. Heckenberget al.
showed that in out-of-plane resonators, the degeneracy
tween vortex modes of opposite topological charge is b
ken, thereby fixing the direction of rotation of circling vort
ces@7#. Both results arise from the properties of the mod
spectrum of the linear resonator. However, even in th
cases where the configuration of the resonator does not a
its linear properties, itsnonlinearbehavior may change from
case to case. Indeed, in a recent paper@8#, we demonstrated
that the nonlinear features of ring and standing wave reso
tors that have thesame linearproperties will in general be
different. This is a consequence of the fact that in a stand
wave cavity the medium interacts with a forwardanda back-
ward beamsimultaneously, whose intensity distributions ar
in general different, due to the differing values of the Go
phase shift accumulated by different families of excit
modes during propagation. This carries the far-reaching c
sequence that models written for traveling-wave cavities c
not predict the results of experiments conducted in stand
wave resonators, even if the longitudinal grating formed
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the medium by the standing waves can be neglected. He
one must strongly resist the temptation to apply the sa
‘‘near equivalence’’ of standing wave and traveling wa
resonators that generally holds for the single-transve
mode case@9# to the multi-transverse-mode situation.

In this paper, we show that even in the case where es
tially only onemode is injected into a passive nonlinear ca
ity, the equivalence between standing and traveling w
cavities does not hold as soon as an energy transfer tow
other resonator modes is permitted by the nonlinearity. O
might expect that the first higher-order mode to receive
ergy from the fundamental mode is the Gauss-Lague
mode TEM10 — which is indeed true in ring resonator mod
els ~e.g.,@10,11#!, but may not be true in general. In particu
lar, we demonstrate, both theoretically and experimenta
that in a confocal~or close to confocal! Fabry-Perot resona
tor, the generation of the TEM20 has a higher efficiency
independent of the details of the nonlinearity. We will fu
ther show that this is just a special case of the general r
governing mode conversion in resonators with degene
transverse modes.

The case of mode degeneracy is of particular interest
cause it allows the formation of nontrivial patterns. In fa
numerous experiments on transverse effects have been
formed using such degeneracies in Fabry-Perot resona
e.g., @12,13#, and in particular, in the confocal or close
confocal configuration@4,5,14–16#.

The paper is organized as follows: After the introducti
of the model in Sec. II, we give an analytical treatment ba
on a perturbation analysis in Sec. III and we interpret
results heuristically. In Sec. IV, we relax some of the restr
tions imposed in the analytical treatment and numerica
investigate a specific example. We show that, in spite of
less stringent conditions that a realistic experimental sys
imposes, the selection rules are still very well satisfied.
nally, in Sec. V, we give experimental evidence of the sel
tion rules in a resonator containing sodium vapor as the n
linear medium.

II. DEFINITION OF THE MODEL

Figure 1 shows schematically the passive system to
considered. A Fabry-Perot resonator of length 2d, with two
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57 4027SELECTION RULES FOR TRANSVERSE-MODE . . .
identical curved mirrors of focal lengthf m and reflectivityR,
is set up in a close to confocal configuration (d2 f m! f m). A
thin layer of nonlinear medium of lengthL! f m is placed in
the center of this resonator. A Gaussian laser beam is
jected into the cavity. The transverse extent of the beam
assumed to be considerably smaller than the transverse
of the nonlinear medium~and of the mirrors!.

We introduce the slowly varying amplitudeC of the
monochromatic, scalar optical fieldE by

E5 1
2 ~C exp$2 i ~kz2vt !%1c.c.!, ~1!

wherev is the frequency andk the wave number. The field
induces a polarization in the nonlinear medium. We assu
that the slowly varying amplitudeP of the polarization can
be expressed as

P5e0xC, ~2!

where the susceptibilityx is assumed to depend on th
modulus squared of the field and may also be affected by
presence of nonlocal coupling mechanisms~e.g., transverse
diffusion!. This is typically the case in optical pattern form
tion.

The propagation ofC is described by the paraxial wav
equation,

]

]z
C52 i

k

2S 1

k2
¹'

2 1x D C, ~3!

where ¹'
2 is the transverse part of the Laplacian. Form

integration of Eq.~3! over a small distancedz yields

C~z1dz!5expH 2 i
kdz

2 S 1

k2
¹'

2 1x D J C~z!. ~4!

In general, propagation through media is trea
numerically—using Eq.~4!—as a sequence of diffractio
and refraction steps that take place in the thin layers
which the medium is decomposed~split-step operator
method, e.g.,@17#!. In our case, we will assume the mediu
to be thin enough to be described by only one application
the refraction operator,

Q5expH 2 i
kL

2
xJ , ~5!

where x is the transverse susceptibility distribution at t
position of the medium. The propagation of the beam fr
the medium to the mirror, the focusing of the beam by

FIG. 1. Schematic diagram of the system considered.
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curvature of the mirror, and the propagation back to the m
dium is described by the propagation operator,

P5AR expH 2 i
d

2k
¹'

2 J expH ik
r 2

2 f m
J expH 2 i

d

2k
¹'

2 J .

~6!

A complete round trip is thus described by the operator pr
uct QPQP.

The field inside the empty resonator is analyzed in ter
of the complete set of orthonormal Gauss-Laguerre eig
modes~see, e.g.,@18,19#!,

upl&5A 2p!

~ u l u1p!!pw2~z!

3exp$ i ~2p1u l u11!DF~z!%•r u l u~z!•Lp
u l u@r2~z!#

3expH 2 ik
r 2

2q~z!
2 i l fJ , ~7!

whereLp
l is the generalized Laguerre polynomial,p repre-

sents the radial mode index,l the azimuthal mode index
q(z) is the complex beam parameter andr(z):5A2r /w(z)
is the normalized cylindrical coordinate. The Gouy pha
shift DF,

DF~z!5arctanS z2z0

zR
D , ~8!

is measured with respect to the positionz0 of the beam waist
@19,20#. The total Gouy phase shift has to be evaluated
summing up all the individual phase shifts gained in ea
cavity section~computed with the value of the beam param
eter in that section!. The intracavity field amplitudeC can be
decomposed into a superposition of Gauss-Laguerre mo
upl&,

C5(
p,l

aplupl&, ~9!

that can be grouped in families of modes having a degene
resonance~cf., e.g.,@21#! identified by the index

s52p1u l u. ~10!

III. PERTURBATIVE CALCULATION OF MODE
CONVERSION

A. Contributions to the refraction operator

We describe the radial dependence of the susceptib
profile x(r ) by a Taylor series in the coordinater . Since we
inject a Gaussian beam into the cavity, and neglect the p
sibility of spontaneous symmetry breaking, only the ev
terms will appear:

x~r !5x02x2r 21x4r 41¯ . ~11!

In systems with strong transverse coupling by diffusionli
processes, a truncation of Eq.~11! after the fourth-order term
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4028 57A. GAHL et al.
represents a very satisfactory approximation for the sus
tibility profile within the laser beam~@5,14#; cf. @22# for a
quantitative investigation!.

The explicit form of the operatorQ is given by

Q5expH 2 i
kL

2
x0J expH i

kL

2
x2r 2J expH 2 i

kL

2
x4r 4J¯ .

~12!

The exponentials in Eq.~12! each have a different physica
meaning:

In the following we assume a lossless medium, hence,
first term describes an additional~uniform! phase shift of the
field by the medium, which is independent of the transve
coordinate and is therefore the same for all modes.

The second exponential can be identified as the actio
a thin lens, with a focal lengthf 51/(x2L). Therefore, up to
second order, the nonlinear resonator can be regarded
resonator with an additional, parameter-dependent intra
ity lens, whose eigenmodes will still be Gauss-Lague
modes, though with a different beam parameter. A leng
but straightforward calculation yields that in the close to co
focal configuration (d2 f m! f m) and low nonlinearity (f m
! f , ensuring that the resonator remains close to confo!
the Gouy phase shift per resonator round trip is given by

Fs5~s11!S p1
f m

f
1

2~d2 f m!

d D . ~13!

Disregarding uniform phase shifts, which are the same fo
modes, Eq.~13! also describes the modal spectrum of
close-to-confocal resonator. A confocal resonator (d5 f m) is
no longer confocal in the presence of a nonlinear med
(1/f Þ0). However, by a suitable cavity length adjustmen

d5 f m

1

11 f m/2f
, ~14!

it is possible to reestablish the highly degenerate modal s
trum of the confocal resonator.

The third exponential~and higher-order ones! in Eq. ~12!
cannot be absorbed into the definition of the mode, si
there are no explicit terms of the form exp$2ir4% in the ex-
pression forupl&, cf. Eq.~7!. Therefore, such terms introduc
a generic coupling between different modes. In order to d
cuss the influence of the nonparabolic terms, we elimin
the homogeneous and parabolic contributions to the ref
tion operatorQ by considering a suitable set of eigenmod
of the resonator with a self-induced intracavity lens.

B. Introductory example

Let us first assume the injected beam to be mode matc
to the fundamental mode of the resonatorwith intracavity
lens(a0051). We then perform a perturbation calculation
the excitation of higher-order modes due to the nonparab
component of the refractive index distribution, which w
now characterize with the dimensionless parameter,

g:5kLx4

w4

8
, ~15!
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where w is the beam waist of the fundamental mode. W
assume that the nonparabolic terms are small,ux4r 4u
!ux2r 2u, near the optical axis. This is equivalent to settin

ugu!
f m

f
!1, ~16!

and we can therefore approximate the fourth-order term
the operatorQ,

Q45exp$2 igr4% ~17!

'12 igr4 ~18!

511g@22iL 0
0~r2!14iL 1

0~r2!

22iL 2
0~r2!#, ~19!

to first order ing. The expansion of the perturbation operat
in Laguerre polynomials shows that a cylindrically symm
ric mode remains cylindrically symmetric. Furthermore,
mode with radial indexp can only directly excite modes with
p61 or p62. However, during successive round trips,
modes can be gradually excited. In order to keep this in
ductory example as simple as possible, we neglect this
cading excitation, which is possible in the case of

g2!T2, ~20!

whereT512R is the transmissivity of the mirrors@23#. We
can, in this case, confine the description to the three low
order cylindrically symmetric Gauss-Laguerre modes. F
this purpose we adopt a matrix representation of Eq.~19! for
Q4 , which operates on a state vector (a00,a10,a20)

T with
elementsaj 0 ( j 50,1,2) representing the amplitudes of th
three modes under consideration:

Q4511gS 22i 4i 22i

4i 214i 16i

22i 16i 238i
D . ~21!

The off-diagonal elements describe the coupling betw
different modes. Note that in asingle passthe excitation of
the u10& mode is twice as high as that of theu20& mode.
However, we will see in the following that this result, val
for the single pass, does not apply to the stationary stat
the intracavity field.

To calculate the steady-state solution, one has to take
account the phase changes of the modes due to the prop
tion in the empty regions of the resonator, over the rou
trip. Choosing the phase of the incoupled fundamental m
as a reference, the operator for propagation from the med
to the mirror and back is given by

P5ARe2 iF00/2S eiF00/2 0 0

0 eiF10/2 0

0 0 eiF20/2
D , ~22!

where the phasesFp0 are given by Eq.~13!. In the confocal
configuration—which can, if necessary, be established b
length correction@see Eq.~14!#—the operator becomes
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57 4029SELECTION RULES FOR TRANSVERSE-MODE . . .
P5ARS 1 0 0

0 21 0

0 0 1
D . ~23!

The operator responsible for the coupling towards high
order modes for a resonator round trip is given by

PQ4PQ45R1gRS 24i 0 4i

0 228i 0

4i 0 276i
D ~24!

to first order ing. The fact that the off-diagonal elemen
describing the coupling between theu00& and theu10& is zero
implies thatno energy is transferred from the fundamen
into the first higher-order mode. Obviously aselection rule
exists here, allowing only energy transfer to the seco
higher-order mode.

The physical origin of this surprising observation is illu
trated in Fig. 2. The left-hand side of the figure shows t
the fundamental mode traversing the nonlinear medium d
excite modeu10&, and in larger amounts than it does mo
u20&! The fundamental mode and the generated higher-o
modes propagate in the resonator half a round trip and
return to the medium. At this encounter, theu00& creates a
second contribution to theu10&. However, during the propa
gation to the mirror and back@cf. Eq. ~23!#, modeu10& ac-
quiresan additionalp (relative) phase shift compared to th
fundamental mode, as indicated by the form of the inverte
sinusoid reaching the medium in the right-hand side of
figure. Hence, there isdestructive interferencebetween the
u10& mode components generated half a round trip ap
Therefore, no excitation of theu10& mode is possible for the
full round trip at steady state. In contrast, the contributions
the u20& mode, which are generated half a round trip ap
interfere constructivelybecause of a 2p phase shift@cf. Eq.
~23!#. In this way, a significant amount of excitation can
accumulated in this mode, in spite of the fact that its exc
tion per single pass is much weaker than for theu10& mode.

FIG. 2. Schematic diagram illustrating the energy transfer
interference conditions between different transverse modes
confocal Fabry-Perot cavity. See text for further explanations.
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We now take into account the interference of the intra
avity field with the injected field, and obtain ‘‘nonlinear’
Airy functions for the transmission of the investigated mod
~transmitted powerPp0,t of modeup0& divided by the power
P00,i of the incident fundamental mode! as a function of the
resonator phased (d52kL1F0 , mod 2p in the empty
resonator!

P00,t~d!

P00,i
5

1

N~d!
@A~d!14g2A~d!K~d!#, ~25a!

P10,t~d!

P00,i
5

1

N~d!
@0116g2A~d!#, ~25b!

P20,t~d!

P00,i
5

1

N~d!
@014g2A~d!K~d!#, ~25c!

where

A~d!5
T2

T214R sin2S d

2D ~26!

is the usual Airy function. The function

K~d!5

T214R cos2S d

2D
T214R sin2S d

2D ~27!

describes the mode conversion and

N~d!511g2A~d!S 32
R

T2
A~d!18K~d!116D ~28!

ensures the normalizationa00
2 1a10

2 1a20
2 51. The calculation

is valid for the conditions stated in Eqs.~16! and ~20!.
Figure 3~a! shows the result of a numerical evaluation

Eq. ~25!. It is evident that the mode conversion is maximu
close to resonance,d'0 @cf. Eq. ~27!#. The excitation of
modeu20& is much higher than that of modeu10&. On reso-
nance, this ratio is

P20,t~0!

P10,t~0!
5

1

4
1

R

T2
. ~29!

After a single-pass~which corresponds to the conditionR
→0) mode u10& contains four times the energy of mod
u20&. However, the feedback introduced by the resonator
render the excitation of modeu20& orders of magnitude
higher than that of modeu10&. For example, forR50.93 this
ratio is about 200:1. In the stationary state, the energy
modeu10& is essentially that transferred in a single pass. T
can be inferred very nicely from a numerical simulation
the evolution of the transmitted power after switching on t
incident beam@Fig. 3~b!#. The energy in modeu10& saturates
or even decreases after just one round trip, whereas the
ergy in modeu20& shows a monotonic increase toward
stationary value.

d
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C. General considerations

We also performed numerical simulations for radial d
tributions of the susceptibility which are not necessarily
polynomial form, like the one assumed in Eq.~11!. In fact,
Fig. 3~b! itself was calculated for a profile resulting from th
nonlinear interaction of a Gaussian beam with a medi
~sodium vapor! in the presence of transverse diffusion~see
next section!. This figure proves that a strong selection
higher-order mode excitation survives for more gene
forms of the refractive index profile. In addition, the simul
tions allow us to determine what happens if the mode deg
eracy is broken: the strength of the mode conversion is ra
drastically reduced already at lens powers as low as 1/f 51
m21 in a 25-cm-long resonator, which is adjusted for ex
confocality in the absence of the nonlinear medium.

We stress that the selection rule is an interference co
tion arising from the phase shifts due to propagation. It d
not essentially depend on the structure of the operatorQ, but
on the structure of the propagation operatorP. Let us now
consider the mode conversion among all those modes
are degenerate in a confocal resonator, e.g., the modes o
familiess with s even. Choosing the phase of the fundame
tal mode as a reference, the operatorP is given by

P5AR expS ip
s

2D1, ~30!

where 1 denotes the identity matrix. The following resul
are valid for Gauss-Laguerre modes TEMpl , wheres52p
1u l u, as well as for Gauss-Hermite mode TEMmn , wheres
5m1n, sincePi j depends only on the family indexs.

FIG. 3. ~a! Transmitted power in the considered transve
modes as a function of the resonator phase@result of the perturba-
tion analysis, Eqs.~25!#. Parameters:R50.93 ~our experimental
situation! andugu50.006.~b! Transient behavior of the transmitte
power ~result of a numerical simulation with a diffusive suscep
bility profile!.
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The medium operatorQ is decomposed into the homoge
neous and parabolic contributions@cf. Eq. ~12!#, which are
taken into account by using a suitable basis set of Ga
Laguerre or Gauss-Hermite modes of the resonator with
racavity lens, and an operatorQ8, which induces mode cou
pling. Q8 is a generalization ofQ4 , since it is no longer
assumed that the operator stems from a truncation at fo
order of the Taylor expansion of the susceptibility, but on
that the deviation ofQ8 from the identity is small,

Q8511g8Q̃, ~31!

and is characterized by a parameterg8 (g8!1).
Then, to first order ing8, all those round-trip operato

elements (PQ8PQ8) i j for which the condition

s~ i !2s~ j !5214k, kPZ ~32!

is met, vanish. This means that after passing through
medium twice during the intracavity round trip, coupling b
tween modes of these familiess( i ) and s( j ) is destructive.
The coupling of modes with family indicess and s8 is, in-
stead, constructive for

s82s54k, kPZ. ~33!

These selection rules are accurate~to first order ing8) if
the modes are degenerate and if the mirror transmissivitT
goes to zero. However, for nonvanishing but low mirr
transmissivity, the energy transfer into the ‘‘allowed’’ mod
can occur via a large number of cascading stages, while
energy transferred into the ‘‘forbidden’’ modes is essentia
the same as in a single pass. Therefore, one can expec
selections rules to be rather well satisfied even in the cas
low mirror transmissivity@cf. Eq. ~29!#.

We recall that we assume the nonlinear medium to b
thin slice placed at the center of the resonator. If the slic
shifted away from the resonator center towards a mirror,
interference between components of the modes generat
successive encounters will not be completely destructive
constructive, and the selection rules will be only partia
satisfied. If the medium is placed against one of the mirro
the propagation effects disappear and therefore there ar
selection rules.

We stress that the existence of selection rules is not l
ited to the close-to-confocal situation, though this is certai
the one that is most relevant. Since energy transfer will
occur for any two modes with a relative half-round-tr
Gouy-phase shift equal top, similar considerations apply to
all Fabry-Perot resonators with ‘‘accidental’’ mode dege
eracies, i.e., those for which the condition

~s82s!F052p14pk, kPZ ~34!

is met for modes of familiess ands8. Energy transfer can
however, occur for modes with

~s82s!F054pk, kPZ. ~35!

Note that there are no selection rules in the plano-pla
configuration, because the Gouy-phase shift vanishes. In
opposite limit, for the concentric resonator configuration

e
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57 4031SELECTION RULES FOR TRANSVERSE-MODE . . .
selection rule exists which suppresses energy transfer
tween modes that satisfy the following condition:

~s82s!5112k, kPZ. ~36!

For example, mode conversion from the fundamental m
(s50) to the doughnut mode (s851) is forbidden in a con-
centric Fabry-Perot resonator although these modes are
generate.

It is important to observe that such selection rules donot
exist in ring resonators, since in a traveling wave cavity t
medium is encountered only once during a round trip a
therefore no interference conditions arise after a half ro
trip. This constitutes aqualitativedifference between stand
ing wave and ring resonators and requires considerable
in any attempt to describe experiments on mode conver
in Fabry-Perot resonators with ring resonator models—
vice versa.

IV. NUMERICAL INVESTIGATIONS

In the preceding analytical treatment, we have conside
the index of refraction profile to be ‘‘fixed.’’ In a more gen
eral situation, the generated modes will in turn influence
susceptibility profile. Therefore, with the help of a numeric
simulation, we check whether the selection rules are
observable in a more realistic situation, where we inclu
finite absorption and outcoupling losses. As in the exp
ment ~cf. Sec. V!, we consider sodium as the nonlinear m
dium. Its nonlinearity is saturable and is due to optical pum
ing between the Zeeman sublevels of the ground state o
D1 line in interaction with circularly polarized light~see,
e.g., @24#!. Transverse coupling is provided by the therm
atomic diffusion and by the reabsorption of trapped re
nance fluorescence~e.g., @25#!, also treated in a diffusive
limit @23#. Details about the model and numerical treatm
can be found in@23#. However, the main results are indepe
dent of the details of the nonlinearity.

In order to model a realistic case, we consider the em
resonator to be exactly confocal and choose incoupling c
ditions such that only 78% of the energy is coupled into
fundamental mode of the empty cavity while the remain
22% goes into the first higher order modeu10& (s52) @26#.
Figure 4 shows the sum of the transmitted power for
various families of modes withs5const., normalized to the
total input power, as a function of the resonator phased (d
50 is the resonance for the even modes in the empty r
nator.!. In contrast to the analytical treatment, here we
compose the intracavity field into modes of the empty re
nator, since the intracavity lens power is parame
dependent and a real-time-compensation of the reson
shift by an appropriate change in the macroscopic ca
length @cf. Eqs. ~13!, ~14!#—although possible in principle
—is not realizable in an experiment. Nevertheless, the po
contained in thes50,2,4,6 families is still larger than 93%
so that this basis set still appears to be suitable to chara
ize the intracavity field.

We first concentrate on the two resonance curves lab
s50 ands52 ~these modes are directly excited by the
coupled beam!. Due to the nonlinear lifting of the mode de
generacy~cf. @22#!, in the upper range of phase angles sho
('80° to '100°), the energy carried by theu10& mode is
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comparable to, or even higher than, that carried by the f
damental mode. On the other hand, for lower values ofd the
u00& mode takes a larger part of the energy (Pt /Pi u0050.3 at
d540° andPt /Pi u0050.7 atd515°, off scale in the figure!.

The splitting of these resonances~degenerate in the empt
cavity! is due to the self-induced intracavity lens@cf. Eq.
~13!# and their relative amplitude is determined by the filte
ing action—due to the quadratic terms in Eq.~12!—of the
resonator with internal lens@5,27#. The fact that the power
contained in thes52 family is negligible where thes50
mode is strongest indicates a lack of energy transfer fr
one to the other.

We now consider those effects that do not result fro
self-lensing but from mode conversion. For values ofd
'40°, there is a noticeable amount of energy transfer
from the fundamental mode towards modes of the fam
s54 ~marked s50→s54 in Fig. 4!, which is now more
strongly excited than thes52 family. In this region ofd
values, the modes belonging to the familys56 contain a
negligible amount of energy, thus showing that there is
appreciable transfer froms50→s56, in agreement with the
selection rule.

For d'75°, i.e., when the modes of thes52 family are
strongly excited, it is thes56 family of modes that receive
a significant amount of energy through mode conversi
Indeed, this transfer appears to be strong enough to cau
dip in the resonance of thes52 family ~marked bys52
→s56). Though the selections rules do not appear to
strictly valid in this resonator phase range, it is remarka
that, as predicted, the excitation of thes56 family is stron-
ger than that of thes54 family.

V. EXPERIMENT

We check the validity of the above treatment by meas
ing the energy transfer between transverse modes in a

FIG. 4. Transmitted power in the transverse modes withs
52p1u l u5const as a function of the resonator phase. Parame
of the simulation, laser power: 2.5 mW; detuning with respect
sodiumD1 line, 65 GHz; sodium particle density, 1.931013 cm23;
confocal resonator with length: 250 mm;R50.93; ensemble life-
time of population of excited state, 160 ns, i.e., 10 times the nat
lifetime. This parameter characterizes the strength of the radia
trapping effects@25#.



t,
te
f

r
rg
at
er
le
e

he
in
w
cr
a
n
on

a
si
.
a
-

, o
s
o
b

io

e
le
.
u
ce
re

e

pe-
sue.
the
plit-
he
the
ter-

ed

ted

sted
o
the
te

in

of
des

that
rse
e-

tri-
ions
n-

ex-
dif-

na

l
at-
he

of

4032 57A. GAHL et al.
focal ~or nearly confocal! Fabry-Perot resonator filled with
sodium vapor as a nonlinear medium. In the experimen
spatially filtered Gaussian beam of a cw dye laser is injec
into a sodium vapor cell that is placed in the center o
Fabry-Perot resonator~focal length of mirrorsf m5125 mm,
reflectivity R50.93). The parameters of the input beam a
controlled by a system of two lenses. The fraction of ene
coupled into the higher-order modes of the empty reson
is estimated to be smaller than about 10%. The transv
section of the transmitted beam is monitored by a coup
charge density~CCD! camera, placed 800 mm behind th
resonator. Details of the setup can be found in@5#.

As explained in Sec. IV, it is not possible to maintain t
mode degeneracy during a scan of the resonator phase
actual experimental setup. To circumvent this problem,
performed systematic studies where we varied the ma
scopic resonator length around its confocal value and h
operated the system on both sides of the atomic resona
therefore allowing for the appearance of self-induced c
verging or diverging lenses.

When the resonator is shorter than its confocal length~by
about 10 mm! we observe a rather complex sequence of p
terns as a function of the resonator phase on the focu
side of the atomic resonance~Fig. 5!. The patterns in Figs
5~b! and 5~c! have at least four distinct intensity maxim
~excluding the central one! thereby indicating that they in
clude substantial contributions of the TEM40 mode—in
Gauss-Hermite notation. For this resonator configuration
the defocusing side of the resonance, the sequences are
pler and the patterns do not show more than two peaks
center—an indication that they can be well described
modes of up to order 2. In the complementary situat
~resonator longer than its confocal length!, the changes in
patterns are less striking, but noticeable. In this case, as
pected from symmetry considerations, the more comp
patterns appear on the defocusing side of the resonance

We interpret these observations as follows. On the foc
ing side of the resonance the focal power of the self-indu
intracavity lens is positive. Therefore, the resulting inc
ment in Gouy-phase shift that it causes can compensate
the frequency splitting introduced by the length offs

FIG. 5. Sequence of patterns observed for decreasing reso
phase. Parameters, laser power about 100 mW; detuning with
spect to sodiumD1 line, 50 GHz; sodium particle density, 1013

cm23, resonator length, 240 mm~10 mm shorter than the confoca
length!.
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d2f m,0 of the empty resonator@cf. Eqs. ~13!, ~14!#. This
compensation will occur more or less exactly for some s
cific resonator phase and strong mode conversion will en
On the defocusing side of the line, instead, the effect of
lens and of the length offset combine and enhance the s
ting, thereby strongly disfavoring mode conversion. If t
length offset of the resonator changes its sign, the role of
defocusing and focusing side of the resonance are in
changed.

To obtain more quantitative information, we extract
one-dimensional cuts from the patterns of Figs. 5~b! and 5~c!
along their principal axes. These intensity profiles were fit
to a superposition of the TEM00, TEM20, and TEM40 modes
in Gauss-Hermite notation~Fig. 6!. Although the fitting pro-
cedure contains six or seven free parameters to be adju
for the optimization~the amplitudes of the three modes, tw
mutual phases, a normalization constant, and, possibly,
beam radius! the estimated uncertainty is low enough to sta
that the excitation of the TEM40 is considerably larger than
that of the TEM20 @about 30% versus 4% for the pattern
Fig. 5~b! and about 20% versus 10% in the case of Fig. 5~c!#.
This is a strong experimental confirmation of the existence
energy transfer, governed by selection rules, among mo
of a Fabry-Perot resonator.

VI. CONCLUSIONS

We have established the existence of selection rules
govern the energy transfer between different transve
modes in Fabry-Perot cavities containing a nonlinear m
dium. Their origin is the constructive~or destructive! inter-
ference between the complex amplitudes of the two con
butions to a mode that are generated in the two interact
with the nonlinear medium within one roundtrip. As a co
sequence of these rules, the spatial patterns that may be
pected in or predicted for such a Fabry-Perot cavity are
ferent from those occurring in a ring resonator.

tor
re-

FIG. 6. Cross section along the major principal axis of the p
tern in Fig. 5~b!. The measured profile is denoted by circles, t
solid line is the result of a least-squares fit to a superposition
Gauss-Hermite modes~see text!.
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The discussion in this paper concentrates on passive
tems in which an external beam is injected. Nevertheles
is to be expected that the existence or prohibition of a dir
coherent energy transfer between different transverse m
also influences the asymptotic modal distribution in act
systems.
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