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Selection rules for transverse-mode excitation in nonlinear ring and Fabry-Perot resonators
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We establish that the energy transfer between transverse modes in nonlinear Fabry-Perot resonators with
curved mirrors, having degenerate or nearly degenerate modes, is governed by selection rules. Although these
rules are derived in a perturbative limit, assuming a thin medium centered in the resonator, we have found
numerically and experimentally that they still account for the otherwise unexpected enhancement or suppres-
sion of certain modes in more realistic cases. The existence of selection rules constitutes a fundamental
difference between standing wave and traveling wave cavities and therefore prevents, in principle, the possi-
bility of describing experiments on transverse effects performed in Fabry-Perot cavitiegsimigblen ring
resonator model§S1050-2947@8)10605-4

PACS numbg(s): 42.65.5f, 42.65.Pc, 42.60.Da, 42.60.Jf

I. INTRODUCTION the medium by the standing waves can be neglected. Hence,
one must strongly resist the temptation to apply the same
Transverse effects in nonlinear resonators have been stuginear equivalence” of standing wave and traveling wave
ied in depth both experimentally and theoretically in the paste€sonators that generally holds for the single-transverse-
decadd 1-5]. Whereas the first investigations focused on themode cas¢9] to the multi-transverse-mode situation.
basic scenarios and on the physical mechanism of pattern In this paper, we show that even in the case where essen-
formation and therefore stressed the universality of the obtially only onemode is injected into a passive nonlinear cav-
served phenomena, some more recent work has demoffy: .t.he equivalence between standing and traveling wave
strated the significance of those details of the experimentdjaVities does not hold as soon as an energy transfer towards
setup that one may be tempted to disregard in a first analysiSther resonator modes is permitted by the nonlinearity. One
Mathis et al. recently demonstrated that the number of mir-Might expect that the first higher-order mode to receive en-
rors(odd or evehof a ring resonator affects the symmetry of €79y from the fundamental mode is the Gauss-Laguerre
the patterns observed in a lasE8]. Heckenberget al. mode TEM,— which is indeed true in ring resonator m_od-
showed that in out-of-plane resonators, the degeneracy b&!S (€-9,[10,11), but may not be true in general. In particu-
tween vortex modes of opposite topological charge is brolar. we demonstrate, both theoretically and experimentally,
ken, thereby fixing the direction of rotation of circling vorti- that in a confocalor close to confocalFabry-Perot resona-
ces[7]. Both results arise from the properties of the modaltor: the generation of the TEM has a higher efficiency,
spectrum of the linear resonator. However, even in thosd'dependent of the details of the nonlinearity. We will fur-
cases where the configuration of the resonator does not affefer sShow that this is just a special case of the general rules
its linear properties, itaonlinearbehavior may change from 9overning mode conversion in resonators with degenerate
case to case. Indeed, in a recent pdB&rwe demonstrated fransverse modes. , , ,
that the nonlinear features of ring and standing wave resona- | "€ case of mode degeneracy is of particular interest be-
tors that have thsame linearproperties will in general be Cause it allows t_he formation of nontrivial patterns. In fact,
different This is a consequence of the fact that in a standing'UMerous experiments on transverse effects have been per-
wave cavity the medium interacts with a forwamdda back- ormed using suc.h deggneramgs in Fabry-Perot resonators,
ward beamsimultaneouslywhose intensity distributions are €-9-[12,13, and in particular, in the confocal or close to
in general different, due to the differing values of the Gouyconfocal configuratio4,5,14—18. _ _
phase shift accumulated by different families of excited TN€ Paper is organized as follows: After the introduction
modes during propagation. This carries the far-reaching corf2! the model in Sec. Il, we give an analytical treatment based
sequence that models written for traveling-wave cavities can@" & perturbation analysis in Sec. Ill and we interpret the
not predict the results of experiments conducted in standind—,esuns heuristically. In Sec. IV, we relax some of the restric-

wave resonators, even if the longitudinal grating formed intions imposed in the analytical treatment and numerically
investigate a specific example. We show that, in spite of the

less stringent conditions that a realistic experimental system
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II. DEFINITION OF THE MODEL
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nonlinear : curvature of the mirror, and the propagation back to the me-
. mirror . . . .
medium dium is described by the propagation operator,

2
Iba::r: < HP:} > P=\/§exp{—i%vf]exp[ikzrf—m}exp[—i%vf].
(6)

-~ 2d

mirror

A complete round trip is thus described by the operator prod-
uct QPQP.
FIG. 1. Schematic diagram of the system considered. The field inside the empty resonator is analyzed in terms
of the complete set of orthonormal Gauss-Laguerre eigen-
identical curved mirrors of focal length, and reflectivityR, modes(see, €.9.[18,19),
is set up in a close to confocal configuratiahf ,<f,,,). A

thin layer of nonlinear medium of length<f,, is placed in 2p!
the center of this resonator. A Gaussian laser beam is in- |pl)= .
jected into the cavity. The transverse extent of the beam is (IN+p)trwi(2)
assumed to be considerably smaller than the transverse size <exnli(20+ 11+ 1) Ad olllizy. LMF 52
of the nonlinear mediungand of the mirrors Xgi(2p+ I+ DA} pl(2) P [p7(2)]
We introduce the slowly varying amplitudd of the o .
monochromatic, scalar optical fiel by xex —lk—zq(z) —il¢y, (7)
—1 i
E=z (¥ exp{—i(kz—wt)}+c.c), D where L, is the generalized Laguerre polynomial repre-

sents the radial mode indek,the azimuthal mode index,
8(2) is the complex beam parameter api): = \/2r/w(z)

IS the normalized cylindrical coordinate. The Gouy phase
shift Ad,

wherew is the frequency an#l the wave number. The field
induces a polarization in the nonlinear medium. We assum
that the slowly varying amplitud@® of the polarization can
be expressed as

P=eoxV, 2) AD(2)= arctar{ Z; ZO) , ®
R

where the susceptibilityy is assumed to depend on the

modulus squared of the field and may also be affected by thg measured with respect to the positignof the beam waist
presence of nonlocal coupling mechanistesy., transverse [19,20. The total Gouy phase shift has to be evaluated by
diffusion). This is typically the case in optical pattern forma- summing up all the individual phase shifts gained in each

tion. _ _ _ _ cavity section(computed with the value of the beam param-
The propagation off’ is described by the paraxial wave eter in that section The intracavity field amplitud& can be
equation, decomposed into a superposition of Gauss-Laguerre modes

Ipl),
v, ©)

T k( 1 w2y
0z 2\ k2 't

k \P:; aylpl), €)
where Vf is the transverse part of the Laplacian. Formal ’

integration of Eq(3) over a small distancéz yields that can be grouped in families of modes having a degenerate
resonancécf., e.g.,[21]) identified by the index

koz[ 1 _,
W (z+ 6z)=ex —IT EVL%—X P (2). (4 s=2p+]1]. (10)
In general, propagation through media is treated | PERTURBATIVE CALCULATION OF MODE
numerically—using Eq.4)—as a sequence of diffraction CONVERSION
and refraction steps that take place in the thin layers into
which the medium is decomposesplit-step operator A. Contributions to the refraction operator

method, e.g.[17]). In our case, we will assume the medium  \we describe the radial dependence of the susceptibility
to be thin enough to be described by only one application oprofile y(r) by a Taylor series in the coordinate Since we

the refraction operator, inject a Gaussian beam into the cavity, and neglect the pos-
KL sibility of spontaneous symmetry breaking, only the even
= —i— terms will appear:
Q exp[ I2X], (5) .
X(r)=xo— X2l "+ xar "+ . 11

where y is the transverse susceptibility distribution at the
position of the medium. The propagation of the beam fromin systems with strong transverse coupling by diffusionlike
the medium to the mirror, the focusing of the beam by theprocesses, a truncation of E4l) after the fourth-order term
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represents a very satisfactory approximation for the suscegvherew is the beam waist of the fundamental mode. We
tibility profile within the laser beant[5,14]; cf. [22] for a  assume that the nonparabolic terms are smplr®|

guantitative investigation <|x,r?, near the optical axis. This is equivalent to setting
The explicit form of the operata® is given by
f
kL kL kL A< <1, (16
Q=exp[ —i 7X0Jexp{i?)(2r2}exp[ —i 7x4r4]—-- :

(120 and we can therefore approximate the fourth-order term of
the operatoQ,
The exponentials in Eq12) each have a different physical 4
meaning: Qs=exp{—iyp"} 17
In the following we assume a lossless medium, hence, the -
first term describes an addition@iniform) phase shift of the ~1-iyp (18)
field by the medium, which is independent of the transverse
coordinate and is therefore the same for all modes. =1+ —2iLg(p?) +4iL5(p?)
The second exponential can be identified as the action of —2iL9( 2
athin lens with a focal lengthf =1/(x,L). Therefore, up to L2091,

second orde_r, the non_ll_near resonator can be fegafded aS¥irst order iny. The expansion of the perturbation operator
resonator with an additional, parameter-dependent mtraca\‘/r-1 Laguerre polynomials shows that a cylindrically symmet-

ity lens, whose eigenmodes will still be Gauss—LaguerreriC mode remains cylindrically symmetric. Furthermore, a

put saightiomard calcuiation yields thet i the cose fo con o0 With radialindep can only diecty excite modes vitn
9 y px1 or p=2. However, during successive round trips, all

focal configuration §—fn<fr) and low nonlinearity {n Imodes can be gradually excited. In order to keep this intro-

<f, ensuring that 'ghe resonator remains cI_os_e to Con)cocaductory example as simple as possible, we neglect this cas-
the Gouy phase shift per resonator round trip is given by cading excitation, which is possible in the case of

(19

b =(s+1)| 7+ me+ w ) (13 Y?<T?, (20
whereT=1—R is the transmissivity of the mirrof23]. We

Disregarding uniform phase shifts, which are the same for altan, in this case, confine the description to the three lowest-

modes, Eq.(13) also describes the modal spectrum of aorder cylindrically symmetric Gauss-Laguerre modes. For

close-to-confocal resonator. A confocal resonatbe€,,) is  this purpose we adopt a matrix representation of (&8). for

no longer confocal in the presence of a nonlinear mediun®,, which operates on a state vect@of,a;o,a,0)" with

(1/f#0). However, by a suitable cavity length adjustment, elementsa;, (j=0,1,2) representing the amplitudes of the

three modes under consideration:

1
dzfmm, (14) —2I 4| —2|
Q,=1+y| 41 —-14 16 |. (21)
it is possible to reestablish the highly degenerate modal spec- —2i 161 —38§
trum of the confocal resonator.
The third exponentiafand higher-order ongsn Eq. (12) The off-diagonal elements describe the coupling between

cannot be absorbed into the definition of the mode, sincgifferent modes. Note that in single pasghe excitation of
there are no explicit terms of the form €xgr?} in the ex-  the |10) mode is twice as high as that of th20) mode.
pression forpl), cf. Eq.(7). Therefore, such terms introduce However, we will see in the following that this result, valid

a generic coupling between different modes. In order to disfor the single pass, does not apply to the stationary state of
cuss the influence of the nonparabolic terms, we eliminatgnhe intracavity field.

the homogeneous and parabolic contributions to the refrac- To calculate the steady-state solution, one has to take into
tion operatorQ by considering a suitable set of eigenmodesaccount the phase changes of the modes due to the propaga-

of the resonator with a self-induced intracavity lens. tion in the empty regions of the resonator, over the round
trip. Choosing the phase of the incoupled fundamental mode
B. Introductory example as a reference, the operator for propagation from the medium
Let us first assume the injected beam to be mode matchetg the mirror and back is given by

to the fundamental mode of the resonatdth intracavity el 002 0 0

lens(agy=1). We then perform a perturbation calculation of » —

the excitation of higher-order modes due to the nonparabolic P=JRe ®w? 0 e 0 ], (22

component of the refractive index distribution, which we 0 0 al 202

now characterize with the dimensionless parameter,

where the phase® , are given by Eq(13). In the confocal
configuration—which can, if necessary, be established by a
length correctiorisee Eq(14)]—the operator becomes

4
y:=kLX4€, (15
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Q P > Q We now take into account the interference of the intrac-
avity field with the injected field, and obtain “nonlinear”

Airy functions for the transmission of the investigated modes

A N—; /\/—p A ’\,-} (transmitted poweP o, of mode|p0) divided by the power

. Poo; of the incident fundamental mopas a function of the
|20> |20 20> resonator phas@ (5=2kL+®,, mod 27 in the empty
: resonator

é‘ /» Poos(8) 1
,\I*: P, N(3) ADHAYAOK(D], (253

10 10

P10:(9) 1
=——[0+16y%A(5)], 25b)
Poy N30T 16Y°A)] (25b)
: Pos(d) 1
=——[0+4y?A(8)K(J)], (250
|og> o> |oo> [610)2 Pooj  N(é) ’ ]
FIG. 2. Schematic diagram illustrating the energy transfer andvhere
interference conditions between different transverse modes in a
confocal Fabry-Perot cavity. See text for further explanations. 2
A(d)= (26)
6
1 0 0 T?+4R smz(i)
P=JR[ 0 -1 0. 23 . . _
0 o0 1 is the usual Airy function. The function
Thde opergtorfresponsible for thedco_up_ling_towa;)rds higher- T21 4R Cog(;)
order modes for a resonator round trip is given
P IS gen by K(8)= . (27)
—4i 0 4i T?2+4R sinz(z)
0O -—-28 0
PQ,PQ,=R+yR 24 . .
Q:PQs Y 4 0o —76 29 gescribes the mode conversion and
. . . ’ R
to first order iny. The fact that the off-diagonal element N(8)=1+ v°A(J) 32—2A(5)+8K(5)+16 (28
describing the coupling between t}#0) and the|10) is zero T

implies thatno energy is transferred from the fundamental h lizati 2 .22 1 Th lculati
into the first higher-order modeDbviously aselection rule ~ €NSUres the norma izatiago+ ajo+ ag= 1. The calculation

exists here, allowing only energy transfer to the secondS Valid for the conditions stated in Eqe6) and(20).
higher-order mode. Figure 3a) shows the result of a numerical evaluation of

The physical origin of this surprising observation is illus- E9- (29 Itis evident that the mode conversion is maximum

trated in Fig. 2. The left-hand side of the figure shows thaf!0Se to resonancej~0 [cf. Eq. (27)]. The excitation of
the fundamental mode traversing the nonlinear medium doe®0de|20) is much higher than that of mod&0). On reso-

excite mode|10), and in larger amounts than it does mode Nance, this ratio is

|20)! The fundamental mode and the generated higher-order

modes propagate in the resonator half a round trip and then P20:(0) _ } E
return to the medium. At this encounter, tj) creates a P1o:(0) 4 127
second contribution to the.0). However, during the propa-

gation to the mirror and badcf. Eq. (23)], mode|10) ac-  After a single-pasgwhich corresponds to the conditidR
quiresan additionals (relative) phase shift compared to the —0) mode |10) contains four times the energy of mode
fundamental modeas indicated by the form of the inverted |20). However, the feedback introduced by the resonator can
sinusoid reaching the medium in the right-hand side of theender the excitation of mod&0) orders of magnitude
figure. Hence, there idestructive interferenceetween the higher than that of modgl0). For example, foR=0.93 this

|10) mode components generated half a round trip apartatio is about 200:1. In the stationary state, the energy in
Therefore, no excitation of thd0) mode is possible for the mode|10) is essentially that transferred in a single pass. This
full round trip at steady state. In contrast, the contributions taan be inferred very nicely from a numerical simulation of
the [20) mode, which are generated half a round trip apartthe evolution of the transmitted power after switching on the
interfere constructivelypoecause of a 2 phase shiffcf. Eq.  incident beanjFig. 3(b)]. The energy in modgLO) saturates
(23)]. In this way, a significant amount of excitation can beor even decreases after just one round trip, whereas the en-
accumulated in this mode, in spite of the fact that its excita€ergy in mode|20) shows a monotonic increase toward its
tion per single pass is much weaker than for {th® mode. stationary value.

(29
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a) 0 The medium operatd is decomposed into the homoge-

' neous and parabolic contributiopsf. Eq. (12)], which are
taken into account by using a suitable basis set of Gauss-
Laguerre or Gauss-Hermite modes of the resonator with int-
racavity lens, and an operat@Q’, which induces mode cou-
pling. Q" is a generalization of),, since it is no longer
assumed that the operator stems from a truncation at fourth
order of the Taylor expansion of the susceptibility, but only
that the deviation of)’ from the identity is small,

-20 -10 0 10 20

5 (degree) '=1+4'3, (31)
b . :
) 100 and is characterized by a paramejér(y’<1).
@ y Then, to first order iny’, all those round-trip operator
g 10 2o elements PQ'PQ’);; for which the condition
£ 10°f ) s(i)—s(j)=2+4k, xeZ (32)
g
S o / Pio,/ Poo,e is met, vanish. This means that after passing through the
Q_‘% . medium twice during the intracavity round trip, coupling be-
10 0E ] PR =0 100 tween modes of these familie$i) ands(j) is destructive.

The coupling of modes with family indicesands’ is, in-

number of round trips stead, constructive for

FIG. 3. (a) Transmitted power in the considered transverse , .
modes as a function of the resonator phassult of the perturba- s'—s=4«k, kel (33
tion analysis, Egs(25)]. ParametersR=0.93 (our experimental . . . .
situation énd|y|q=0.0015.(b) Transient behavior of theptransmitted These selection rules are acc_urétteﬂr;t order myf) if .
power (result of a numerical simulation with a diffusive suscepti- th€ modes are degenerate and if the mirror transmissivity
bility profile). goes to zero. However, for nonvanishing but low mirror
transmissivity, the energy transfer into the “allowed” modes
C. General considerations can occur via a large number of cascading stages, while the
energy transferred into the “forbidden” modes is essentially
the same as in a single pass. Therefore, one can expect the
selections rules to be rather well satisfied even in the case of
low mirror transmissivity{cf. Eq. (29)].
We recall that we assume the nonlinear medium to be a

We also performed numerical simulations for radial dis-
tributions of the susceptibility which are not necessarily of
polynomial form, like the one assumed in E4Jl). In fact,

(sodium vapor in the presence of transverse diffusi(see
next section This figure proves that a strong selection in
higher-order mode excitation survives for more general
forms of the refractive index profile. In addition, the simula-
tions allow us to determine what happens if the mode dege

shifted away from the resonator center towards a mirror, the

interference between components of the modes generated at
uccessive encounters will not be completely destructive or

constructive, and the selection rules will be only partially

Catisfied. If the medium is placed against one of the mirrors,

eracy is broken: the strength of the mode conversion is rath%e propagation effects disappear and therefore there are no
drastically reduced already at lens powers as low &s- 1/ selection rules

_1 . . . .
m~" in a 25-cm-long resonator, which is adjusted for exact We stress that the existence of selection rules is not lim-

confocality in the ahsence of the nonlinear medium. jted to the close-to-confocal situation, though this is certainly

. We_s_tress that the selecuon rule is an mterfer(_ence Condi’ne one that is most relevant. Since energy transfer will not
tion arising from the phase shifts due to propagation. It doe%ccur for any two modes with a relative half-round-trip

not essentially depend on the structure of the ope@idsut Gouy-phase shift equal te, similar considerations apply to

on th_e structure of the propagation operakorLet us now o Fabry-Perot resonators with “accidental” mode degen-
consider the mode conversion among all those modes thal,.ies “i.e. those for which the condition

are degenerate in a confocal resonator, e.g., the modes of the
families s with s even. Choosing the phase of the fundamen- (s'—s)®y=2m+4mk, xel (34)
tal mode as a reference, the operd®is given by

is met for modes of families ands’. Energy transfer can,
P=yR exp( i Trf) 1 (30) however, occur for modes with
2 il

(8’ —s)®y=47Kk, kel. (35
where 1 denotes the identity matrix. The following results
are valid for Gauss-Laguerre modes TEMwheres=2p Note that there are no selection rules in the plano-planar
+11|, as well as for Gauss-Hermite mode TRM wheres  configuration, because the Gouy-phase shift vanishes. In the
=m-+n, sinceP;; depends only on the family index opposite limit, for the concentric resonator configuration, a
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selection rule exists which suppresses energy transfer be-

tween modes that satisfy the following condition: 0.08

! —_ 7
(s'=s)=1+2«, kel. (36) 0.06

For example, mode conversion from the fundamental mode
(s=0) to the doughnut modes{=1) is forbidden in a con- —
centric Fabry-Perot resonator although these modes are de—& 0.04
generate. -

It is important to observe that such selection rulesmdo -
exist inring resonators, since in a traveling wave cavity the
medium is encountered only once during a round trip and
therefore no interference conditions arise after a half round
trip. This constitutes gualitative difference between stand-
ing wave and ring resonators and requires considerable care : . .
in any attempt to describe experiments on mode conversion 20 40 60 80 100
in Fabry-Perot resonators with ring resonator models—or d (degree)
vice versa.

0.02

0.00

FIG. 4. Transmitted power in the transverse modes vgith
=2p+|l|=const as a function of the resonator phase. Parameters
of the simulation, laser power: 2.5 mW; detuning with respect to

In the preceding analytical treatment, we have consideregodiumD; line, 65 GHz; sodium particle density, X920 cm™?;
the index of refraction profile to be “fixed.” In a more gen- confocal resonator with length: 250 mmR=0.93; ensemble life-
eral situation, the generated modes will in turn influence théime of population of excited state, 160 ns, i.e., 10 times the natural
susceptibility profile. Therefore, with the help of a numerical'ifetime. This parameter characterizes the strength of the radiation

simulation, we check whether the selection rules are stilf"aPping effectd25].

observable in a more realistic situation, where we i”d“decomparable to, or even higher than, that carried by the fun-
finite absorption and outc_oupling_losses. As in the experiyamental mode. On the other hand, for lower values tife
ment(cf. Sec.. V, we _conS|der sodlum' as the nonl_lnear me-|oo> mode takes a larger part of the ener@y AP;|oo="0.3 at
dium. Its nonlinearity is saturable and is due to optical pump-5_4g° angpP IP;]os=0.7 até=15°, off scale in the figute

ing between the Zeeman sublevels of the ground state of the 1,4 splittir;g olfotohesé resonanc(ékagenerate in the empty
D, line in interaction with gircullarly p(_)larized lightsee, cavity) is due to the self-induced intracavity lepsf. Eq.
e.g.,[24]). Transverse coupling is provided by the thermal 1 3)1'and their relative amplitude is determined by the filter-
atomic diffusion and by the reabsorption of trapped réSOjng action—due to the quadratic terms in E@G2)—of the

nance fluorescencee.g., [25)), also treated in a diffusive | oqonator with internal lengs,27]. The fact that the power
limit [23]. Details about the model and numerical treatment. ) tained in thes= 2 family is negligible where the&=0

can be found i23]. However, the main results are indepen- ,,,4e is strongest indicates a lack of energy transfer from
dent of the details of the nonlinearity. one to the other.
In order to model a realistic case, we consider the empty \va now consider those effects that do not result from

resonator to be exactly confocal and choose incoupling Cor§elf-lensing but from mode conversion. For values &of

ditions such that only 78% of the energy is coupled into the%4oo’ there is a noticeable amount of energy transferred

fundamental mode of the empty cavity while the remainingg, ., the fundamental mode towards modes of the famil
; ) ; Yy

22% goes into the first higher order moki_é)} (s=2)[26]. o4 (markeds=0—s=4 in Fig. 4, which is now more

Figure 4 shows the sum of the transmitted power for theStrongly excited than the=2 family. In this region ofs

}[/atri?ys fatmilies of modfes V\ii.tb: cfotr;]st., norm?lize(:];o:she values, the modes belonging to the fam#i¥6 contain a
otal Input power, as a function of the resonator p % negligible amount of energy, thus showing that there is no

%{ppreciable transfer fros=0—s=6, in agreement with the

nator). In contrast to the analytical treatment, here we de'selection rule.

compose the intracavity field into modes of the empty reso- = . o750 i \when the modes of the= 2 family are

gator, dsmtce (;he mtlra;_cawty lens pt(_)wer flfh IOarameterstrongIy excited, it is the=6 family of modes that receives
ependent and a real-ime-compensation of the reson"’m%lesignificant amount of energy through mode conversion.

shift by an appropriate change in the macroscopic CaVit}fndeed this transfer appears to be strong enough to cause a
length [cf. Egs.(13), (14)]—although possible in principle dip in £he resonance g? the=2 family (rr?arked gbys=2

—is not realizable in an experiment. Nevertheless, the power ;
. ; b ’ s=6). Though the selections rules do not appear to be
contained in thes=0,2,4,6 families is still larger than 93%, . ) 9 PP

) . . . strictly valid in this resonator phase range, it is remarkable
so that this basis set still appears to be suitable to characte[rﬁallt ;SV rled:ctedl the excitati([))n of the 69fan|1ill is stron-
ize the intracavity field. as p ! y

We first concentrate on the two resonance curves Iabele%er than that of the=4 family.

s=0 ands=2 (these modes are directly excited by the in-
coupled beam Due to the nonlinear lifting of the mode de-
generacy(cf. [22]), in the upper range of phase angles shown We check the validity of the above treatment by measur-

(=~80° to ~100°), the energy carried by t§&0) mode is ing the energy transfer between transverse modes in a con-

IV. NUMERICAL INVESTIGATIONS

V. EXPERIMENT
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FIG. 5. Sequence of patterns observed for decreasing resonator X (mm)

phase. Parameters, laser power about 100 mW; detuning with re-
speg to sodiunD; line, 50 GHz; sodium particle density, 0 FIG. 6. Cross section along the major principal axis of the pat-
cm™*, resonator length, 240 mii10 mm shorter than the confocal tern in Fig. 5b). The measured profile is denoted by circles, the
length. solid line is the result of a least-squares fit to a superposition of

_ ~ Gauss-Hermite modgsee text
focal (or nearly confocal Fabry-Perot resonator filled with

sodium vapor as a nonlinear medium. In the experiment,

spatially filtered Gaussian beam of a cw dye laser is injecteg_'cm<o of the empty resonatdef. Egs.(13), (14)]. This
into a sodium vapor cell that is placed in the center of acompensation will occur more or less exactly for some spe-
Fabry-Perot resonatdfocal length of mirrorsf =125 mm, cific resonator phasg and strong mo'de conversion will ensue.
reflectivity R=0.93). The parameters of the input beam areOn the defocusing side of the line, instead, the effect of the
controlled by a system of two lenses. The fraction of energyens and of the length offset combine and enhance the split-
coupled into the higher-order modes of the empty resonatding, thereby strongly disfavoring mode conversion. If the
is estimated to be smaller than about 10%. The transverdength offset of the resonator changes its sign, the role of the
section of the transmitted beam is monitored by a coupledlefocusing and focusing side of the resonance are inter-
charge densityCCD) camera, placed 800 mm behind the changed.
resonator. Details of the setup can be foundi5h To obtain more quantitative information, we extracted
As explained in Sec. IV, it is not possible to maintain the one-dimensional cuts from the patterns of Figd) mnd 5c)
mode degeneracy during a scan of the resonator phase in atong their principal axes. These intensity profiles were fitted
actual experimental setup. To circumvent this problem, weo a superposition of the TE}j, TEM,,, and TEM,, modes
performed systematic studies where we varied the macrgn Gauss-Hermite notatiofFig. 6). Although the fitting pro-
scopic resonator length around its confocal value and havgedure contains six or seven free parameters to be adjusted
operated the system on both sides of the atomic resonancgy the optimizationthe amplitudes of the three modes, two
therefore allowing for the appearance of self-induced cony,ygal phases, a normalization constant, and, possibly, the
verging or diverging lenses. _ beam radiusthe estimated uncertainty is low enough to state
When the resonator is shorter than its confocal lerigsh that the excitation of the TEM is considerably larger than

about 10 mmwe_observe a rather complex sequence of pat’that of the TEMg [about 30% versus 4% for the pattern in
terns as a function of the resonator phase on the focusmlgi 5(b) and about 20% versus 10% in the f Fig)5
side of the atomic resonangBig. 5). The patterns in Figs. 9. S 0 /0 In the case ot Hg

This is a strong experimental confirmation of the existence of

5(b) and Hc) have at least four distinct intensity maxima ¢ db lecti | q
(excluding the central onethereby indicating that they in- energy transler, governed by selection rules, among modes
of a Fabry-Perot resonator.

clude substantial contributions of the TEjMmode—in

Gauss-Hermite notation. For this resonator configuration, on

the defocusing side of the resonance, the sequences are sim-

pler and the patterns do not show more than two peaks off VI. CONCLUSIONS

center—an indication that they can be well described by

modes of up to order 2. In the complementary situation We have established the existence of selection rules that

(resonator longer than its confocal lengtthe changes in govern the energy transfer between different transverse

patterns are less striking, but noticeable. In this case, as exaodes in Fabry-Perot cavities containing a nonlinear me-

pected from symmetry considerations, the more complexium. Their origin is the constructiveor destructivg inter-

patterns appear on the defocusing side of the resonance. ference between the complex amplitudes of the two contri-
We interpret these observations as follows. On the focusbutions to a mode that are generated in the two interactions

ing side of the resonance the focal power of the self-inducesvith the nonlinear medium within one roundtrip. As a con-

intracavity lens is positive. Therefore, the resulting incre-sequence of these rules, the spatial patterns that may be ex-

ment in Gouy-phase shift that it causes can compensate f@ected in or predicted for such a Fabry-Perot cavity are dif-

the frequency splitting introduced by the length offsetferent from those occurring in a ring resonator.
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