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Influence of decorrelation on Heisenberg-limited interferometry
with quantum correlated photons

Taesoo Kim,* Olivier Pfister,† Murray J. Holland, Jaewoo Noh,‡ and John L. Hall
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The feasibility of a Heisenberg-limited phase measurement using a Mach-Zehnder interferometer fed with
twin photon correlated light is investigated theoretically. To take advantage of the Heisenberg limit, 1/N, for
the phase sensitivity, one wants the number of correlated photons,N, to be high. This favors the use of
parametric oscillation rather than the weaker but better correlated source given by parametric down-
conversion. In real systems, decorrelation arising from photon absorption, mode mismatch, and nonideal
detectors must be considered. In this paper we address the problem of detection when correlated photons are
used as the input. We study the influence of photon statistics and of imperfect quantum correlation of the input
light, and show that it is still possible to break the classical 1/AN phase sensitivity limit in nonideal experi-
mental conditions. All the results are valid in the general case of quantum correlated bosons.
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I. INTRODUCTION

The precise measurement of phase at the quantum lev
an issue of fundamental importance for both theory and
periment. As well as being a research subject by itself
quantum optics, the measurement of phase through inte
ence is a ubiquitous topic in physics. Extremely accur
methods of measuring optical phase through interferom
are required for gravitational wave detection experimen
The precision to which the phase of a matter field can
measured is important in atomic interferometry and Ram
fringe experiments as well as internal interference exp
ments in ion traps. Spontaneous symmetry breaking in c
densed matter systems produces a well-defined conde
phase and dominates low-temperature phenomena in su
fluids, giving rise to interference effects such as in the
sephson junction. Finally, issues of phase detectability
quantum fluctuations are currently of high interest in Bo
Einstein condensation experiments in dilute atomic vap
where the fundamental quantum limits on phase resolu
arising from finite number are important.

All phase dependent observables are generated by i
ference experiments that involve summing amplitudes
fields that may take alternate paths. A generic model that
be studied in detail is the Mach-Zehnder interferometer@1#,
which is a four-port optical device. A limit to phase resol
tion arises from the minimum detectable phase differe
between the path lengths in the arms of the interferom
when it is fed, for example, by a coherent state such as
generated in a laser. This is not optimal for phase resolu
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experiments because only one input port is used: vacu
fluctuations enter the unused port and are amplified in
interferometer by the coherent field. The phase measurem
sensitivity of this system cannot exceed what is usua
called the standard limit~SL!,

DuSL;
1

AN
, ~1!

which is independent of the photon statistics of the inp
light @2# . Several schemes to reduce the phase uncerta
below this limit have been proposed. One solution is
squeeze the vacuum entering the unused port@3,4#. Xiao
et al. @5# and Grangieret al. @6# have used an optical para
metric oscillator~OPO! below threshold for this purpose an
demonstrated experimental increases of sensitivity of,
spectively, 3 and 2 dB beyond the SL. The unsurpassa
limit is eventually the Heisenberg limit~HL!,

DuHL;
1

N
, ~2!

which, as we will see, can be qualitatively viewed as ste
ming from the number-phase Heisenberg uncertainty
tween the phase difference and the intensity difference
tween the two arms of the interferometer. Solutions ot
than squeezing the vacuum input have been proposed to
proach the HL@7–11#. In Ref. @9#, Holland and Burnett sug-
gested using an input state containing correlated ident
~twin! photons entering each input port. Such states can
produced by type-II, frequency degenerate, parametric do
conversion~PDC! or oscillation ~OPO!. The latter presents
the advantage of the OPO-cavity buildup producing la
numbers of photons, which increase the sensitivity accord
to Eq.~2!. However, intracavity losses are also amplified a
partially decorrelate the output field. In this paper, we a
lyze the effects on phase sensitivity of partial correlation a
random deletion of photon pairs, as well as the effect of
photon statistics of the input state.

n,

x

n-
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57 4005INFLUENCE OF DECORRELATION ON HEISENBERG- . . .
It is worth noting that, although we take the Mac
Zehnder interferometer as our system, these results are
eral. Indeed, the above limits apply whenever one observ
phase shift of a quantum coherence. Examples of such
ations are interference experiments using trapped ions@12#,
or atomic interferometry with Bose condensates@13#. In
these two cases, the field is a matter wave. Any exam
may be thought of as a unitary transformation of a pair
quantum states. This leads to a common mathema
formalism, using SU(2) matrices that can be made equ
lent to tridimensional rotations by use of the Schwinger r
resentation.

In Secs. II and III A, we review this formalism and app
it to the Mach-Zehnder interferometer, essentially recall
the work of Yurkeet al. @7#, except in Sec. II A 2, where we
outline the physical meaning of the Schwinger representa
and interpret it in terms of a number-phase Heisenberg
certainty. We then apply the formalism to the correlated
put photons scheme proposed in@9#. In Sec. III B, we use the
physical interpretation of Sec. II A 2 to give a hand-waving
analysis of the influence of single- and twin-input states
the sensitivity of the interferometer. We insist on the po
that the term ‘‘phase’’ throughout this paper always refers
a classical number. The definition of quantum phase is
an open question@14#, but no such definition is in fac
needed in the context of this work. We then consider, in S
III C, experimental interferometric measurements with
quantum-correlated input. We derive the phase uncerta
and the signal-to-noise ratio of a direct detection: if t
former is indeed the HL, the latter should, however, be v
low. This issue can be solved by the use of Bayesian d
processing@9#. In Sec. IV, we investigate this procedure
determine the feasability of a Heisenberg-limited measu
ment in the case of nonideal experimental conditions~imper-
fect photon correlation and detection efficiency! and for dif-
ferent input photon statistics.

II. PRESENTATION OF THE FORMALISM

We use the very elegant description of four-port opti
systems, in terms of rotations in an abstract tridimensio
space, that was demonstrated by Yurkeet al. @7#. This for-
malism also carries a straightforward physical meaning
is analogous to that of the Bloch vector for a two-lev
atomic system, or of the polarization vector spanning
Poincare´ sphere.

The key point is that any passive lossless four-port opt
system can be described by a 232 special unitary matrix.1

This matrix operates on a bidimensional vector, whose co
ponents are the two field amplitudes at each port of the
tem:

1Unitarity stems from the conservation of energy between the
put and output ports.
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S aout

bout
D 5S cos

b

2
ei ~a1g!/2 sin

b

2
ei ~a2g!/2

2sin
b

2
e2 i ~a2g!/2 cos

b

2
e2 i ~a1g!/2

D
3S ain

bin
D . ~3!

a, b, andg are the Euler angles@15#, whose physical mean
ing will be explained for practical optical systems later o
The components (ai ,bi) are annihilation operators satisfyin
boson comutation relations. We take all fields to have
same frequency and polarization.

A. The Schwinger representation

1. Definition

The Schwinger representation makes use of the co
spondence between the SU(2) and SO(3) groups: the
eral rotation given in Eq.~3! can be viewed as the rotation o
the following tridimensional vector,

J5S Jx

Jy

Jz

D 5
1

2S a†b1b†a

2 i ~a†b2b†a!

a†a2b†b
D . ~4!

J is a quantum angular momentum, which is proven by
canonical comutation relations

@Jx ,Jy#5 iJz , etc. ~5!

The square modulus ofJ is

J25
a†a1b†b

2 S a†a1b†b

2
11D ~6!

5
Na1Nb

2 S Na1Nb

2
11D , ~7!

where Na5a†a (Nb5b†b) is the photon number operato
for port a (b).

2. Physical meaning of J

J2 is related to the total number of photons in the sy
tem. Its conservation means conservation of the total nu
ber of photons in the whole optical system.Jz is the intensity
difference between portsa and b. Jx,y ~and J65Jx6 iJy)
are quadrature interference terms of the fieldsEa and Eb
and are therefore pointing to the phase difference betw
the two fields. This is easily seen from the following: on
writes

Ea5Ea
~1 !2Ea

~2 !5aeifa2a†e2 ifa, ~8!

Eb5Eb
~1 !2Eb

~2 !5beifb2b†e2 ifb, ~9!

wherefa and fb are real numbers, anda and b quantum
-
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annihilation operators. The photodetection term at the ou
of a beam splitter~Fig. 1, top! is

@Ea
~2 !1Eb

~2 !#@Ea
~1 !1Eb

~1 !#

5Na1Nb1J1ei ~fa2fb!1J2e2 i ~fa2fb! ~10!

5Na1Nb12Jxcos~fa2fb!12Jysin~fa2fb!,
~11!

which demonstrates thatJx,y describe the interference be
tween Ea and Eb . Figure 1 displays the measureme
schemes associated to each component ofJ, assuming coher-
ent states for the two fields andfa5fb at the input. If one
considers Fock states rather than coherent states, the
phase of each input field is undetermined and no informa
about the phase difference can be obtained either~the inter-
ference termŝJx&5^Jy&50 in Fig. 1!. However, this only
applies to theinput fields of Fig. 1. We will see that, in the
two measurement schemes on the top of Fig. 1, theoutput
beams~which, exiting a beam splitter, can in fact be cons
ered as being inside a Mach-Zehnder interferometer! have a
phase difference that can be very well determined and m
sured, even for Fock states. This is due, as we will see
Sec. II B 1, to the property of a beam splitter to swap inte
sity and phase fluctuations between the input and ou
beams.

It is also interesting to note that the standard Heisenb
uncertainty relation

DJzDJx>
1

2
u^Jy&u ~12!

has the physical meaning of the Heisenberg uncertainty r
tion between the photon number difference and the ph
difference of the two fields,

D~Na2Nb!D~fa2fb!>1. ~13!

FIG. 1. Physical meaning of the Schwinger representation: w
the three componentsJx,y,z mean in terms of optical measuremen
ut
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Equation ~13! is derived from the time-energy Heisenbe
uncertainty @16#, fa2fb being a classical variable.2 We
point out, however, that Eq.~13! is also connected, by the
above qualitative argument, to theoperatorial angular mo-
mentum uncertainty~12!.

3. Eigenstates of J

According to what precedes, the choice ofz as the quan-
tization axis forJ means that one chooses to measure
intensity difference with the highest precision, therefore
lowing a maximum uncertainty on the phase difference.
the contrary, choosingx or y means optimally defining the
phase difference at the expense of the knowledge of the
tensity difference. We choose here to quantize alongz, since
Jz is the observable measured in the experiment, as we
see later.

Unsurprisingly, the eigenstates ofJ2 andJz are identical
to the eigenstates ofNa andNb ,

unanb&5u j m&z , ~14!

wherena andnb are the eigenvalues ofNa andNb , respec-
tively. The eigenvalue ofJ2 is j ( j 11), and the eigenvalue o
Jz is m where

j 5
na1nb

2
5

N

2
, ~15!

m5
na2nb

2
. ~16!

We always noteN the total number of photons flowing in th
interferometer, and takeN even. Two simple examples tha
we use throughout this paper are the Fock single-input st

uN0&5u j j &z , ~17!

and the Fock twin-photon input,

UN2 N

2 L 5u j 0&z , ~18!

B. Optical four-port elements as rotation operators

In the Schwinger representation, the general rotation
Eq. ~3! is equivalent, in the Heinsenberg picture, to

Jout5eiaJzeibJyeigJzJine2 igJze2 ibJye2 iaJz, ~19!

and, in the Schro¨dinger picture, to

ucout&5e2 iaJze2 ibJye2 igJzuc in&. ~20!

Both pictures are equivalent in the sense that rotating op
tors by1u is equivalent to rotating states by2u. Two ex-
amples of interest for the further description of an interf
ometer are the beam splitter and the phase shift.

2The derivation of an operatorial version of Eq.~13! poses prob-
lems that are outside the scope of this paper@14#.

at



itte

it

en
a
e

s
am
e

m

th

e
ot

n

ys
/50
d

am
can
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1. Beam splitter

The symmetric lossless beam splitter~Fig. 2! introduces a
p/2 phase shift between the reflected and the transm
beams. It is described by the SU(2) matrix

S aout

bout
D 5S r 6 i t

6 i t r D S ain

bin
D , ~21!

where r and t are the square roots of the Fresnel intens
coefficients for reflection and transmission (r 21t251). This
corresponds to Eq. ~3! with a52g5p/2, b56w
562arccosr ~0<w<p!, which gives the SU(2) matrix

S aout

bout
D 5S cos

w

2
6 isin

w

2

6 isin
w

2
cos

w

2

D S ain

bin
D . ~22!

The corresponding SO(3) rotation is

S Jx
out

Jy
out

Jz
out
D 5S 1 0 0

0 cosw 6sinw

0 7sinw cosw
D S Jx

in

Jy
in

Jz
in
D , ~23!

which is equivalent to rotating the light state by6w around
x. Of most interest is the case of a 50/50 (r 5t51/A2) beam
splitter, which gives a6p/2 rotation around thex axis. This
can be written from Eq.~19!,

Jz
out5e7 i ~p/2!JxJz

ine6 i ~p/2!Jx57Jy
in , ~24!

or, according to Eq.~20!, with uc in&z5u j m&z ,

ucout&5e6 i ~p/2!Jxu j m&z5u j 6m&y . ~25!

From Sec. II A 2, Eq. (24) proves that measuring the int
sity difference at the output of a beam splitter gives inform
tion about the phase difference at its input, and convers
~other demonstrations are given by Holland and Burnett@9#
and Hillery et al. @17#, for classical and quantum fields!.
Therefore, since the region where one probes the phase
u of a Mach-Zehnder interferometer lies between two be
splitters, one only needs to worry about the quantum prop
ties of theintensityof the light, before and after these bea
splitters, to obtain information aboutu. There is thus no need
for a definition of a quantum phase operator to model
interferometric measurements discussed in this paper.

To illustrate further the beam splitter in the Schwing
representation, we give two simple examples, using the r
tion matrix elementsdm8m

j (w)5^ j m8ue2 iwJyu j m& @15#. The

FIG. 2. Input and output ports of the beam splitter.
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single photon input stateu10&5u 1
2

1
2 &z gives the following

output state under the beam-splitter transformation:

ei ~p/2!JxU12 1

2L
z

5e2 i ~p/4! (
m52

1
2

1/2

i md1/2
1/2~m!S p

2 D U12 m L
z

5
1

A2
S U12 1

2L
z

1 iU12 2
1

2L
z
D

5
1

A2
~ u10&1 i u01&), ~26!

where one finds again thep/2 phase shift between reflectio
and transmission. A twin-photon inputu11&5u10&z gives

ei ~p/2!Jxu10&z5 (
m521

1

i md0m
1 S p

2 D u1m&z

5
i

A2
~ u11&z1u121&z)

5
i

A2
~ u20&1u02&). ~27!

This is the well-known result that twin input photons alwa
emerge together out of the same port of a lossless 50
beam splitter, theu11&5u10&z output state being suppresse
by destructive quantum interferences@18#.

2. Phase shift

A phase shiftu between the two portsa andb gives

S aout

bout
D 5S eiu/2 0

0 e2 iu/2D S ain

bin
D , ~28!

and means a rotation ofu aroundz @Eq. ~3! with, for ex-
ample,a1g5u,b50#,

Jout5eiuJzJine2 iuJz, ~29!

ucout&5e2 iuJzuc in&, ~30!

which is consistent since a phase shift between fieldsa andb
should affect the interference componentsJx andJy , but not
the intensity differenceJz .

III. MACH-ZEHNDER INTERFEROMETER
IN THE SCHWINGER REPRESENTATION

A. Description

The unitary operator for a Mach-Zehnder~Fig. 3! is the
product of three operators corresponding to an input be
splitter, a phase shift, and an output beam splitter. This
be written, to an arbitrary phase choice left,

ucout&5e2 i ~p/2!JxeiuJzei ~p/2!Jxuc in&5e2 iuJyuc in&, ~31!
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i.e., a rotation by the interferometer’s phase shiftu around
the y axis @a5g50,b5u/2 in Eq. ~3!#. For J, the transfor-
mation is given by

S Jx
out

Jy
out

Jz
out
D 5S cosu 0 2sinu

0 1 0

sinu 0 cosu
D S Jx

in

Jy
in

Jz
in
D . ~32!

It is worth noting thatJ undergoes the exact same rotatio
as the Bloch vector in a basic Ramsey fringes@19# experi-
ment, and that there is a complete analogy between the
situations. The two complex probability amplitudes asso
ated with each atomic state in a Ramsey fringes experim
are analogous to the two complex field amplitudes associ
with each optical patha andb. The twop/2 laser pulses are
having the exact same effect as the beam splitters, and
tween them, the different phase evolutions of the two ato
states are the equivalent of the phase shift inside the M
Zehnder interferometer.

B. Fundamental limits of interferometric measurements

Figures 3~a! and 3~b! display the evolution of the ligh
states in the interferometer for the single-input stateu j j &z
~cone! and the twin-input stateu j 0&z ~disk!. These geometri-
cal representations simply illustrate the Heisenberg un
tainties~12! between the components of the angular mom
tum of the Schwinger representation.

We now interpret Figs. 3~a! and 3~b! using Eq.~13! ~ex-
plicit derivations will be given in the next section!. For any
state, the intensity differenceNa2Nb is given by the projec-
tion of J along thez axis, whereas the phase differencefa

FIG. 3. The Mach-Zehnder interferometer and its action on
light states in the Schwinger representation. The different stage
numbered: 1 is the input, 2 is after the first beam splitter, 3 is a
the phase shift, and 4 is after the second beam splitter. The inte
differenceNa2Nb is given by the projection ofJ on thez axis,
whereas the phase differencefa2fb is given by the azimutha
angle of the projection ofJ in the (x,y) plane. The usual Heisen
berg uncertainty betweenJx,y andJz , graphically illustrated in~a!
and ~b!, can thus be interpreted in terms of a number-phase un
tainty. ~a! Evolution of the single-input Fock stateu j j & in the Mach-
Zehnder. The light state is a cone of side length@ j ( j 11)#1/2, height
j , and base radius@ j #1/2. ~b! Evolution of the twin Fock stateu j 0& in
the Mach-Zehnder. The light state is a disk of radius@ j ( j 11)#1/2.
o
i-
nt
ed

e-
ic
h-

r-
-

2fb is the azimuthal angle of the projection ofJ in the (xy)
plane. Figures 3~a! and 3~b! display two different types of
Fock states: the single input@Eq. ~17!# and the twin input
@Eq. ~18!#. In both cases, the phase differencefa2fb is not
defined at the input~region 1!. But what is important is how
well fa2fb can be definedafter the first beam splitter,
where one probes the unknown phase shiftu @which is a real
parameter: the Euler angleb of Eq. ~3!#. From Heisenberg
uncertainty ~13!, a minimum D(fa2fb) after the input
beam splitter is equivalent to a maximumD(Na2Nb) at the
same point. Now, from the physics of the beam splitter d
cussed in Sec. II B 1 and displayed in Figs. 3~a! and 3~b!, it
is clear that a maximum intensity uncertaintyafter the beam
splitter is obtained from a maximum phase uncertaintybe-
fore it, because of thep/2 rotation of the state.

In the case of a single-port input~cone!, the Pythagorean
theorem and Fig. 3~a! tell us that the input phase fluctuation
areDJx,y5Aj . After the beam splitter, it isDJz that assumes
this value, giving the SL

D~fa2fb!>
1

D~Na2Nb!
5

1

2Aj
5

1

A2N
. ~33!

In the case of a twin-photon input~disk!, it is clear that the
situation is the most favorable possible: the phase fluc
tions at the input are maximized, which makes them v
small inside the interferometer. In fact, the intensity unc
tainty there is at its absolute maximum, in the sense that
cannot tell whetherall the photons are in one arm or in th
other. This is of course consistent with the usual quant
interferometry statement: the fringes are destroyed if o
tries to find out which path the particle has taken. Here,
the particles are contributing, which should yield the high
possible sensitivity. Figure 3~b! shows indeed that

D~fa2fb!>
1

D~Na2Nb!
5

1

2Aj ~ j 11!
;

1

N
. ~34!

Finally, the second beam splitter restores minima fluct
tions on the observableJz

out ~measured by subtracting the tw
output intensities!, and detection ofu can be done at the HL
provided thatu;0 ~or a multiple of p!. The Heisenberg-
limited sensitivity is therefore not independent ofu @20#. It is
indeed easy to see that, whenu5p/2, the whole Mach-
Zehnder is equivalent to a single beam splitter, which ma
mizesDJz

out and consequently the measurement error.

C. Phase measurements with twin photons

In this section, we give a rigorous derivation of the pr
cision and signal-to-noise ratio of an interferometric me
surement with quantum correlated photons.

1. What is to be measured?

From Fig. 3 or a simple calculation, the expectation va
of the difference of the output intensities is given by

^Jz&z
out5z^ j j u~sinu!Jx1~cosu!Jzu j j &z5 j cosu, ~35!

for a single-port input, and by

e
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r
ity
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^Jz&z
out5z^ j 0u~sinu!Jx1~cosu!Jzu j 0&z50, ;u, ~36!

for a twin-photon input. This means that, in the latter ca
the average of the difference of the output intensities c
tains no information about the phase shift@21#. This is actu-
ally also true of the average output intensities:

^Na&z
out5 j 1^Jz&z

out5 j , ~37!

^Nb&z
out5 j 2^Jz&z

out5 j . ~38!

This phase-nondependence of the average output inten
has been observed experimentally by Ouet al. @22#. The
physical interpretation of this effect is that, at each out
port, the dark fringe created by one input port is sup
imposed on the bright fringe created by the other in
port, and, since the two fringes vary in opposite ways w
u, the total intensity at one output port keeps constant wh
everu is.

However, this concerns the second-order~field amplitude!
correlation only. There obviously exists, in this case,
fourth-order ~field intensity! correlation since the intensit
difference is squeezed. This fourth-order correlation can
described byJz

2 , since

^:NaNb :&z5
1

2
@^Jz

2&z
out2^Na

2&z2^Nb
2&z#, ~39!

and we have just seen that the last two terms of the right
of Eq. ~39! are independent ofu @Eqs.~37! and~38!#. Hence,
all the phase information is contained in the variance^Jz

2&z

5(DJz)
2, the square of the projection on thez axis of the

uncertainty disk on Fig. 3~b!. One has

^Jz
2&z

out5z^ j 0u@~sinu!Jx1~cosu!Jz#
2u j 0&z

5
sin2u

2
j ~ j 11!. ~40!

Therefore, a possible measurement scheme could simpl
to measure this variance instead of^Jz&z

out @23#. By squaring
and integrating the output intensity difference signal, o
would measure the expectation value ofS54Jz

2 . A spectrum
analyzer can perform these operations, with different lev
of integration and the possibility to access the standard
viation DS54D(Jz

2) as well.
We now derive the phase uncertainty and signal-to-no

ratio of such a measurement.

2. Phase sensitivity of a measurement of Jz
2

One can calculate the standard deviation of the meas
phase shiftu , Du, as a function of̂ S& andDS:

Du5
DS

d

du
^S&

5
A^Jz

4&z
out2^Jz

2&z
out 2

d

du
^Jz

2&z
out

. ~41!

A straightforward angular momentum calculation gives

^Jz
4&z

out5
sin2u

8
j ~ j 11!$3sin2u@ j ~ j 11!22#14%. ~42!
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d

du
^Jz

2&z
out5~sinu!~cosu! j ~ j 11!. ~43!

Therefore,

~Du!25
tan2u

8
1

1

2 j ~ j 11!cos2u
, ~44!

where one finds, as in Fig. 3~b!, that Du is minimum when
u;0, and gives the HL:

Du5
1

A2 j ~ j 11!
.

A2

N
. ~45!

3. Signal-to-noise ratio of a measurement of Jz
2

From Eqs.~42! and ~40!,

~DS!2

^S&2
5

1

2
2

3

j ~ j 11!
1

8

^S&
.

1

2
1

8

^S&
. ~46!

According to Eq.~40!, ^S&/DS50 if u50. If u@1/j ~which
is possible even though one needsu;0 rad example:u
51mrad, j 5108), then 1/̂S& becomes negligible and th
maximum signal-to-noise is

^S&
DS

5A2, ~47!

which indicates that determiningu by measuring the noise
on the output difference,̂Jz

2&, may not be the best way to
proceed, considering also that we have assumed here
experimental conditions.

Ou et al. @22# have obtained an excellent signal-to-noi
by using coincidence detection of the twin photons emit
by PDC @i.e., by measuring the left side of Eq.~39!,
^:NaNb :&, rather than̂ Jz

2&#. The signal-to-noise is better be
cause only coinciding photons at the detectors are taken
account. The signal level is therefore maximum wh
u5np and zero whenu5(2p11)p/2, according to Fig. 3.
Such a photon-by-photon detection requires the coun
resolution time to be much smaller than the typical tim
between consecutive incoming photons. In Ref.@22#, the
parametric down-converter bare crystal gave close to a 10
correlation, but very low intensities for the signal and idl
beams (3600 counts/s!. Therefore, the 13-ns resolution tim
used insured a good signal-to-noise. However, for ultima
sensitivity phase measurements such as gravitational-w
detection, one clearly needs large numbers of photons
given by an OPO, which has a much higher photon emiss
rate than PDC. In this case, the resolution time needed f
count detection is impossible to reach~much less than 1 ns!.
Besides, since the resonator buildup means a much narro
emission linewidth, an OPO photon pair can be, once crea
in the crystal, temporally separated because the two pho
can exit the OPO cavity at different times. It is therefo
necessary, in order to collect the maximum of correla
photons on the detectors, that a measurement last typical
long as the storage time of the OPO cavity. Because of b
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this loss of time resolution and this need to integrate,
detection method has to be a frequency-domain one.3

To summarize, a direct measurement of the output dif
ence intensity,Jz

out, provides no information aboutu @Eq.
~36!#. A direct measurement of the variance ofJz

out, (Jz
out)2,

is phase sensitive@Eq. ~40!#, but presents a standard devi
tion of the order of the measurement result@Eq. ~47!#, that
will require averaging a very large number of independ
measurements4 to obtain a decent signal-to-noise ratio.

IV. HEISENBERG-LIMITED PHASE MEASUREMENTS IN
NONIDEAL EXPERIMENTAL CONDITIONS

The problem of the extremely low signal-to-noise of E
~47! can be overcome by using a data processing met
based on a Bayesian analysis of the output of the interfer
eter. We first give a brief review of this method@9#, before
we model realistic experimental conditions.

A. Measurement method

It is a nonlinear measurement method and is therefore
based on averaging. Its principle is to pick a few independ
realizations ofJz

out, and reconstruct the probability distribu
tion for each of them. Since the measurements are inde
dent, the joint probability of all of them is the product of a
the previously reconstructed distributions, which has
single, narrow peak.

Equation~36! can be rewritten in terms of probabilities

^Jz&z
out5 (

m,m8
^coutu j m&zẑ j muJzu j m8&zẑ j m8ucout&

5(
m

zz^ j mucout& z2m50. ~48!

Contrary to the above average, a single measurement oJz
gives neither a null result nor a result independent ofu, but
the resultm, with the probability

P~muu, j !5 zz^ j mucout& z25 zz^ j mueiuJyu j 0&zz2. ~49!

In the case of a perfectly correlated input@Eq. ~18!#, the
probability depends on an associated Legendre polynom

P~muu, j !5@dm0
j ~u!#25

~ j 2m!!

~ j 1m!!
@Pj

m~cosu!#2. ~50!

3These two situations, OPO and PDC, are in fact Fourier tra
forms of each other: the emission linewidth, which is also the qu
tum correlation linewidth, is broad for PDC~phase-matching line-
width! and narrow for OPO~buildup cavity linewidth!; and
detection is a time cross-correlation of the two photodetectors
PDC ~coincidence counting! and a cross-spectrum for OPO.

4If the i th measurement is described by the random variableXi ,

whose average isXī5X̄,; i , and standard deviations i5sX ,; i ,
then ann-averaged measurement, described by the random variab

Y5( i 51
n Xi /n, has the same average,Ȳ5X̄, and the smaller stan

dard deviationsY5sX /An.
e

r-

t

.
d
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If one performsp statistically independentmeasurements o
m, at j and u fixed, then the global probability distribution
@9# is given by the Bayes theorem@24#

P~uum1 and ••• and mp , j !})
i 51

p

P~m i uu, j !

5)
i 51

p

@dm0
j ~u!#2. ~51!

One should note that this method only gives access to
absolute value of the phase shift, since changing the sig
u does not change Eqs.~49!–~51!. This is because the mea
surement result depends on quantum probabilities and
amplitudes.

It is also important to defineindependentmeasurements
from the experimental point of view: the key parameter h
is the correlation bandwidth of the photon pairs, which
given by the emission linewidth~inverse of the storage time
tc) of the OPO that produces them. As we mentioned ear
a typical measurement timet will have to be>tc . Increas-
ing t will then allow one to collect more photons, thereb
increasing the resolution of the measurement.t will ulti-
mately be limited by the time constant characteristic of ph
ton loss processes in the OPO,t l .5 If the interval between
two measurements is@t l , then the OPO losses will decor
relate the photons of the two measurements enough to en
their independence.

B. Simulation method and results

1. Influence of photon statistics

Using the density matrix, one can write the general fo

r5 (
N,N8

cNN8UN2 N

2 L K N8

2

N8

2 U
5(

j , j 8
cj j 8u j 0&zẑ j 80u. ~52!

We call the input stateu j 0&z of Eq. ~18! a Fock twin-photon
state. Its statistics are trivial:cj j 85d j 8, jd j ,N/2 . We define the
coherent twin-photon state, or coherent pair, byr
5uaa&^aau with

cj j 85e2uau2 a ja* j 8

Aj ! j 8!
, ~53!

uau25N̄/2 being the average number of photons per po
Finally, we define thermal pairs by

cj j 85
mj

~11m!11 j
d j j 8, ~54!

m5N̄/2 being the average number of photons per port.

s-
-

r

5t l@tc being required in order to obtain highly quantum
correlated OPO outputs@25#.
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It is interesting to visualize what the Fock, Poisson, a
Planck distributions become after the input beam splitter
the interferometer. From̂Jz&z

out5Tr@rJz
out# andu5p/2, the

beam splitter probability distributions are

PBS~m!5(
j 50

`

cj j PS mU p

2
, j D . ~55!

Results of a calculation forN̄/25100 input photons in each
port are plotted in Fig. 4 form>0 only, P(muu, j ) being
even with respect tom. The output distribution for a Fock
twin-photon state@26# with j 5100 input photons should b
compared to Eq.~27! for a single input photon: there is sti
a peak atm5 j , which signals that the most probable outpu
are u2 j 0& and u0 2j &, like the output in Eq.~27!. Other
outputs are possible, only with even numbers:u2 j 22 2&,
u2 j 24 4&, etc. A coherent input state gives a result ve
close to the Fock state, except that odd numbers of pho
are also possible. Finally, the thermal distribution gives

FIG. 4. Output distribution of the beam splitter. Average inp
100 photons/port.
ll
ic
ra
o
te

of

th
d
f

ns
a

significantly different shape, but still the samespread, of
order j and notAj ~as in the single input case!, which is the
important point here. If one remembers that a beam splitte
actually equivalent to the Mach-Zehnder with a phase s
u5p/2, one can connect Fig. 4 to Fig. 3: because of
spread of the photon distribution as displayed in Fig. 4,
fluctuations ofJz are maximized, and therefore the inform
tional content~on u) of the measurement is lost. These flu
tuations do not depend on the type of statistics of the lig
the spread of the distributions in Fig. 4 is always of the ord
j and has nothing to do with the input shot noise.

Hence, a reasonable assumption is that thecommon-mode
photon statistics of the input beams should have no influe
on the ultimate sensitivity of phase-shift measurements.
have simulated this case forp510 measurements, each co
taining an average of 100 photons, that is,j 5100 for a Fock
state,uau25100 for a coherent state, andm5100 for thermal
light. The simulation procedure went as follows: we scann
the phase shift of the interferometer (us51 mrad to 1 rad!,
and for each value ofus we simulated 10 statistically inde
pendent measurement results for the difference of the ou
intensitiesJz . For each measurementi 51 to 10, the input
photon number was randomly picked from a Poisson
Planck distribution, or taken equal to 100 for a Fock sta
This gave a valuej i . The corresponding input stateu j i j i&
was then fed into the interferometer, i.e., a measuremen
sult for Jz , m i(us , j i), was randomly picked using the distr
bution of Eq.~50! at the current values ofus and j i . Putting
ourselves now in the place of the measurer, whodoes not
knowus , but has just measured the couple (j i ,m i), we can
reconstruct a probability distribution foru, which is the func-
tion P„m i(us , j i)uu, j i… from Eq. ~50!, but with u as a vari-
able. Repeating the operation for every measurement yi
ten such distributions, which are then multiplied, accord
to Eq. ~51!, to obtain a global distribution for all ten mea
surements. This final, sharp-peaked, distribution is used
calculate the average and standard deviation ofu:

:

ū5E du

uP„m1~us , j 1! and ••• and m10~us , j 10!uu, j̄ …
5us , ~56!

Du5H E du

~u2 ū !2P„m1~us , j 1! and ••• and m10~us , j 10!uu, j̄ … J
1/2

. ~57!
n
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nt,
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Figure 5 displaysDu versus us for the aforementioned
conditions and the three different types of light. A
plots have been averaged to get rid of spurious numer
fluctuations ~this was also achieved by adding seve
complete simulations!. It is clear that photon statistics d
not play any role here, and that all that happens is rela
to the physics of the interferometer~more precisely of
the beam splitter!. One can also see the confirmation
the analysis in Secs. III B~Fig. 3! and III C @Eq. ~44!#:
the spread of the photon distribution narrows down to
al
l

d

e

HL when u50, and blows up well past the SL whe
u→p/2. The numerical simulations place the HL
Du51.431023 rad, close to the result of@Eq. ~45!#:
Du5A2/pN50.731023 rad. One can remark that this re
sult is p times better than the HL of a single measureme
instead of the usual improvement byAp that one obtains by
averaging. This is because the method really makes us
the photons in allp measurements to — nonlinearly — de
termineDu, rather than — linearly — averagingp indepen-
dent determinations ofDu.
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2. Partial correlation of the two-port input of the interferometer:
Influence of the intensity-difference squeezing level

of the OPO

For this analysis, we have used an unbalanced cohe
input unanb&5u j n&z . In this case, more general than E
~50!, the Mach-Zehnder rotation matrix element involves
Jacobi polynomial instead of a Legendre polynomial,

P~muu, j ,n!5 zz^ j mueiuJyu j n&zz25@dmn
j ~u!#2

5
~ j 1m!! ~ j 2m!!

~ j 1n!! ~ j 2n!! Fcos
u

2G2~m1n!Fsin
u

2G2~m2n!

3@Pj 2m
~m2n,m1n!~cosu!#2, ~58!

wherem5(na
out2nb

out)/2, as before, andn5(na
in2nb

in)/2. To
simulate this case, we have started from the exact same
cedure as in the preceding section. Since the issue he
clearly related to the use of an OPO above threshold,
have assumed Poissonian statistics (uau25100) and added a
binomial test between the random pick of the input pho
numberj i ~now nia , for port a) and the interferometer step
The binomial probability is the degree of photon correlatio
If the binomial test result is ‘‘correlated,’’ then we assig
nib5nia , otherwisenib is determined by a new random pic

FIG. 5. Standard deviation of phase-shift measurements for
ferent photon statistics.

FIG. 6. Standard deviation of phase-shift measurements for
ferently correlated coherent input states.
nt

ro-
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e

n
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from the same Poissonian distribution. The createdunianib&
5u j in i&z is then used in Eq.~58! to create a measuremen
result m i . The rest of the procedure is identical to Fig.
Results are plotted on Fig. 6. It is clear from Fig. 6 that t
destruction of the photon correlation leads to a return to
SL, which the simulation places at 1/A2pN. A 0% correla-
tion is equivalent to two independent lasers input into ea
port of the Mach-Zehnder. With 100 photons, 70% at leas
intensity-squeezing is required to start to obtain sub-SL s
sitivity. However, it is important to note here that 100 ph
tons is an unrealistically small number, required to be able
carry out the Jacobi polynomial calculation. Even a sm
OPO output power, for example 1 mW at 1064 nm, alrea
gives 53109 photons per measurement, assuming an O
linewidth of 1 MHz. Numerical simulations become impo
sible to carry out at these numbers, and asymptotic exp
sions are not very useful because they place restrictions
the possible values form and n. One question left open is
therefore to ascertain howDu scales, betweenN21/2 and
N21, when N increases. If the scaling law is faster tha
N21/2, then the same degree of correlation will produ
much better results with 109 photons than in this 100-photo
simulation.

3. Partial correlation of the two-port output of the interferometer
Influence of the quantum efficiency of the photodetectors

This case is treated with the procedure used for the st
of photon statistics@perfectly correlated Fock input, distribu
tion of Eq.~50!#. We added a binomial test before the reco
struction of the phase distribution from the measur
( j i ,m i): the binomial probability is this time essentially th
quantum efficiency of the photodetectors,h. The test is in-
dependently applied to the output photon numbersnia and
nib at each port, given from (j i ,m i) by Eq.~15!. One obtains
then two newnia8 and nib8 , i.e., a modified (j i8 ,m i8) that is
finally used to reconstruct the probability for the measu
ment. The standard deviation is plotted in Fig. 7. It is wo
noting here that, contrary to what it seems,Du never exceeds
the SL ~for u50) because a nonunity quantum detecti
efficiency not only leads to photon pair decorrelation, b
also to a reduction of the total number of photonsN852 j 8.

if-

if-

FIG. 7. Standard deviation of phase-shift measurements for
ferent quantum efficiencies of the photodetectors at the outpu
the Mach-Zehnder.
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This increases the SL and the HL from their initial value
plotted in Fig. 7. For example,h510 ~photomultiplier!
leaves us withpN85200 detected photons, from the inp
pN52000 ~10 measurements3100 photons/port32 ports!.
The SL is hence 5.031022 instead of 1.631022.

V. CONCLUSION

We have extensively studied the influences of imperf
experimental parameters on a Heisenberg-limited interfe
metric measurement scheme. We point out that the m
difficulty of this scheme is the detection, as our estimation
the signal-to-noise of a direct detection ofJz

2 shows, and that
this difficulty is solved by the use of a Bayesian analysis
the data. By use of computer simulations mimicking wh
the experimental data processing should be, we have stu
the influence of photon statistics, as well as of random d
tion of photon pairs, before~decorrelation! and after~quan-
tum efficiency! the interferometer. As for the SL, the H
does not depend on the input photon statistics: both are fi
by the physics of the beam splitter. The critical experimen
ys

n

f
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or
f

f
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ied
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ed
l

parameters areu, which has to be close to a multiple ofp,
and of course the rate of squeezing, i.e., of photon corr
tion. Intensity-difference squeezing is promising because
rate of squeezing is one of the highest that has been obta
up to now@25,27#. Although the extensive character of th
study restrained it to very small numbers of photons,
results show that reasonable improvements beyond the
are to be expected using quantum correlated photons, ev
nonideal experimental conditions. We are currently pursu
the experimental investigation of this measurement, at dif
ent light powers, in order to settle the question of the scal
of Du with N at constant correlation. Also, as we noted
the Introduction, these results can easily be generalize
matter-wave boson interferometers.
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