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Influence of decorrelation on Heisenberg-limited interferometry
with quantum correlated photons
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The feasibility of a Heisenberg-limited phase measurement using a Mach-Zehnder interferometer fed with
twin photon correlated light is investigated theoretically. To take advantage of the Heisenberg himifiprl/
the phase sensitivity, one wants the number of correlated phokdngy be high. This favors the use of
parametric oscillation rather than the weaker but better correlated source given by parametric down-
conversion. In real systems, decorrelation arising from photon absorption, mode mismatch, and nonideal
detectors must be considered. In this paper we address the problem of detection when correlated photons are
used as the input. We study the influence of photon statistics and of imperfect quantum correlation of the input
light, and show that it is still possible to break the classicalNLphase sensitivity limit in nonideal experi-
mental conditions. All the results are valid in the general case of quantum correlated bosons.
[S1050-294{@8)09805-9

PACS numbg(s): 42.50.Dv, 03.75-b, 03.75.Fi

I. INTRODUCTION experiments because only one input port is used: vacuum
fluctuations enter the unused port and are amplified in the
The precise measurement of phase at the quantum level igterferometer by the coherent field. The phase measurement
an issue of fundamental importance for both theory and exsensitivity of this system cannot exceed what is usually
periment. As well as being a research subject by itself ircalled the standard limitSL),
guantum optics, the measurement of phase through interfer-
ence is a ubiquitous topic in physics. Extremely accurate A05L~i 1)
methods of measuring optical phase through interferometry N’
are required for gravitational wave detection experiments.
The precision to which the phase of a matter field can bévhich is independent of the photon statistics of the input
measured is important in atomic interferometry and Ramsegght [2] . Several schemes to reduce the phase uncertainty
fringe experiments as well as internal interference experiP€low this limit have been proposed. One solution is to
ments in ion traps. Spontaneous symmetry breaking in corsdueeze the vacuum entering the unused f&]. Xiao

densed matter systems produces a well-defined condensft%alz [5] aqld Gr%ngien;t ?I' [631 ha\;]e lL(;sfed %n optical para(—j
phase and dominates low-temperature phenomena in sup etric oscillatoOPQ) below threshold for this purpose an

fluids, giving rise to interference effects such as in the Jo- emo_nstrated experimental increases of sensitivity of, re-
. : . . . pectively, 3 and 2 dB beyond the SL. The unsurpassable
sephson junction. Finally, issues of phase detectability an

guantum fluctuations are currently of high interest in Bose—Imlt 's eventually the Heisenberg limiHiL),

Einstein condensation experiments in dilute atomic vapors,

where the fundamental quantum limits on phase resolution Abn~ g 2
arising from finite number are important.

All phase dependent observables are generated by intewhich, as we will see, can be qualitatively viewed as stem-
ference experiments that involve summing amplitudes oming from the number-phase Heisenberg uncertainty be-
fields that may take alternate paths. A generic model that catween the phase difference and the intensity difference be-
be studied in detail is the Mach-Zehnder interferométdr  tween the two arms of the interferometer. Solutions other
which is a four-port optical device. A limit to phase resolu- than squeezing the vacuum input have been proposed to ap-
tion arises from the minimum detectable phase differenc@roach the HL{7—-11]. In Ref.[9], Holland and Burnett sug-
between the path lengths in the arms of the interferometegested using an input state containing correlated identical
when it is fed, for example, by a coherent state such as thdtwin) photons entering each input port. Such states can be
generated in a laser. This is not optimal for phase resolutioproduced by type-Il, frequency degenerate, parametric down-

conversion(PDC) or oscillation (OPO. The latter presents
the advantage of the OPO-cavity buildup producing large
*Permanent address: Department of Physics, University of Ulsarmumbers of photons, which increase the sensitivity according

Ulsan 680-749, Korea. to Eqg.(2). However, intracavity losses are also amplified and
"Present address: Department of Physics, Duke University, Bopartially decorrelate the output field. In this paper, we ana-
90305, Durham, NC 27708. lyze the effects on phase sensitivity of partial correlation and
*pPermanent address: Department of Physics, Inha University, Incandom deletion of photon pairs, as well as the effect of the
chon 402-751, Korea. photon statistics of the input state.
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It is worth noting that, although we take the Mach- ) )

Zehnder interferometer as our system, these results are gen- |, COSEG'(C'”)/Z Sinie'(afy)lz

eral. Indeed, the above limits apply whenever one observes a ( out

phase shift of a quantum coherence. Examples of such situ- bout

ations are interference experiments using trapped [ib8k

or atomic interferometry with Bose condensafdsS]. In

these two cases, the field is a matter wave. Any example

may be thought of as a unitary transformation of a pair of

guantum states. This leads to a common mathematical

formalism, using SU(2) matrices that can be made equiva@. 8, andy are the Euler angldd.5], whose physical mean-

lent to tridimensional rotations by use of the Schwinger rep/Ng Will be explained for practical optical systems later on.
resentation. The componentsq ,b;) are annihilation operators satisfying

boson comutation relations. We take all fields to have the
gsame frequency and polarization.

_Sin’[_gefi(afy)/z Coséefi(cwr'y)/Z
2 2

ain)
X e ©)]

In Secs. Il and Ill A, we review this formalism and apply
it to the Mach-Zehnder interferometer, essentially recallin
the work of Yurkeet al.[7], except in Sec. Il A 2, where we
outline the physical meaning of the Schwinger representation A. The Schwinger representation
and interpret it in terms of a number-phase Heisenberg un- 1. Definition
certainty. We then apply the formalism to the correlated in-
put photons scheme proposed ). In Sec. Ill B, we use the
physical interpretation of Secl A 2 to give a hand-waving
analysis of the influence of single- and twin-input states o
the sensitivity of the interferometer. We insist on the point
that the term “phase” throughout this paper always refers to

. _ o Jy
a classical number. The definition of quantum phase is still 1
an open questiof14], but no such definition is in fact J=| Jy ok —i(a'b—b'a) | . (4)
needed in the context of this work. We then consider, in Sec. J, afa—b'b
[l C, experimental interferometric measurements with a
quantum-correlated input. We derive the phase uncertainty is a quantum angular momentum, which is proven by the
and the signal-to-noise ratio of a direct detection: if thecanonical comutation relations
former is indeed the HL, the latter should, however, be very
low. This issue can be solved by the use of Bayesian data [Jx.Jy]=id,, etc. (5)
processind9]. In Sec. IV, we investigate this procedure to
determine the feasability of a Heisenberg-limited measureThe square modulus df is
ment in the case of nonideal experimental conditiGmper-

The Schwinger representation makes use of the corre-
spondence between the SU(2) and SO(3) groups: the gen-
ral rotation given in Eq3) can be viewed as the rotation of
he following tridimensional vector,

a'b+b'a

fect photon correlation and detection efficieneyd for dif- a'a+b'b/a’a+b'b
: o J2= +1 (6)
ferent input photon statistics. 2\ 2
Nzt Np/ Na+ Ny
Il. PRESENTATION OF THE FORMALISM = 2 2 ) (7)

We use the very elegant description of four-port optical here N
systems, in terms of rotations in an abstract tridimension 4
space, that was demonstrated by Yuskeal. [7]. This for-
malism also carries a straightforward physical meaning that 2. Physical meaning of J
is analogous to that of the Bloch vector for a two-level

2 .
atomic system, or of the polarization vector spanning the;[ J IItS related tot.the total number oftphotofnti mt t?el Sys-
Poincafesphere. em. Its conservation means conservation of the total num-

The key point is that any passive lossless four-port opticaPer of photons in the whole optical systedp.is the intensity

) 1o
system can be described by &2 special unitary matrix. dlfferencde betwgen ?orta andb. Jx,yf(at?d ‘?.i ‘JX_(;‘JV)
This matrix operates on a bidimensional vector, whose com"—ire quadrature interference terms of the lsand &,

) ; ' and are therefore pointing to the phase difference between
ponents are the two field amplitudes at each port of the sy

She two fields. This is easily seen from the following: one
tem: writes

=a'a (N,=b'b) is the photon number operator
or porta (b).

E,=E{"'—E.)=ad?—ale s, (8)

Ep=Ef")—Ef '=be?—be (9)
YUnitarity stems from the conservation of energy between the in-
put and output ports. where ¢, and ¢, are real numbers, ana andb quantum
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a A > (Ng)+{Ny) Equation(13) is derived from the time-energy Heisenberg
4 uncertainty[16], ¢,— ¢, being aclassical variable’? We
+2(Jx) point out, however, that Eq13) is also connected, by the
above qualitative argument, to tloperatorial angular mo-
b mentum uncertainty12).
3. Eigenstates of J
2 o> (Na )+ {No According to what precedes, the choicezodis the quan-
+2(Jy) tization axis forJ means that one chooses to measure the
intensity difference with the highest precision, therefore al-
lowing a maximum uncertainty on the phase difference. On
b the contrary, choosing or y means optimally defining the
phase difference at the expense of the knowledge of the in-
a N tensity difference. We choose here to quantize alprgince
-7 2(J5) J, is the observable measured in the experiment, as we will
b N z see later.

Unsurprisingly, the eigenstates &f andJ, are identical

FIG. 1. Physical meaning of the Schwinger representation: whaTt0 the eigenstates di, andNy,
the three component , , mean in terms of optical measurements.

[nanp)=1jm)z, (14)
annihilation operators. The photodetection term at the outpUjheren, andn, are the eigenvalues of, andN,,, respec-
of a beam splitte(Fig. 1, top is tively. The eigenvalue af? is j(j + 1), and the eigenvalue of

J, is u where
[EL+EIEL +ESY]
. ) . Natny N
=Na+Np+J,e¢a 43 g i(¢a= ) (10) I=—%—=3 (19
=Ng+ Np+23,C08 ¢~ pp) +2J,SIN( ha— Pp), ( . Na— Ny 16
—

which demonstrates thak,, describe the interference be- We always not& the total number of photons flowing in the
tween E, and E,. Figure 1 displays the measurementinterferometer, and takll even. Two simple examples that
schemes associated to each componedt assuming coher- We use throughout this paper are the Fock single-input state,
ent states for the two fields antl,= ¢, at the input. If one .

considers Fock states rather than coherent states, then the INO)=1jj)z, 17
phase of each input field is undetermined and no information ) ,

about the phase difference can be obtained eitierinter- and the Fock twin-photon input,

ference termgJ,)=(Jy)=0 in Fig. 1). However, this only NN

applies to thanput fields of Fig. 1. We will see that, in the ‘_ _> —|j0) (18)
two measurement schemes on the top of Fig. 1,cihiput 22 2

beams(which, exiting a beam splitter, can in fact be consid-
ered as being inside a Mach-Zehnder interferomédtave a
phase difference that can be very well determined and mea- ) ) )
sured, even for Fock states. This is due, as we will see in !N the Schwinger representation, the general rotation of
Sec. Il B 1, to the property of a beam splitter to swap inten-£0- (3) is equivalent, in the Heinsenberg picture, to

B. Optical four-port elements as rotation operators

sity and phase fluctuations between the input and output JOUL @i a3y Byl 13 JiNg =i 10— 1BIyg—iad, (19)
beams. '
It is also interesting to note that the standard Heisenbergnd in the Schitinger picture, to
uncertainty relation ' '
|Wou =€ Ve Phe %y (20
1
AJ A= §|<Jy>| (12 Both pictures are equivalent in the sense that rotating opera-

tors by + 6 is equivalent to rotating states by#. Two ex-

) i ) _ amples of interest for the further description of an interfer-
has the physical meaning of the Heisenberg uncertainty relgsmeter are the beam splitter and the phase shif.
tion between the photon number difference and the phase

difference of the two fields,

2The derivation of an operatorial version of Ed43) poses prob-
A(N,—Np)A(pa— dp)=1. (13 lems that are outside the scope of this pdjdi.
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ain gout single photon input statél0)=|33), gives the following
output state under the beam-splitter transformation:
B.S. i 11 o® 7\[1
(72| = 2\ _ a—i(wla) sunll2 Rl
e 123 e le dyam) 5|2 M
. z pu==3 z
pin pout
. 111 i 1 1
FIG. 2. Input and output ports of the beam splitter. = \/E 55 ] I 575 ]
1. Beam splitter 1
The symmetric lossless beam splittEig. 2) introduces a =—(|10)+i|01)), (26)
/2 phase shift between the reflected and the transmitted V2

beams. It is described by the SU(2) matrix

aout) ( r iit)
bout it oor

. . i(m/2)3 _ cuql [T
wherer andt are the square roots of the Fresnel intensity em9IK10),= 2_1 ' dou( 2)|1M>z
coefficients for reflection and transmissiarf ¢ t2=1). This -
corresponds to Eqg.(3) with a=—y=7/2, B==*¢ i
=+2arccos (0<¢p=m), which gives the SU(2) matrix =—(]11),+|1-1),)

where one finds again the/2 phase shift between reflection
am) and transmission. A twin-photon inp{t1)=|10), gives

by, (21

1

J2
cos  +isine i
ou 2 N 2 in = — .
(Z ) _ (a ) 22 ﬁ<|20>+|02>) (27)
out ¢ bin

R 2
i|sm§ cos;
This is the well-known result that twin input photons always
emerge together out of the same port of a lossless 50/50

The corresponding SO(3) rotation is beam splitter, thé11)=|10), output state being suppressed

Jout 1 0 0 Jin by destructive quantum interferendds].
I =10 cose xsing |||, (29 2. Phase shift
Jou 0 =sing cosp Jy A phase shiftd between the two porta andb gives
which is equivalent to rotating the light state by around Ao el 012 0 a,
x. Of most interest is the case of a 50/56+t=1//2) beam (b =( 0 em/z) ( b. | (29)
out, in

splitter, which gives at /2 rotation around th& axis. This

can be written from Eq(19), ) _
and means a rotation of aroundz [Eq. (3) with, for ex-

ng: eii(ﬂ'/Z)JXJiZneii(ﬂ'/Z)JX: 1\];;’! , (24) amp|e,a+ y= Q’B:O:I’
or, according to Eq(20), with | i) ,=|j ), Jout— gi 63, jing —i63; (29)
— e i N =i+ _ (25) B
|‘//out> |Jﬂ>z |] :U~>y |¢out>:e |(9JZ| ¢in>i (30)

From Sec. Il A 2, Eq. (24) proves that measuring the inten-

sity difference at the output of a beam splitter gives informa-which is consistent since a phase shift between fialdadb
tion about the phase difference at its input, and converselghould affect the interference componeftsandJ, , but not
(other demonstrations are given by Holland and Burf@tt the intensity differencd, .

and Hillery et al. [17], for classical and quantum fields
Therefore, since the region where one probes the phase shift
0 of a Mach-Zehnder interferometer lies between two beam
splitters, one only needs to worry about the quantum proper-
ties of theintensityof the light, before and after these beam A. Description

splitters, to obtain information abo#t There is thus no need The unitary operator for a Mach-Zehnd@ig. 3 is the

for a definition of a quantum phase operator to model the,rqqyct of three operators corresponding to an input beam

interferometric measurements discussed in this paper.  gpjitter, a phase shift, and an output beam splitter. This can
To illustrate further the beam splitter in the Schwinger g \yritten. to an arbitrary phase choice left

representation, we give two simple examples, using the rota-
tion matrix elementsl), (¢)=(ju'le”"*¥|ju) [15]. The | hou) =€ (™2 gl gl (T2 g N =@~ 100y |y (31)

Ill. MACH-ZEHNDER INTERFEROMETER
IN THE SCHWINGER REPRESENTATION
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— ¢y, is the azimuthal angle of the projection din the (xy)
plane. Figures @& and 3b) display two different types of
Fock states: the single inplIEg. (17)] and the twin input
[Eg. (18)]. In both cases, the phase differentg— ¢, is not
defined at the inpufregion 1. But what is important is how
@ well ¢,— ¢, can be definedafter the first beam splitter
where one probes the unknown phase shiftvhich is a real

®
. 2 i ? 6 parameter: the Euler angje of Eq. (3)]. From Heisenberg
() INOY = 1ij>, , uncertainty (13), a minimum A(¢,— ¢;) after the input

beam splitter is equivalent to a maximuk{N,— N) at the
same point. Now, from the physics of the beam splitter dis-
cussed in Secl B 1 and displayed in Figs.(8 and 3b), it
is clear that a maximum intensity uncertaimtfter the beam
splitter is obtained from a maximum phase uncertaiogy
) _ _ fore it, because of ther/2 rotation of the state.

FIG. 3. The Mach-Zehnder interferometer and its action on the In the case of a single-port inpitone, the Pythagorean
light states in the Schwinger representation. The different stages atReorem and Fig. (@) tell us that the input phase fluctuations

numbered: 1 is the input, 2 is after the first beam splitter, 3 is after, _ [ . .
the phase shift, and 4 is after the second beam splitter. The intensiﬁg}riesAv‘gm’e \g\'/iﬁget:]tehgfeam splitter, itiaJ, that assumes

differenceN,— Ny is given by the projection of on thez axis,
whereas the phase differenege,— ¢, is given by the azimuthal 1 1 1
angle of the projection of in the (x,y) plane. The usual Heisen- Apg—pp)= ==,
berg uncertainty betweedy , andJ,, graphically illustrated ir(a) A(Na—Np) 24 2N
and (b), can thus be interpreted in terms of a number-phase uncer-
tainty. (a) Evolution of the single-input Fock statg ) in the Mach-  In the case of a twin-photon inpidisk), it is clear that the
Zehnder. The light state is a cone of side ler{gttj + 1)]"% height  situation is the most favorable possible: the phase fluctua-
j. and base radiug ]" (b) Evolution of the twin Fock stat§0) in  tions at the input are maximized, which makes them very
the Mach-Zehnder. The light state is a disk of radij§ +1)1"2. small inside the interferometer. In fact, the intensity uncer-
tainty there is at its absolute maximum, in the sense that one
i.e., a rotation by the interferometer’s phase shifaround  cannot tell whetheall the photons are in one arm or in the
they axis[@=y=0,8=0/2 in Eq.(3)]. ForJ, the transfor-  other. This is of course consistent with the usual quantum

X | X z X

o) o

S,

X X X

(33

mation is given by interferometry statement: the fringes are destroyed if one
X , tries to find out which path the particle has taken. Here, all
! co¥ 0 —sing\ [ I} the particles are contributing, which should yield the highest
‘]sut | o 1 0 Ji; ' (32) possible sensitivity. Figure(B) shows indeed that
Jout sing 0 co¥ 7 1 1

1
A(pa— )= N o ~y- (34
It is worth noting that) undergoes the exact same rotations AMNa=No) - 24j(j+1) N
as the Bloch vector in a basic Ramsey fring&8] experi-

ment, and that there is a complete analogy between the t Omally, the second beam splitter restores minima fluctua-

ut H
situations. The two complex probability amplitudes associ-1oNs on the observablE™ (measured by subtracting the two

ated with each atomic state in a Ramsey fringes experimefUtPut intensitie and detection of can be done at the HL
are analogous to the two complex field amplitudes associategfovided that6~0 (or a multiple of m). The Heisenberg-
with each optical patla andb. The two/2 laser pulses are !|m|ted sensitivity is therefore not independentddf20]. It is
having the exact same effect as the beam splitters, and, bldeed easy to see that, wheh= /2, the whole Mach-
tween them, the different phase evolutions of the two atomi€hnder s equivalent to a single beam splitter, which maxi-
states are the equivalent of the phase shift inside the MachDizeSAJ; ™ and consequently the measurement error.

Zehnder interferometer.
C. Phase measurements with twin photons

B. Fundamental limits of interferometric measurements In this section, we give a rigorous derivation of the pre-

Figures 3a) and 3b) display the evolution of the light cision and signal-to-noise ratio of an interferometric mea-
states in the interferometer for the single-input stgje,  Surement with quantum correlated photons.
(cone and the twin-input statg 0), (disk). These geometri-
cal representations simply illustrate the Heisenberg uncer-
tainties(12) between the components of the angular momen- From Fig. 3 or a simple calculation, the expectation value

1. What is to be measured?

tum of the Schwinger representation. of the difference of the output intensities is given by
We now interpret Figs. @ and 3b) using Eq.(13) (ex-
plicit derivations will be given in the next sectiprFor any (3,)""= (jj|(sing) I+ (cosh)J,]jj),=jcosd, (35

state, the intensity differendé,— Ny, is given by the projec-
tion of J along thez axis, whereas the phase differengg  for a single-port input, and by
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(3)2"= (j0|(sing)J,+ (cosh)J,|j0),=0, Vo, (369 and

for a twin-photon input. This means that, in the latter case, i 2v0ut_ s .
the average of the difference of the output intensities con- d6<‘]z>z =(sind)(cos)j(j +1). (43
tains no information about the phase sh#t]. This is actu-
ally also true of the average output intensities: Therefore,
N out__ ; + J out__ " (37) tan20 1
(Na)z =] +(Jz); =] YL — | 44
z Z/z .

where one finds, as in Fig(®, thatA 6 is minimum when

This phase-nondependence of the average output intensiti%SNO and gives the HL:

has been observed experimentally by @wal. [22]. The

physical interpretation of this effect is that, at each output 1 2
port, the dark fringe created by one input port is super- A= — =—. (45)
imposed on the bright fringe created by the other input V2j(j+1) N
port, and, since the two fringes vary in opposite ways with
0, the total intensity at one output port keeps constant what- 3. Signal-to-noise ratio of a measurement of J
ever@is.
From Egs.(42) and (40),
However, this concerns the second-or(fald amplitude as(42) (40
correlation only. There obviously exists, in this case, a (AS)? 1 3 8 1
fourth-order (field intensity correlation since the intensity =7 ——T+— = st (46)
difference is squeezed. This fourth-order correlation can be (S) 2 14+D «(§) 2 (9
described byd; , since According to Eq.(40), (S)/AS=0 if 6=0. If ¢>1/j (which
1 is possible even though one neeéds 0 rad example:6
<;NaNb;>Z:§[<J§ Q“t—<N§>z—<Nﬁ>z], (39 =1urad, j=10°), then 1{S) becomes negligible and the
maximum signal-to-noise is
and we have just seen that the last two terms of the right side (S)
of Eq. (39) are independent odf [Egs.(37) and(38)]. Hence, N V2, (47)

all the phase information is contained in the varial(uté)z
=(AJ,)?, the square of the projection on tzeaxis of the

which indicates that determining by measuring the noise
uncertainty disk on Fig. ®). One has 8 by g

on the output difference(J?), may not be the best way to

J20U— (i0[T(sing)J.+ (cox9) J.12li0 proceed, considering also that we have assumed here ideal
(92)2"= AJOI[(sin6) 3+ (cos9) 3,17 0). experimental conditions.
Sl Ou et al. [22] have obtained an excellent signal-to-noise
= TJ(J +1). (40 by using coincidence detection of the twin photons emitted

by PDC [i.e., by measuring the left side of Ed39),
Therefore, a possible measurement scheme could simply KeNaNy ), rather thar(J2)]. The signal-to-noise is better be-
to measure this variance instead(df)2"'[23]. By squaring ~cause only coinciding photons at the detectors are taken into
and integrating the output intensity difference signal, ongaccount. The signal level is therefore maximum when
would measure the expectation valueSsf4J2. A spectrum  6=nm and zero wher¥=(2p+1)w/2, according to Fig. 3.
analyzer can perform these operations, with different level$uch a photon-by-photon detection requires the counting
of integration and the possibility to access the standard deesolution time to be much smaller than the typical time

viation AS=4A(J?) as well. between consecutive incoming photons. In R&¥2], the
We now derive the phase uncertainty and signal-to-nois@arametric down-converter bare crystal gave close to a 100%
ratio of such a measurement. correlation, but very low intensities for the signal and idler
beams (3600 countg/sTherefore, the 13-ns resolution time
2. Phase sensitivity of a measurement of J used insured a good signal-to-noise. However, for ultimate-

L sensitivity phase measurements such as gravitational-wave
One can calculate the sta_ndard deviation pf the measur tection, one clearly needs large numbers of photons, as
phase shifty , A6, as a function of S) andAS: given by an OPO, which has a much higher photon emission
AS \/W rate than PQC. I_n .this case, the resolution time needed for a
=272 'z (41)  count detection is impossible to reaghuch less than 1 s
i<s> i<\]2 out Besides, since the resonator buildup means a much narrower
de dg  #'z emission linewidth, an OPO photon pair can be, once created
in the crystal, temporally separated because the two photons
A straightforward angular momentum calculation gives  can exit the OPO cavity at different times. It is therefore
i necessary, in order to collect the maximum of correlated
(34 outZSI_nzaj (j+1){3sife[j(j+1)—2]+4}. (42 photons on the detectors, that a measurement last typically as
z/z 8 ’ long as the storage time of the OPO cavity. Because of both

Ag=
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this loss of time resolution and this need to integrate, thdf one performsp statistically independenheasurements of

detection method has to be a frequency-domain®one. n, atj and @ fixed, then the global probability distribution
To summarize, a direct measurement of the output differ{9] is given by the Bayes theoref@4]

ence intensity J9", provides no information about [Eq. o

(36)]. A direct measurement of the varianceJgf', (392, . :

is phase sensitivEEq. (40)], but presents a standard devia- P(flpsand --- and '“P’J)ocil:[l P(wil 0.1)

tion of the order of the measurement reqdiq. (47)], that

will require averaging a very large humber of independent P j 5

measurementdgo obtain a decent signal-to-noise ratio. :i[[l [d,o(0)]° (51

IV. HEISENBERG-LIMITED PHASE MEASUREMENTS IN One should note that this method only gives access to the
NONIDEAL EXPERIMENTAL CONDITIONS absolute value of the phase shift, since changing the sign of

6 does not change Eg&19)—(51). This is because the mea-

The problem of the extremely low signal-to-noise of EQ. syrement result depends on quantum probabilities and not
(47) can be overcome by using a data processing methogmplitudes.

based on a Bayesian analysis of the output of the interferom- | js also important to definindependenmeasurements
eter. We first give a brief review of this meth¢@l], before  from the experimental point of view: the key parameter here

we model realistic experimental conditions. is the correlation bandwidth of the photon pairs, which is
given by the emission linewidttinverse of the storage time
A. Measurement method 7.) Of the OPO that produces them. As we mentioned earlier,

It is a nonlinear measurement method and is therefore noq typl(\:;illlT::r?lgltle(;cve':)tntem':t;vg(l)llIgil/?ntgrge?g%nlgczﬁzfe-b
based on averaging. Its principle is to pick a few independenl{1g T P ' y

o out e increasing the resolution of the measurementwill ulti-
realizations ofJ;™, and reconstruct the probability distribu- o . L
. . . mately be limited by the time constant characteristic of pho-
tion for each of them. Since the measurements are indepen-

dent, the joint probability of all of them is the product of all ton loss processes In the OP@,” If the interval b_etween
; R ; two measurements & 7, then the OPO losses will decor-
the previously reconstructed distributions, which has a
. relate the photons of the two measurements enough to ensure
single, narrow peak.

Equation(36) can be rewritten in terms of probabilities, their independence.

B. Simulation method and results

<JZ gut: 2 <¢out|j:“>zz<jM|‘]z|j:u,>zz<j:u,|¢out>

o 1. Influence of photon statistics
) 5 Using the density matrix, one can write the general form
:E |Z<JM|Ir/’0ut>| n=0. (48)
" N N\ /N" N’
p= 2 oy §§><77
Contrary to the above average, a single measuremedy of N.N
gives neither a null result nor a result independend obut

the resultu, with the probability =2 ¢;;/1j0).4i'0l. (52
i’

P(wl6,i)=|( i 2=|(jule®jo),l2. (49
(1O =l Tldowl =11 n[e"T0)F (49 We call the input statéj 0), of Eq. (18) a Fock twin-photon

state. Its statistics are triviat;, = d;: ; 6j nj2- We define the
coherent twin-photon state, or coherent pair, by
=|aa)(aal with

In the case of a perfectly correlated indi&g. (18)], the
probability depends on an associated Legendre polynomial

(J—m)!
(J+m)!

P(ul6.])=[d}0(6)]*=

Y
[PA(co)]2 (50 S 53
3These two situations, OPO and PDC, are in fact Fourier translc.dz:N/2 bem.g the average. number of photons per port.
forms of each other: the emission linewidth, which is also the quan-':ma"y’ we define thermal pairs by
tum correlation linewidth, is broad for PD(@hase-matching line-
width) and narrow for OPO(buildup cavity linewidth; and Ciir= S (54)
detection is a time cross-correlation of the two photodetectors for . (14+m)tti e
PDC (coincidence countingand a cross-spectrum for OPO.

4If the ith measurement is described by the random variXble  m=N/2 being the average number of photons per port.
whose average i{zf,\?’i, and standard deviation;= oy ,Vi,
then ann-averaged measuremeuescribed by the random variable
Y=3",X;/n, has the same averagg,z)z and the smaller stan- 57> 7. being required in order to obtain highly quantum-
dard deviationoy= oy /\n. correlated OPO outpuf5].

ml
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' ' ' ' ‘ significantly different shape, but still the samspread of
4 orderj and notyj (as in the single input casewhich is the

0.051 -o- Fock state: n=100
important point here. If one remembers that a beam splitter is
0.04| —— Coherent state: la°=100 . actually equivalent to the Mach-Zehnder with a phase shift
. 6= /2, one can connect Fig. 4 to Fig. 3: because of the
oosf  Thermallight: m=100 . spread of the photon distribution as displayed in Fig. 4, the

fluctuations ofJ, are maximized, and therefore the informa-
i tional content(on ) of the measurement is lost. These fluc-
tuations do not depend on the type of statistics of the light:
] the spread of the distributions in Fig. 4 is always of the order
j and has nothing to do with the input shot noise.
o Hence, a reasonable assumption is thatcttramon-mode
o 20 40 60 80 100 120 photon statistics of the input beams should have no influence
p=[n,-n,1/2 on the ultimate sensitivity of phase-shift measurements. We
have simulated this case fpr=10 measurements, each con-
FIG. 4. Output distribution of the beam splitter. Average input: taining an average of 100 photons, thatjis,100 for a Fock
100 photons/port. state,|a|?= 100 for a coherent state, ant= 100 for thermal
o . _ ) ) light. The simulation procedure went as follows: we scanned
It is m_tergstlr_lg to visualize what thg Fock, Pou;son, antpe phase shift of the interferometefi1 mrad to 1 ray
Plaqck distributions becomoemafter th%u:nput beam splitter of, 4 tor each value o, we simulated 10 statistically inde-
the interferometer. Fronl,);"=Tr[pJ;"] and 6=m/2, the  pendent measurement results for the difference of the output

0.02

Probability Pyg(u)

0.01

0.00

beam splitter probability distributions are intensitiesJ,. For each measuremeint1 to 10, the input
o photon number was randomly picked from a Poisson or
ﬂ' ) . . .
PBS(M):E c,—,—P(,u‘ —j ) (55) Pla_mck dlstnbutlon_, or taken equal to_lOO_ for a Foc_:k_ state.
j=0 2 This gave a valug;. The corresponding input statg j;)

. was then fed into the interferometer, i.e., a measurement re-
Results of a calculation fal/2=100 input photons in each sult forJ,, u;(6s,j;), was randomly picked using the distri-
port are plotted in Fig. 4 fox=0 only, P(u«|6,j) being bution of Eq.(50) at the current values af, andj;. Putting
even with respect tq.. The output distribution for a Fock ourselves now in the place of the measurer, vdoes not
twin-photon staté26] with j =100 input photons should be know 6, but has just measured the coupje,f;), we can
compared to Eq(27) for a single input photon: there is still reconstruct a probability distribution fa@, which is the func-
a peak afu = j, which signals that the most probable outputstion P(ui(#6s,j;)|6,j;) from Eg. (50), but with 6 as a vari-
are|2j 0) and|0 2j), like the output in Eq.(27). Other able. Repeating the operation for every measurement yields
outputs are possible, only with even numbdj—2 2),  ten such distributions, which are then multiplied, according
|2j—4 4), etc. A coherent input state gives a result veryto Eq. (51), to obtain a global distribution for all ten mea-
close to the Fock state, except that odd numbers of photorsurements. This final, sharp-peaked, distribution is used to
are also possible. Finally, the thermal distribution gives acalculate the average and standard deviatiof:of

_ de
:f : ———==10s, (56)
6P (u1(6s,j1) and --- and uio( 0s,j10)6,])
de 1/2
A9=U — , , —i . (57)
(60— 60)°P(u1(6s,j1) and --- and uio(bs,j10)]6,])

Figure 5 displaysA# versus 6 for the aforementioned HL when #=0, and blows up well past the SL when
conditions and the three different types of light. All #—«/2. The numerical simulations place the HL at
plots have been averaged to get rid of spurious numerical §=1.4x10 3 rad, close to the result ofEq. (45)]:
fluctuations (this was also achieved by adding severalA#=.2/pN=0.7x10"2 rad. One can remark that this re-
complete simulations It is clear that photon statistics do sult is p times better than the HL of a single measurement,
not play any role here, and that all that happens is relatethstead of the usual improvement ki that one obtains by

to the physics of the interferometdmore precisely of averaging. This is because the method really makes use of
the beam splitter One can also see the confirmation of the photons in alp measurements to — nonlinearly — de-
the analysis in Secs. Il BFig. 3) and Il C [Eqg. (49)]: termineA 6, rather than — linearly — averaging indepen-

the spread of the photon distribution narrows down to thedent determinations ok 6.



4012

-o- Fock state: n=100

—+ Coherent state: lol°=100

—<— Thermal light: m=100

0.01 -

Phase uncertainty A6 (radians)

0.001 L L

KIM, PFISTER, HOLLAND, NOH, AND HALL

—— 8L for 100%

-
as=!

—©— 100%

—— 90%

0.001 0.01 0.1
Phase shift 6 (radians)

FIG. 5. Standard deviation of phase-shift measurements for dif-

ferent photon statistics.

2. Partial correlation of the two-port input of the interferometer:
Influence of the intensity-difference squeezing level

of the OPO
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FIG. 7. Standard deviation of phase-shift measurements for dif-
ferent quantum efficiencies of the photodetectors at the output of
the Mach-Zehnder.

from the same Poissonian distribution. The credtegh;,)
=|jivi), is then used in Eq(58) to create a measurement

For this analysis, we have used an unbalanced coherefgsult w;. The rest of the procedure is identical to Fig. 5.
input [nanyy=|j»),. In this case, more general than Eq. Results are plotted on Fig. 6. It is clear from Fig. 6 that the
(50), the Mach-Zehnder rotation matrix element involves adestruction of the photon correlation leads to a return to the
Jacobi polynomial instead of a Legendre polynomial,

P(ul8.j,v)=|{jule™jv) P=[d,,(6)]

G G 6P 6
DI A S

X[P§#"# ¥ (cos) ],

2(p—v)

(58)

SL, which the simulation places at\iZpN. A 0% correla-
tion is equivalent to two independent lasers input into each
port of the Mach-Zehnder. With 100 photons, 70% at least of
intensity-squeezing is required to start to obtain sub-SL sen-
sitivity. However, it is important to note here that 100 pho-
tons is an unrealistically small number, required to be able to
carry out the Jacobi polynomial calculation. Even a small
OPO output power, for example 1 mW at 1064 nm, already
gives 5x 10° photons per measurement, assuming an OPO

__(/0ut_ -ou __(nin__ Kin ? X . . . .
where u=(ng"—ny )12, as before, and=(n7—ny)/2. To linewidth of 1 MHz. Numerical simulations become impos-
simulate th|'s case, we ha}ve startgd fror_’n the exa}ct same prgipje to carry out at these numbers, and asymptotic expan-
cedure as in the preceding section. Since the issue here dgns are not very useful because they place restrictions on

clearly related to Fhe use of an _OPO above threshold, wg,q possible values for and ». One question left open is
have assumed Poissonian statistileg{=

ave a (=100) and added @ hqrefore to ascertain how ¢ scales, betwee Y2 and
binomial test between the random pick of the input photory-1

numberj; (now n;,, for porta) and the interferometer step. \-12
The binomial probability is the degree of photon correlation.
If the binomial test result is “correlated,” then we assign
n;, = N;5 , otherwisen,, is determined by a new random pick

, when N increases. If the scaling law is faster than
, then the same degree of correlation will produce
much better results with 2(photons than in this 100-photon

simulation.

3. Partial correlation of the two-port output of the interferometer:

olF ] Influence of the quantum efficiency of the photodetectors
——8L 0% —+ 70% . . .
S 00% —A— 100% This case is treated with the procedure used for the study
1 of photon statisticgperfectly correlated Fock input, distribu-
% o o, A Pea KoueeTR P tion of Eq.(50)]. We added a binomial test before the recon-
é\/ M &ss/ LA WA struction of the phase distribution from the measured
X /; (ji »&i): the binomial probability is this time essentially the

Phase uncertainty A6 (radians)

0.001 &

;
|

5]
/]
/

/*AM

0.001

0.01

0.1

Phase shift 6 (radians)

quantum efficiency of the photodetectors, The test is in-
dependently applied to the output photon numbggsand

n;, at each port, given fromj(, «;) by Eg.(15). One obtains
then two newn;, andn;,, i.e., a modified {j ,x;) that is
finally used to reconstruct the probability for the measure-
ment. The standard deviation is plotted in Fig. 7. It is worth
noting here that, contrary to what it seem$) never exceeds
the SL (for #=0) because a nonunity quantum detecting

FIG. 6. Standard deviation of phase-shift measurements for difefficiency not only leads to photon pair decorrelation, but
ferently correlated coherent input states.

also to a reduction of the total number of photds=2j’.
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This increases the SL and the HL from their initial values,parameters ar@, which has to be close to a multiple af,

plotted in Fig. 7. For exampley=10 (photomultiplie)  and of course the rate of squeezing, i.e., of photon correla-
leaves us withpN’=200 detected photons, from the input tion. Intensity-difference squeezing is promising because the
pN=2000 (10 measurements 100 photons/porix2 portg.  rate of squeezing is one of the highest that has been obtained

The SL is hence 5010 ? instead of 1.6 10 2. up to now[25,27]. Although the extensive character of this
study restrained it to very small numbers of photons, the
V. CONCLUSION results show that reasonable improvements beyond the SL

] ) ) ) are to be expected using quantum correlated photons, even in

We have extensively studied the influences of imperfechonideal experimental conditions. We are currently pursuing
experimental parameters on a Heisenberg-limited interferoe experimental investigation of this measurement, at differ-
metric measurement scheme. We point out that the majagnt |ight powers, in order to settle the question of the scaling
difficulty of this scheme is the detection, as our estimation ofyf A g with N at constant correlation. Also, as we noted in
the signal-to-noise of a direct detectiondjfshows, and that  the Introduction, these results can easily be generalized to
this difficulty is solved by the use of a Bayesian analysis ofmatter-wave boson interferometers.
the data. By use of computer simulations mimicking what

the experimental data processing should be, we have studied ACKNOWLEDGMENTS
the influence of photon statistics, as well as of random dele-
tion of photon pairs, beforé&ecorrelation and after(quan- We are deeply grateful to Marc D. Levenson for his valu-
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