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Three-dimensional quantization of the electromagnetic field
in dispersive and absorbing inhomogeneous dielectrics
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A quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field in an
inhomogeneous three-dimensional, dispersive, and absorbing dielectric medium is developed. The classical
Maxwell equations with spatially varying and Kramers-Kronig consistent permittivity are regarded as operator-
valued field equations, introducing additional current- and charge-density operator fields in order to take into
account the noise associated with the dissipation in the medium. It is shown that the equal-time commutation
relations between the fundamental electromagnetic fieldsdB and the potentialé and ¢ in the Coulomb
gauge can be expressed in terms of the Green tensor of the classical problem. From the Green tensors for bulk
material and an inhomogeneous medium consisting of two bulk dielectrics with a common planar interface it
is explicitly proven that the well-known equal-time commutation relations of QED are preserved.
[S1050-294{@8)01905-2

PACS numbgs): 42.50.Ct, 42.50.Lc, 03.65.Bz

[. INTRODUCTION made to perform the diagonalization even for simple
dielectric-body configurationf37].

It is well known that the quantum statistical properties of Another approach to the problem of including losses in
electromagnetic fields including their interactions withthe quantization scheme is the method of Green function
atomic systems can be strongly influenced by the presence ekpansiorf40,41], which can be regarded as a natural exten-
dielectric bodies. Typical examples are the Casimir effecsion of the familiar method of mode expansi@mhich only
[1,2], the modification of the spontaneous emission rate ofpplies to strictly nonabsorbing meglia arbitrary Kramers-
excited atom$3-5] in the presence of dielectric media, and Kronig consistent media. The approach, which resembles, in
the degradation or improvement of nonclassical properties cd sense, the method ofoperatoy Langevin forces
light propagating through optical devices, such as cavitied,30,31,42,43 directly starts with the Maxwell equations for
beam splitters, wave guides, etc., which typically can be rethe macroscopic electromagnetic field, including the dielec-
garded as dielectric bodig6—8|. Therefore, it has been of tric displacement vector and @henomenologicallygiven
considerable interest to formulate QED on a dielectric-mattepermittivity. The quantization of the radiation field is based
background. Various quantization schemes have been pron the classical Green function representation of the vector
posed for dispersionlesg9—16], dispersive[17-23, and potential, identifying the external sources therein with the
nonlinea 18—22,24—2%dielectrics. However, most of these noise sources that are necessarily associated with the losses
guantization schemes run into difficulties when an absorbingn the medium and replacing the-number sources with
medium is attempted to be included in the concept, which i®perator-valued ones such that the equal-time basic commu-
crucial for studying propagation effects and keeping thetation relations of QED are preserved. The advantage of the
theory consistent with the causality principle. method is that the calculation of the Green function is—

The problem has been considered by a number of authorsimilar to the determination of the mode structure in the
[27-38. In [29], a fully canonical quantization scheme for standard scheme—a purely classical problem. The Green
the macroscopic electromagnetic field in a linear harmonicfunction is essentially determined by the permittivity of the
oscillator bulk material is developed that is based on theanedium, which is a space-dependent, complex function of
Hopfield model of a dielectrid39]. The electromagnetic frequency. The configuration of the dielectric bodies is de-
field is coupled to a harmonic-oscillator polarization field scribed by the dependence on space of the permittivity, and
that interacts with a continuum of harmonic-oscillator reserthe effects of dispersion and absorption, respectively, are de-
voir fields. The resulting Hamiltonian, which is a bilinear scribed by its real and imaginary parts. It is worth noting that
form of bosonic fields, is diagonalized in two steps—first thethey are not independent of each other, but they must satisfy
polarization-reservoir part and after that the total Hamil-Kramers-Kronig relations, because of causalisgee, e.g.,
tonian. The scheme is much more involved when it allowg44,45). The Green function method has been proved cor-
the electromagnetic field to be in an inhomogeneous merect for radiation in 3D bulk materigl40,46 and in 1D
dium, as is the case in practice, and much effort must benultilayer structure$40,41,44, and applications to various

problems have been studi¢el.g., ground-state field fluctua-
tions [41,47], photonic wave packets at dielectric barriers
*On leave from the Institute of Physics, National Center for Sci-[48], and nonclassical-light propagation in dispersive and ab-
ences and Technology, 1 Mac Dinh Chi St., Dist. 1, Ho Chi Minh sorbing dielectric$49,50).
City, Vietnam. The aim of this paper is to extend the Green function
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method to the quantization of the electromagnetic field in assion and absorption are intimately linked. It can be shown
dispersive and absorbing three-dimensiof3®)) inhomoge- that €(r,{)) as a function of the complex frequené€y is
neous medium. For this purpose, both the transverse and tlamalytic and has no zeros in the upper complex half-plane,
longitudinal parts of the electromagnetic field vectors mustnd e(r,Q)—1 if |Q|—« [44,45. The fields in the time
be included in the analysis in a unified manner. Relating thelomain are obtained by Fourier transforming the fields in the
overall noise current to a bosonic basic field, the electromagfrequency domain, e.g.,
netic field operators can be expressed—through the dyadic
Green function of the classical problem—in terms of this
field, and all the fundamental electromagnetic-field commu-
tation relations can be expressed in terms of the Green func-
tion. Using earlier results of the calculation of the classicalandB(r,t), D(r,t), andH(r,t) accordingly.
3D Green function for multilayer systeni§1-54, we ex- The Maxwell equation$l)—(4) together with the consti-
plicitly consider an inhomogeneous medium that is com-utive relations(5) and(6) cannot be transferred to quantum
posed of two bulk dielectrics with a common planar inter-theory by simply regarding the electromagnetic field vectors
face. as operator-valued quantities, otherwise the operators would
The paper is organized as follows. In Sec. Il the quanti-be damped to zero. This is not surprising, because equations
zation scheme is developed. The Green function expansiorsf the form given here violate, in general, the dissipation-
of both the electromagnetic field vectors and the vector anfluctuation theorem, which states that damping is always
scalar potentials in Coulomb gauge are given, and the funconnected with additional noise. In other words, even the
damental commutation relations of QED are studied. In Secclassical equations are equations for the field averages but
[l the theory is applied to a bulk dielectric, and it is shown not equations for the “naked” fields, and therefore they can-
that the equal-time basic commutation relations of QED arenot be used to study the statistics of fluctuating fields, such
preserved. In particular, earlier results for the transverse eleas thermal fields. Hence, transferring the above given equa-
tromagnetic field are recovered. Quantization of the electrotions to quantum theory can only yield equations for the
magnetic field in an inhomogeneous medium that consists ahow quantum-mechanigaéxpectation values of the fields
two bulk dielectrics with a common interface is studied in (which of course can be damped to zerthe noise that is
detail in Sec. IV. Finally, a summary and conclusions areunavoidably associated with absorption can be described by
given in Sec. V. Lengthy mathematical derivations are outintroducing a corresponding source term in the Maxwell

E(r,t)= f:dwe*“”tg(r,wwrc.c., (8)

lined in the Appendix. equationg 42,55, which can be thought of as arising from a
noise polarization in the constitutive relation between the
Il. QUANTIZATION SCHEME dielectric displacement vector and the vector of the electric

_ _ field strength(see, e.qg.[56)),
A. Classical Maxwell equations
Let us start by writing the phenomenological Maxwell D(r,0)=€oe(r, ) E(r, @)+ P(r,w). 9

equations in the frequency domain as Before specifying the noise source, let us first turn to quan-

V-B(r,w)=0, (1)  tum theory.
V-D(r,w)=0, (2) B. Quantum Maxwell equations
VXE(r,0)=ioB(r,), 3) The Maxwell equationgl)—(4) together with the consti-

tutive relations(6) and (9) can be transferred to quantum
VXH(r,0)=—ioD(r,0), (4) thgory, reggrdllng the electromagnetic field vectors and the
noise polarization field vector as operators:

where we have assumed that no “visible” charges and cur-

rents are embedded in the background medium. The Max- V-B(r,0)=0, (10
well equations must be supplemented with constitutive rela- . .
tions, which for linear dielectric media are usually given by V-[€e(r, w)E(r,w)]=p(r,0), (11)
D(r, @)= oe(r, w)E(r, ), ®) VXE(r,0)=iwB(r,0), (12)
E(r-w)zﬂoﬂ(ryw)- (6)

VXB(r,0)=—iwuoeoe(r,®)E(r, ) + uoj (1, ).

Here, the(relative permittivity, which is a complex function (13
of frequency, . N
Here, the operator noise charge dengitand the operator

€(r,w)=er(r,w)+ie(r,mw), (7)  noise current densiti/ are introduced, which are related to

is also allowed to be varying with space in order to modelthe operator noise polarizatidhas

inhomogeneous media. For causality reasons, the real and . .

imaginary parts of the permittivity, which are responsible for p(r,w)=—=V-P(r,m), (14
dispersion and absorption, respectively, are uniquely related R R

to each other through Kramers-Kronig relations, i.e., disper- j(r,w)=—iwP(r,w). (15
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It follows from Egs.(14) and (15) that p andj fulfill the  wherej is given by Eq.(18), andG;;(r,s ) is the dyadic
equation of continuity, Green function(Green tensgrof the classical problem. It
satisfies the equation

V-j(r,w)=iwp(r,). (16) ,
w
A . I — Sim| AT+ — €(r, Gmi(r,s,)=68;8(r—s),
The electric-field strength operatg(r) (in the Schidinger tomoom c2 €(r,@) | |Gmi(r,s,w)=2;;6(r =)
picture is defined in terms of the Fourier transfofar, w) (24
as together with appropriate boundary conditions. In particular,
R o it must vanish at infinity. The notatiof meansd/dx;, and
E(r)= fo dowE(r,e)+H.c., (170 A"=4{d (here and in the following the summation conven-
tion is used. When the electric fieldE(r, ) is known, then
and similar relations hold fo(r), D(r), andH(r) the (ma)gnetic fieldB(r,w) can be obtained as, on recalling
Eqg. (12),

As already mentioned, the source termsandj are
closely related to the noise associated with the losses in the
medium, which themselves are described by the imaginary

part of the permittivity. Following40,41], we relateji toa In this way, the electromagnetic field operators can be ex-

B(r,w)=(iw) VXE(r,). (25)

bosonic vector field as pressed in terms of the bosonic fidld, w).
- w h o D. Commutation relations
J(rrw):_z _El(rrw)f(r!w)! (18) . . . .
- MoC” ¥ € Let us consider thé€equal-tim¢ commutation relations

between the fundamental fielé§r) andB(r). Recalling the
[fi(r.w),f(r" 0)]=8;8(r-1r")8(w—w'), (19  definitions ofE(r) andB(r) [see Eq(17)], using Eqs(23)

and (25) together with Eq(18), and applying the commuta-
[f (r, o), f (r' ®')]=0= [fT(r w), )], (20 tion relations(19) and(20), we find that

Obviously, in the Heisenberg picture the basic operator field [E (r), Bk(r )]_ i% Eka f dw _f d3se (s, 0)

evolves ad(r,w,t) = f(r,w,t’) exd —io(t — t')], which is

governed by the Hamiltonian %Gy (1., w)G (' sw)—cc., (26

A= f d3r jxdwhwa(r,w) A(r, ). (21)  Whereey; is the Levi-Civita tensor. In order to simplify Eq.
0 (26), we first note that the relation

The system of equation€l0)—(13) together with Egs. 3
(17—(21) is complete, i.e., further equations are not re- _j d*se (s,0)Gji (1,5,0)Gji(r',s,0)
quired. In particular, all the electromagnetic-field commuta-
tion relations are uniquely determined from the equations
given. It should be pointed out that—in contras{46]—the [G”(r o) =Gi(r,r',w)] (27
current density is not transverse, because the whole elec-

tromagnetic field is considered. Hence, the vector ffeita- is valid (see Appendix A Further, from Eq.(24) and the
troduced here is not transverse as well, and the spétial relatione*(r,w) = €(r,— w) it follows that

function in Eq.(19) is an ordinaryé function instead of a

transverse one. Gii(r,r' w)=Gj(r,r',— o). (28)

. R Combining Eqs(26)—(28), we derive
C. Integral representation of E(r, w) and B(r, w)

Equations (12) and (13) imply that the electric field [E(r) ék(f')]= h € ,(?r/fw do wG-(r o)
~ i ’ m 2 i [ [} .
E(r,w) obeys the partial differential equation meg M) et

(29
VX VXE(r,w)— :—Zze(r,w)é(r,w):iw,uoj“(r,w), Similarly, we find that
(22) [Ei(r),Ex(r')]=0=[B(r),By(r")], (30)
whose solution can be represented as which is in full agreement with QEDsee, e.g.[57]). Equa-

tion (29) reveals that the commutator between the electric
A . 3 - and magnetic fields can be expressed in terms of a single
Ei(r"")_""“f’f d°sGi(r.s,0)j j(s@), (23 frequency integral of the Green function multiplied by the
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frequency. In order to calculate this integral, knowledge ofis the(from the lef) one-sided transverse Green tensor. Next
the Green function is required. Note that a single pole atve substitute in Eq(37) for the longitudinalé function the

=0 has to be treated as a principal value. expression39) and find that
E. Vector potential and scalar potential . E j(sw)
e | pro=a] [ aPs @
1. Potential equations and integral representations - 4|r—¢g

Itis often necessary to use electromagnetic potentials. IE?’he integral representation of the scalar potential can then be
the frequency domain, the vector and scalar potenfiagmd found, substituting in Eq(42) for the electric field the inte-

@, respectively, are related to the fields as gral representatio(23).
B(r,0)=VXA(r,w), (31 2. Commutation relations
E(r,w)=iwA(r,w)—Vo(r,). (32 It is well known thatA(r) and eOA(r) are canonically

conjugated field variables. In order to calculate the commu-

Substituting in Eqs(11) and(13) for the fields the potentials tation relation between them and the scalar potengial),

ding to Egs(31) and(32) th ield ~ X -
according to Eqsi31) and(32) then yields we first note thatA(r), A(r), ande(r) are given by integrals

. o ) of the type(17), but withA(r,»), —i 0A(r,w), ande(r, »),

V-[e(r,o)Ve(r,0)]=— 6_0+"”V'[6(r'“’)5(r=“’)]’ respectively, in place of(r,w). Using Eq.(40) and follow-

(33 ing the lines outlined for calculating the commutation rela-
tions (29) and (30), we obtain

2
VX VXA, )~ — e(r,0)A(r,0) . Fopr e
c [Ai(r),Aj(r’)]=W—eof_xdwgeij (r,r'yw) (43

- i -
:MOl(r,w)+ge(r,w)Vg(r,w). (39 and
In Coulomb gauge, [A(r),Aj(r)1=0=[A(r),A(r)], (44)
V-A(r,w)=0, (35 where
Eq. (32 corresponds—in the sense of the Helmholtz B . 5
theorem—to a unique decomposition of the electric field Gij (nr,e j d f d°s' iy (r =)

into a transverse paitwA and a longitudinal part-Ve.

Hence we may write XGmn(s,@)8ni(s'—1') (49

. o . is the two-sided transverse Green tensor. Similarly, the com-
Ai(r,o)=(iw) f d®ss;(r—9)Ej(sw),  (36)  mutation relation between the vector potential and the scalar
potential can be given by

6{é(r.w)=—f d’sslj(r-9Ej(sw), (37 © Gpy(sr',o)

= 3 LU D
A= 2 [ os[ a0 202
where 6-(r) and 8'(r), respectively, are the transverse and

O : (46)
longitudinal  functions(see, e.g.[2]),

" o . where

8ij(r)=—d{dj(4mr) "% (39 Gpi(sr’,w)= fds‘sGmn(ss ®)&y(s'=t1") (47

We insert Eq.(23) into Eq. (36) and obtain the following

) . . is the(from the righ} one-sided transverse Green tensor, and
integral representation of the vector potential:

finally
Ai<f1w>=ﬂof F*Cin(rs@)m(sw), (40 [o(r),@(r')]=0=[a(r),A(r")]. (49

where In order to further calculate the commutat@4s) and (46),
the Green function multiplied by the frequency must be in-
tegrated over frequency, which is quite similar to the com-

3 oo . ’
in(r/8.0)= f a8 5j(r=s)Cjm(s,s@) (4 mutation relation(29).
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I1l. HOMOGENEOUS DIELECTRICS B. Relation to earlier work

Let us first consider the electromagnetic field in an ab- To make contact with earlier work, we first note that,

sorbing bulk material such that the permittivity can be as-according to the Helmholtz theorem, the noise curfecen
sumed to be independent of spaegr,w)=¢€(w)=¢er(w) be decomposed in a unique way into a transverse and a lon-
+i¢/(w) for all r. In this case, the solution of ER4) that  gitudinal part,
satisfies the boundary conditions at infinity] 4] R .
J(ro)=]*(r,0)+]'(r,0), (55)
Gij(r.r,@)=[3[d]+ 8;0°(®)]1q" *(@)g(|r—r'|,®), . .
(49  where]* (") can be related té* (" according to Eq(18) with
f-U)(r,w) in place off(r,w), where

where the notatiom?(w) = (»?/c?)e(w) is used, and

fi“”)(r,w):f d*ss; " (r—9)fj(s ). (56)

g(lr—r'[,w)=

eiq(w)|rfr’| f d3k eik~(r7r’)

4ar|r—r’| (2m)* K2 -g*(w) The commutation relation§19) and (20) obviously imply

(50 that

Substituting in Eq(23) for the Green function the function [f-“‘”(r w), (F-0(r w')i= S-0(r—r") s(w—w')
given in Eq.(49) and integrating over frequency yields, to- o ' . &57)
gether with Eq.(18), the Green function expansion of the
operator of the electric field strength of the electromagnetic
field in a dispersive and absorbing bulk dielectric. The Green
function expansions of the magnetic field and the potentials
can be obtained accordingly.

[F0r,0), 50, 0)]1=[F (r,0),d" 0 )T=0.
(59)

Obviously, the motion of the transverse and longitudinal de-
grees of freedom is governed by their own Hamiltonians, as

A. Commutation relations can be readily seen from the Hamiltonié?1), which can be
We insert the Green functio9) into Eq. (29) and find  rewritten asH = H* + H', whereH* (") is given according
that to Eq. (21) but with f-((r, ) in place off(r, ).

From Eqgs.(40), (41), and(49) it can be seen that, after
A L o [ L o partial integration, the derivatives in E@9) do not contrib-
[Ei(r).Bu(r')]= e €kmidm ledw ng(|r r',w) ute to the vector potential, because of the vanishing diver-
(51) gence of the transversefunction. Therefore, we may write

[note thatekmjﬁr (9’ ()=0, because of the antisymmetry of Ai(r,w):,uOJ &crgfr—r'[,w)i o), (59
the Levi-Civita tenso} We now substitute in Eq(51) for
g(|r—r’|,w) the Fourier expansion according to E&O),
which enables us to calculate the integral by means of ) ) ) i . . Al
contour integral techniques. Recalling the properties(6f)  tor potential given in[40] (if we identify uoj~ with j, in
as a function of the complex frequen€y, we obtain after (40D Similarly, from Egs(23) and(42) and the Green func-
some straightforward calculatiqef. [40,41)) tion (49) [together with Eq(50)] it can be derived that

which is nothing but the representation of the transverse vec-

p(S )

[Ei(r),By(r’ )]——-ﬁ EikmImO(r —1"). (52 o(rw)= (60)

4’7T606(w)f

From Egs.(52) and(30) we see that the quantization schemewhere p(r,w)=(iw) *V-j'(r,w) [cf. Eq. (16)]. Note that

yields exactly the equal-time electromagnetic-field commufrom the commutation relatior{$8) and Eqs(59) and(60) it

tation relations that are well established in QED. Quite simi-is immediately seen that vector and scalar potentials are

larly, it can be proved that the commutation relations commuting quantities, i.e., the commutation relat{é4) is
fulfilled.

" N ih
N1 — et
[AI(r),Ay(r )]—6—05”“ r) (53) IV. DIELECTRIC INTERFACE

A. The Green function

and The determination of the dyadic Green function for three-

. . dimensional configurations of dielectric bodies is a very in-

[o(r),Aj(r")]=0 (54 volved problem in general, and only for rather simple con-

figurations has the Green function been calculated explicitly.

are also preserved. Such a configuration, which can be thought of as being the
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basic element of multilayer dielectric structures, is composed P K.k Kok
of two infinite half-spaces\(; andV,) with a common pla- R® = el Balld+1z'))] 22 .y XY _ys XY
H Xy 2[8 2 a k2 aa’ k2 ’
nar interface such that a I I
(69)
e(w) if reVy, ie., z<0,
€ho)=) (w) ifrev, ie,z-0. Y
RY,= 5 el Ballzl+12']) (70)
Following[40,48,54, we write the solution of Eq24) in the ¢
form
Ry =Ry, (71
Gij(r,r', o)
. . Ryy=Ri(ke=ky), Ry, =R (Kee—ky), (72
Gij(r,r’ w)+R (r,r'yw) if rir'eVv,,
- Tﬁ-‘“'(r,r’,w) if revV,, r'eV, (a*a’) Ry=—R  Ry=—Ry,, (73
(62 P
(a,a’=1,2), whereG{(r,r",w) is the Green functior{49) Ry~ e‘ﬁa”Z'*‘Z")a—glkf, (74)
[together with Eq(50)] for the bulk material withe ,(w), a Ue
Gi(r,r',0)=[d[d+8;9%(»)]a, (0)g*(Ir—r'|,w), and accordingly for the transmission function’Eﬁ“’
(63) ETIC]YQ (kH ,w;z,zl),
with
aa’ _ iBalZl+iBar12'|
eia@lr =] Tox e
g(fr—r'|w)= —— (64)
47T|r_ | ( tp k2 k2
———BaBariz 0 2 (79
[q2 (w) (w?/c?)e,(w)]. The functions Rf(r,r',w) and Aala 5 ki
Tfj“' (r,r',w) describe the effects of reflectlon and transmis- )
sion at the interface and obey the homogeneous equations Taa’ _ : QiBal2l+1B,17'|
Xy 2 o
{ﬂira:n |m[Ar+q (o) IRy, J(r r',w)=0 (65
th o Kk, o kiky
(r,r'eVv,) and X| ———BuBa —kz——taa —kz— (76)
qaGa’
{03 Ol A"+ QL (@) T (11 0) =0 (66) o
(reV,, r' eV, a#a') together with the boundary condi- Tz = 2,8 efulZl 1Bl | 2 ggnz) B Ky,  (T7)
tions such that they vanish at infinity and the tangential com- “ dalar
ponents of thé& and theH field are continuous at the surface wa!  —ca!
of discontinuity. In order to determine the functions Ty =Ty (78)
Rij(r,r’,») and Tﬁ“'(r,r’,w), it is convenient to take ad-
vantage of the translational invariance of the system in the T‘w =T (ky —Kky), T‘w =T (K, =ky), (79
xy) plane which enables us to expand the Green function
[lD[ . tp
(andGjj, Rjj, andT{* ) as follows: T;’)ﬁ"z gBe B 17| tae o (80
2 a (O pAo P
d kH k _ !
Gij(r,r’,w)=f—ZGij(k”,w;z,z’)e' NURS , ’
(2m) Tod =Ta (keerky), (81)

(67)

where k= (ky,k,,0) andr;=(x,y,0) are two-dimensional P

’

4 I i i ’ taa

vectors in the )@ y) plane. Using the general formulas for Tz = ﬁe"g“lzmﬁ"’lz =i, (82
multilayer structures given ifb4] (see als¢51]), after some “ Yaar
marllpulatlc.)nsrwe obtain, for the reflection functioRy wherea’ =1(2) for a=2(1), and
ERij(k” NOMWAYA ),

H p 2 2 anqa(w)r

[ wa! ks s K

R = 5 fell D) =2 — g2 5 1418 ), 5 5
2Ba az Kj ki Ba=Ba(®)=\da(w)—ki, ReB,=0, ImpB,>0,

(68) (83
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with r9 ,=r? (o) andt? =t (w), q=p,s, being the where we have used the Weyl expansiong6t|r—r’|,w)
generalized reflection and transm|SS|on coefficients fopthe [54] to obtain

and s-polarized components of the electromagnetic field,

which are defined by Se(r.r)= f d?k; .kH.(rH_erm N igifadz=7l
q (2m)? e c? 2B
S T 64 (92)
Bat Voo Bar When we substitute in E¢29) for G;j(r,r’,») the actual
Green function(62), take advantage of the relatiori87),
p_ €a s 4 85) (88), and(91), and recall thatskmja[];a}/()zo, then we can
Yaa’ € Yaar =% readily prove that the fundamental QED commutation rela-
tion
0 =5 a4t y=Pega (86) : K
a’ Yaa’ aa” ﬁa [Ei(r), r )]—_ elkm& 5(r—r ) (93)
(for details, se¢54]). is preserved.

It should be pointed out that—in contrast to the usually In order to prove that the commutation relations between
considered external current—the noise curijeas given in  the potentials are correct, we first write E¢43) and (46)
Eq. (18) jumps at the interface, i.e., at= 0, which obvi- [together with Eqs(45) and (47)] as
ously implies the existence of a surface noise charge density,

A (1 ’
and hence the normal componentef is not continuous at [A (r), A i(rl]= |( )(” ), (94)
z=0. For more details and a derivation of the fiekland B 2
by direct solution of the Maxwell equations, the reader is [e(r).Al(r)]=d1i(r.r), (99
referred to Appendix B. where
B. Commutation relations h
IWUJU=——Jd%fd%wmu—9
As shown in Appendix C, the functior®(r,r’,w) and )
Tfj“’ (r,r',w) [Eqgs.(65—(82)] obey the relatlons - ®
><f_mdw?Gmn(s,s’,w)éﬁj(s’—r’),
d r,r' 5 (? R r,r'), 8
J w Ri(rr',w)=d (r,r’) (87) (96)
with
—Tea — g o' Faa’ ’
J oG o=ag T, e X (r=9)=6in(r =9 (@7
where and
d?k -(2)(r—S) = l (99)
R"(r,r’)=j—”e‘ku'“u—ﬁi) Xim 4mlr—9
(2m)?
. We use the Green functidi2) and again take advantage of
Jw J w i eiBC,(IZHIZ’I)r“_;', 89 Egs.(87), (88), and(91) to derive
1r,r )——Z f d3sy (X (r—s){f d3s'{i mmn
a2k, , Teoa=1
T““'(r,r’):f—” ek i) S
(2m)? X 8(s—8' )+ 505 [—G%(s,8)
P a —
IBa\Z|+IBa 2/ ( Faar ) FRUeS) oy (s =1
Aallar + | B350 T (5,5)]85(S —r")
(90) vV, men ' n
Further, it can be shown that
= o2 f Py (1 =9) dp(s—r" )+ T(r,r")

® w )~
f dw—zGi‘}(r,r’,w)=i775”-5(r—r’)—&{ajr Gr,r'"),
— o (o

=%Jd3s J(r—s)8., (s—=r") (99
91) € Xim
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[a'=2(1) for a=1(2)]. The last line follows from the line ing walls. Vector and scalar potentials are introduced in the

before last, because of usual way, and their integral representations are derived,
which can be used in order to couple the electromagnetic

— h ) field to additional atomic sources embedded in the medium
(k) 1y — Bay (K p 3o/ 7S 39S . - g .
L (r.r’) 7760% jv d”Sxim (1 S)[f d°s'{mdn The fundamental equal-time commutation relations are stud-

d3S[a505 T (5,8)]16%(s — r')] =0

’
a

ied, and it is found that some of them can be calculated
><[_’éa(s,s')+ﬁa(sysf)]}5ﬁj(s' —r') without kowledge of the explicit form of the Green function
in order to prove the consistence of the quantization scheme
+f with QED. Others require this knowledge, because single
v frequency integrals of the Green function remain to be cal-
culated.
(100 The determination of the Green function is—similar to the
(Appendix D. Recalling the definitioné97) and (98) of Xi(nlq) determination of the mod(_a functions in a mode_—expansion
and y2). respectively, from Eq(Q9) it is easily seen that a_pproac_h—a purely classical prpblem. _Its so_Iutlon is very
Xim » T€SP Y, q difficult in general, and only for simple dielectric-body con-
i% i% figurations has the Green function been calculated so far. For
Ii(jl)(r,r’)= —J d3ssi (r—9) 5ﬁ]j(s—r’)= —5ﬁj(r—r’) a homogeneous dielectric, the Green function is well known.
€0 €0 0 We have used it and explicitly shown that the quantization
(10D scheme outlined here yields exactly the fundamental equal-
and time commutation relations of QED. We have further shown
that earlier results derived 0,46 for the transverse part
N2 i 3 5ﬁnj(s—r’) of the electromagneti_c field are contained _in our theo_ry.
Gl (r,r')= e—f d SﬂmWZO, (102 An example of an inhomogeneous medium for which the
0 Green function is known is a configuration of two infinitely
ie., extended dielectric bodies with a common planar interface.
" We have also used this Green function and explicitly proved
A UGN | (e , that the quantization scheme is consistent with QED. Again,
[AI(r),Aj(r")]= E_O5ij(r_r ) (103 (ecent results given ifd0,41 for paraxial light propagation
are recognized. It is worth noting that the contributions to the
and Green function that result from the reflections and transmis-
R R sions at the interface do not contribute to the equal-time
[e(r),Aj(r")]=0. (1049 commutation relations. Since this is expected to be true also
. . . _for more complicated configurations, such as multilayer
Hence the theory yields the correct equal-time commutatiolycyyres, the equal-time commutation relations are ex-
relations for both the fields and the potentials. pected to be preserved also for these configurations.
The quantization scheme developed in this paper can be
V. CONCLUSIONS regarded as the basis for studying the interaction between
We have developed a quantization scheme for the electrdgd'at'o_n and atomic systems in th_e presence of _three-
magnetic field in a spatially varying three-dimensional Iineard.'mens':j)net)I conf!guratlor;? of d'elecg('f .bodlles W't.h disper-
dielectric which gives rise to both dispersion and absorption.SIOn and a sorptlon.. In this case, additional atomic sources
Based on the classical phenomenological Maxwell equation&[.].1USt be |ntrod'uced into the theory, and _the coupled equa-
the dielectric is described in terms of a complex frequency—tIonS of motion for Fhe atomic variables 'and the
and space-dependent permittivity, which satisfies thélectromagnetic-field variables in the Green function expan-
Kramers-Kronig relations, and fluctuating current and charge'°" (S'm"f_” to the photonic variables in a mode expansion
densities are introduced in order to be consistent with th&"ust be tried to be solved.
dissipation-fluctuation theorem. The noise current and charge
densities can be thought of as arising from an additional ACKNOWLEDGMENTS
noise polarization in the constitutive equation between the We thank T. Gruner and E. Schmidt for helpful discus-
dielectric displacement vector and the vector of the electricSions HT.D .gratefully acknbwledges support from the
ﬁeld strength. The resulting inhomogeneous Maxwell equabeutéchér 'Alkademischer Austauschdienst. He would also
tlons_are_ the.” tran_sferred to quantum theory, and the NOISfie to thank the Friedrich-Schiller-Universitdena for hos-
polarization is specified such that the fundamental equal't'mﬁitality
commutation relations of QED are preserved. '
From the inhomogeneous Maxwell equations together
with the boundary conditions at infinity, it follows that the APPENDIX A: PROOF OF EQ. (27)
electromagnetic field operators can be related, through the From Eq.(24), the equation foG
dyadic Green function of the classical problem, to a bosonic '

ni(S,r,w) reads as

field that represents the elementdgnergy excitations of

the overall system. This integral representation can be re-
garded as a natural extension of the familiar mode expansion
in free space or in cavitylike systems with perfectly reflect- (A1)

9 — Oin Ghi(sr,w)=6;6(s—r).

2
AS+ — e(sw)
C
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We multiply Eq. (A1) from the right byG,’](sr’,w) and

integrate oves. We derive, on integrating by parts and tak-
ing into account that the Green function vanishes at infinity,

2
w—zf dPse(s,0)Gy(ST,0)Gf (ST, )
C

=f d*S (G dn— 81nA9)Gpi(ST,0) ]G] (ST, @)
—Gji(r,r', )
—— | PG (ST @G (51", 0)]
+ [ @ sieu (sr @ G (317,001 G (1.1 )
(A2)
Now we take the complex conjugate of E&2), make the

interchanges<—r’ andi« j, and subtract the resulting equa-
tion from Eq.(A2). In this way we arrive at

(,()2
?j dse(s,0)Gji(s1,0)Gf (s, 0)

1
=E[Gji(r’,r,w)—Gi’}(r,r’,w)]. (A3)
Recalling the symmetry properf{2]
Gji(r',r,0)=Gjj(r,r',») (Ad)

and combining Eqs(A3) and (A4) then yields Eq(27).

APPENDIX B: DIRECT SOLUTION OF THE MAXWELL
EQUATIONS

In order to directly solve the Maxwell equatiori$0)—
(13) together with the permittivity in Eq(61), i.e., without

using the Green function, we expa@ﬂr,w) as

2
E(r,w)= J (d—k”ﬁk”,w;z>e‘krr (B1)

21)

[cf. Eqg.(67) and the comment made thér®bviously, simi-
lar expressions hold foB andj. Choosing a reference sys-
tem in whichk, is parallel to thex axis, the Maxwell equa-
tions (12) and(13) then yield
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—JEy=iwB,, (B2
dE—ikE,=iwB,, (B3)
ikEy=iwB,, (B4)

~ iw . ?
_azgy:_?fgx"'/iolw (B5)

A~ oA iw . ¢

é’zﬁx_lkugzz_gfgy'i_ﬂolyv (B6)

- o . .
ikjBy=— gEEzJF o) 2, (B7)

where, for notational convenience, we have omitted the ar-
gumentsk,, , andz of the fieldsE(k,,w;z), B(k;,w;2),
andji(k” ,w;z), and we have used the same notation for the
rotated reference system as for the original one. According to
the Maxwell equation$12) and (13), the tangential compo-
nents ofE andH must be continuous at the surface of dis-
continuity [58].

From Egs.(B2), (B4), and(B6) together with the bound-
ary conditions we find tha&y obeys the equation

P°E +

2Ey (B8)

w? AR . 2
?E_kn Ey=—louo)y,

andE, andd,E, are continuous at the plarze= 0. B, and
B, can then be obtained froéy, using Egqs(B2) and(B4).

Similarly, from Eqgs.(B3), (B5), and(B7) together with the
boundary conditions it follows thzaliy satisfies

2

~ w P . 2 -~
9B+ ?6_kf By=iKjuoj ;— modzix,  (BY)

andB, ande 1(9,B, + wo],) are continuous at the plaze
=0. Knowing B,, we can findE, and E, from Egs.(B5)
and(B7).

Thus, Eqgs(B2)—(B7) together with the boundary condi-
tions at infinity and the conditions of continuity of the tan-

gential components of andH at the interface provide us

with unique solutions folE and B. Solving Egs.(B8) and
(B9) under the conditions mentionédnd going back to the

original reference systenyields the fieldsE and B in full
agreement with Eq923) and (25 and the Green function
from Sec. IV A. It should be emphasized that, as can be seen

from Eq. (B7), the normal component afE is not continu-
ous at the planez=0, becauseBy is continuous and

y?
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i, makes a jump az=0 [see Eq.(18) together with Eq. techniquedcf. [40,41)), it can be proved that the latter does
6D)]. not contribute to the integrals on the left-hand sides in Egs.

In the derivation of the Green function [61] it is stated ~ (87) and(88), so that we are left with the contributions from
that the continuity of the normal component ef at the theLp tpolarlzed(;‘leld ong K Eq.(69). F
planez = 0 is chosen as a boundary condition. However, -6t us consider, e.gR;(k,;2.2"), Eq. (68). From
one can verify that it is the continuity &fG,;, i = x,y,z,
that actually matters, and this can be deduced from the con-

. - P 2
tinuity of the tangential components & andH. From the eiﬁa(|z|+\z’|)ra“/ (—,82 X
continuity of €G,; it does not follow thakE, is continuous, —= 2 2B qi kf
though the reverse is true. For example, whas in our
. . ; . P K2
casg €G,, contains a term proportional #(z — z’), which f q oiBallz +I2']) N aar (- +k )_
is continuous at the plane=0, theneE, jumps there, be- qa q“ u

cause it contains a term proportionaljg, which makes a
jump atz=0 [see Eq(18) together with Eq(61)].

P
. N
giBallz+]z \)“_;ki (C1)

a

APPENDIX C: PROOF OF EQS. (87) AND (898)
Eq. (87) can readily be proved correct f&ry,(r,r', o). In

exactly the same way, one can show that 83) also holds
In order to prove Eqs(87) and (88) for Rjj(r,r’,) and  for the remaining function®R¢ i(r,r',®). In order to show
Ti‘}" (r,r',w), it is sufficient to prove them for the Fourier that Eq.(88) is valid, it is helpful to perform the integration
Egs. (68)—(74) and Egs. (75) (82), respectively, the func-

tions Rjj (k) ,w;2,2") andT““ (k) ,w;z,2") are seen to con- eiBa\z\:f dk elkz 2iBa ’ (C2)
sist, in general of two parts One part is associated with the _oc27-r B —Kk?
p-polarized and the other part is associated with the
s-polarized electromagnetic field. Using contour integralwe have
|
p oo oo 4 oo i 1 i p
j d Iﬁa‘zl+|ﬁa |1z’ ( _—taa/ ):f %eisz %eik’z’f dwﬁl_ ZIB“ 21Ba {_ taar
2 ’
(O pYe P —e 2 —e 2 2 ’8 18 ﬁa’_k 2\ (O pY e pY;
(C3

Since the equatioq;j%i—k2 = 0 has no solutions in the upper complex frequency half-p[85e41], the integrand in thev
integral in Eq.(C3) has no poles there. Treating the single poleat 0 as a principal value, we obtain

(C4

w0t dk € (= dk ek'? th,(0)
j dos L eipularis || - oo :j —f B . —C—
—» c?2Ba Quar) I =27 I+ K2) 27 2 1k? Ve (0)€,(0)
Let us now turn to the left-hand side in E@8) and consider, e.gT%% (k,,w;z,2), Eq. (75). We derive

o o ’ - . . . p
e o b [ KK [ 0 1 B Ap L

oo
4,94 kf %2 » 27T - C2 23‘1’ :Bi_kz Btzy’_k’z q.94’ kf
dk eikz dk’ eik 7’ tga,(o)
_f 2—2f a2 K| T | (€9
22w 24 K2) 2w kf+ k'’ Ve, (0)e, (0)
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which exactly agrees with EqC4), i.e., Eq.(88) is proved
correct forTgy (r r',w). Equation(C5) for the other func-
tlonsTfj““ (r,r ,) can be given in the same way.
APPENDIX D: PROOF OF EQ. (100
We perform in Eq(100 a partial integration oves’ and
obtain, on recalling tha&S' 5i-(s’—r’)=0
I(k)(r r )___2 f dslem(r S)J dsxdsy

X 95[—G%s,8)+RY(sS)

—T(58)]8y(s' = 1) (D1)

s/=0
Using Eqgs.(89), (90), and(92), we derive

[-G%ss)+R¥ss)— T (s,5)]

s/=0
z

d?k, ® i
f— k- (55| J do—
(27)? —» 2 2Ba
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p p
xém%(_%.rg’ ! )
qa qa qaqa”
2
f dk ik (55| f dw
(2#) 22Ba
p
X@mm(___ ?’ BH,L_“_lﬂi)
qa qa ﬂa’ a Q.04
d2k” . ’ w |
— | 25 ks d
_f(zwfelaqf do 228,
_ P
X glBalsdl 2 1+—-Eﬁ =0. (D2)
Ja Bar

To obtain the second equation from the first one, we have
used Eq(86) for tga, . The third equation gives zero because
of the integration ovew. Combining Eqs(D2) and Eq.(D1)
yields Eq.(100.
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