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Fractional revivals in systems with two time scales
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We examine the dynamical evolution of wave packets in a large class of quantum systems where two
quantum numbers determine the energy spectrum and consequently the dynamical behavior. Using a generic
Hamiltonian, we study the formation of coherent structures. The ratio of two time scales as well as the
symmetry of the initial wave packet decisively determines the revival and fractional revivals of the system for
which we give analytical results. The theory is applicable to a wide class of systems from diatomic molecules
to ions in two-dimensional traps and two interacting Bose condensates.@S1050-2947~98!00505-8#

PACS number~s!: 42.50.Md, 42.50.Ar, 03.65.Bz, 32.80.Qk
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The emergence of coherent structures such as Schro¨dinger
cats@1# and the occurrence of full, fractional, or super rev
als @2–7# in the nonlinear evolution of a system have be
recognized to be closely connected to the energy spectru
the underlying Hamiltonian and the periodicity of the tim
evolution operator. Thus there are extensive calculations
Rydberg atoms@2#, optical parametric oscillators@3#, the
Jaynes-Cummings model@4#, transient signals from multi-
level quantum systems@5#, potential wells@6#, molecular vi-
brational states@7#, and light propagation in Kerr media@1#.
It became apparent after all these explicit calculations
the general features of the nonlinear quantum dynamics
quite generic and in most cases can be understood by the
anharmonic contribution to the energy spectrum.

Almost all explicit calculations reported in the literatu
deal with systems whose energy spectrum depends o
single quantum number@8#. In reality, many systems exis
whose energy levels depend nonlinearly on at least
quantum numbers@9,10#. The rotational-vibrational spectrum
of diatomic molecules, particles in Morse-like potentials
in two-dimensional boxes, Stark wave packets, ions in a
interacting with a two-dimensional field are but a few e
amples. Similar situations also arise when elliptically pol
ized light passes through a fiber. Recent work by Wrig
et al. @11# shows that, to a good approximation, a Bo
condensate can be modeled as an anharmonic oscillato
thus the results that we present here should also be a
cable to binary condensates.

Clearly, we can either study each of these systems i
vidually or develop a general theory and uncover the gen
features of the quantum dynamics of systems whose en
levels depend on two quantum numbers. We take the la
approach in this paper. We explain the complex revi
structure of these systems by~i! presenting explicit analytica
results under the framework of a general theory that can
modified to suit specific cases and~ii ! studying the evolution
of autocorrelation functions, phase distributions, and pr
ability densities. We specifically examine the effects th
arise from the existence of two time scales, which the
selves are determined from the dependence of the en
spectrum on two quantum numbers. Thus the time scales
we consider arise from the anharmonicities in the ene
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spectrum andnot from some elementary consideration su
as the different frequencies of two oscillators.

In the special case in which one of the revival time scal
sayT1 , goes to infinity, the system dynamics is effective
scaled byT2 alone. Otherwise, we show that the ratio
these time scales will play a significant role in the reviv
characteristics of the system. Furthermore, we demons
the crucial dependence of fractional revivals on the symm
try property of the wave packets. Our major analytical resu
are given in Eqs.~6!–~8! and ~11!.

We consider the following generic Hamiltonian, whic
would provide theleadinganharmonic terms such asm2, n2,
andmn in the energy spectrum~we use\51):

H5c1@~a†a!21~b†b!2#2c2a†ab†b. ~1!

An even more general Hamiltonian would have different c
efficients of (a†a)2 and (b†b)2.

Our method of approach differs from that of Bluhmet al.
@9# as, for an interacting system, we consider it to be m
appropriate to introduce time scales based on a type of
agonalization rather than the ones based on bare param
in the Hamiltonian. Thus we work with time scalesT6

52p/(c16c2/2) rather than 2p/c1 and 2p/c2. As for initial
states, we can use a variety of wave packets involvin
superposition of the eigenstates of the system provided
weight factors in the superposition are peaked with a sm
dispersion. In our calculation, the initial wave packet is
two-mode coherent stateua,b&5ua& ^ ub&. As is well
known, the coherent stateua& is a Gaussian wave packet i
configuration space involving a superposition of all the nu
ber states with a weight factor given by the Poisson distri
tion.

The time evolution operator has the expansion

U~ t !5(
p,q

exp$2 i t @c1~p21q2!2c2pq#%up,q&^p,qu.

~2!

The double sum in Eq.~2! is split into two parts:U1(t), for
which p5q ~mod 2!, andU2(t), for which pÞq ~mod 2!.
Settingc16c2/25d6 , we write
3880 © 1998 The American Physical Society
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U1~ t !5 (
j ,k50

`

e22i td1~ j 2k!2
@e22i td2~ j 1k!2

u2 j ,2k&^2 j ,2ku

1e22i td2~ j 1k11!2
u2 j 11,2k11&^2 j 11,2k11u#,

~3!

U2~ t !5 (
j ,k50

`

e2 i td2~2 j 12k11!2/2@e2 i td1~2 j 22k21!2/2

3u2 j ,2k11&^2 j ,2k11u1e2 i td1~2 j 22k11!2/2

3u2 j 11,2k&^2 j 11,2ku#. ~4!

This prompts us to express the initial two-mode coher
stateua,b& in terms of the~normalized! ‘‘even’’ and ‘‘odd’’
states

ua,b&65~ ua,b&6u2a,2b&)/A2P6,

P6516exp@22~ uau21ubu2!#. ~5!

It is clear thatU6(0)ua,b&65ua,b&6 and U6(t)ua,b&7

50. The corresponding autocorrelation functionsA
5^a,buU(t)ua,b& and A65^a,bu6U6(t)ua,b&6 satisfy
the simple condition A5(P1A11P2A2)/2. The two-
dimensional problem is thus effectively diagonalized.

We first determine the collapse and revival of the syste
The revival time forua,b& and ua,b&6 will be some mul-
tiple of T5sT25rT1 , wherer and s are mutually prime
andT65p/2d6 . For integer values ofN we get

U1~NT!ua,b&15ua exp~ ipf1!,b exp~ ipf2!&1 ,

U2~NT!ua,b&25exp~2 ipf1/2!ua,b&2 ,

f65N~s6r !/2. ~6!

Clearly, ua,b&2 revives ~but for an overall phase! for all
values ofN, whereasua,b&1 revives for even values ofN
only. Forua,b&, on the other hand,N depends crucially ons
and r . If sÞr ~mod 2!, thenN50 ~mod 8!, i.e., ua,b& re-
vives at 8T, 16T, . . . . If s5r 51 ~mod 2!, let s52p11
and r 52q11. In this case, we findN50 ~mod 4! if p5q
~mod 2! andN50 ~mod 2! if pÞq ~mod 2!.

A few examples are in order. Supposes52 andr 53, so
thatT1 /T252/350.666, . . . , or,equivalently,c2/2c150.2.
We setc15p/9.6 in some appropriate unit so thatT256,
T154, andT512. The earliest revival times forua,b&2 ,
ua,b&1 , and ua,b& will be at t/T252, 4, and 16, respec
tively ~Fig. 1!. Note that the graphs in Fig. 1 are symmet
about half the revival time.

If the ratio of the time scales is changed to 0.6 inste
then s53 and r 55. Furthermore, settingc15p/9, we can
keepT2 the same as before. However, the revival times w
now change tot/T253, 6, and 6 forua,b&2 , ua,b&1 , and
ua,b&, respectively.

If T25T1 , i.e., c250 ands5r 51, then the revival pe-
riods for ua,b&2 , ua,b&1 , andua,b& will be at t/T251, 2,
and 4, respectively. Finally, if one of the time scales, s
t

.

,

l

y

T1 , goes tò ~in which casec2522c1, s→1, andr→0),
then the shortest times for the reproduction ofua,b&2 ,
ua,b&1 , and ua,b& are,T2 , 2T2 , and 8T2 , respectively.
This situation has an analog in the regeneration charact
tics of a fieldE(x) of wavelengthl propagating through a
multimodeplanar waveguide of widthb. If the field is sym-
metric in the transverse dimensionE(2x)5E(x), its regen-
eration length isL5b2/l; an antisymmetric fieldE(2x)5
2E(x) regenerates at a distance 2L, while an arbitrary field
is reproduced after a guided propagation of length 8L @12#.
We mention in passing that this behavior in planar~and rect-
angular! waveguides can be traced to the quadratic dep
dence ~in the paraxial approximation! of the propagation
constant on the mode numbers.

Between revivals, the system undergoes collapse and f
tional revivals. In the case of collapse, the autocorrelat
functions go to zero typically as exp@2(uau21ubu2)#. How-
ever, the two-mode case also presents possibilities~which
may be relevant for mesoscopically occupied states! when
A1 or A2 can be identically zero. Thus, for example, wh
T1 /T252/3 and N is odd, U1(2NT2)ua,b&15u ia,
2 ib&1 , for which A150 if uau22ubu2 is an odd multiple
of p/2. Sinceua,b&2 andua,b&1 have different collapse~or
revival! time scales, it may even be possible to produce th
by propagating a two-mode coherent stateua,b& through a
Mach-Zehnder type of interferometer with two different Ke
fibers.

Turning to fractional revivals of the odd and even stat
we set t5(m1 /n1)T25(m2 /n2)T1 , where (m1 ,n1) and
(m2 ,n2) are pairs of mutually coprime numbers. The nonli
ear phase shifts produced by terms quadratic in the sum
tion indices are written in terms of linear phase shifts
introducing their discrete Fourier transforms. We thus obt

FIG. 1. Absolute square of the autocorrelation function as
function of time forT1 /T252/3 whena52 andb53.
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U1~ t !ua,b&15 (
p150

l 121

(
p250

l 221

ap1

~m1 ,n1!ap2

~m2 ,n2!

3ua exp~2 ipf1
~e!!,b exp~2 ipf2

~e!!&1 ,

~7!

U2~ t !ua,b&2

5e2 ip~m1 /n11m2 /n2!/4 (
p150

l 121

(
p250

l 221

ap1

~m1 ,n1!ap2

~m2 ,n2!

3exp~ ipf1
~o!!ua exp~2 ipf1

~o!!,b exp(2 ipf2
~o!)&2 ,

~8!

where f6
(e)5p1 / l 16p2 / l 2 and f6

(o)5f6
(e)1(m1 /n1

6m2 /n2)/2. The periodl j depends on the parity ofmj and
nj . It can be shown~dropping the subscriptj for clarity! that

l 5H n for mÞn ~mod 2!

2n for m5n51 ~mod 2!.
~9!

The coefficientsap
(m,n) are given by

ap
~m,n!5

1

l (
k50

l 21

exp~2 ipmk2/n12p ipk/ l ! ~10!

and can be evaluated analytically@13#.
Note that the expressions forU2(t)ua,b&2 can be rewrit-

ten such that the phase factors associated witha andb are
independent ofm1 andm2 as in the case ofU1(t)ua,b&1 .
Thus we get

U2~ t !ua,b&25e2 ip~m1 /n11m2 /n2!/4

3 (
p151

n1

(
p251

n2

bp1

~m1 ,n1!bp2

~m2 ,n2!

3eipu1uae2 ipu1,be2 ipu2&2 , ~11!

whereu65(n11122p1)/(2n1)6(n21122p2)/(2n2) and

bp
~m,n!5H a~n2m11!/22p

~m,n,1! if mÞn ~mod 2!

a~n2m1122p!
~m,n,1! if m5n51 ~mod 2!.

~12!

We will now study fractional revivals by looking at th
wave-packet dynamics of the system. Att50, the even and
odd states are represented by pairs of Gaussians cente
x56aA2 andy56bA2 ~we use real values ofa andb):

r6~x,y!5p21/2e2[ ~x6aA2!21~y6bA2!2]/2,

c6~x,y,0!5@r2~x,y!6r1~x,y!#/A2P6, ~13!

whereas the initial state is given byc(x,y,0)5r2(x,y).
These are smooth functions ofx and y. However, as the

system evolves, the probability densities can develop rid
structures as well due to the occurrence of sinusoidal te
in the wave functions~Fig. 2!. For example, referring to
Fig. 1, u ia,2 ib&1 , which is the even state att/T252,
has an oscillatory wave functionA2/pP1 exp@2(x2
d at

d
s

1y2)/2#cos@A2(ax2by)# whereasua,b&1 does not. Using
these wave functions and Eqs.~6!, we find that att/T254 or
12 and T1 /T252/3, c(x,y,t)5@exp(2ip/4)r2(x,y)
1exp(ip/4)r1(x,y)#/A2. The components of the wav
function do not interfere with each other as they arep/2 out
of phase. This represents a Schro¨dinger cat state@Fig. 2~c!,
left column#, a two-way fractional revival in accordanc
with uA(t)u2 being equal to 1/2. However, a
t/T252, U(t)ua,b&5AP1/2u ia,2 ib&12exp(2ip/4)
AP2/2ua,b&2 . The corresponding probability density wi
have a central modulated peak due tou ia,2 ib&1 and two
smooth peaks at the edges due toua,b&2 @Fig. 2~a!, left
column#. This is not a four-way fractional revival. Furthe
more, for the same value of time, a change in the ratio
T1 /T2 will drastically alter the characteristics of fraction
revival ~Fig. 2!.

The Gaussian pairs that represent the odd and even s
at t50 are well separated fora,b.1 since the interference
betweenr2 and r1 is negligible. However, as the wav
packets spread, there can be significant overlap between
components of the wave packets even at fractional rev
times ~Fig. 3, left column!. For a given set of (m1, n1) and
(m2, n2), this interference can be reduced only for larg
values ofa and b ~Fig. 3, right column!. Since we get
superpositions of coherent states with different phases,
phase distribution function@14# will exhibit a quite instruc-
tive multipeak structure~Fig. 4!.

We briefly consider the limitT1→`, i.e., the limit
n2→` andp2→0. In this case, the double sums in Eqs.~7!,
~8!, and ~11! collapse to single ones. Also,a and b are
multiplied by the same phase factor. A similar observat
can be made in the earlier context of revival and collap
also. Thus an immediate consequence of two different t
scales is thatua& and ub& are rotated differently in phas

FIG. 2. Two-dimensional probability densitiesuc(x,y,t)u2 as
functions of X5x/a and Y5y/b for a52 and b53 when ~a!
t/T252, ~b! t/T253, and ~c! t/T254. Left column, T1 /T2

52/3; right column,T1 /T253/5.
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57 3883FRACTIONAL REVIVALS IN SYSTEMS WITH TWO . . .
space. Since for a coherent state revival corresponds to ap
rotation in phase space, the situation is analogous to two~or,
better still, two packs of! ‘‘runners on a track.’’

As mentioned in the introduction, the results of this pap
are applicable to a large class of systems. We cite so
examples that are experimentally realizable.~a! The anhar-
monic terms in Eq.~1! are precisely the ones occurring in th
stretching of bonds@15# in a linear molecule such as H2O.

FIG. 3. Probability densities~a! uc2(x,y,t)u2, ~b! uc1(x,y,t)u2,
and ~c! uc(x,y,t)u2 as functions ofX5x/a and Y5y/b when t
5T1/25T2/3. Left column,a52 andb53; right column,a54
andb55.
t,

on
r
e

Thus suitable wave packets of such molecules will exh
quantum dynamic behavior found in this paper.~b! Consider
the motion of an ion or atom in a trap in the presence o
two-dimensional electromagnetic field with a field profi
E(coskx2 cosky). If the field is far detuned from resonanc
then the motion is in a potential determined by the Stark s
ucoskx2 coskyu2. If kx andky are much smaller than unity
then the potential is equivalent to the anharmonic potentia
Eq. ~1!. ~c! Wright et al. @11# have given a description o
Bose condensate in terms of a single mode and shown
presence of collapses and revivals in the dynamics. Clear
generalization of their work to binary condensates@16# will
involve Hamiltonians such as Eq.~1!.

In conclusion, we have shown how systems with an
ergy spectrum depending essentially on two quantum n
bers can lead to a different time scale in the quantum dyn
ics of the wave packet. The ratio of two time scal
determines the nature of revivals and fractional reviva
which also depend on the spatial symmetry of the init
wave packet. Finally, it should be clear that the dynamics
many other wave packets can be studied using the gen
decomposition~3! and ~4! of the evolution operator.

FIG. 4. Two-dimensional continuous phase distribution funct
P(u,f) for U(T2/3)u2,3& when T1 /T252/3; angles are in units
of p.
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