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Fractional revivals in systems with two time scales

G. S. Agarwal? and J. Baneri
!Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
2Max-Planck-Institut fu Quantenoptik, D85748 Garching, Germany
(Received 18 August 1997

We examine the dynamical evolution of wave packets in a large class of quantum systems where two
guantum numbers determine the energy spectrum and consequently the dynamical behavior. Using a generic
Hamiltonian, we study the formation of coherent structures. The ratio of two time scales as well as the
symmetry of the initial wave packet decisively determines the revival and fractional revivals of the system for
which we give analytical results. The theory is applicable to a wide class of systems from diatomic molecules
to ions in two-dimensional traps and two interacting Bose condeng&&850-29478)00505-9

PACS numbes): 42.50.Md, 42.50.Ar, 03.65.Bz, 32.80.Qk

The emergence of coherent structures such as 8clger ~ spectrum andhot from some elementary consideration such
cats[1] and the occurrence of full, fractional, or super reviv- as the different frequencies of two oscillators.
als[2-7] in the nonlinear evolution of a system have been In the special case in which one of the revival time scales,
recognized to be closely connected to the energy spectrum 68y T, goes to infinity, the system dynamics is effectively
the underlying Hamiltonian and the periodicity of the time scaled byT_ alone. Otherwise, we show that the ratio of
evolution operator. Thus there are extensive calculations o1ese time scales will play a significant role in the revival
Rydberg atomq2], optical parametric oscillatorf3], the characte_ristics of the system. Furtherm_ore, we demonstrate
Jaynes-Cummings mod@4], transient signals from multi- the crucial dependence of fractional rew_vals on the symme-
level quantum systenfs], potential well§6], molecular vi- try prppert_y of the wave packets. Our major analytical results
brational state§7], and light propagation in Kerr medfa]. '€ given in Egs(6)—~(8) and(11). o ,

It became apparent after all these explicit calculations that We conslder the f_ollowmg generic Hamiltonian, V\éh'Ch
the general features of the nonlinear quantum dynamics at)gould p_rowde thdeadinganharmonic terms §UCh as’, n’,
guite generic and in most cases can be understood by the fir%?dmn in the energy spectrurwe uses =1):

anharmonic contribution to the energy spectrum.

Almost all explicit calculations reported in the literature
deal with systems whose energy spectrum depends on a
single quantum numbef8]. In reality, many systems exist An. even more general Hamiltonian would have different co-
whose energy levels depend nonlinearly on at least twé&fficients of @'a)? and (bTb)z-_
quantum number®,10]. The rotational-vibrational spectrum ___Our method of approach differs from that of Blutenal.
of diatomic molecules, particles in Morse-like potentials orl9] s, for an interacting system, we consider it to be more

in two-dimensional boxes, Stark wave packets, ions in a trafPProPriate to introduce time scales based on a type of di-

interacting with a two-dimensional field are but a few ex- _agonahzatlon rather than the ones based on bare parameters

amples. Similar situations also arise when elliptically polar—In the Hamiltonian. Thus we work with time scalds,

ized light passes through a fiber. Recent work by WrightzZW/(CliCZ/Z) ratherthar) #/c, and 2m/c,. As for_ |n|t|a!
. . states, we can use a variety of wave packets involving a
etal. [11] shows that, to a good approximation, a Bose

: . syperposition of the eigenstates of the system provided the
condensate can be modeled as an anharmonic oscillator a ight factors in the superposition are peaked with a small
thus the results that we present here should also be applspersion. In our calculation, the initial wave packet is a
cable to binary condensates. _two-mode coherent statéa,B)=|a)®|B). As is well

_ Clearly, we can either study each of these systems indignown, the coherent stater) is a Gaussian wave packet in
vidually or develop a general theory and uncover the generigonfiguration space involving a superposition of all the num-

features of the quantum dynamics of systems whose energyer states with a weight factor given by the Poisson distribu-
levels depend on two quantum numbers. We take the lattg{y,

approach in this paper. We explain the complex revival The time evolution operator has the expansion
structure of these systems Gy presenting explicit analytical

results under the framework of a general theory that can be

modified to suit specific cases afid) studying the evolution U=, exp{ —it[ci(p?+9?) —c,pql} p.a)(p.q
of autocorrelation functions, phase distributions, and prob- p.q

ability densities. We specifically examine the effects that 2
arise from the existence of two time scales, which them-

selves are determined from the dependence of the enerdgihe double sum in Eq2) is split into two partsU , (t), for
spectrum on two quantum numbers. Thus the time scales thathich p=q (mod 2, andU _(t), for which p#q (mod 2.
we consider arise from the anharmonicities in the energysettingc,*+c,/2=d.., we write

H=c,[(a'a)?+(b'b)?]—c,a’ab'b. )

1050-2947/98/5(5)/388(05)/$15.00 57 3880 © 1998 The American Physical Society



57 FRACTIONAL REVIVALS IN SYSTEMS WITH TWO ...

U (t)= 3 e 2tk e 2td-(+1% 2 2k)(2j,2k|
ik=0

+e AUk D225 11 K+ 1)(2j +1,%+1]],

€)
U_(t)= D e itd-(2i+2k+ 1>2/2[e*itd+(2j72k71)2/2
=
X|2],2k+1)(2j 2K+ 1|+ e itd+ (@i ~2k+ )2
X |2j+1,2K)(2j +1,2K[]. @

This prompts us to express the initial two-mode coherent

state|a, 8) in terms of the(normalized “even” and “odd”
states

|a,,8)i=(|a,ﬂ>i|—a,—,8>)/ V2P:y
P.=1%exd —2(|«|*+|8?)]. )

It is clear thatU.(0)|a,B)+=|a,B). and U.(t)|a,B)=
=0. The corresponding autocorrelation function&
=(a,plU(t)]a,B) and A.=(a,B|.U-(t)|a,B). satisfy
the simple conditonA=(P A,+P_A_)/2. The two-
dimensional problem is thus effectively diagonalized.
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FIG. 1. Absolute square of the autocorrelation function as a
function of time forT, /T_=2/3 whena=2 andB=3.

We first determine the collapse and revival of the systemT, , goes tox (in which casec,= —2c,, s— 1, andr—0),

The revival time for|a,B) and|a,B). will be some mul-
tiple of T=sT_=rT, , wherer ands are mutually prime
andT..=a/2d.. . For integer values ol we get

U (NT)|a,B)=|a explimd.),B expime_)), ,
U_(NT)|a,B)-=exp(~ 76 ,/2)|aB)-,
¢ =N(s=xr)/2. (6)

Clearly, |a,B)_ revives (but for an overall phasefor all
values ofN, whereasa, ), revives for even values df
only. For|a,B), on the other handy depends crucially os
andr. If s#r (mod 2, thenN=0 (mod 8, i.e.,|a,B) re-
vives at 8, 16T,... . If s=r=1 (mod 2, let s=2p+1
andr=2g+1. In this case, we findN=0 (mod 4 if p=q
(mod 2 andN=0 (mod 2 if p#q (mod 2.

A few examples are in order. Suppose 2 andr=3, so
thatT, /T_=2/3=0.666 . . ., or,equivalently,c,/2c;=0.2.
We setc,;= /9.6 in some appropriate unit so that =6,
T,=4, andT=12. The earliest revival times fdw,B)_,

then the shortest times for the reproduction |af,8) _,
|a@,B),, and|a,B) are,T_, 2T_, and 8 _, respectively.
This situation has an analog in the regeneration characteris-
tics of a fieldE(x) of wavelength\ propagating through a
multimodeplanar waveguide of widthb. If the field is sym-
metric in the transverse dimensi&t — x) = E(x), its regen-
eration length il =b?/\; an antisymmetric fieldE(—x)=
—E(X) regenerates at a distancke,2vhile an arbitrary field

is reproduced after a guided propagation of lengith[82].

We mention in passing that this behavior in platerd rect-
angulaj waveguides can be traced to the quadratic depen-
dence (in the paraxial approximationof the propagation
constant on the mode numbers.

Between revivals, the system undergoes collapse and frac-
tional revivals. In the case of collapse, the autocorrelation
functions go to zero typically as ekxp(|af>+|8/%)]. How-
ever, the two-mode case also presents possibil{tidsch
may be relevant for mesoscopically occupied sjatesen
A, or A_ can be identically zero. Thus, for example, when
T./T_=2/3 and N is odd, U,(2NT.)|e,B);=|ia,
—iB),, for which A, =0 if |a|?—]|B|? is an odd multiple

|a,B)+, and|a,B) will be att/T_=2, 4, and 16, respec- of /2. Since|a,B)_ and|«,B), have different collapséor
tively (Fig. 1). Note that the graphs in Fig. 1 are symmetric revival) time scales, it may even be possible to produce them

about half the revival time.

by propagating a two-mode coherent stpteB) through a

If the ratio of the time scales is changed to 0.6 insteadMach-Zehnder type of interferometer with two different Kerr

thens=3 andr=5. Furthermore, setting,=7/9, we can

keepT _ the same as before. However, the revival times will

now change ta/T_=3, 6, and 6 fola,B8)_, |a,B), , and
|, B), respectively.

If T_=T,, ie. c,=0 ands=r=1, then the revival pe-

riods for|a,8) _, |@,B), , and|e,B) will be att/T_=1, 2,

fibers.

Turning to fractional revivals of the odd and even states,
we sett=(my/n))T_=(m,/n,)T,, where f,,n;) and
(my,n,) are pairs of mutually coprime numbers. The nonlin-
ear phase shifts produced by terms quadratic in the summa-
tion indices are written in terms of linear phase shifts by

and 4, respectively. Finally, if one of the time scales, sayintroducing their discrete Fourier transforms. We thus obtain
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-1 1,-1
U+(t)|a!ﬁ>+: E 2 a(ml'nl)a(mZYnZ)
p1=0 pp=0 P1 p
X|a exp(—iwgb(f)),ﬂ EX[X—iW¢(f>)>+ ,
(7
U_(t)]e,B)-
-1 I,—1
:e*iw(m1/n1+m2/n2)/42 2 a(ml'nl)a(mZvnz)
p1=0 py=0 P1 P2
xexpim' )| exp—ime ), B exp(—imp'®))_,
)
where ¢®@=p,/l;=p,/l, and ¢ P=¢®+(m;/n,

*m,/ny)/2. The period; depends on the parity ofi; and
n; . It can be showrtdropping the subscrigtfor clarity) that

n for m#n (mod 2

= 2n  form=n=1 (mod 2. ©
The coefficientsa(™™ are given by
-1
almM == exp(—immk/n+2mipk/l) (10

P | o
and can be evaluated analyticalli3].

Note that the expressions for_(t)|«,8) _ can be rewrit-
ten such that the phase factors associated witind 8 are
independent ofn; andm, as in the case of) . (t)|a,B), .
Thus we get

U_(t)|a,B)_=e i mmi/ni+my/ny)/4

Ny n2

(mg,ng)},(Mz,Nn3)
x> > by, "oy

p1=1pp,=1 "1

Xeiw0+|ae—iﬂ'0+yﬂe—i7ﬂ9,>_ ’ (11)

wheref.=(n;+1-2p;)/(2n;) £ (n,+1-2p,)/(2n,) and
aggl'—nrhlll)/z—p

(m,n,1)
a(n—m+ 1-2p)

if m#n (mod 2

p(mn —
P if m=n=1 (mod 2.

12

We will now study fractional revivals by looking at the
wave-packet dynamics of the system.tAt0, the even and
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FIG. 2. Two-dimensional probability densitieg/(x,y,t)|* as
functions of X=x/a and Y=y/B for a=2 and =3 when(a)
t/T_=2, (b) t/T_=3, and(c) t/T_=4. Left column, T, /T_
=2/3; right column, T, /T_=3/5.

+yA)/2]cog 2 (ax— By)] whereag a,8) ;. does not. Using
these wave functions and Ed6), we find that at/T_=4 or
12 and T,/T_=2/3, (xy,t)=[expin/d)p_(X,y)
+exp6w/4)p+(x,y)]/\/§. The components of the wave
function do not interfere with each other as they a¥2 out
of phase. This represents a Sdlirmer cat stat¢Fig. 2(c),
left column|, a two-way fractional revival in accordance

with |A(t)|> being equal to 1/2. However, at
t/T_=2, Ut)|e,B)=VP. /2lia,—iB) . —exp(inl4)

VP_/2|a,B)_ . The corresponding probability density will
have a central modulated peak duelita,—i8), and two
smooth peaks at the edges due|tgB)_ [Fig. 2a), left
column|. This is not a four-way fractional revival. Further-
more, for the same value of time, a change in the ratio of
T, /T_ will drastically alter the characteristics of fractional
revival (Fig. 2).

The Gaussian pairs that represent the odd and even states
att=0 are well separated faz,3>1 since the interference
betweenp_ and p, is negligible. However, as the wave
packets spread, there can be significant overlap between the

odd states are represented by pairs of Gaussians centeredcatmponents of the wave packets even at fractional revival

x=* a2 andy= =+ 3./2 (we use real values af and p):

p(X,y)= Y2 [(x= av2)2+(yxpV2)212

P (Xy,0=[p-(Xy) =p.(X,y) ]/ V2P,

whereas the initial state is given (x,y,0)=p_(X,y).
These are smooth functions wfandy. However, as the

13

times (Fig. 3, left column. For a given set ofrg, n;) and
(m,, n,), this interference can be reduced only for larger
values ofae and B (Fig. 3, right column. Since we get
superpositions of coherent states with different phases, the
phase distribution functiofil4] will exhibit a quite instruc-
tive multipeak structuréFig. 4).

We briefly consider the limitT,—o, i.e., the limit
n,—o andp,—0. In this case, the double sums in E(8,

system evolves, the probability densities can develop ridge), and (11) collapse to single ones. Alsay and 8 are
structures as well due to the occurrence of sinusoidal termsultiplied by the same phase factor. A similar observation

in the wave functiongFig. 2). For example, referring to
Fig. 1, lia,—iB),, which is the even state afT_=2,
has an oscillatory wave functiony2/wP ., exp[—(x*

can be made in the earlier context of revival and collapse
also. Thus an immediate consequence of two different time
scales is thate) and|B) are rotated differently in phase
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FIG. 3. Probability densitie&) | _(x,y,t)|?, (b) [+ (x,y, )|,
and (¢) |¢(x,y,t)|? as functions ofX=x/a and Y=y/8 whent
=T,/2=T_/3. Left column,a=2 andB=3; right column,a=4

and 8=5.
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FIG. 4. Two-dimensional continuous phase distribution function
P(6,¢) for U(T_/3)|2,3) whenT, /T_=2/3; angles are in units
of 7.

Thus suitable wave packets of such molecules will exhibit
quantum dynamic behavior found in this papé). Consider
the motion of an ion or atom in a trap in the presence of a
two-dimensional electromagnetic field with a field profile
E(coskx— cosky). If the field is far detuned from resonance,
then the motion is in a potential determined by the Stark shift
|coskx— coskyl?. If kx andky are much smaller than unity,
then the potential is equivalent to the anharmonic potential of
Eqg. (1). (c) Wright et al. [11] have given a description of
Bose condensate in terms of a single mode and shown the
presence of collapses and revivals in the dynamics. Clearly, a
generalization of their work to binary condensaft&6] will
involve Hamiltonians such as EL).

In conclusion, we have shown how systems with an en-

space. Since for a coherent state revival corresponds to a 2ergy spectrum depending essentially on two quantum num-
rotation in phase space, the situation is analogous ta@wo bers can lead to a different time scale in the quantum dynam-

better still, two packs of“‘runners on a track.”

ics of the wave packet. The ratio of two time scales

As mentioned in the introduction, the results of this paperdetermines the nature of revivals and fractional revivals,
are applicable to a large class of systems. We cite som@hich also depend on the spatial symmetry of the initial

examples that are experimentally realizalies. The anhar-

wave packet. Finally, it should be clear that the dynamics of

monic terms in Eq(1) are precisely the ones occurring in the many other wave packets can be studied using the general

stretching of bond$15] in a linear molecule such as .

decomposition(3) and (4) of the evolution operator.

[1] B. Yurke and D. Stoler, Phys. Rev. Le&7, 13(1986; G. J.
Milburn and C. A. Holmesijbid. 56, 2237(1986; W. Schle-
ich, M. Pernigo, and Fam Le Kien, Phys. Rev.44, 2172
(199)); K. Tara, G. S. Agarwal, and S. Chaturveihid. 47,
5024 (1993; V. Buzek, H. Moya-Cessa, and P. L. Knight,
ibid. 45, 8190(1992; R. TanasTs. Gantsog, A. Miranowicz,
and S. Kielich, J. Opt. Soc. Am. B, 1576 (199)); G. C.

Gerry, Opt. Commun63, 278(1987.

[2] I. Sh. Averbukh and N. F. Perelman, Phys. Lett189 449
(1989; M. Nauenberg, J. Phys. B3, L385 (1990; G. Alber,
H. Ritsch, and P. Zoller, Phys. Rev. 34, 1058(1986; Z. D.
Gaeta and C. R. Stroud, Jibjid. 42, 6308(1990; R. Bluhm,
V. Alan Kostelecky, and B. Tudoséid. 52, 2234(19995; 53,
937 (1996; J. Walset al,, Phys. Rev. Lett72, 3783(1994.

[3] I. V. Jyotsna and G. S. Agarwal, J. Mod. Og4, 305(1997);
G. S. Agarwal and J. Banerji, Phys. Rev58, R4007(1997);

G. Drobny and I. Jexibid. 45, 1816(1992.

[5] C. Leichtle, I. Sh. Averbukh, and W. P. Schleich, Phys. Rev. A
54, 5299(1996.

[6] D. L. Aronstein and C. Stroud, Phys. Rev.55, 4526(1997%);

F. Grobmann, J. M. Rost, and W. P. Schleich, J. Phy80A
L277 (1997).

[71 M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys.
Rev. A54, R37(1996.

[8] It should be borne in mind that the states that form the wave
packet can depend on many quantum numbers though the en-
ergy may depend only on a single quantum number as, for
example, in the case of Rydberg atoms.

[9] R. Bluhm, V. Alan Kostelecky, and B. Tudose, Phys. Lett. A
222 220(1996.

[10] (@) G. S. Agarwal and R. R. Puri, Phys. Rev. 40, 5179
(1989; (b) Ts. Gantsog and R. TanaQuantum Opt3, 33
(1992); (c¢) R. Bluhm, V. Alan Kostelecky, and B. Tudose,
Phys. Rev. A55, 819(1997.

[4] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon[11] E. M. Wright, T. Wong, M. J. Collett, S. M. Tan, and D. F.

Phys. Rev. Lett44, 1323 (1980; P. L. Knight and B. W.
Shore, Phys. Rev. A48, 642(1993; G. Rempe, H. Walther,

and N. Klein, Phys. Rev. Letb8, 353(1987.

Walls, Phys. Rev. A6, 591 (1997.
[12] This phenomenon was fruitfully utilized to propose different
designs for a variety of optical devices. See, for example, R.



3884 G. S. AGARWAL AND J. BANERJI 57

M. Jenkins, R. W. J. Devereux, and J. M. Heaton, Opt. Lett.[14] S. M. Barnett and D. T. Pegg, J. Mod. O, 7 (1989; see

17,991(1992; J. Banerji, J. Opt. Soc. Am. B4, 2378(1997%); also Ref[10(b)].
J. Banerji, A. R. Davies, and R. M. Jenkins, Appl. OB6, [15] F. lachello and R. D. LevineAlgebraic Theory of Molecules
1604(1997). (Oxford University Press, New York, 1995Eq. 4.28.

[13] J. H. Hannay and M. V. Berry, Physica D) 267 (1980. [16] E. V. Goldstein and P. Meystre, Phys. Rev58, 2935(1997).



