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Polarization partition noise and intensity fluctuation linewidth in a nearly symmetric vector laser
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We consider the statistical properties of the fluctuations in the orientation of the vector laser field for a nearly
isotropic laser, addressing the competition between the randomizing influence of noise and the preference for
linearly or circularly polarized emission induced by saturation in the laser medium and/or cavity anisotropies.
We describe, through a nonperturbative analysis, a crossover regime from diffusion-induced polarization-
isotropic emission to emission of nearly fixed polarization characteristics. In this crossover the linewidth of
intensity fluctuations associated with one of the circularly polarized components of the vector field amplitude
changes from decreasing to increasing with output power. This behavior can be expressed in terms of a single
parameter that measures the pump or the total output intensity in terms of the ratio of the noise amplitude to
the degree of cross saturation of the amplitudes of the circularly polarized components of the vector field
amplitude. Analytical results are given for the linewidth of the intensity fluctuations. When the laser has a
preference for linearly polarized emission, there is a weakly non-Lorentzian spectrum in the crossover region.
When the laser has a ‘‘preference’’ for circularly polarized emission the crossover regime is characterized by
a non-Lorentzian spectrum due to fast hopping between two circularly polarized eigenstates. We also describe
ellipticity fluctuations induced by the diffusion of the direction of the main axis of the polarization ellipse in
the presence of cavity birefringence.@S1050-2947~98!08202-X#

PACS number~s!: 42.55.2f, 42.50.Lc
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I. INTRODUCTION

The study of the selection of the polarization state of la
emission dates from the early days of laser physics@1,2#
when most analyses of this question were formulated
terms of third-order Lamb theory@3#. Within that theoretical
framework one derives coupled equations for the slow
varying amplitudes of the two orthogonal circularly pola
ized components of the electric field. A crucial parameteg
is the ratio of the cross saturation to the self-saturation of
field amplitudes. It depends on the field-material physics~in-
cluding both the angular momentum of the states involved
the material transition and the decay rates of the differ
elements of the density matrix describing the material po
lations, dipoles, quadrupoles, and higher-order cohere
terms!. For weak coupling (g,1) there is a preference fo
linearly polarized emission and for strong coupling (g.1)
there is a ‘‘preference’’ for circularly polarized emissio
Marginal coupling (g51) leads to emission with arbitrar
ellipticity and azimuth. Of course, the field-matter interacti
is only one of several influences on the final polarizat
properties of a laser. Also crucial are cavity anisotrop
~birefringence, dichroism, etc.!. The saturable dispersion o
the material transition is an additional important featu
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when there are phase-sensitive anisotropies~which introduce
different optical frequency shifts, detunings, for different
polarized fields!.

While studies of lasers with cylindrically symmetric ge
ometries often focused on polarization properties@1,2,4#,
these considerations have not been common. Renewed
retical and experimental interest in the polarization prop
ties of laser light is associated with the role of the vector
degree of freedom of the electric field in laser instabiliti
and dynamics in gas lasers, diode-pumped solid-state la
fiber lasers, optically pumped far-infrared lasers, and vert
cavity surface-emitting semiconductor lasers@5–24#. Satis-
factory modeling of some of the dynamical behavior requi
generalized Maxwell-Bloch equations or a modified form
field-population rate equations, either of which goes beyo
third-order Lamb theory.

From the point of view of the statistical properties of las
light, the polarization state and the vector degree of freed
also add new features to the phase diffusion that contrib
to the laser linewidth in a noise-driven convention
polarization-stabilized laser@25–32#. Lasers with different
values forg have their polarization properties affected d
ferently by noise. The circularly polarized states are discr
so noise causes either local fluctuations or hopping to
other state. By contrast, the linearly polarized states ar
simply continuous family~in orientation angle! among which
even weak noise can cause diffusion. The solutions of a
trary elliptical polarization are a doubly countinuous fam
within which noise drives diffusion in both azimuth and e
lipticity.

These features have been considered mostly a theore
3843 © 1998 The American Physical Society
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3844 57S. CIUCHI, M. San MIGUEL, AND N. B. ABRAHAM
curiosity, since in most practical lasers there are so
anisotropies that stabilize the emission on a particular po
ization state. Most commonly the optical cavity is design
to minimize losses, typically by using Brewster-angled w
dows or material surfaces that lead to a well-stabilized
early polarized emission. However, in addition to the re
tively rare cylindrically symmetric geometries of early lase
modern high-efficiency designs for solid-state lasers@using
microchips @8# or vertical cavity surface-emitting laser
~VCSELs! @18## may operate on a single spatial mode a
often are not polarization stable. Since switching betwe
distinct but differently polarized laser states often requi
low holding power and extremely low switching energie
polarization could be a good property to choose for opti
logic gates and signaling, making polarization fluctuation
matter of great concern for signal quality and performan
degradation@19,33#.

For gas lasers, where the material dynamics can be
scribed more easily and more exactly, there have been re
experiments on small, high-gain, single-mode lasers to m
sure noise properties associated with fluctuations in the
larization state, such as polarization diffusion and its con
bution to the laser’s intensity linewidth@30,31#. In particular,
polarization diffusion has been used, together with the Z
man effect, as a practical method to measure the quan
limited linewidth of a laser@32#. These results and potentia
applications call for further theoretical investigations.

In a conventional linearly polarized single-mode~SM! la-
ser, even modestly above the lasing threshold, the inten
correlations decay very rapidly in time due to the strict co
finement of the intensity around its stationary value. In co
trast, the complex field amplitude has a slowly diffusi
phase, driven by spontaneous emission noise. This cause
width of the spectrum of the intensity fluctuations to
much larger than the width of the field fluctuations. The
tensity linewidth is proportional to the pumping rate, wh
the linewidth of the optical field, originating in the phas
diffusion, is inversely proportional to the output powe
Some modifications of these principles when the cavity li
width approaches or exceeds the linewidth of the mate
transition have long been noted, but they were only m
recently measured carefully@30#.

The situation can be very different when there is com
tition between or among states of different polarization. T
extreme case occurs for marginal coupling of the two cir
larly polarized components of the vector field, in which ca
there is no preferred polarization state for the lasing act
Such a polarization-symmetric~PS! laser in an ideal,
polarization-symmetric cavity was considered by Grah
@25,27#. The fluctuations of the intensity of any particul
selected component of the emitted vector field are then
related over very large times. This form of partition noi
leads to an intensity linewidth that is inversely proportion
to the pump rate. In the Poincare´ representation of the polar
ization states@34# ~see Fig. 1! the representative point of th
laser vector field in this case performs a random walk on
surface of the Poincare´ sphere, randomly visiting differen
elliptically polarized states. Noise leads to diffusion of t
main axes~and of the ellipticity! of the polarization ellipse.
This diffusion can be observed by measurements of
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intensity-fluctuation correlation function of any polarize
projection of the emission.

Far from the polarization-symmetric case, due either
anisotropic gain media or to cavity anisotropies, intens
correlations are those characteristic of a single-mode~polar-
ized! laser@28#. However, the vectorial component of spo
taneous emission noise perpendicular to the instantan
direction of the vector laser electric field still causes pol
ization fluctuations.

From the preceding discussion it is clear that there sho
be an interesting crossover situation between the PS and
behaviors when the value ofg is close enough to unity tha
the selection of a polarization state by field material or cav
anisotropy competes, with a similar strength, with the noi
induced tendency for diffusion over the entire surface of
Poincare´ sphere. In this paper we analyze this crossover
gime and describe the key differences in the crossover
gimes between the situations when the cross-saturation
rameter leads to a slight preference for linear or circu
polarization. We find a crossover from decreasing to incre
ing intensity linewidth of one field component as the outp
power is increased. This crossover occurs well above thre
old and should not be confused with the change of beha
that occurs for a single-mode laser when the laser is ta
from slightly above threshold~where the noise contribution
causes large percentage fluctuations in the total output in
sity! to sufficiently far above threshold~where the noise con
tributes only very weak fluctuations to the total output inte
sity!.

The experimental investigation of the crossover regi
that we describe requires considering a nearly isotropic la
that is, a laser with field-material interactions close to m
ginal coupling and small cavity anisotropies. From the po
of view of the material gain anisotropies, possible gas las
that might show this effect are those operating on@31# the
l52.65 and 2.03mm lines of Xe, associated, respective
with J51 to 0 andJ51 to 1 atomic transitions, and thel
51.52 and 3.3912mm lines of Ne, which haveJ51 to 0
andJ51 to 1 atomic transitions, respectively. These kinds
J to J8 transitions are known to give marginal coupling
except for the effects induced by atomic collisions@3,35–
37#.

Another laser in which these effects might be observed
the VCSEL. Within the model for polarization dynamics
VCSELs in Ref.@38# the effective coupling parameter de
pends sensitively on the carrier spin-flip relaxation rate. T
coupling is close to marginal for fast relaxation@38,6#. The
actual value of this parameter is the subject of current ac
research@39–41#, but a situation close to marginal couplin
seems possible. However, our treatment here of polariza
partition noise is not directly applicable to VCSELs since w
will restrict ourselves to a third-order Lamb theory, whi
VCSELs require a more involved description@5,6#. Still,
some of the ideas put forth here may be helpful for und
standing these devices. Concerning cavity anisotropies,
mention that there are now experimental techniques avail
to compensate and tune some of the unavoidable aniso
pies. For example, a magnetic field can be used to comp
sate cavity anisotropies that otherwise select a direction
linear polarization@30–32# and intrinsic birefringence can b
controlled @42# by localized stress. This opens the way
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57 3845POLARIZATION PARTITION NOISE AND INTENSITY . . .
studies of fluctuations in nearly isotropic lasers.
It is also possible that phenomena such as those discu

here could provide a useful benchmark for tests of co
monly used models for semiconductor and solid-state mu
mode lasers that often both ignore the amplitude fluctuati
~considering only intensities! and couple these modal inten
sities equally, via saturation, to the material inversion. Po
ization dynamics in nearly polarization-isotropic lasers
these types might be a sensitive test of the assumptio
neutral saturation coupling.

The problem considered in this paper has formal simila
ties to that of intensity correlations in two-mode lasers@43–
45#, both lasers with two longitudinal modes and lasers w
two counterpropagating modes. The weak or strong coup
in those cases is associated with inhomogeneous and h
geneous broadening of the lasing transition, respectiv
Many of the mathematical tools that we will use~for ex-
ample, effective and average eigenvalues! were used for that
problem@45# and the marginal coupling case was also ma
ematically discussed in this context. However, the crosso
regime that we discuss for comparable cross-satura
asymmetry and noise strengths seems difficult to obtain~or
maintain! in two-mode lasers. Despite the similarities, the
is some difficulty both conceptually and practically with d
scribing polarization fluctuations in terms of two competi
modes since the amplitude variables used in the equat
are the result of a somewhat arbitrary selection of basis st
for the vector field. Only when the couplings and anisot
pies lead to the privileged distinction of two eigenstates d
it make sense to refer to those states as modes. Other
one has the added artificial confusion that the circularly
larized ‘‘modes’’ ~which we prefer to call components of th
vector field amplitude! find ways to phase lock to form lin
early polarized or elliptically polarized ‘‘states,’’ an unfortu
nately and excessively complicated language for the dyn
ics and the steady states of the vector field. Neverthel
mesurements of the intensity fluctuations of either linea
polarized or circularly polarized components of the total fie
can be accomplished by well-defined experimental te
niques.

The remainder of this paper is organized as follows.
Sec. II we introduce the model on which our calculations
based together with the basic variables and relevant cor
tion functions used for characterizing the statistical prop
ties of the intensity and polarization fluctuations. In partic
lar we introduce two different measures of the intens
linewidth that only coincide when a single time scale is r
evant in the problem. In Sec. III we analyze more exactly
condition when the total output power of the laser can
assumed to be constant. Within this approximation a po
tial description of the motion of the polarization under t
action of the noise is possible. This permits us to iden
different dynamical regimes. Also within this approximatio
we derive analytically,in a nonperturbative fashion, results
for intensity correlations and intensity linewidths. These g
eral results are discussed separately for the weak- and str
coupling cases in Secs. IV and V. For the strong-coupl
case we further introduce the concept of a restricted
semble to describe polarization fluctuations in finite obser
tion times and our results are compared with the beha
found in computer simulations of the complete equatio
ed
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Section VI gives a unified view of our results for weak a
strong coupling in terms of the basic parameter of the the
that measures the relative strength of the saturation asym
tries and noise intensity. PS behavior is characterized b
single time scale associated with polarization diffusion.
single dominant time scale associated with SM behavio
also reached, through intermediate crossover regions,
strong material cross-saturation preferences for linearly
circularly polarized emission. While most of our mathema
cal formulation is developed for the case of an isotropic c
ity, in Sec. VII we address the effects of cavity anisotrop
on our previous results. A summary of our results and so
concluding remarks are given in Sec. VIII. Appendixes
and B contain some details of the calculations.

II. MODEL, VARIABLES,
AND CORRELATION FUNCTIONS

We consider the following third-order Lamb model fo
the evolution of the two circularly polarized componentsE6

of the electric field amplitude of a laser operating on a sin
spatial mode@2,3#

Ė65@a2b~ uE6u21guE7u2#E61AeS6 . ~1!

The additive noise termsS6 account for spontaneous emi
sion in the cavity and are assumed to be uncorrelated Ga
ian white-noise sources

^Sp* ~ t !Sq~ t8!&52dp,qd~ t2t8!, ~2!

wherep,q56. The two circularly polarized components o
the vector field amplitude are related to the linearly polariz
componentsEx,y by

E65
Ex6 iEy

A2
. ~3!

Intensities are defined by the moduli of these amplitud
I 65uE6u2 andI x,y5uEx,yu2, while the total intensity is given
by I 5I 11I 25I x1I y . In Eq. ~1! the parametera is propor-
tional to the difference between the pump rate and a thre
old level, i.e., it is positive above threshold. The nonline
term takes into account saturation of gain in the framew
of third-order Lamb theory~parameterb). For simplicity in
the present study we take botha andb to be real, so that we
consider a laser with the cavity perfectly tuned to the atom
resonance.

Polarization preference arising from saturation of the m
terial lasing transition is introduced in the nonlinear ga
saturation terms by theg parameter@3,35,36#. For transitions
involving angular momentaj→ j ( j .1) there isstrong cou-
pling (g.1), while with a lasing transitionj 51/2→ j 51/2
or j→ j 11 with j .0 there isweak coupling(g,1). We
will use the reparametrizationg512d so that strong cou-
pling is given byd,0 and weak coupling byd.0. For j
51→ j 51 and for j 51→ j 50 there is neutral coupling
(d50) except for dissipative processes, which can lead
ther tod.0 of d,0 @2,21,46#.

From adeterministicpoint of view (e50), neutral cou-
pling (d50) gives a situation that is invariant under chang
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in the polarization state. Weak coupling between the tw
circular amplitudesd.0 leads to linearly polarized emission
~which can be viewed as coexistence of the circularly pola
ized modes withI 15I 2) with an arbitrary vector orienta-
tion. Strong couplingd,0 leads to a preference for circu
larly polarized emission with two possible equivalent state
either I 1Þ0 or I 250 or vice versa. We will discuss in this
paper how the effect of noise modifies this picture.

Equation ~1! is similar to the semiclassical Langevin
equations considered, for example, in Ref.@27#, where cavity
phase anisotropy and linear gain differences between the
different linearly polarized components of the vector fie
were included. Cavity anisotropies introduce a mechanis
that competes with the one of nonlinear gain saturation in t
process of selection of a polarization state. We consider fi
a perfectly isotropic cavity and defer the discussion of th
effects of cavity anisotropies to Sec. VII.

To introduce relevant variables for our analysis we wri
Eq. ~1! in terms of phases and amplitudes defined as

E6~ t !5R6~ t !exp@ if6~ t !#. ~4!

Using Ito stochastic calculus@47#, we get for the amplitudes

Ṙ65$a2b@R6
2 1~12d!R7

2 #%R61
e

2R6
1Aej6 ~5!

and for the phases

ḟ65Ae
h7

R6
, ~6!

FIG. 1. ~a! Poincare´ sphere.~b!–~d! Evolution of the polariza-
tion on the Poincare´ sphere with points indicating instantaneou
positions at regular intervals of time:~b! weak couplingd.0, ~c!
intermediate coupling~symmetric case! d.0, and~d! strong cou-
pling d.0.
o

r-

,

o

m
e
st
e

where h6 and j6 are uncorrelated and real white-nois
sources.

It is natural to rewrite the amplitude equations by intr
ducing ‘‘polar’’ coordinates, with the angle

V5tan21~R2 /R1 ! ~7!

and the radiusR5AI . These variables and the phasesf6 are
related to the polarization ellipse: The angleV is related to
the ellipticity of the polarization ellipse (x) by V5x1p/4
andu/25(f12f2)/2 gives the orientation of the azimut
of the polarization ellipse. In the representation on the Po
carésphere@see Fig. 1~a!#, the radius isR, the latitude angle
is 2V, and the longitude angle isu.

For R andV the following Langevin equations hold:

Ṙ5H a2bF S 12
d

2
sin2~2V! DR2G J R1

3e

2R
1AejR, ~8!

V̇5
e

R2
cot~2V!1

bdR2

4
sin~4V!1Ae

jV

R
, ~9!

where the noise terms have correlations given by

^jp~ t !jq~ t8!&5dp,qd~ t2t8! ~10!

and p,q5R,V. Equations for the phasesf6 are easily re-
written in terms of these new variables by substituti
RcosV andRsinV for R6 , respectively, in Eq.~6!.

If the total intensity of the field remains constant, th
polarization state can be mapped onto the surface of a P
carésphere. The qualitative behavior of noise-driven pol
ization as found in numerical integration of Eq.~1! is shown
in Figs. 1~b!–1~d!. For weak coupling (d.0) there is diffu-
sion around the equator@Fig. 1~b!#. This means that the po
larization observed over short time intervals is almost alw
linear, but the orientation diffuses under the action of t
noise as recently observed experimentally@30,32#. For neu-
tral coupling@Fig. 1~c!# we have a situation in which there i
diffusion over the whole sphere. In contrast, for strong co
pling (d,0) the solution is confined around the poles@Fig.
1~d!#, which means an almost circularly polarized state w
weakly fluctuating ellipticity.

We characterize the dynamical features of the polariza
fluctuations by looking at different correlation functions
the intensity fluctuations. The correlation function for th
intensity fluctuations of one of the circularly polarized com
ponents~CCF! is

C1~ t !5^I 1~ t !I 1~0!&2^I 1&2 ~11!

and the correlation function for the intensity fluctuations
one of the linearly polarized components~LCF! is

Cx~ t !5^I x~ t !I x~0!&2^I x&
2. ~12!

When the total intensity has negligible fluctuations, the C
gives information about correlations of the latitude angle.
the case shown in Fig. 1~b!, in which the motion is practi-
cally confined to the equator of the Poincare´ sphere, the LCF
gives information about diffusion along this circle. In th
following, unless explicitly stated otherwise, we will alway
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57 3847POLARIZATION PARTITION NOISE AND INTENSITY . . .
refer to the correlations of the fluctuations of the intensit
of the circularly polarized components.

To calculate the correlation times and the associated l
widths we use the representation of a general correla
function of fluctuations around a stationary state

C1~ t !5(
k

Rkexp~2lkt !, ~13!

wherelk.0. We will consider ‘‘moments’’mn of the in-
verse correlation timeslk ,

mn5

(
k

Rklk
n

(
k

Rk

, ~14!

which give information about characteristic times~and there-
fore linewidths! associated with the correlation functio
Generally speaking, the first moment gives a measure of
averagelinewidth and coincides with the linewidth observe
in an experiment only when there is a single dominant ti
scale involved. In other words, the observed spectrum
purely Lorentzian only in this case.

The momentsmn can be rewritten in terms of the deriva
tives of the correlation function evaluated at zero time d
ference@45#

mn5~21!n lim
t→01

1

C~0!

dnC1~ t !

dtn
. ~15!

Using this relation, it is possible to calculate dynamical pro
erties such as correlation times as averages over statio
distributions of the intensity. For small fluctuations around
single stationay state, there is a single time scale and co
quently the variance of the correlation times is zero. Ho
ever, in the case of bistability, several time scales are
volved in the decay of the correlation functio
corresponding to different characteristic time scales for
evolution of a trajectory on the Poincare´ sphere. For ex-
ample, for strong coupling there is bistability between t
right and left circularly polarized solutions. We will show i
Sec. III that this can be described in terms of a potential w
minima associated with the two circularly polarized stat
There are then time scales for hopping between the pote
minima that depend exponentially on the height of the
tential barrier between the minima and there is also a m
shorter time scale associated with fluctuations around ei
of the minima. In this case we expect the variance of
inverse time scale to be large.

Instead of directly comparing the momentsmn we can
consider another measure of the maximum time scale.
harmonic mean provides an estimate of the maximum wit
a distribution of possible linewidths,

me f f
215

(
k

Rk/lk

(
k

Rk

. ~16!
s
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This quantity is simply related to the integral of the corre
tion function

me f f
215

1

C~0!
E

0

`

dt C1~ t !. ~17!

The quantityme f f is interpreted as the ‘‘effective linewidth’
for the intensity fluctuation spectra takenfor very long ob-
servation times.

In the following sections we will use bothmn andme f f to
characterize the intensity fluctuation linewidths in differe
dynamical regimes. The comparison of these two quanti
will enable us to identify regimes in which more than o
time scale is relevant.

III. APPROXIMATION OF CONSTANT
TOTAL INTENSITY

Polarization partition noise refers to the usual situation
which the total laser intensity remains essentially const
while the intensity associated with each of the two orthog
nally polarized components fluctuates in time. We addr
this problem by first assuming that the total laser intensitI
remains strictly constant in time. This will allow us to stud
the motion of a single independent degree of freedom:
angleV defined in Eq.~7!. As a consequence of this approx
mation both measures of the correlation times discus
above can be evaluated analytically.

In this approximation Eq.~9! for V can be rewritten as an
overdamped motion of a particle in a potentialV,

V̇52
e

I S dV

dV D1Ae

I
j, ~18!

where I is the steady-state total intensity and the new r
white-noise sourcej has unit variance. The potentialV is the
sum of two termsV5Vs1Vas ,

Vs~V!52
1

2
ln@sin~2V!#,

Vas~V!5
a

16
cos~4V!, ~19!

of which onlyVas depends on the strength of the cross sa
ration through the parametera defined as

a5
bdI 2

e
. ~20!

This is the relevant parameter of the theory. It is worth n
ing that the motion ofV is decoupled from that of the phase
u6 and so it is also decoupled from the motion of the orie
tationu of the polarization ellipse. However, from Eq.~6! we
see that the phases are not decoupled from the fluctuation
either the intensity or the polarization orientation.Vas gives a
term explicitly independent of the noise in the equation
V, while Vs is proportional to the noise strength. The latt
originates in the change of variables used for our stocha
description.
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The contribution to the potentialVas from the cross-
saturation parameter changes the shape of the total pote
V from a single well (a.22) to a double well (a,22)
~see Fig. 2!. This change reflects a competition between flu
tuations and the polarization state preference~given by the
strength of the cross-saturation parameter!, which will be
discussed separately for the cases of weak and strong
pling.

(a) Weak coupling(d.0). In this case there is a prefe
ence for linearly polarized emission as described by
minimum of the potential atV5p/4. We obtain a linearly
polarized state in whichI 15I 2 . From Eq.~18!, neglecting
the noise terms, we obtain the equilibrium total intensityI
5I 0 /(12d/2), whereI 05a/b @48#. In terms of the repre-
sentation of the field on the Poincare´ sphere, the equilibrium
states lie on the equator~see Fig. 1!. For stochastic dynami
cal evolution we expect to find one of three situations:~i!
fluctuation-dominated dynamics among different latitudes
the Poincare´ sphere,~ii ! a situation in which the force asso
ciated withVs and the force associated with the polarizati
state preference given byVas are of the same order, and~iii !
a situation in which the polarization state preference from
cross-saturation parameter dominates and the motion o
variableV is strictly confined near states of linear polariz
tion V5p/4. In the first case the free fluctuations of the fie
are expected to result in a large correlation time for the
tensity in one polarization state. In the third case the varia
V suffers many scatterings from the high walls of the pot
tial that rapidly decorrelate its motion. The second case c
responds to a crossover dynamical regime.

(b) Strong coupling(d,0). In the absence of fluctuation
this leads to a preference for circularly polarized emissi
However, in the presence of fluctuations we have to dis
guish three qualitatively different regimes. Fora.22 the
potential has a single well, which means that the angleV
diffuses over the different latitudes of the Poincare´ sphere in
a manner closely similar to the behavior in the PS case.
a,22 there is a potential barrier of height approximate
equal touau/4 that separates the two stable equilibrium sta
These states approach the valuesV50, i.e., circularly polar-
ized 2, andV5p/2, i.e., circularly polarized1, for large
values ofuau. Again from Eq.~8! we recover the result tha
the total intensityI 5I 0. Also in this case we expect a cros

FIG. 2. Sketch of the potentialV(V) defined in Eqs.~19!.
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over in the dynamical behavior of the system once the po
ization preference from the cross-saturation parameter
comes relevant~through an increase of the barrier heigh!,
making the steady states almost purely circularly polariz
states.

Two subcases are possible:~i! polarization hopping~PH!,
when one views the system long enough to see polariza
hoppings between the1 and 2 states, and~ii ! trapping
around a circularly polarized state, if the system rema
around a particular circularly polarized state for a tim
longer than the observation time.

Therefore, in both cases~a! and~b! we expect a crossove
in the dynamical quantities whenuau is of order unity, i.e.,
whend is of the order of the noise strength. The condition
criticality a522 ~the absence of a quadratic term in th
potentialV) does not coincide with the marginal coupling
which a50. This can be understood by looking at the s
tionary distribution function of the intensity.

In terms of the potential, the stationary distribution fun
tion of the variableV is

P~V!}exp22@Vs~V!1Vas~V!#. ~21!

The distribution for one of the intensities is readily obtain
using the definition of Eq.~7! together with Eqs.~19!,

P~ I 1!}expFa
I 1

I S 12
I 1

I D G . ~22!

When a50 the equilibrium distribution function of the in
tensity in a definite polarization state is flat, indicating th
there will be rapid diffusion over the entire Poincare´ sphere.
In this caseP(V) gives the appropriate geometrical fact
sin(2V) needed to have a flat intensity distribution as e
pected fora50. This distribution ofV also can be obtained
by considering a free particle diffusing on the surface o
sphere. In principle, the descriptions of equilibrium prop
ties in terms of theangleV as in Eq.~21! or in terms of the
intensity as in Eq.~22! are equivalent, but in the discussio
of the properties of the intensity process we will use t
angular variable that is driven by purely additive noise. B
cause of this property, the inverse correlation timeme f f can
be evaluated easily. The correlation functionC1(t) defined
in Eq. ~11! as a function of variableV is

C1~ t !5I 2@^cos2V~ t !cos2V~0!&21/4#. ~23!

With the help of Eq.~15! we calculate correlation times a
averages over equilibrium distributions of the variableV.

We make use of a general result that holds for functio
of stochastic processes reported in Appendix B. This ena
us to calculate, in principle, all moments of the characteris
inverse time using Eq.~B6! together with Eq.~15!. To obtain
mn it is useful to normalize Eq.~18!, redefining a time scale
by t5e/I so that the normalized linewidthGn is defined
through

mn5Gne/I . ~24!

If we restrict our consideration to the casen51, we can use
Eq. ~B8! together with Eq.~15! to get, in terms of the proces
V,
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G152
^sin2~V!cos2~V!&

^cos4~V!&2^cos2~V!&
. ~25!

The analytical result valid for both signs of the saturati
asymmetry parameterd ~linear or circular polarization pref
erence! is

G15
~a22!A0~a!1exp~2a/4!

A0~a!2exp~2a/4!
, ~26!

whereA0 is given in terms of the error function~of complex
argument ifa,0)

A0~a!5Ap

a
erf~Aa/4!. ~27!

Using the constant intensity approximation, it is also poss
to give an analytical formula forGe f f obtained fromme f f
@Eq. ~16!# through the rescaling of Eq.~24!. Following the
method in@49#, it is possible to evaluate the effective line
width as

Ge f f
215

1

C~0!
E

0

p/2

dV P~V!21, f 2~V!, ~28!

where

f ~V!52I E
0

V

dV8P~V8!@cos2~V8!2^cos2~V!&#.

~29!

To obtain this relation we have taken advantage of the
that the Langevin equation~18! involves only one degree o
freedom with a purely additive noise. The average linewi
G1 could be evaluated by relaxing the constant intensity
proximation, as done, for example, in Ref.@45#, but to get
the effective linewidthGe f f by analytical calculations as fa
as possible the approximation of constantI is crucial. More-
over, given the probability distribution function~21!, we can
carry out the integral of Eq.~29! analytically, obtaining

Ge f f
215

1

2a2A2
E

0

1

dx
sinh2@ax~12x!/2#

x~12x!
, ~30!

whereA2 is given in Eq.~A3!.
Equations~26! and ~30! give explicit values for the line-

widths defined in general in Sec. II. Some useful values
tained using the asymptotic expansion of the error funct
appearing in Eq.~27! are shown in Table I. Separate discu
sions of the weak- and strong-coupling cases of our res
for the linewidths are given in Secs. IV and V. We no
briefly discuss the range of validity of the constant intens

TABLE I. Asymptotic results for the linewidths.

a G1 Ge f f G11

!21 8
uau

(uau)3/2

Ap
exp(2uau/4)

2uau

0 4 4
@1 a22 a22
le

ct

h
-

-
n
-
lts

y

approximation. Consider the most restrictive case of hav
‘‘small’’ fluctuations around one particular steady state. Th
occurs foruau@1 when the point representing the polariz
tion on the Poincare´ sphere is confined around the polesa
!21) or equator (a@1). In Appendix A we obtain the
fluctuation of the partial intensity around a preferred circ
larly polarized state@Eq. ~A13!# and around a linearly polar
ized state@Eq. ~A6!#. By comparing these results with th
total intensity fluctuations we have an estimate of the valid
of the approximation.

To evaluate the total intensity fluctuations let us consi
the caseudu!1. Then the term dependent on the saturat
asymmetry~dÞ0! can be neglected and, provided the no
is not large, i.e., supposing the laser is well above thresh
we can neglect the term proportional toe/R in Eq. ~9!,
thereby obtaining an equation similar to that of a SM las
In this case the fluctuations of the total intensity are^DI 2&
5eI 0 /a. We thus neglect the total intensity fluctuations wi
respect to the average intensity in the limitI 0@e/a, pro-
vided d!1 @50#. The ratio between the partial and the tot
intensity fluctutions is readily obtained by taking into a
count Eqs.~A6! and ~A13!,

^DI 2&/^DI 1
2 &52d for a@1, ~31!

^DI 2&/^DI 1
2 &15ad for a!21, ~32!

where the subscript1 in Eq. ~32! indicates an average re
stricted to states around one of the two equivalent circula
polarized states~see Sec. V!. The condition for the validity
of our approximation is much more restrictive in the case
cross-saturation preference for circularly polarized emiss
This can be understood from the potential picture. In Fig
we see that the shape of the potential with strong couplin
such that the motion ofV is more strictly confined to one
definite angle~due to infinitely high barriers atV50,p/2)
than in the case of weak coupling. However, it is sufficient
have a small value of the cross-saturation asymmetryd for
this approximation to be valid.

IV. WEAK COUPLING

Results form1 andme f f obtained, respectively, from Eqs
~26! and ~30! for the weak-coupling case (d.0) are shown
in Fig. 3. We observe a crossover from PS-like behavior
which the linewidth decreases with total output intensity
SM-like behavior in which it increases. This crossover o
curs at a pump value that decreases as the cross-satur
asymmetry parameterd increases. Our calculations are bas
on the assumption that the noise amplitudee is independent
of the output power, a resonable assumption if the clamp
of the population inversion clamps the population in the u
per level, which is the case for most laser media that hav
much more rapid decay rate for the lower level. The cro
over also can be understood qualitatively from the poten
picture. At a fixed value of saturation asymmetry parame
d, when the laser intensity increases, the parametera also
increases. As the value ofa increases, the system pass
from an almost flat potential in which the motion of th
intensity is similar to that in a PS laser (d50) to a very deep
single-well potential~see Fig. 2!. In this last situation the
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3850 57S. CIUCHI, M. San MIGUEL, AND N. B. ABRAHAM
intensity of a single circularly polarized component h
small fluctuations, measured byC1(t), similar to those of a
SM laser.

In terms of the same potential picture it is also possible
understand the small deviations betweenme f f and m1 ob-
served for intermediate values of the intensity. To expl
this let us consider the two opposite cases of the PS laser
the SM laser. For the PS case, as shown in Ref.@25#, the
system is subject to diffusion on a four-dimensional sphe
In the SM case the intensity is subject to small fluctuatio
around a single equilibrium state. In the case of purely d
fusive motion, as well as for a linear process, we expect o
one time scale to be relevant, i.e., the diffusion constan
the amplitude of the restoring force that leads to
equilibium. For the PS case this argument is in agreem
with the quantitative results of Ref.@25#, in which by taking
the same approximation of a nonfluctuating total intens
only one time scale was found. Thus when the system
haves like a PS laser or when it behaves like SM laser
should observe a single Lorentzian spectrum. As a con
quence, the deviations from a Lorentzian spectrum that
ply me f fÞm1 mark the crossover region.

The output intensity at the crossover point can be e
mated by equating the small intensity linewidth, which
well approximated by the symmetrica50 result, and the
large positivea results given in Table I, obtainingacross
56 and

I cross
2 .6e/bd. ~33!

The pump parameter at the crossover is

across
2 .6eb/d. ~34!

We have implicitly assumed small positive saturation valu
for d, i.e., slightly in the weak-coupling situation, such th
I .I 05a/b. Whend is of the order of the noise strengthe,

FIG. 3. Linewidthm as a function of the total output intensityI
scaled to the noise strengthe in the case of weak cross-saturatio
coupling. The units of the scaled linewidth are the inverse of int
sity units. The parameter values are (a) d55e and (b) d510e.
The continuous lines give the effective linewidthme f f , the long-
dashed lines give the average linewidthm1, which practically coin-
cides withme f f except aroundI .2, and the short-dashed line give
the PS case (d50) in which the two quantities coincide exactly.
o

n
nd

e.
s
-
ly
or
e
nt

y
e-
e
e-
-

i-

s
t

we have an intensity and pump parameter of order one a
crossover, that is, far above the lasing threshold.

Below I cross
2 @Eq. ~33!# the statistical properties of th

intensity fluctuations of the polarization asymmetric laser
similar to those of a PS laser, while above that value they
similar to those of the SM laser because the parametera is
large enough for the laser to work very close to pure lin
polarization.

Up to this point we have discussed stochastic proper
of the angleV, which is related to the ellipticity of the po
larization state. Increasing the parametera when the cou-
pling is weak leads to states of more and more stable lin
polarization. The motion of the state of polarization on t
Poincare´ sphere is confined to the neighborhood of the eq
tor @see Fig. 1~b!#. In the absence of cavity anisotropies w
expect diffusion along the equator@30#, corresponding to dif-
fusive motion of the phasesf6 in Eq. ~6!. We recall that the
orientation of the polarization ellipse’s main axis isu5F1

2F2 . We can describe this diffusion process by the lin
width of the correlation function of the intensity fluctuation
of the linearly polarized components defined in Eq.~12!. The
intensity of thex-polarized component of the laser emissi
can be written as

I x5I /21R1R2cos~f12f2!, ~35!

so that the correlation properties of the phase difference
be addressed by the study ofCx . For a strong linear polar-
ization preference, i.e., whena@1, this relation is very
simple. In this case, neglecting also the fluctuations of
circular polarized amplitudesR6 , the time dependence o
the correlation functionCx is entirely due to the diffusion of
the phasesf1 andf2 . One has

Cx~ t !5const3exp~2mxt !, ~36!

where mx5^f1(t)&/t5 is the diffusion coefficient of the
phase. Via Eq.~6! we get

mx5e/I , ~37!

i.e., the normalized linewidth isGx51. A duality exists be-
tween the intensities of the6 components of the vector field
and the intensities of thex,y components: When the first ha
short time correlations due to confinement, the second h
very long correlation time due to diffusion. A similar phe
nomenon occurs in a SM laser when one compares the
tensity fluctuation spectrum with the field spectrum. In th
case the loss of phase coherence due to phase diffusio
evident in the field-field correlation function rather than
the intensity correlation function.

V. STRONG COUPLING

Results for the linewidthsm1 andme f f for strong coupling
(d.0) are shown in Fig. 4. For low intensities the linewid
initially behaves as in the PS laser. Then the two measure
the linewidth diverge both from the PS result and from ea
other. This is understood in terms of the potential picture
the motion of the polarized intensity discussed in Sec.
When the output intensity increases, the modulus of the
rametera increases and the potential develops a barrier. T
linewidth is similar to that of the PS laser, when this barr

-



t
la
e

ed
w
n

Th
th

-

e
he
he
in
rg
e
-
e
a

o
ar
im
ola
w

r t
ti

, w

m

w
a
on

on

n

i-
l-

icted

d

ys-
de-

is
uc-
on-
we

ion
u-
e
nly
of

-
the
imi-

ted

ow
si-
since
ce

is-
m a
er.

rly
the

of
m

p-

ou

r

57 3851POLARIZATION PARTITION NOISE AND INTENSITY . . .
is very low or nonexistent (a.22). When the barrier heigh
increases, the system is trapped near one of the circu
polarized states, but it hops from time to time to the oth
state. As a consequence, several time scales are involv
the correlation function. Short time scales are associated
fluctuations near one of the two equivalent minima and lo
time scales are associated with the hopping motion.
presence of the first time scale is responsible for the fact
the average value of the linewidthm1 is always greater than
its effective valueme f f . In this regime the spectrum is non
Lorentzian.

When the output intensity increases, there is an expon
tial decrease of the effective linewidth, which is given by t
asymptotic expansion result shown in Table I. T
asymptotic exponential behavior is due to barrier hopp
and could also be recovered by using a simple Kramer a
ment. Due to the exponential decrease of the linewidth th
is an ‘‘observation limit.’’ Beyond this limit, in a measure
ment of practical duration one would typically find only on
polarization state as an apparently stable output with sm
fluctuations.

To characterize the fluctuations around each minimum
the potential in this case of preference for circularly pol
ized emission, we must restrict the observation time to a t
scale much less than the time needed to hop from one p
ization state to the other. The barrier between the t
minima is approximately of heightuau/4 for large uau. This
causes the time of hopping from one minimum to the othe
increase exponentially as the strength of the cross-satura
parameter increases. Using a simple Kramer argument
find for largeuau

Thop5T0exp~ uau/4!, ~38!

whereT0 is a characteristic time that depends on the dyna
ics around the minima and maxima of the potential@49# and
Thop is the the mean first-passage time over the barrier. If
restrict the time of observation to a time much smaller th
this mean hopping time, we will not see any polarizati

FIG. 4. Same quantities as in Fig. 3 in the case of strong c
pling. The parameter values are (a) d525e and (b) d5210e.
The continuous lines giveme f f , the long-dashed lines givem1, the
short-dashed line gives the PS case (d50), and the dotted uppe
lines give the results of the restricted ensemble calculationm11 .
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hops between the1 and2 states. For largeuau, this time is
large enough to give rise to a quasiequilibrium distributi
function between hops.

An estimate of this quasiequilibrium distribution functio
can be obtained by introducing arestricted ensembleof re-
alizations ofI 1 defined as realizations that fulfill the cond
tion I 1.I /2. This condition is equivalent to selecting rea
izations of the process that stay around the1 circularly
polarized state. We define the average over such a restr
ensemble of a generic function ofI 1 as

^ f ~ I 1!&15E
I /2

I

f ~ I 1!P~ I 1!dI1 , ~39!

whereP(I 1) is given by Eq.~22! normalized to one in the
interval @ I /2,I #. Moments of the partial intensities evaluate
in this restricted ensemble are given in Appendix A.

Dynamical properties over time scales in which the s
tem is trapped around one definite polarization state are
scribed by considering correlations of the processV assum-
ing a single restricted ensemble of realizations. It
important to stress again that if the state of the system fl
tuates around the circularly polarized states, i.e., if we c
sider realizations belonging to a restricted ensemble, then
expect only one time scale to be involved in the correlat
function of the intensity fluctuations. In this case the calc
lation of G1 andGe f f in the restricted ensemble have to giv
the same result. For the sake of simplicity we calculate o
G1 in a restricted ensemble. By performing the average
Eq. ~25! and taking into account the definition of Eq.~39!
and the results of Appendix A, we have

G115
~a22!A0~a!1exp~2a/4!

A0~a!2exp~2a/4!2@12exp~2a/4!#2/aA0~a!2
.

~40!

The asymptotic value ofG11 is also shown in Table I. Com
paring the results in Table I, we see that the properties of
restricted ensemble for very strong cross saturation are s
lar to those of a SM laser, i.e., the linewidth grows asI 2 for
large output power. Results of calculations for the restric
ensemble are shown in Figs. 4~a! and 4~b! ~upper curves!.
These curves represent the result of a finite time wind
measurement of the linewidth. By contrast, for low inten
ties the restricted ensemble calculations have no sense
the barrier is so low that fluctuations are able to produ
several hoppings during the time of observation.

As in the case of preference for linearly polarized em
sion we can get an estimate of the crossover intensity fro
regime similar to PS to the regime for large output pow
This crossover will depend on the observation timeT taken
to record the spectrum. Trapping in one of the two circula
polarized states is observed if the hopping time exceeds
observation time.

For very large observation times the crossover value
the parametera is essentially given by the exponential ter
in Eq. ~38!; in other words, the time constantT0 can be
neglected if we measure times in units ofI /e as in Eq.~24!.
A justification for this can be obtained by evaluating asym
totically Thop as the inverse ofGe f f and then from the
asymptotic expansion given in Table I to getT0. From this
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calculation it follows that the crossover value for the para
etera is given byuacrossu54ln(tobs), wheretobs is the scaled
observation timetobs5Tobse/I . In the same approximation
the intensity at the crossover immediately follows

I cross
2 54~e/budu!ln~AbudueTobs!. ~41!

Again by setting at the crossoverI .I 0, one gets for large
observation times

across
2 .4

eb

d
ln~AbudueTobs!. ~42!

To study how this crossover occurs in a realization of
stochastic intensity process we have numerically integra
Eq. ~1!. We have varied the nonlinear saturation coefficie
b to vary the total output intensity. The cross-saturat
parameter has been chosen to be slightly negatived525
31023. The noise level ise51023. We have used a time
window T561 440a21, which gives a maximum detectab
linewidth of about 2p/Te50.131023. The normalized
spectrum of the intensityI 1 was fit with a single Lorentzian
Results are shown in Fig. 5. The same set of random n
bers was used to generate the noise terms for all values o
intensities. This allows a comparison between single real
tions that are defined by a particular sequence of stocha
forcesS6 in Eq. ~1!. The linewidth for small intensities ini-
tially fits well with the estimationme f f ~continuous line in
the figure!. However, it departs from this theoretical infini
window limit due to the finite time window. If the time in
which the process remains trapped near one minimum of
potential V is not much smaller than the time window o
observation, it is likely that we will observe only a few po
larization jumps. This causes the statistics of the hopping
a single realization to be poor and gives a deviation from
infinite window limit linewidths. In other words, even
spectrum from a very long observation time window cou
not be fit by a simple Lorentzian since many different tim
-

e
d
t

n

-
he
a-
tic

e

in
e

scales are involved in the correlation function. Passing fr
I 55 to I 56, we observe an abrupt transition to a mu
higher value of the linewidth, which is consistent with th
calculation on a restricted ensemble~dashed line in the fig-
ure!.

From the intensity variation in time@see Figs. 6~a!–6~d!#
we see that the transition in Fig. 5 to the linewidth val
given by the restricted ensemble calculation happens w
no jumps between the two circularly polarized states
found during the observation time@Fig. 6~c!#. The calcula-
tion within one restricted ensemble gives a correct appro
mation that works even better as the polarization fluctuati
diminish with increasing pump~or, equivalently, increasing
intensity!. A comparison of Fig. 6~a! with Fig. 5 shows that
even in the case of low intensity, in which the total intens
flucutates noticeably, our approximation of constant total
tensity works quite well for the linewidth.

FIG. 5. Linewidth obtained by varying the parameterb to vary
the total intensity (a51) in the strong-coupling case. Points a
from simulations of Eq.~1! with parameters described in the tex
The long-dashed line givesm11 and the continuous line givesme f f

in units of the noise strengthe. a–d refer to the intensity vs time
shown in Fig. 6. The finite time window induces a lower meas
able limit of about 0.1e.
ra
r

he
-

FIG. 6. Total outputI ~bold lines! and left
circularly plus polarizedI 1 ~thin lines! intensities
for the time window used to take the spect
shown in Fig. 5. Time is in units of the linea
time scalea21. The total intensity fluctuations
are always smaller than the fluctuations of t
intensity of either circularly polarized compo
nent.
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VI. REGIMES OF POLARIZATION FLUCTUATIONS

Figure 7 summarizes the results for the linewidth for bo
cases of circular polarization preferencea,0 and linear po-
larization preferencea.0 as a function of the relevant pa
rameter of the theorya. In the marginal situation, i.e.,a
50, the linewidth is equal toG1. This is in agreement with
Ref. @25#, in which only one time scale in the correlatio
function of the fluctuations was found within the same co
stant intensity approximation.

Defining an observation time limit by the lower dash
line as the minimum linewidth that can be detected wh
taking a spectrum in a finite time, we can distinguish fo
regions of different behavior depending on the value ofa.

(i) Polarization symmetric.This is a region near the mar
ginal point a50 ~PS! in which the laser behaves as a P
laser. This region could also be defined as the region
which the intensity flucutation spectra are well fitted by
Lorentzian and as a consequenceG15Ge f f . The Lorentzian
behavior of the spectra arises from the free diffusion over
whole Poincare´ sphere.

(ii) Single-mode linearly polarized.Leaving the PS zone
with a.0, G1 andGe f f are slightly different. This gives an
indication of a crossover regime in thea parameter space
Oncea becomes large enough the two measures of the l
width become approximately equal, indicating a sing
Lorentzian. This Lorentzian shape corresponds in this cas
the approach to the SM-like state of linear polarization w
small ellipticity (V) fluctuations.

(iii) Polarization hopping. Leaving the PS region witha
,0, G1 andGe f f become more and more different, indica
ing the increasing height of the barrier inV(V) with polar-
ization hopping events in a single realization of theI 1 sto-
chastic process. If the time window of observation
sufficiently long so that we can see many of these hoppin
the measure of the linewidth will be given byGe f f , but as we
reach the observation time limit we detect motion arou
only one of the two circularly polarized states.

(iv) Single-mode circularly polarized.Taking a spectrum
during a time window shorter than the typical trapping tim

FIG. 7. Normalized linewidth as a function of the adimension
parametera. Continuous lines giveGe f f , dashed lines giveG1, and
the dotted line gives the result of a calculation ofG11 obtained by
averaging over the restricted ensemble. The lower dashed line
cates an observation time limit.
-

n
r

in

e

e-

to

s,

d

we observe SM behavior of the linewidth that can be eva
ated through a restricted ensemble calculation~upper dashed
curve in Fig. 7!.

In order to estimate the amplitude of the crossover regi
we have computed the normalized difference between
two measuresG1 and Ge f f of the linewidth. Results are
shown in Fig. 8. We observe that fora.0 the maximum
departure between average and effective linewidths occu
a value ofa.15 greater than the one evaluated in Sec.
(a.6). For a,0 we notice the large departure ofG1 from
Ge f f . Around a.26 we have the same difference that w
find as a maximum difference fora.0. For a50 the aver-
age and effective linewidths coincide since a single ti
scale characterizes the diffusion process of the marginal c
pling case.

In summary, there are two different regimes of crosso
in a polarization asymmetric laser depending on the p
ferred polarization state. In both cases the laser passes fr
PS-like behavior to a SM-like behavior. In the case of pr
erence for circular polarization (a,0), the crossover is due
to a finite observation timein determining the spectrum. In
the opposite case in which linear polarization is prefer
(a.0), there is crossover due to a continuous change fr
PS to SM. In both cases the spectrum passes through
Lorentzian behavior. In the case of weak cross satura
~preference for linear polarization! the crossover is due to th
passage from a diffusionlike behavior of the PS kind to
SM-like motion around a linearly polarized equilibrium sta
with equatorial diffusion. In the strong cross-saturation ca
~preference for circular polarization!, competition between
the two modes of polarization develops in a non-Lorentz
polarization hopping regime and, finally, after an observat
time limit is reached, a single circular polarization is o
served with a SM Lorentzian spectrum.

VII. CAVITY ANISOTROPIES

Thus far we have analyzed the polarization fluctuations
a laser in a perfectly isotropic cavity. These characteris
forms of behavior are modified, or shifted on the Poinca´
sphere, by amplitude and phase anisotropies of the ca
which can be tuned to a certain extent@32,42#. Close to the

l

di-

FIG. 8. Normalized ratio between the effective (Ge f f) and the
average (G1) linewidths as a function of the asymmetry parame
a.



o-
ti

th
e

o
r
l c
li
de
ie

na

a

am
y

th

r

dy

-

,

o

he
r

o

th
am

o-

pro-

r

-

he
ial

ase
d by
to

y,

he
e

ip-
a

n-
-
n

3854 57S. CIUCHI, M. San MIGUEL, AND N. B. ABRAHAM
situation of an isotropic cavity, the effect of cavity anisotr
pies can be described also in the context of the poten
picture used in the previous sections. As a first step in
description we present here some of the main qualitative
fects.

Within the general classification of cavity anisotropies
van Haeringen@51# including both linear and circula
anisotropies of the losses and phases, we take a specia
to gain preliminary insight and caution that a more comp
cated anisotropy might lead to other effects. We consi
here only the special case of linear amplitude anisotrop
~different losses or different linear gains for the orthogo
linearly polarized fields! and linear phase anisotropies~a fre-
quency splitting of the linearly polarized eigenmodes such
is associated with birefringence in the medium!, in the case
that both of these anisotropies are diagonalized by the s
pair of x and y directions. This is taken into account b
adding a term to the right-hand side of Eq.~1! of the form
rE7 , with r being a complex constantr5r11 ir2. The
effect of these terms is more explicit in the equations for
linearly polarized componentsEx andEy of the vector field
amplitude. The real part ofr gives the different loss rates fo
the linearly polarized fields, while the imaginary part ofr
splits the optical frequencies of the linearly polarized stea
state solutions.

The introduction of anisotropies described byr modifies
the equation for the total intensityR through terms that can
be neglected foruru!a. The equation for the ellipticity be
comes

V̇5
e

R2
cot~2V!1

bdR2

4
sin~4V!1r2sin~u!sin~2V!

1Ae
jV

R
. ~43!

For the phase differenceu5f12f2 we find

u̇522r1sin~u!1AeS h1

R1
2

h2

R2
D . ~44!

Therefore, the amplitude anisotropyr1 only affects indi-
rectly the motion ofV through the coupling withu when
there is also phase anisotropy present. On the other hand
dynamics ofu is only affected by phase anisotropiesr2 in
the stochastic part and through the coupling withR1 and
R2 . In the following we describe separately the cases
amplitude and phase anisotropies.

For amplitude anisotropy (r250) the dynamics ofV is
not affected. The main effect is a deterministic (e50) lock-
ing of the polarization ellipse orientation atu50 or p de-
pending on the sign ofr1. In the presence of noise theu
locking is effective only in the weak-coupling casea@1 in
which bothR6 fluctuate around values much larger than t
noise amplitudee. This gives a selection among all linea
polarization states that are degenerate forr150. There are
still small fluctuations around the two preferred linearly p
larized states. Changing the value ofr1, we expect fora
@1 a crossover in the fluctuations along the equator of
Poincare´ sphere as measured by the LCF. The natural par
eter to describe this crossover isb15r1I /e. A linearization
al
is
f-

f

ase
-
r
s
l

s

e

e

-

the

f

-

e
-

procedure leads to the prediction of amx that passes from a
value inversely proportional to the total intensity~37! for
b1!1 to a value that depends only on the gain anisotropyr1
for b1@1. In the strong-coupling case, fluctuations ofu are
huge since one of the two partial intensitiesI 1 or I 2 is very
small. The intensity fluctuates around the left circularly p
larized ~LCP! or right circularly polarized~RCP! states and
hops between these states. Of course during the hopping
cess one could observe some transient locking to theu50 or
p states.

Let us now turn to the case of phase anisotropy (r150).
In this case the fluctuations ofV are strongly correlated with
fluctuations ofu. A deterministic solution of the equation fo
V is given byV5p/4 and sin(u)50, which corresponds to
linearly polarized light in thex or y direction. However, for
r150, u is freely diffusing and it will only take the value
sin(u)50 randomly. For an arbitrary value ofu the term
proportional tor2 in Eq. ~45! produces a deterministic pref
erence for elliptically polarized states withVÞp/4. These
states are right or left elliptically polarized depending on t
sign of u and r2. In the presence of noise, the potent
picture that is the basis for Eq.~18! is still valid. The poten-
tial is modified by the extra term2b2sin(u)cos(2V)/2 and
the new relevant parameter isb25r2I /e. The effect of phase
anisotropy is completely masked by noise whenub2u!1.
Thus we consider only the opposite case in which ph
anisotropy competes with the cross saturation measure
a. A crossover in the properties of ellipticity is expected
occur whena.b2. Notice that this condition, which implies
r2.da, is still consistent with a constant total intensit
which requiresr2!a provided udu!1. A summary of the
situations that may occur in the parameter space (a,b2) is
shown in Fig. 9.

For weak coupling, ifa@ub2u@1 diffusion of u is slow
and we expect a motion of the mean ellipticity driven by t
diffusion of the direction of the ellipse’s main axes. Th

FIG. 9. Parameter space cross saturationa vs adimensional
phase anisotropyb2. In the area between the dashed line the ell
ticity potential is always a double well, while outside it may be
single well depending on the value ofu. For fixed a and b2 the
polarization will run over all the states in the vertical line at co
stanta ranging from2b2 to b2. Three possible dynamical situa
tions are shown:A and B, strong-coupling biased polarizatio
hopping (a5220 andb2520); A8 andB8, strong-coupling polar-
ization hopping (a5220 andb253); C and D, weak-coupling
biased polarization hopping~BPH! (a510 andb256). Shown in
the insets are the potentialsV(V) at the extremal points.
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situation is shown in Fig. 9 panelsC and D. For a given
value ofb2 the system spans the whole vertical line at a fix
value ofa passing from preference for a left elliptically po
larized state to preference for a right elliptically polariz
state. The motion ofu induces abiased polarization hopping
between left and right elliptically polarized states asu
crosses 0 orp during its diffusive motion.

For strong coupling, phase anisotropy gives preference
one of the two CP depending on the sign ofu and r2. If
uau@ub2u both LCP and RCP states are~local! minima and
the hopping process will be mainly determined by the pr
ence of the barrier as in the case of panelsA8 andB8 in Fig.
9. Whenb2 increases one of the two minima disappears
pending on the value ofu ~panelsA andB in Fig. 9!. Since
the remaining minimum approaches a RCP or LCP state,u is
strongly affected by noise and we expect very fastbiased
polarization hoppingfrom LCP to RCP states and vice vers
determined essentially by the motion ofu.

The effects of saturable dispersion@an imaginary part for
b in Eq. ~1!# have not been included in this prelimina
discussion. When this is present together with birefringe
alone (r150) and weak coupling, it privileges one of th
two linearly polarized steady state solutions over the ot
and may destabilize one of them. This is likely to lead
biased switching between two points on the equator of
Poincare´ sphere. Combinations of more general cav
anisotropies and saturable dispersion are topics of contin
investigation.

The preceding discussion gives an overview of differ
scenarios and regimes of polarization fluctuations wh
noise strength, nonlinear gain anisotropies (d), and cavity
anisotropies compete. These regimes are modified when
plitude and phase anisotropies are considered simu
neously, when other anisotropies are also considered
when cavity detuning is taken into account. This proble
requires a detailed, systematic, and more quantitative s
currently being addressed.

VIII. SUMMARY AND CONCLUSIONS

We have considered statistical properties of the laser l
of a nearly isotropic laser. Those have been describe
terms of two measures of the linewidth of the intensity flu
tuations of one of the circularly polarized components of
vector field. A comparison of those two measures identi
crossover regimes in which more than one time scale co
into play. The approximation of constant total output pow
allows us to obtain a number of explicit analytical results
also results in a potential picture for the dynamics of
ellipticity on the Poincare´ sphere that gives important phys
cal insight into the laser field fluctuations. Most of our ana
sis refers to the fluctuations of the ellipticity, while oth
studies have focused on the fluctuations of the direction
linearly polarized emission@30,31#. The coupling of these
two types of fluctuations due to cavity anisotropies gives r
to enhanced fluctuations as described in Sec. VII.

The competition of laser anisotropies~from gain satura-
tion of the cavity!, which tend to stabilize some particula
type of polarization state, and spontaneous emission no
which produces randomizing polarization excursions, le
to different regimes of polarization fluctuations and cro
d

or
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overs among them. These have been analyzed in the w
and strong-coupling regimes in terms of a single relev
parameter that measures the relative strength of the com
ing mechanisms. Explicit results for the intensity fluctuati
linewidth have been given in terms of this parameter. F
weak coupling the crossover is from a polarization symm
ric laser to linearly polarized emission. For strong coupli
the crossover to circularly polarized emission is domina
by fast hopping among circularly polarized states.
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APPENDIX A: MOMENTS OF THE PARTIAL INTENSITY

To quantitatively check the estimation of Eqs.~31! and
~32! and to provide an estimation of the relative fluctuatio
also on the case ofuau.1, we calculate all moments of th
intensity fluctuations in a single polarization state. Whena
,0, this distribution of intensity is bimodal with peak
aroundI 150 and I . The moments of the intensity fluctua
tions DI 15I 12^I 1& can be expressed as integrals

^DI 1
n &5I n

An

A0
, ~A1!

where

An5E
21/2

1/2

dx xnexp~2ax2!. ~A2!

These integrals satisfy the recursion relation obtained by
tegration by parts valid forn.1,

An5
1

2aF ~n21!An222
~21!n11

2n21
exp~2a/4!G , ~A3!

whereA150 andA0 is defined in Eq.~27!. In the limit of
large uau, using the asymptotic expansions of the error fun
tion, we have

A0~a!5Ap/a1o~1/a3/2! for a@1, ~A4!

A0~a!5exp~ uau/2!@1/uau1o~1/uau2!# for a!21.
~A5!

Then using Eq.~A3!, we find the result for the intensity
fluctuations in a single polarization mode

^DI 1
2 &5

I 2

a
for a@1, ~A6!

^DI 1
2 &5

I 2

4
for a!21. ~A7!

When the cross saturation is neutral, the result is also sim
One has thatP(I 1) is flat, obtaining
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^DI 1
2 &5

I 2

12
for a50. ~A8!

The constant value obtained fora!21 reflects the bimo-
dal feature of the intensity distribution, which becomes m
and more peaked around the circular polarization state
the cross-saturation asymmetry parameterd increases in
modulus. The width of each peak diminishes, but the to
variance remains almost constant.

Calculating the same quantities in the restricted ensem
defined by Eq.~39!, we find

^DI 1
n &15I n(

k50

n S n

kD ~2A18!n2kAk8

~A08!n2k11
, ~A9!

where

An85E
0

1/2

dx xnexp~2ax2!, ~A10!

and the new recursion relation forAn8 for n.1 is given by

An85
1

2aF ~n21!An228 2
1

2n21
exp~2a/4!G , ~A11!

with

A085A0/2,

A185
1

2a
@12exp~2a/4!#. ~A12!

Using these formulas forn52 and the asymptotic expansio
of the complex error function, we obtain in the casea!
21

^DI 1
2 &15I 2/uau2. ~A13!

APPENDIX B: MOMENTS OF TIME SCALES

Let us consider a processx obeying the Langevin equa
tion

ẋ5F~x!1Aej. ~B1!
F

a-

tt
e
as

l

le

Then, using the Ito formalism, the correlation functio
C(t)5^ f „x(t)…f „x(0)…& satisfies the equation of motion

Ċ5^ f 8„x~ t !…F„x~ t !…f ~0!&1
e

2
^ f 9„x~ t !…f „x~0!…&,

~B2!

where the prime indicates derivative with respect tox. Equa-
tion ~B2! can be rewritten asĊ5^ f (0)L f (t)&, introducing
the linear operatorL,

L5F~x!
]

]x
1

e

2

]2

]x2
. ~B3!

Then thenth derivative of the correlation function can b
expressed through successive applications of this evolu
operator

dnC~ t !

dt
5^ f ~0!„Lnf ~ t !…&, ~B4!

where the abbreviationf (t) stand forf „x(t)…. To generalize
the results of Ref.@45#, we can use the equilibrium propert

^Lnf 2~ t !&50 ~B5!

and we easily get

lim
t→01

dnC

dtn
52^ f @Ln, f #&, ~B6!

where the square brackets stand for the commutator.
In the casen51 we have

@L, f #5~L f !1e f 8
]

]x
. ~B7!

Using this result in Eq.~B6! we get

lim
t→01

Ċ~ t !52
e

2
^@ f 8~0!#2&. ~B8!

which generalizes the result of Ref.@45# for a correlation
function of functions ofx.
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