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Polarization partition noise and intensity fluctuation linewidth in a nearly symmetric vector laser
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We consider the statistical properties of the fluctuations in the orientation of the vector laser field for a nearly
isotropic laser, addressing the competition between the randomizing influence of noise and the preference for
linearly or circularly polarized emission induced by saturation in the laser medium and/or cavity anisotropies.
We describe, through a nonperturbative analysis, a crossover regime from diffusion-induced polarization-
isotropic emission to emission of nearly fixed polarization characteristics. In this crossover the linewidth of
intensity fluctuations associated with one of the circularly polarized components of the vector field amplitude
changes from decreasing to increasing with output power. This behavior can be expressed in terms of a single
parameter that measures the pump or the total output intensity in terms of the ratio of the noise amplitude to
the degree of cross saturation of the amplitudes of the circularly polarized components of the vector field
amplitude. Analytical results are given for the linewidth of the intensity fluctuations. When the laser has a
preference for linearly polarized emission, there is a weakly non-Lorentzian spectrum in the crossover region.
When the laser has a “preference” for circularly polarized emission the crossover regime is characterized by
a non-Lorentzian spectrum due to fast hopping between two circularly polarized eigenstates. We also describe
ellipticity fluctuations induced by the diffusion of the direction of the main axis of the polarization ellipse in
the presence of cavity birefringend&1050-294{08)08202-X]

PACS numbds): 42.55—f, 42.50.Lc

I. INTRODUCTION when there are phase-sensitive anisotropidsch introduce
different optical frequency shifts, detunings, for differently
The study of the selection of the polarization state of lasepolarized fields
emission dates from the early days of laser phy$iGg] While studies of lasers with cylindrically symmetric ge-
when most analyses of this question were formulated irometries often focused on polarization propertjiés2,4,
terms of third-order Lamb theofy8]. Within that theoretical these considerations have not been common. Renewed theo-
framework one derives coupled equations for the slowlyretical and experimental interest in the polarization proper-
varying amplitudes of the two orthogonal circularly polar- ties of laser light is associated with the role of the vectorial
ized components of the electric field. A crucial parameter degree of freedom of the electric field in laser instabilities
is the ratio of the cross saturation to the self-saturation of theand dynamics in gas lasers, diode-pumped solid-state lasers,
field amplitudes. It depends on the field-material phy§iits  fiber lasers, optically pumped far-infrared lasers, and vertical
cluding both the angular momentum of the states involved ircavity surface-emitting semiconductor lasgs-24]. Satis-
the material transition and the decay rates of the differenfactory modeling of some of the dynamical behavior requires
elements of the density matrix describing the material popugeneralized Maxwell-Bloch equations or a modified form of
lations, dipoles, quadrupoles, and higher-order coherendield-population rate equations, either of which goes beyond
terms. For weak coupling ¥<<1) there is a preference for third-order Lamb theory.
linearly polarized emission and for strong coupling>1) From the point of view of the statistical properties of laser
there is a “preference” for circularly polarized emission. light, the polarization state and the vector degree of freedom
Marginal coupling ¢y=1) leads to emission with arbitrary also add new features to the phase diffusion that contributes
ellipticity and azimuth. Of course, the field-matter interactionto the laser linewidth in a noise-driven conventional
is only one of several influences on the final polarizationpolarization-stabilized lasdr25-32. Lasers with different
properties of a laser. Also crucial are cavity anisotropiesvalues fory have their polarization properties affected dif-
(birefringence, dichroism, efc.The saturable dispersion of ferently by noise. The circularly polarized states are discrete,
the material transition is an additional important featureso noise causes either local fluctuations or hopping to the
other state. By contrast, the linearly polarized states are a
simply continuous familyin orientation anglpamong which
*Permanent address: Dipartimento di Fisica Universita  even weak noise can cause diffusion. The solutions of arbi-
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curiosity, since in most practical lasers there are soméntensity-fluctuation correlation function of any polarized
anisotropies that stabilize the emission on a particular polarprojection of the emission.
ization state. Most commonly the optical cavity is designed Far from the polarization-symmetric case, due either to
to minimize losses, typically by using Brewster-angled win-anisotropic gain media or to cavity anisotropies, intensity
dows or material surfaces that lead to a well-stabilized lincorrelations are those characteristic of a single-mqadéar-
early polarized emission. However, in addition to the rela-ized) laser[28]. However, the vectorial component of spon-
tively rare cylindrically symmetric geometries of early lasers,taneous emission noise perpendicular to the instantaneous
modern high-efficiency designs for solid-state ladersing  direction of the vector laser electric field still causes polar-
microchips [8] or vertical cavity surface-emitting lasers ization fluctuations.
(VCSELS [18]] may operate on a single spatial mode and From the preceding discussion it is clear that there should
often are not polarization stable. Since switching betweeipe an interesting crossover situation between the PS and SM
distinct but differently polarized laser states often requiredehaviors when the value of is close enough to unity that
low holding power and extremely low switching energies’the selection of a polarization state by field material or cavity
polarization could be a good property to choose for opticaRnisotropy competes, with a similar strength, with the noise-
logic gates and signaling, making polarization fluctuations dnduced tendency for diffusion over the entire surface of the
matter of great concern for signal quality and performancd0incaresphere. In this paper we analyze this crossover re-
degradatior19,33. gime and describe th'e kgy differences in the crossover re-
For gas lasers, where the material dynamics can be gdimes between the situations when the cross-saturation pa-

s mor casiy and more xasly er e been rece T % (0, SIGTLPrerence or e 1 v
experiments on small, high-gain, single-mode lasers to med> ' 9

) . X . . : Ing intensity linewidth of one field component as the output

sure noise properties associated with fluctuations in the po- L ;

larization state, such as polarization diffusion and its contri—power Is increased. This crossover occurs well above thresh-
. o polar X . old and should not be confused with the change of behavior

bution to the laser’s intensity linewid{l30,31]. In particular,

o oo X that occurs for a single-mode laser when the laser is taken
polarization diffusion has been used, together with the Zeeg o glightly above thresholéwhere the noise contribution
man effect, as a practical method to measure the quantund,ses Jarge percentage fluctuations in the total output inten-
limited linewidth of a lasef32]. These results and potential sity) to sufficiently far above thresholavhere the noise con-
applications call for further theoretical investigations. tributes only very weak fluctuations to the total output inten-

In a conventional linearly polarized single-mo&M) la- sity).
ser, even modestly above the lasing threshold, the intensity The experimental investigation of the crossover regime
correlations decay very rapidly in time due to the strict con-that we describe requires considering a nearly isotropic laser,
finement of the intensity around its stationary value. In conthat is, a laser with field-material interactions close to mar-
trast, the complex field amplitude has a slowly diffusingginal coupling and small cavity anisotropies. From the point
phase, driven by spontaneous emission noise. This causes thieview of the material gain anisotropies, possible gas lasers
width of the spectrum of the intensity fluctuations to bethat might show this effect are those operating[8f] the
much larger than the width of the field fluctuations. The in-A=2.65 and 2.03um lines of Xe, associated, respectively
tensity linewidth is proportional to the pumping rate, while with J=1 to 0 andJ=1 to 1 atomic transitions, and the
the linewidth of the optical field, originating in the phase =1.52 and 3.3912um lines of Ne, which haved=1 to 0
diffusion, is inversely proportional to the output power. andJ=1 to 1 atomic transitions, respectively. These kinds of
Some modifications of these principles when the cavity line-J to J’ transitions are known to give marginal couplings
width approaches or exceeds the linewidth of the materiaéxcept for the effects induced by atomic collisidi&35—
transition have long been noted, but they were only more7].
recently measured careful[30]. Another laser in which these effects might be observed is

The situation can be very different when there is compethe VCSEL. Within the model for polarization dynamics of
tition between or among states of different polarization. The/CSELs in Ref.[38] the effective coupling parameter de-
extreme case occurs for marginal coupling of the two circupends sensitively on the carrier spin-flip relaxation rate. The
larly polarized components of the vector field, in which casecoupling is close to marginal for fast relaxatifd8,6]. The
there is no preferred polarization state for the lasing actionactual value of this parameter is the subject of current active
Such a polarization-symmetri¢PS laser in an ideal, researcH39—41], but a situation close to marginal coupling
polarization-symmetric cavity was considered by Grahanseems possible. However, our treatment here of polarization
[25,27]. The fluctuations of the intensity of any particular partition noise is not directly applicable to VCSELs since we
selected component of the emitted vector field are then comill restrict ourselves to a third-order Lamb theory, while
related over very large times. This form of partition noise VCSELs require a more involved descripti¢h,6]. Still,
leads to an intensity linewidth that is inversely proportionalsome of the ideas put forth here may be helpful for under-
to the pump rate. In the Poincarepresentation of the polar- standing these devices. Concerning cavity anisotropies, we
ization state$34] (see Fig. 1 the representative point of the mention that there are now experimental techniques available
laser vector field in this case performs a random walk on théo compensate and tune some of the unavoidable anisotro-
surface of the Poincarsphere, randomly visiting different pies. For example, a magnetic field can be used to compen-
elliptically polarized states. Noise leads to diffusion of thesate cavity anisotropies that otherwise select a direction of
main axegand of the ellipticity of the polarization ellipse. linear polarizatiof30—32 and intrinsic birefringence can be
This diffusion can be observed by measurements of theontrolled[42] by localized stress. This opens the way to
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studies of fluctuations in nearly isotropic lasers. Section VI gives a unified view of our results for weak and

It is also possible that phenomena such as those discusssttong coupling in terms of the basic parameter of the theory
here could provide a useful benchmark for tests of comthat measures the relative strength of the saturation asymme-
monly used models for semiconductor and solid-state multitries and noise intensity. PS behavior is characterized by a
mode lasers that often both ignore the amplitude fluctuationsingle time scale associated with polarization diffusion. A
(Considering on|y intensitieand Coup|e these modal inten- Single dominant time scale associated with SM behavior is
sities equally, via saturation, to the material inversion. Polar&S0 reached, through intermediate crossover regions, for
ization dynamics in nearly polarization-isotropic lasers ofStrong material cross-saturation preferences for linearly or

these types might be a sensitive test of the assumption &ircularly pqlari;ed emission. While most of our mathgmati—
neutral saturation coupling cal formulation is developed for the case of an isotropic cav-

The problem considered in this paper has formal similari-ity’ in Sec. Vil we address the effects of cavity anisotropies
ties to that of intensity correlations in two-mode lasg¥3— on our previous results. A summary of our results and some

45|, both lasers with two longitudinal modes and lasers Withconcludmg r_emarks are given in Sec. V”.I' Appendixes A
two counterpropagating modes. The weak or strong couplin&rld B contain some details of the calculations.

in those cases is associated with inhomogeneous and homo-

geneous broadening of the lasing transition, respectively. Il. MODEL, VARIABLES,

Many of the mathematical tools that we will ugtr ex- AND CORRELATION FUNCTIONS

ample, effective and average eigenva)jugere used for that

problem[45] and the marginal coupling case was also math'the evolution of the two circularly polarized componehts

ematlcally dlscusse_d in this context. However, the CTOSSOVELt the electric field amplitude of a laser operating on a single
regime that we discuss for comparable cross-saturanogpatial modd2,3]

asymmetry and noise strengths seems difficult to obf@in
maintair in two-mode lasers. Despite the similarities, there = 2 2
is some difficulty both conceptually and practically with de- E.=[a=BE.[*+ YE-PJE. +VeX.. @
scribing polarization fluctuations in terms of two competing-l-he additive noise term . account for spontaneous emis-

modes since the amplitude var!ables used_ in the equations, in the cavity and are assumed to be uncorrelated Gauss-
are the result of a somewhat arbitrary selection of basis state

for the vector field. Only when the couplings and anisotro- 8n white-noise sources

pies lead to the privileged distinction of two eigenstates does (35 (D)3(t)) =28, ;6(t—t") 2

it make sense to refer to those states as modes. Otherwise prTa P4 ’

one has the added artificial confusion that the circularly POwherep,q=+. The two circularly polarized components of

larized “modes” (which we prefer to call components of the the yector field amplitude are related to the linearly polarized
vector field amplitudefind ways to phase lock to form lin- components, , by

early polarized or elliptically polarized “states,” an unfortu-

We consider the following third-order Lamb model for

nately and excessively complicated language for the dynam- E.+iE
ics and the steady states of the vector field. Nevertheless, E.=— Y 3)
mesurements of the intensity fluctuations of either linearly V2

polarized or circularly polarized components of the total field
can be accomplished by well-defined experimental techlntensities are defined by the moduli of these amplitudes
niques. | .=|E.|? andl,,=|E,,|? while the total intensity is given
The remainder of this paper is organized as follows. InPY =1, +1_=I,+1,. In Eq.(1) the parametew is propor-
Sec. Il we introduce the model on which our calculations ardional to the difference between the pump rate and a thresh-
based together with the basic variables and relevant correl@ld level, i.e., it is positive above threshold. The nonlinear
tion functions used for characterizing the statistical properierm takes into account saturation of gain in the framework
ties of the intensity and polarization fluctuations. In particu-Of third-order Lamb theoryparameteiB). For simplicity in
lar we introduce two different measures of the intensitythe present study we take bathandg to be real, so that we
linewidth that only coincide when a single time scale is rel-consider a laser with the cavity perfectly tuned to the atomic
evant in the problem. In Sec. Il we analyze more exactly the’€sonance.
condition when the total output power of the laser can be Polarization preference arising from saturation of the ma-
assumed to be constant. Within this approximation a potert€rial lasing transition is introduced in the nonlinear gain
tial description of the motion of the polarization under the Saturation terms by the parametef3,35,36. For transitions
action of the noise is possible. This permits us to identifyinvolving angular momentg—j (j>1) there isstrong cou-
different dynamical regimes. Also within this approximation pling (y>1), while with a lasing transition=1/2—j = 1/2
we derive analyticallyjn a nonperturbative fashigrresults ~ or j—j+1 with j>0 there isweak coupling(y<1). We
for intensity correlations and intensity linewidths. These genwill use the reparametrizatiop=1— 6 so that strong cou-
eral results are discussed separately for the weak- and stronghng is given by <0 and weak coupling by>0. Forj
coupling cases in Secs. IV and V. For the strong-coupling=1—j=1 and forj=1—j=0 there is neutral coupling
case we further introduce the concept of a restricted ent6=0) except for dissipative processes, which can lead ei-
semble to describe polarization fluctuations in finite observather to >0 of §<0 [2,21,44.
tion times and our results are compared with the behavior From adeterministicpoint of view (e=0), neutral cou-
found in computer simulations of the complete equationspling (6=0) gives a situation that is invariant under changes
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where 7. and £, are uncorrelated and real white-noise
sources.

It is natural to rewrite the amplitude equations by intro-
ducing “polar” coordinates, with the angle

Q=tan Y(R_/R+) (7

and the radiu®= \/I. These variables and the phages are
related to the polarization ellipse: The angleis related to
the ellipticity of the polarization ellipsex() by Q= x+ w/4
and 0/2= (¢, — ¢_)I2 gives the orientation of the azimuth
of the polarization ellipse. In the representation on the Poin-
carespherdsee Fig. 1a)], the radius iR, the latitude angle
is 22, and the longitude angle .

For R and () the following Langevin equations hold:

'R=[a—/3 (1—§sin2(20) R2 R+:—;+JE5R, )
2
QzéCOi{ZQH ﬁiR Sin(40) + JE%“, 9

where the noise terms have correlations given by
FIG. 1. (a) Poincaresphere.(b)—(d) Evolution of the polariza-
tion on the Poincaresphere with points indicating instantaneous (&p(D)éq(t"))= 8, qo(t—1t") (10
positions at regular intervals of timéb) weak couplings>0, (c) ) )
intermediate couplingsymmetric cases=0, and(d) strong cou- andp,q=R,(. Equations for the phases. are easily re-
pling 5>0. written in terms of these new variables by substituting

Rcod) andRsin() for R.., respectively, in Eq(6).

in the polarization state. Weak coupling between the two !f the total intensity of the field remains constant, the
circular amplitudess>0 leads to linearly polarized emission Polarization state can be mapped onto the surface of a Poin-
(which can be viewed as coexistence of the circularly polarcaresphere. The qualitative behavior of noise-driven polar-
ized modes withl . =1_) with an arbitrary vector orienta- iZation as found in numerical integration of Hg is shown
tion. Strong couplings<0 leads to a preference for circu- IN Figs. Ab)-1(d). For weak coupling §>0) there is diffu-

larly polarized emission with two possible equivalent statesSion around the equatFig. 1(b)]. This means that the po-
eitherl , #0 orl_=0 or vice versa. We will discuss in this larization observed over short time intervals is almost always

paper how the effect of noise modifies this picture. linear, but the orientation diffuses under the action of the
Equation (1) is similar to the semiclassical Langevin NOIS€ as recently observed experimentai9,33. For neu-
equations considered, for example, in R&f7], where cavity  tral cqupllng[F|g. 1(c)] we have a situation in which there is
phase anisotropy and linear gain differences between the twffusion over the whole sphere. In contrast, for strong cou-
different linearly polarized components of the vector fieldPling (6<0) the solution is confined around the polésy.
were included. Cavity anisotropies introduce a mechanism(@], which means an almost circularly polarized state with
that competes with the one of nonlinear gain saturation in th&eaKly fluctuating ellipticity. o
process of selection of a polarization state. We consider first We characterize the dynamical features of the polarization
a perfectly isotropic cavity and defer the discussion of thdluctuations by looking at different correlation functions of

effects of cavity anisotropies to Sec. VII. the intensity fluctuations. The correlation function for the
To introduce relevant variables for our analysis we writeiNtensity fluctuations of one of the circularly polarized com-
Eq. (1) in terms of phases and amplitudes defined as ponents(CCF is
E+(t):R+(t)exp:i¢>+(t)]. (4) C+(t):<|+(t)|+(o)>_<l+>2 (11)

) ) ) and the correlation function for the intensity fluctuations of
Using Ito stochastic calculyg7], we get for the amplitudes gne of the linearly polarized componerit<CF) is

Cu1)=(1,(1)1(0)) = (1,02 12

When the total intensity has negligible fluctuations, the CCF
gives information about correlations of the latitude angle. In
the case shown in Fig.(), in which the motion is practi-
cally confined to the equator of the Poincaphere, the LCF
b.= EE, (6)  9ives information about diffusion along this circle. In the
N R+ following, unless explicitly stated otherwise, we will always

R.={a— AR +(1- OREIIR. + 5o+ Vebe (9

and for the phases
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refer to the correlations of the fluctuations of the intensitiesThis quantity is simply related to the integral of the correla-
of the circularly polarized components. tion function
To calculate the correlation times and the associated line-

widths we use the representation of a general correlation R T
function of fluctuations around a stationary state “eff:mfo dt C.(1). (17
C.()=2 Reexp(—A\), (13  The quantityu.¢ is interpreted as the “effective linewidth”
K for the intensity fluctuation spectra takéor very long ob-
servation times
where A\ >0. We will consider “moments”u, of the in- In the following sections we will use both,, and u¢s to
verse correlation timesy, characterize the intensity fluctuation linewidths in different
dynamical regimes. The comparison of these two quantities
D RAD v_viII enable_us to identify regimes in which more than one
K time scale is relevant.
i (14
Zk Ry Ill. APPROXIMATION OF CONSTANT
TOTAL INTENSITY
which give information about characteristic timesd there- Polarization partition noise refers to the usual situation in

fore linewidthg associated with the correlation function. \hich the total laser intensity remains essentially constant
Generally speaking, the first moment gives a measure of thgpile the intensity associated with each of the two orthogo-
averagelinewidth and coincides with the linewidth observed nally polarized components fluctuates in time. We address
in an experiment only when there is a single dominant timep;s problem by first assuming that the total laser intenisity
scale involved. In other words, the observed spectrum isemains strictly constant in time. This will allow us to study
purely Lorentzian only in this case. _ the motion of a single independent degree of freedom: the
~ The moments., can be rewritten in terms of the deriva- angle) defined in Eq(7). As a consequence of this approxi-
tives of the correlation function evaluated at zero time dif-yhation both measures of the correlation times discussed
ference[45] above can be evaluated analytically.
In this approximation Eq9) for ) can be rewritten as an

= (= 1)" lim 1 dnC+(t). (15 overdamped motion of a particle in a potentigl
Lot CO) g
e/ dV €

. . L . . — —)+ \ﬁg, (18
Using this relation, it is possible to calculate dynamical prop- 1\ dQ I
erties such as correlation times as averages over stationary
distributions of the intensity. For small fluctuations around awherel is the steady-state total intensity and the new real
single stationay state, there is a single time scale and consehite-noise sourcé has unit variance. The potentidlis the
quently the variance of the correlation times is zero. How-sum of two termsV=Vg+V,q,
ever, in the case of bistability, several time scales are in-
volved in the decay of the correlation function,
corresponding to different characteristic time scales for the
evolution of a trajectory on the Poincasphere. For ex-
ample, for strong coupling there is bistability between the a
right and left circularly polarized solutions. We will show in Vas(Q)= Ecos{49), (19
Sec. Il that this can be described in terms of a potential with
minima associated with the two circularly polarized states. :
There are then time scales for hopping be)zltVSeen the potentiglf Wh'Ch only Vs depends on th‘? strength of the cross satu-
minima that depend exponentially on the height of the po-ratlon through the parameterdefined as
tential barrier between the minima and there is also a much 812
shorter time scale associated with fluctuations around either a= _ (20)
of the minima. In this case we expect the variance of the €
inverse time scale to be large.

Instead of directly comparing the moments, we can This is the relevant parameter of the theory. It is worth not-
consider another measure of the maximum time scale. Th&d that the motion of) is decoupled from that of the phases
harmonic mean provides an estimate of the maximum withirf/= and so it is also decoupled from the motion of the orien-
a distribution of possible linewidths, tation 6 of the polarization ellipse. However, from E&) we

see that the phases are not decoupled from the fluctuations of
either the intensity or the polarization orientati®dfy; gives a

vs<9>=—%ln[sin<2m],

; Ri/ Nk term explicitly independent of the noise in the equation for
M;flf:—- (16) Q, while Vg is proportional to the noise strength. The latter
z R originates in the change of variables used for our stochastic

K description.
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over in the dynamical behavior of the system once the polar-
ization preference from the cross-saturation parameter be-
comes relevanfthrough an increase of the barrier height
making the steady states almost purely circularly polarized
states.

Two subcases are possibl@: polarization hoppingPH),
when one views the system long enough to see polarization
hoppings between the- and — states, and(ii) trapping
around a circularly polarized state, if the system remains
around a particular circularly polarized state for a time
longer than the observation time.

Therefore, in both casda) and(b) we expect a crossover

1 , in the dynamical quantities whela| is of order unity, i.e.,
0 w4 2 whené is of the order of the noise strength. The condition of
Q criticality a=—2 (the absence of a quadratic term in the
potentialV) does not coincide with the marginal coupling in
FIG. 2. Sketch of the potentiad({2) defined in Eqs(19). which a=0. This can be understood by looking at the sta-
tionary distribution function of the intensity.
The contribution to the potentiaV/,s from the cross- In terms of the potential, the stationary distribution func-

saturation parameter changes the shape of the total potenti@n of the variable() is

V from a single well &>—2) to a double well §<—2)

(see Fig. 2 This change reflects a competition between fluc- P(Q)xexp—2[V()+Va(Q)]. (21)
tuations and the polarization state preferefgieen by the o . o ) .
strength of the cross-saturation parampeterhich will be Th_e dlstrlbutlpn _for one of the intensities is readily obtained
discussed separately for the cases of weak and strong coysind the definition of Eq(7) together with Egs(19),

pling.

(a) Weak couplind 6>0). In this case there is a prefer- P(l +)ocexr{a|_+ 1— |_+> )
ence for linearly polarized emission as described by the ' '
minimum of the potential af)= m/4. We obtain a linearly
polarized state in which, =1_. From Eq.(18), neglecting
the noise terms, we obtain the equilibrium total intengity
=lo/(1—6/2), wherely= /B [48]. In terms of the repre-
sentation of the field on the Poincasphere, the equilibrium
states lie on the equat¢see Fig. 1 For stochastic dynami-
cal evolution we expect to find one of three situatiotis:

(22

Whena=0 the equilibrium distribution function of the in-
tensity in a definite polarization state is flat, indicating that
there will be rapid diffusion over the entire Poincaghere.

In this caseP({)) gives the appropriate geometrical factor
sin(A)) needed to have a flat intensity distribution as ex-
pected fora=0. This distribution of() also can be obtained

fluctuation-dominated dynamics among different latitudes oPy considerin_g a free particle _diffusing on th_e gurface of a
sphere. In principle, the descriptions of equilibrium proper-

the Poincaresphere(ii) a situation in which the force asso- >M'“ f1h leQ as in Ea(21) or | fth
ciated withVg and the force associated with the polarizationf[IeS in terms of theangle{) as in Eq.(21) or in terms of the

state preference given by, are of the same order, afii ) intensity as in _Eq(22) are_equiv_alent, but in the d?scussion
a situation in which the polarization state preference from thé)f th? prop_ergllesthoft t_he q 'Wenst')“/ prO(l:ess d(\jl\'l? will use éhe
cross-saturation parameter dominates and the motion of tHf'9u'ar variabie that is driven by purely additive noise. be-

variable(} is strictly confined near states of linear polariza- ct;ause ?f th'z proplert)_/r,hthe mve;rs_e cc:crrela%on t'ﬂ(‘f ff_car(;
tion Q= m/4. In the first case the free fluctuations of the field °€ &V& uated easily. The correlation functi (t) define

are expected to result in a large correlation time for the inin EQ. (11) as a function of variablé) is

tensity in one polarization state. In the third case the variable
Q) suffers many scatterings from the high walls of the poten-

tial that rapidly decorrelate its m_otion. The second case COlyith the help of Eq.(15) we calculate correlation times as
responds to a crossover dynamical regime. , averages over equilibrium distributions of the variable

(b) Strong couplind §<0). In the absence of fluctuations  \ye make use of a general result that holds for functions
this leads to a preference for circularly polarized emissiont siochastic processes reported in Appendix B. This enables
However, in the presence of fluctuations we have to distinys g calculate, in principle, all moments of the characteristic
guish three qualitatively different regimes. Far—2 the  jhyerse time using EqB6) together with Eq(15). To obtain

potential has a single well, which means that the afgle , i is useful to normalize Eq(18), redefining a time scale
diffuses over the different latitudes of the Poincaphere in by r=€/l so that the normalized linewidtR , is defined
a manner closely similar to the behavior in the PS case. Foc'hrough

a<-—2 there is a potential barrier of height approximately

equal toa|/4 that separates the two stable equilibrium states. wn=Tpell. (24)
These states approach the val@kes 0, i.e., circularly polar-

ized —, andQ ==/2, i.e., circularly polarized+, for large  If we restrict our consideration to the case 1, we can use
values of|al. Again from Eq.(8) we recover the result that Eq.(B8) together with Eq(15) to get, in terms of the process
the total intensityl =1,. Also in this case we expect a cross- (2,

C.(t)=12[{cogQ(t)cogQ(0))—1/4]. (23
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TABLE |. Asymptotic results for the linewidths. approximation. Consider the most restrictive case of having
“small” fluctuations around one particular steady state. This
a Iy Lets Iy occurs for|a|>1 when the point representing the polariza-
_ 312 tion on the Poincarsphere is confined around the poles (
<-1 8 (lal) 2|al i -
Tal ?exp(f|a|/4) <-1) or equator Q%l); In Appendlx A we obtain the
0 4 4 fluctuation of the partial intensity around a preferred circu-
>1 a-2 a-2 larly polarized stat¢Eq. (A13)] and around a linearly polar-
ized state[Eq. (A6)]. By comparing these results with the
total intensity fluctuations we have an estimate of the validity
(sirf(Q)cog(Q)) of the approximation.
1= (co(Q))—(co2(Q)) (25 To evaluate the total intensity fluctuations let us consider

the casd §|<1. Then the term dependent on the saturation
The analytical result valid for both signs of the saturation@ymmetry(6#0) can be neglected and, provided the noise
asymmetry parametef (linear or circular polarization pref- S not large, i.e., supposing the laser is well above threshold,

erence is we can neglect the term proportional &R in Eq. (9),
thereby obtaining an equation similar to that of a SM laser.

(a—2)Ay(a)+exp —ald) In this case the fluctuations of the total intensity &nd ?)
1= Ay(a) —exp—a/d) (26 =ely/a. We thus neglect the total intensity fluctuations with

respect to the average intensity in the limhee/a, pro-
whereA, is given in terms of the error functiofof complex  vided §<1 [50]. The ratio between the partial and the total

argument ifa<<0) intensity fluctutions is readily obtained by taking into ac-
count Egs(A6) and (A13),
aa
Ao(a) =\ gerf(vald). (27) (AI%I(AIZ)Y=25 for a>1, (3D
Using the constant intensity approximation, it is also possible (AIBH/(AIZ), =as for a<—1, (32

to give an analytical formula foF .s; obtained fromgey¢
[Eq. (16)] through the rescaling of Ed24). Following the  where the subscript in Eq. (32) indicates an average re-
method in[49], it is possible to evaluate the effective line- stricted to states around one of the two equivalent circularly
width as polarized stategsee Sec. Y. The condition for the validity
1 - of our approximatior; is muc? more rlesltricti\fe in tcljwe case of
e ~1 g2 cross-saturation preference for circularly polarized emission.
lﬁe”_C(O)fo df Q)% 1), (28) This can be understood from the potential picture. In Fig. 2
we see that the shape of the potential with strong coupling is
where such that the motion of) is more strictly confined to one
0 definite angle(due to infinitely high barriers af) =0,7/2)
fF(Q)=—1 J do’ P(Q,)[Cosz(ﬂf)_“oszm))]_ than in the case of weak coupling. Howeyer, it is sufficient to
0 have a small value of the cross-saturation asymmétfgr
(29  this approximation to be valid.

To obtain this relation we have taken advantage of the fact
that the Langevin equatiof18) involves only one degree of IV. WEAK COUPLING
freedom with a purely additive noise. The average linewidth Results foru, and ue( Obtained, respectively, from Egs.
I'; could be evaluated by relaxing the constant intensity ap¢26) and (30) for the weak-coupling caseSt0) are shown
proximation, as done, for example, in R@45], but to get  jn Fig. 3. We observe a crossover from PS-like behavior in
the effective linewidthl'¢¢; by analytical calculations as far which the linewidth decreases with total output intensity to
as possible the approximation of constams crucial. More-  SM-like behavior in which it increases. This crossover oc-
over, given the probability distribution functid21), we can  curs at a pump value that decreases as the cross-saturation
carry out the integral of E¢29) analytically, obtaining asymmetry parametetincreases. Our calculations are based
on the assumption that the noise amplitudis independent
of the output power, a resonable assumption if the clamping
of the population inversion clamps the population in the up-
per level, which is the case for most laser media that have a
whereA, is given in Eq.(A3). much more rapid decay rate for the lower level. The cross-
Equations(26) and (30) give explicit values for the line- over also can be understood qualitatively from the potential
widths defined in general in Sec. Il. Some useful values obpicture. At a fixed value of saturation asymmetry parameter
tained using the asymptotic expansion of the error functiond, when the laser intensity increases, the parametalso
appearing in Eq(27) are shown in Table I. Separate discus-increases. As the value @ increases, the system passes
sions of the weak- and strong-coupling cases of our resultsom an almost flat potential in which the motion of the
for the linewidths are given in Secs. IV and V. We now intensity is similar to that in a PS lases< 0) to a very deep
briefly discuss the range of validity of the constant intensitysingle-well potential(see Fig. 2 In this last situation the

-1_
eff™

1 fl Vsinl*?[ax(l—x)/Z] 30

2a2A,Jo x(1-X) ’
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we have an intensity and pump parameter of order one at the
crossover, that is, far above the lasing threshold.

Below 12, [EQ. (33)] the statistical properties of the
intensity fluctuations of the polarization asymmetric laser are
similar to those of a PS laser, while above that value they are
similar to those of the SM laser because the paraneeisr
large enough for the laser to work very close to pure linear
polarization.

Up to this point we have discussed stochastic properties
of the angle(), which is related to the ellipticity of the po-
larization state. Increasing the parametewhen the cou-
pling is weak leads to states of more and more stable linear
01 . polarizgtion. The motion of the state of polarization on the
“0.1 1 10 Poincaresphere is confined to the neighborhood of the equa-

I tor [see Fig. 1b)]. In the absence of cavity anisotropies we
expect diffusion along the equat@0], corresponding to dif-

FIG. 3. Linewidthu as a function of the total output intensity  fusive motion of the phases. in Eq.(6). We recall that the
scaled to the noise strengthin the case of weak cross-saturation grientation of the polarization ellipse’s main axisds: ® ..
coupling. The units of the scaled linewidth are the inverse of inten-— ¢ _ . We can describe this diffusion process by the line-
sity units. The parameter values am) (6=5e and () 6=10e.  jidth of the correlation function of the intensity fluctuations
The continuous lines give the effective linewidths;, the long-  f the linearly polarized components defined in E®). The

dashed lines give the average linewigth, which practically coin- jansity of thex-polarized component of the laser emission
cides withue; except around=2, and the short-dashed line gives can be written as

the PS cased=0) in which the two quantities coincide exactly.

100

=112+ R,R_cog¢,—¢_), (35
intensity of a single circularly polarized component has
small fluctuations, measured 16y, (t), similar to those of a so that the correlation properties of the phase difference can
SM laser. be addressed by the study ©f. For a strong linear polar-

In terms of the same potential picture it is also possible tazation preference, i.e., whea>1, this relation is very
understand the small deviations betweeg; and w, ob-  simple. In this case, neglecting also the fluctuations of the
served for intermediate values of the intensity. To explaincircular polarized amplitudeR.., the time dependence of
this let us consider the two opposite cases of the PS laser arlde correlation functiorC, is entirely due to the diffusion of
the SM laser. For the PS case, as shown in 28], the the phasesp, and¢_. One has
system is subject to diffusion on a four-dimensional sphere.

In the SM case the intensity is subject to small fluctuations Cx(t)=cons exp(— uyt), (36)
?ro_und a §|ngle equilibrium state. In the case of purely d|f-Where py=(d. ())/t=is the diffusion coefficient of the
usive motion, as well as for a linear process, we expect onl h .

. . PR ase. Via Eq(6) we get
one time scale to be relevant, i.e., the diffusion constant o
the amplitude of the restoring force that leads to the wy=¢ll, (37)
equilibium. For the PS case this argument is in agreement
with the quantitative results of Rdi25], in which by taking i.e., the normalized linewidth iE,=1. A duality exists be-
the same approximation of a nonfluctuating total intensitytween the intensities of the components of the vector field
only one time scale was found. Thus when the system beand the intensities of the y components: When the first has
haves like a PS laser or when it behaves like SM laser wshort time correlations due to confinement, the second has a
should observe a single Lorentzian spectrum. As a conserery long correlation time due to diffusion. A similar phe-
guence, the deviations from a Lorentzian spectrum that imromenon occurs in a SM laser when one compares the in-
ply wess# mq Mark the crossover region. tensity fluctuation spectrum with the field spectrum. In this

The output intensity at the crossover point can be esticase the loss of phase coherence due to phase diffusion is
mated by equating the small intensity linewidth, which isevident in the field-field correlation function rather than in
well approximated by the symmetrig=0 result, and the the intensity correlation function.
large positivea results given in Table I, obtaining.,qss

=6 and V. STRONG COUPLING
I§r055266//35' (33 Results for the linewidthg., and e for strong coupling
(6>0) are shown in Fig. 4. For low intensities the linewidth
The pump parameter at the crossover is initially behaves as in the PS laser. Then the two measures of
the linewidth diverge both from the PS result and from each
a2 0s=6€BI 8. (34  other. This is understood in terms of the potential picture of

the motion of the polarized intensity discussed in Sec. Ill.
We have implicitly assumed small positive saturation valuesVhen the output intensity increases, the modulus of the pa-
for 8, i.e., slightly in the weak-coupling situation, such that rametera increases and the potential develops a barrier. The
I=1y=al/B. Whené is of the order of the noise strengéh  linewidth is similar to that of the PS laser, when this barrier
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hops between the- and — states. For larggal, this time is
large enough to give rise to a quasiequilibrium distribution
function between hops.

An estimate of this quasiequilibrium distribution function
can be obtained by introducingrastricted ensemblef re-
alizations ofl , defined as realizations that fulfill the condi-
tion 1 ,>1/2. This condition is equivalent to selecting real-
izations of the process that stay around thecircularly
polarized state. We define the average over such a restricted
ensemble of a generic function bf as

100

we

10 }

|
<f(|+>>+=f f(1)P(1)dl (39

0.1 112
0.1

10

whereP(l ) is given by Eq.(22) normalized to one in the
interval[1/2, ]. Moments of the partial intensities evaluated
in this restricted ensemble are given in Appendix A.
Dynamical properties over time scales in which the sys-
tem is trapped around one definite polarization state are de-
scribed by considering correlations of the proc8sassum-
ing a single restricted ensemble of realizations. It is
important to stress again that if the state of the system fluc-
: . ; tuates around the circularly polarized states, i.e., if we con-
Increases, the system s trapped near one of the circular ider realizations belonging to a restricted ensemble, then we
polarized states, but it hops from time to time to the Otherexpect only one time scale to be involved in the correlation

tsr'iate. Asl ei_cor}squencg,hsetvte_:ral tlmel scales are 'n\;oglethfnction of the intensity fluctuations. In this case the calcu-
€ correlation function. Short ime Scales are associated Wit , of I'y andT ¢¢; in the restricted ensemble have to give

fluctuations near one of the two equivalent minima and Iothe same result. For the sake of simplicity we calculate only

time scales are associated with the hopping motion. Th%l in a restricted ensemble. By performing the average of

Fhresence of theI fwstftme Is_,cale_(ljs re_spoInS|bIe for tr;e f;ct thaéq. (25) and taking into account the definition of E(9)
the average value ot the finew ﬁ.'l IS always greater than - 5,4 the results of Appendix A, we have
its effective valueuq¢;. In this regime the spectrum is non-

FIG. 4. Same quantities as in Fig. 3 in the case of strong cou
pling. The parameter values ara)(6=—5€ and (b) 6= —10e.
The continuous lines giva.¢s, the long-dashed lines give,, the
short-dashed line gives the PS cage=Q), and the dotted upper
lines give the results of the restricted ensemble calculatipn.

is very low or nonexistenta™> — 2). When the barrier height

Lorentzian.
— + —
When the output intensity increases, there is an exponen-T, , = (a=2)Aq(a) T exp—ald) 5 5
tial decrease of the effective linewidth, which is given by the Ao(a) —exp(—ald) —[1—exp(—ald)]Tarq(a)
asymptotic expansion result shown in Table I. The (40

asymptotic exponential behavior is due to barrier hoppin
and could also be recovered by using a simple Kramer arg
ment. Due to the exponential decrease of the linewidth ther
is an “observation limit.” Beyond this limit, in a measure-
ment of practical duration one would typically find only one
polarization state as an apparently stable output with sma
fluctuations.

81_’he asymptotic value df;, is also shown in Table I. Com-
Qaring the results in Table I, we see that the properties of the
restricted ensemble for very strong cross saturation are simi-
lar to those of a SM laser, i.e., the linewidth growsl asor
grge output power. Results of calculations for the restricted
ensemble are shown in Figs(ajt and 4b) (upper curvep

To characterize the fluctuations around each minimum of 1€S€ CUTves r}eprrleslent th;hresult of a fini;e t:me Wwindow
the potential in this case of preference for circularly po|ar_measurement of the linewidth. By contrast, for low intensi-

ized emission, we must restrict the observation time to a timd®S the restricted ensemble calculations have no sense since

scale much less than the time needed to hop from one p0|apje barrier is so low that fluctuations are able to produce

ization state to the other. The barrier between the two€Veral hoppings during the time of observation. .
As in the case of preference for linearly polarized emis-

Sion we can get an estimate of the crossover intensity from a

increase exponentially as the strength of the cross-saturatigff9ime similar to PS to the regime for large output power.

parameter increases. Using a simple Kramer argument, wgiS crossover will depend on the observation tithéaken
find for large|a) to record the spectrum. Trapping in one of the two circularly

polarized states is observed if the hopping time exceeds the
observation time.
Thop= Toexp(|al/4), (39 For very large observation times the crossover value of
the parametea is essentially given by the exponential term
whereT, is a characteristic time that depends on the dynamin Eq. (38); in other words, the time constaft, can be
ics around the minima and maxima of the potent#] and  neglected if we measure times in unitsld€ as in Eq.(24).
Thop is the the mean first-passage time over the barrier. If wéA justification for this can be obtained by evaluating asymp-
restrict the time of observation to a time much smaller thartotically Ty,,, as the inverse ofl’c¢; and then from the
this mean hopping time, we will not see any polarizationasymptotic expansion given in Table | to g&s. From this
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calculation it follows that the crossover value for the param- 100 -
etera is given by|ag,osd =4IN(7y,9, Wherer,,sis the scaled
observation timer,,.=Typs€/l. In the same approximation
the intensity at the crossover immediately follows

10t .
1Zr0ss=4(el B 8)IN(VB| 5l €Tops). (42) we e .

Again by setting at the crossovér=1,, one gets for large 1l
observation times

B,
agrossz47ln( :8|5|€Tobs)- (42) 0.10 ?b) .

6 7 8 9 10
1

To stu_dy how Fhis crossover occurs in a re_alizati_on ofthe k6. 5. Linewidth obtained by varying the paramegeto vary
stochastic intensity process we have numerically integrateghe total intensity ¢=1) in the strong-coupling case. Points are
Eg. (1). We have varied the nonlinear saturation coefficientrom simulations of Eq(1) with parameters described in the text.
B to vary the total output intensity. The cross-saturationThe long-dashed line gives,, and the continuous line givgse
parameter has been chosen to be slightly negative-5 in units of the noise strength. a—d refer to the intensity vs time
x1073. The noise level iss=10"3. We have used a time shown in Fig. 6. The finite time window induces a lower measur-
window T=61 44Qx 1, which gives a maximum detectable able limit of about 0.%.
linewidth of about 2r/Te=0.1x10 3. The normalized
spectrum of the intensitly, was fit with a single Lorentzian. scales are involved in the correlation function. Passing from
Results are shown in Fig. 5. The same set of random num-=5 to =6, we observe an abrupt transition to a much
bers was used to generate the noise terms for all values of thregher value of the linewidth, which is consistent with the
intensities. This allows a comparison between single realizaealculation on a restricted ensemiftiashed line in the fig-
tions that are defined by a particular sequence of stochastiae).
forces .. in Eq. (1). The linewidth for small intensities ini- From the intensity variation in timgsee Figs. 6)—6(d)]
tially fits well with the estimationu.¢s (continuous line in  we see that the transition in Fig. 5 to the linewidth value
the figurg. However, it departs from this theoretical infinite given by the restricted ensemble calculation happens when
window limit due to the finite time window. If the time in no jumps between the two circularly polarized states are
which the process remains trapped near one minimum of theund during the observation timéig. 6(c)]. The calcula-
potential V is not much smaller than the time window of tion within one restricted ensemble gives a correct approxi-
observation, it is likely that we will observe only a few po- mation that works even better as the polarization fluctuations
larization jumps. This causes the statistics of the hoppings idiminish with increasing pumgor, equivalently, increasing
a single realization to be poor and gives a deviation from théntensity). A comparison of Fig. @) with Fig. 5 shows that
infinite window limit linewidths. In other words, even a even in the case of low intensity, in which the total intensity
spectrum from a very long observation time window couldflucutates noticeably, our approximation of constant total in-
not be fit by a simple Lorentzian since many different timetensity works quite well for the linewidth.

; 2) 5 b
“ F ‘ ) ﬁ I
.
e
L e W )
1k N H it FIG. 6. Total outputl (bold lineg and left
! MMM circularly plus polarized , (thin lines intensities
T T i s e T s e for the.tlme. WIndOW u§eq to t'ake the spectra
t t shown in Fig. 5. Time is in units of the linear
7 ) 12 ) time scalea™ 1. The total intensity fluctuations
I © Pt iilon AR AM vt 10 funorint " I are always smaller than the fluctuations of the
5 I g intensity of either circularly polarized compo-
I+, I+6 nent.
3
) 4
1
0 g ol o 0 bbb tibe b i by
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FIG. 7. Normalized linewidth as a function of the adimensional ~ FIG. 8. Normalized ratio between the effectivEc¢) and the
parameter. Continuous lines giv&,;, dashed lines give,, and  average I';) linewidths as a function of the asymmetry parameter
the dotted line gives the result of a calculationlgf, obtained by  a.
averaging over the restricted ensemble. The lower dashed line indi-

cates an observation time limit. we observe SM behavior of the linewidth that can be evalu-
ated through a restricted ensemble calculatiggper dashed
VI. REGIMES OF POLARIZATION FLUCTUATIONS curve in Fig. 7.

In order to estimate the amplitude of the crossover regions
we have computed the normalized difference between the
two measured’; and I'gs; of the linewidth. Results are
shown in Fig. 8. We observe that fa>0 the maximum
: = s Ty X departure between average and effective linewidths occurs at
=0, the linewidth is equal t&";. This is in agreement with 5 51,6 ofa=15 greater than the one evaluated in Sec. IV
Ref. [25], in which onl'y one time scale. in the correlation (a=6). Fora<0 we notice the large departure Bf from
function of the fluctuations was found within the same con-p_... Arounda=—6 we have the same difference that we

stant ]|c_nt_en5|ty apg)roxmfcmon_. imit by the | dash dfind as a maximum difference fa>0. Fora=0 the aver-
Detfining an observation time limit by the lower dashe age and effective linewidths coincide since a single time

Ime_ as the minimum “n?W'dth that can be (_jeFecte_d Wheryeale characterizes the diffusion process of the marginal cou-
taking a spectrum in a finite time, we can distinguish fourp"ng case

regions of different behavior depending on the valu@.of In summary, there are two different regimes of crossover

. (I)I Po!ar|za_t|on sym'metrr:c.:'.l'ﬁlshls l"" reglonhnear the mar- i, 3 polarization asymmetric laser depending on the pre-
ginal pointa=0 (PS in which the laser behaves as a PSyg (g polarization state. In both cases the laser passes from a

laser. This region could also be defined as the region g jike pehavior to a SM-like behavior. In the case of pref-
which the intensity flucutation spectra are well fitted by agarence for circular polarizatiora& 0), the crossover is due

Lorentzian and as a consequentg=1es. The Lorentzian 4 4 finite observation timén determining the spectrum. In
behavior of the spectra arises from the free diffusion over they . opposite case in which linear polarization is preferred

Wh(?.le Romcaresphere. . . (a>0), there is crossover due to a continuous change from
(ii) Single-mode linearly polarized.eaving the PS zone pg 15", In both cases the spectrum passes through non-
with >0, I'y and Iy are slightly different. This gives an | qrentzian behavior. In the case of weak cross saturation
indication of a crossover regime in ti@ parameter space. (preference for linear polarizatidthe crossover is due to the
Oncea becomes large enough the two measures of the “”epassage from a diffusionlike behavior of the PS kind to a
width become approximately equal, indicating a singlegp.jike motion around a linearly polarized equilibrium state

Lorentzian. This Lorentzian shape corresponds in this case gt equatorial diffusion. In the strong cross-saturation case
the approach to the SM-Ilike state of linear polarization W'th(preference for circular polarizatigncompetition between

small ellipticity (2) fluctuations. , , the two modes of polarization develops in a non-Lorentzian
(iii) Polarization hopping Leaving the PS region with  |arization hopping regime and, finally, after an observation

<0, I'y andI'¢s become more and more different, indicat- time |imit is reached, a single circular polarization is ob-

ing the increasing height of the barrier ¥(€2) with polar-  served with a SM Lorentzian spectrum.

ization hopping events in a single realization of the sto-

chastic process. If the time window of observation is

sufficiently long so that we can see many of these hoppings,

Figure 7 summarizes the results for the linewidth for both
cases of circular polarization prefereree 0 and linear po-
larization preferenca>0 as a function of the relevant pa-
rameter of the theory. In the marginal situation, i.ea

VIl. CAVITY ANISOTROPIES

the measure of the linewidth will be given by, but as we Thus far we have analyzed the polarization fluctuations of
reach the observation time limit we detect motion arounda laser in a perfectly isotropic cavity. These characteristic
only one of the two circularly polarized states. forms of behavior are modified, or shifted on the Poincare

(iv) Single-mode circularly polarizedlaking a spectrum sphere, by amplitude and phase anisotropies of the cavity,
during a time window shorter than the typical trapping timewhich can be tuned to a certain ext¢82,47. Close to the
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situation of an isotropic cavity, the effect of cavity anisotro-

. . . . 30
pies can be described also in the context of the potential
picture used in the previous sections. As a first step in this 201 /A\ BPH
description we present here some of the main qualitative ef- ol C
fects. “ /A (

Within the general classification of cavity anisotropies of © ol PH T

van Haeringen[51] including both linear and circular R Nl K
anisotropies of the losses and phases, we take a special case 10 - \/\J D
to gain preliminary insight and caution that a more compli- 20 | B BPH
cated anisotropy might lead to other effects. We consider ]
here only the special case of linear amplitude anisotropies 305535301500 5 0t 10 15 20
(different losses or different linear gains for the orthogonal a

linearly polarized fieldsand linear phase anisotropiésfre-
guency splitting of the linearly polarized eigenmodes such as FIG. 9. Parameter space cross satura@ows adimensional
is associated with birefringence in the medjyim the case phase anisotrop,. In the area between the dashed line the ellip-
that both of these anisotropies are diagonalized by the sanfigity potential is always a double well, while outside it may be a
pair of x andy directions. This is taken into account by single well depending on the value éf For fixeda andb, the
adding a term to the right-hand side of H@) of the form polarization will run over all the states in the vertical line at con-
pE-, with p being a complex constani=p;+ip,. The s_tanta ranging fr.om—b2 to b,. Three pqssiblg dynamical_ sitga—
effect of these terms is more explicit in the equations for thd'onsS are thW”A a”diB’ s.tro,ng-couPllng biased polarization
linearly polarized components, and E, of the vector field hOFt)‘pmgh@_ —20 Einibzzo_ 203'60‘_%”‘_“2 ' Stgogg'w”‘l’(“”g p‘l),'ar'
amplitude. The real part gf gives the different loss rates for 220N hopping &=—20 andb,=3); C and D, weak-coupling
. . ) . . . biased polarization hoppinBPH) (a=10 andb,=6). Shown in
the linearly polarized fields, while the imaginary part f : : .
. - : . ? the insets are the potentidl§)) at the extremal points.
splits the optical frequencies of the linearly polarized steady-
state solutions. o
The introduction of anisotropies described pynodifies ~ procedure leads to the prediction ofua that passes from a
the equation for the total intensifg through terms that can value inversely proportional to the total intensit§7) for
be neglected fofp|<«. The equation for the ellipticity be- b;<<1 to a value that depends only on the gain anisotiopy
comes for b;>1. In the strong-coupling case, fluctuationséoére
huge since one of the two partial intensitlgsor | _ is very

. € R? ) ) small. The intensity fluctuates around the left circularly po-
Q=¥cot(29)+ 7 SIN(4€Q) + posin(9)sin(242) larized (LCP) or right circularly polarized RCP states and
hops between these states. Of course during the hopping pro-
éo cess one could observe some transient locking t@t@ or
tVex- (43 7 states.
Let us now turn to the case of phase anisotropy=<0).
For the phase differenceé= ¢, — ¢_ we find In this case the fluctuations 6f are strongly correlated with

fluctuations off. A deterministic solution of the equation for
Q is given byQ = x/4 and sin@)=0, which corresponds to
linearly polarized light in thex or y direction. However, for
p1=0, @ is freely diffusing and it will only take the value
Therefore, the amplitude anisotrogy only affects indi- sin(#)=0 randomly. For an arbitrary value of the term
rectly the motion of(2 through the coupling withd when  proportional top, in Eq. (45) produces a deterministic pref-
there is also phase anisotropy present. On the other hand, tkeence for elliptically polarized states with+# 7/4. These
dynamics of6 is only affected by phase anisotropigs in states are right or left elliptically polarized depending on the
the stochastic part and through the coupling wRh and  sign of # and p,. In the presence of noise, the potential
R_. In the following we describe separately the cases opicture that is the basis for E(L8) is still valid. The poten-
amplitude and phase anisotropies. tial is modified by the extra term-b,sin(d)cos(22)/2 and
For amplitude anisotropypp=0) the dynamics of) is  the new relevant parameterhis=p,l/e. The effect of phase
not affected. The main effect is a deterministic<0) lock-  anisotropy is completely masked by noise whéng|<1.
ing of the polarization ellipse orientation &=0 or 7= de- Thus we consider only the opposite case in which phase
pending on the sign op;. In the presence of noise the  anisotropy competes with the cross saturation measured by
locking is effective only in the weak-coupling caae=1 in  a. A crossover in the properties of ellipticity is expected to
which bothR.. fluctuate around values much larger than theoccur whema=b,. Notice that this condition, which implies
noise amplitudee. This gives a selection among all linear p,=da, is still consistent with a constant total intensity,
polarization states that are degeneratefp=0. There are which requiresp,<a provided|s|<1. A summary of the
still small fluctuations around the two preferred linearly po-situations that may occur in the parameter spagd) is
larized states. Changing the value @f, we expect fora  shown in Fig. 9.
>1 a crossover in the fluctuations along the equator of the For weak coupling, ifa>|b,|>1 diffusion of 8 is slow
Poincaresphere as measured by the LCF. The natural paranmand we expect a motion of the mean ellipticity driven by the
eter to describe this crossoverbig=p;l/€. A linearization diffusion of the direction of the ellipse’s main axes. The

'0=—2plsin(0)+JER =
. R

(44)

74 77)
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situation is shown in Fig. 9 panels andD. For a given overs among them. These have been analyzed in the weak-
value ofb, the system spans the whole vertical line at a fixedand strong-coupling regimes in terms of a single relevant
value ofa passing from preference for a left elliptically po- parameter that measures the relative strength of the compet-
larized state to preference for a right elliptically polarizeding mechanisms. Explicit results for the intensity fluctuation
state. The motion of induces aiased polarization hopping linewidth have been given in terms of this parameter. For
between left and right elliptically polarized states s weak coupling the crossover is from a polarization symmet-
crosses 0 orr during its diffusive motion. ric laser to linearly polarized emission. For strong coupling
For strong coupling, phase anisotropy gives preference faihe crossover to circularly polarized emission is dominated
one of the two CP depending on the sign ébfand p,. If by fast hopping among circularly polarized states.
|a|>|b,| both LCP and RCP states aflecal) minima and
the hopping process will be mainly determined by the pres- ACKNOWLEDGMENTS
ence of the barrier as in the case of pafelsandB’ in Fig. ] .
9. Whenb, increases one of the two minima disappears de- We acknowledge financial support from the European
pending on the value of (panelsA andB in Fig. 9). Since Union under Contracts No. CI—!B-CGT93—O4870n§:IaSS|caI
the remaining minimum approaches a RCP or LCP sthi, light) and FMRX-CT96-006@microlasers and cavity QED
strongly affected by noise and we expect very faistsed
polarization hoppingrom LCP to RCP states and vice versa, APPENDIX A: MOMENTS OF THE PARTIAL INTENSITY
determined essentially by the motion &f
The effects of saturable dispersifan imaginary part for
B in Eq. (1)] have not been included in this preliminary

discussion. When this is present together with birefringenc . . . : L
P g 9 intensity fluctuations in a single polarization state. Wizen

alone (p;=0) and weak coupling, it privileges one of the T . PR .
two Iin(g;rly ?Jolarized steadypsta?te sglutiongs over the other<0' this distribution of intensity is b|m9dal V.V'th peaks
and may destabilize one of them. This is likely to lead togroundl+=0 andl. The moments of the ”.“e”S'ty fluctua-
biased switching between two points on the equator of th(li'onsAI +=14+=(l) can be expressed as integrals
Poincare sphere. Combinations of more general cavity A
anisotropies and saturable dispersion are topics of continuing (AITy=1"2 (A1)
investigation. A

The preceding discussion gives an overview of different
scenarios and regimes of polarization fluctuations whenvhere
noise strength, nonlinear gain anisotropi€y,(and cavity o
ar_usotroples compete. T_hese regimes are qu|f|ed wh_en am- An:f dx Xexp —ax?). (A2)
plitude and phase anisotropies are considered simulta- -12
neously, when other anisotropies are also considered, or
when cavity detuning is taken into account. This problemThese integrals satisfy the recursion relation obtained by in-
requires a detailed, systematic, and more quantitative studggration by parts valid fon>1,
currently being addressed.

To quantitatively check the estimation of Eq81) and
(32 and to provide an estimation of the relative fluctuations
Iso on the case df|=1, we calculate all moments of the

(—1)"+1
(n—=1)A,_,— Texp(—aM) , (A3)

An=r
VIIl. SUMMARY AND CONCLUSIONS " 2a

We have considered statistical properties of the laser Iig%hereAlzo andA, is defined in Eq(27). In the limit of

of a nearly isotropic laser. Those have been described iy qe|4); using the asymptotic expansions of the error func-
terms of two measures of the linewidth of the intensity fluc-;o1 "\ve have

tuations of one of the circularly polarized components of the
vector field. A comparison of those two measures identifies Ag(a)= Jmla+o(1/a%?) for a>1 (A4)
crossover regimes in which more than one time scale comes '
into play. The approximation of constant total output power Ao(a)=exp(|al/2)[1/a] +o(11a]?)] for a<—1
allows us to obtain a number of explicit analytical results. It 0 '(A5)
also results in a potential picture for the dynamics of the
eIIip_tici_ty on the Poincdre_;phere that _gives important physi-  1pen using Eq(A3), we find the result for the intensity
cgl insight into the laser flgld ﬂuctuat|ons_. M(_)st of our analy-f,ctuations in a single polarization mode
sis refers to the fluctuations of the ellipticity, while other
studies have focused on the fluctuations of the direction of 12
linearly polarized emissiof30,31. The coupling of these (A1%2)y=— for a>1, (AB6)
two types of fluctuations due to cavity anisotropies gives rise a
to enhanced fluctuations as described in Sec. VII. 2

The competition of laser anisotropiésom gain satura- 2\_ -
tion of the cavity, which tend to stabilize some particular (Al%)= 4 for a<—1. (A7)
type of polarization state, and spontaneous emission noise,
which produces randomizing polarization excursions, lead¥Vhen the cross saturation is neutral, the result is also simple.
to different regimes of polarization fluctuations and cross-One has thaP(l.) is flat, obtaining
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2

I
<AI2+):1—2 for a=0. (A8)

The constant value obtained far — 1 reflects the bimo-
dal feature of the intensity distribution, which becomes more
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Then, using the Ito formalism, the correlation function
C(t)=(f(x(t))f(x(0))) satisfies the equation of motion

C=(f' (OF XWON(0))+ (XD (x(O)),

and more peaked around the circular polarization states as (B2

the cross-saturation asymmetry paramefelincreases in
modulus. The width of each peak diminishes, but the totaY,V

variance remains almost constant.

here the prime indicates derivative with respectt&qua-
tion (B2) can be rewritten a€=(f(0)Lf(t)), introducing

Calculating the same quantities in the restricted ensembli€ linear operatot,

defined by Eq(39), we find

") (-AD" KA
ny _n
(A1), lkEo(k) Ay (A9)
where
1/2
A,’1=f dx X'exp(—ax?), (A10)
0

and the new recursion relation féy, for n>1 is given by

Ar’1=£ (n=1)A/_,— 2rlflexp(—a/4) . (A1l
with
Aj=Ay/2,
A1=2—1a[1—exp(—a/4)]. (A12)

Using these formulas far=2 and the asymptotic expansion

of the complex error function, we obtain in the ces&
-1
(A12),=1%/|a|?. (A13)

APPENDIX B: MOMENTS OF TIME SCALES

Let us consider a processobeying the Langevin equa-

tion

x=F(x)+ \e&. (B1)

L=F L7 B3
= —_— +_ _—

(X)) =+ P (B3)
Then thenth derivative of the correlation function can be
expressed through successive applications of this evolution
operator

d"c(t) ;
S =(HOLTD), (B4)

where the abbreviatiof(t) stand forf(x(t)). To generalize
the results of Refl45], we can use the equilibrium property

(L"f2(1))=0 (B5)
and we easily get
. dc
lim q =—(f[L",f]), (B6)

n
t—o*

where the square brackets stand for the commutator.
In the casen=1 we have

14
[L,f]=(Lf)+ef ' (B7)
Using this result in Eq(B6) we get

. €
lim C(t)= = 5([f"(0)]?). (B8)

t—o*

which generalizes the result of Rd#5] for a correlation
function of functions ofx.
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