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Bose-Einstein solitons in highly asymmetric traps
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We obtain analytic solutions to the Gross-Pitaevskii equation with negative scattering length in highly
asymmetric traps. We find that in these traps the Bose-Einstein condensates behave like quasiparticles and do
not expand when the trapping in one direction is eliminated. The results can be applicable to the control of the
motion of Bose-Einstein condensates.@S1050-2947~98!05005-7#
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I. INTRODUCTION

The recent experimental realization of Bose-Einstein c
densation~BEC! in ultracold atomic gases@1,2# has triggered
the theoretical exploration of the properties of Bose gas
Specifically there has been a great interest in the deve
ment of applications that make use of the properties of
state of matter. Perhaps the recent development of the
called atom laser@3# is the best example of the interest
these applications.

The current model used to describe a system with a fi
mean numberN of weakly interacting bosons, trapped in
parabolic potentialV(r ), is the nonlinear Schro¨dinger equa-
tion ~NLSE! @which in this context is called the Gross
Pitaevskii equation~GPE!#

i\
]c

]t
52

\2

2m
¹2c1V~r !c1U0ucu2c, ~1!

which is valid when the particle density and temperature
the condensate are small enough. HereU054p\2a/m char-
acterizes the interaction and is defined in terms of
ground-state scattering lengtha. The normalization forc is
N5* ucu2d3rW and the trapping potential is given by

V~rW !5
1

2
mn2~lx

2x21ly
2y21lz

2z2!, ~2!

the lh (h5x,y,z) being, as usual, constants describing
anisotropies of the trap@4#. In real experimental systems th
geometry of the trap imposes the conditionlx5ly51. lz
5nz /n is the quotient between the frequency along thez
directionnz and the radial onen r[n. Equation~1! is strictly
valid in the T50 and low-density limit, but has been val
dated in different ways for the current experimental syste
e.g., by the comparison of the experimental@5# and theoret-
ical low-energy excitation spectra of the condensates@6,7#.
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Recent theoretical work extends the applicability of the G
to the high-density limit@8,9#.

When a.0 the interaction between the particles in t
condensate is repulsive, as in most current BEC experim
@1,5,10,11#. In opposite case (a,0) the interaction is attrac
tive @2,12#.

Although the GPE is widely accepted as a valid model
the dynamics of the BEC atT.0 K, the knowledge of the
dynamics of the condensates is scarce since the GPE is
integrable and explicit solutions are not known. In the po
tive scattering length case Eq.~1! has been solved numer
cally for cylindrically symmetric systems and analytical
some work has been done in the framework of the Thom
Fermi approximation@4,7,13#. The negative scattering lengt
case is mostly unexplored, except for some numerical res
@4#. Another approach to the dynamics of the condensat
the time-dependent variational technique@14#, which as-
sumes a fixed profile and computes the evolution of so
parameters such as the width by variational techniques.

An important fact related to negative scattering leng
condensates is that stable solutions to Eq.~1! exist only un-
der certain conditions for the number of particles and the s
of the trap@14–17#. When those conditions are not satisfie
the condensate is unstable and destroyed by the collapse
nomenon because the densityucu2 increases up to a poin
where nonlinear losses@not included in Eq.~1!# become
dominant. So, to have alarge stable negative scatterin
length condensate collapse must be avoided. Having la
condensates is important to get better experimental obse
tions of BEC. The reason is that the critical number of p
ticles that can be put in the condensate without collaps
very small for current experimental parameters and thus
difficult to perform accurate measurements and to obtain
perimental data of the condensation process. Another rea
for the interest of large condensates is their future pract
applications~atom interferometers, atom clocks, etc.!, where
coherent atom clouds as large as possible are necessar
3837 © 1998 The American Physical Society
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In this paper we concentrate on the analysis of nega
scattering length condensates in cigar-shaped traps.
present a class of solitonlike stable solutions that can b
interest in the applications of these coherent atom ag
gates.

II. DERIVATION OF THE MODEL EQUATIONS

From now on we will study the solutions of Eq.~1! in
cylindrically symmetric parabolic traps~2!. More explicitly,
we will consider cigar-shaped condensates, i.e., the cas
which the trapping potential ins is much weaker than the
trapping potential inr; mathematically,lz!1.

Let us make the change of variablest5nt, a0r
5r , a0s5z, andQ528paN/a0, wherea05A\/mn is the
size of the ground-state solution of the noninteracting G
with a harmonic potential of frequencyn ~except for aA2
factor!. Let us also define a wave function asu(r,s,t)
5c(r ,z,t)Aa0

3/N; then Eq.~1! reads

i
]u

]t
5F2

1

2
¹21

1

2
~r21lz

2s2!2
Q

2
uuu2Gu, ~3!

with the normalization condition* uuu2drW51.
The solution of this nonlinear partial differential equatio

is a challenging problem and no explicit solutions a
known. However, due to the different interaction scales
volved in our particular problem it is possible to find a
proximate~but very accurate! analytic forms for the ground
state solutions of Eq.~3!. A detailed analysis using
multiscale expansions is done in the Appendix. Here we w
derive the ground-state solution by simple physical ar
ments.

We will first assume that it is possible to factor the so
tion of Eq. ~3! as

u~r,s,t!5f~r!j~s,t!. ~4!

Thenf satisfies

2
1

2
¹'

2 f1
1

2
r2f5nrf. ~5!

Equation~5! is a well-known eigenvalue problem, the two
dimensional isotropic harmonic oscillator. Itsground-state
solution is

f0~r!5e2r2/2. ~6!

Multiplying Eq. ~3! by f* and integrating to eliminate ther
dependence, we find

i
]j

]t
52

1

2

]2j

]s2
2

Q

4
uju2j1

1

2
lz

2s2j1nrj, ~7!

where the additional factor 1/2 in the nonlinear term com
from the quotient*0

`uf0u4r dr/*0
`uf0u2r dr51/2.

Finally, let us make the changew(s,t)5j(s,t)einrt to
obtain
e
e

of
e-

in

E

-
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-

s

2i
]w

]t
1

]2w

]s2
1lz

2s2w2
Q

2
uwu2w50. ~8!

This equation is a one-dimensional~1D! NLSE, which in the
lz50 case can be integrated by the inverse scattering t
nique @18#. Whenlz50, Eq. ~8! has stationary normalized
single-soliton solutions of the type

w~s!5
AQ

4p
sechS Qs

8p D . ~9!

From this solution and using the Galilean invariance of
1D NLSE it is possible to find traveling soliton solutions th
propagate without distortion.

The width of the cloud in thes direction is related to the
nonlinear coefficient through the relation

Ws5A^s2&w54p2/QA3. ~10!

This is remarkable and means that condensates with a s
number of particles (Q is proportional toN) would be very
long, while condensates with more particles would
shorter. If the number of particles is large enough, the c
densate is unstable and collapse occurs.

To justify approximation~4! let us note that in the trans
verse direction the trapping potential and nonlinear fo
tend to compress the wave packet competing against the
ear dispersion effect provided by the kinetic-energy term.
the other hand, the trapping force in thes direction has been
removed so that along that axis there is only a competit
between the nonlinear attraction and the dispersion. W
the main force on the transverse direction is the one cau
by the trapping potential the approximation will be justifie
To check this let us compare both potentialsH trap5

1
2 r2 and

Hself-int5
1
2 Quuu2 for the soliton solution. Their ratio is a

function q(r,s) given by

q~r,s!5
16p2r2er2

Q2sech~Qs/8p!
. ~11!

Since sech(x)<1/2, evidently when 32p2/Q2@1, q(r,s)
@1, except for very small values ofr. When this condition
is satisfied, the parabolic potential dominates over the s
interaction and then the only effect of the nonlinear term
the transverse shape is to provide small shape correct
near the center of the trap, which is the place where
parabolic potential is lower and the nonlinear term more r
evant.

To see whether the soliton solutions really exist we ha
computed numerically the ground-state solution of Eq.~3!
for different values oflz . In the noninteracting limit~small
Q) the solution is given by

u~r,s!5lz
1/4p23/4exp~2r2/22s2/2!. ~12!

Decreasinglz , increasingQ, and preserving the condition
q(r,s)@1, we should obtain the soliton solutions~9!. To
compute the ground-state solutions we have used
steepest-descent method described in@4# to minimize the
Hamiltonian
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H5E drWF u¹uu21~r21lz
2s2!uuu22

Q

2
uuu4G ~13!

over a discrete lattice, where the solution is defined. In Fig
we plot sections of the fundamental stateu(r,s) for different
values of the trapping potential ins ~parametrized by the
value oflz) andQ55. As thelz value decreases the solu
tions get wider, but whenlz50 the solutions do not widen
indefinitely. The profile is then very close to the one defin
by Eq.~9!, while the transverse profile is Gaussian as Eq.~6!
predicted. ForQ510 it is seen in Fig. 2 that thelz50
solutions are not so close to the profiles predicted by Eq.~9!.
This is because whenQ is large the approximation involve
in the derivation of Eq.~9! is not valid and the nonlinea
energy term is comparable to the transverse harmonic t
ping energy. However, it is striking that even for this largeQ
case the differences between the numerically calculated

FIG. 1. Sections of the ground-state solution of Eq.~3! with Q
55 and different values oflz . From the innermost to the outer
most curves thelz parameter islz50.4,0.2,0.0. The dash-dotte
line corresponds to the theoretical prediction forlz50 given by Eq.
~9!, while the dashed line corresponds to the Gaussian solu
given by Eq.~12! for lz50.4. ~a! s section forr50 and ~b! r
section fors50.

FIG. 2. Sections of the ground-state solution of Eq.~3! with Q
510 andlz50. The dash-dotted line corresponds to the theoret
prediction forlz50 given by Eq.~9!. ~a! s section forr50 and~b!
r section fors50.
1

d

p-

o-

file and the solitonic profile are less than 10%. In this cas
is seen that compact solutions exist when the trapping inz is
absent.

On the other hand, when a strong trapping potentia
applied in thes direction ~stronger than the nonlinear sel
interaction term! the numerical solution is close to the exa
Gaussian ground-state solution~12! and the effect of the
nonlinear term is only an enhanced compression of the s
tion near the center of the trap. This phenomenon is see
Fig. 1 ~a plot with lz50.4).

The existence of atomic solitons has been put forth in@19#
in the context of the motion of an atom beam in the field
a traveling-wave laser and in a similar context in@20#. In
those papers, however, the trap effect was not considered
the validity of the transition to 1D equations was not studie

III. CONTROL OF THE CONDENSATE MOTION

Thus we have numerically established the existence
localized solutions and obtained their analytical form wh
the trapping ins is eliminated~provided the number of par
ticles N}Q is small enough to avoid collapse!. Also, there
exist traveling-wave solutions of this type that could prop
gate without distortion. Now it is interesting to study th
response of the center of mass of the condensate to an e
nal potential because it could allow one to control the mot
of the condensate.

Let us then study the evolution of the center of mass o
condensate governed by Eq.~1! in an arbitrary external po-
tential V(x,y,z) ~the following results are valid for any po
tential not only forparabolic traps!. Defining

XW 5E d3rWucu2rW ~14!

and computing its time derivatives using Eq.~1!, we find
dXW /dt5^P&, whereP is the usual momentum operatorP
52 i\¹W , and

m
d2XW

dt2
52^¹W V&, ~15!

which is the Ehrenfest theorem of quantum mechan
Equation~15! means that this theorem is still valid for th
GPE so that the center of mass of the wave packet beh
like a classical particle. It is possible to check the validity
Eq. ~15! for more general NLS equations~i.e., more general
nonlinear terms!, a fact that is not well known@21#.

This result implies that one could manipulate a cond
sate by using an external potential as is known for the
NLSE @22#. Joining this result with the previous one, i.e., th
existence of localized solutions, we find a way to control t
motion of a negative scattering length condensate: Just r
the trap in one direction and apply an external force alo
that axis; the condensate will respond by preserving its sh
and moving like a classical particle. Of course the exter
force should be smoothly varying since the localized so
tions have been derived in the limit where no forces
present@23#.

It is not strictly true that a condensate would respond a
whole to the external force. It is well known@18# that any

n
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3840 57PÉREZ-GARCÍA, MICHINEL, AND HERRERO
initial data evolving following Eq.~8! decomposes into soli
tons and ‘‘radiation.’’ So it should be simple to find the
solitonic objects experimentally by just adiabatically rela
ing the trap and applying an external potential. In doing
radiation ~which in this context means some free atom!
would be generated and some solitons obtained. Only if
initial data are already solitons would there be no breaking
the initial data into a soliton train plus radiation.

Concerning the motion of a soliton wave packet in
highly asymmetric trap~with lz small but different from
zero!, it must be said that there are no completely station
solutions as shown by@24#. However, there would be a qua
sistationary solution with Gaussian tails in thes→` and
near-sech profile in thes50 region as recently proposed
@25#. If the number of particles is large enough so that
soliton size is small compared to the scale of variation of
potential, smooth motion of the ‘‘soliton’’ towards th
‘‘boundary’’ is expected. However, if the soliton size an
trap size are of the same order of magnitude, there will b
competition of both scales that can result in quasiperio
motion or even chaotic motion as discussed in@26#. Another
‘‘tool’’ to control the motion of the condensate could be
laser field, as has been put forth in@19,27# but in those cases
the interaction between the transverse laser field and th
oms should be carefully considered.

IV. APPLICATION TO LITHIUM CONDENSATES

Let us analyze the relevance of our results for the lithi
Bose-Einstein condensates@2,12#. Following Ref. @12#, we
will take as parametersa5214.5 Å and the usual trappin
potentials for the cigar-shaped trap that are aboutn5150 Hz
corresponding toa0.3 mm.

To ensure the validity of Eq.~4! it is necessary thatWs
@1 and then we find thatN;300. However, in Fig. 2 it is
seen how even in the caseQ510 (N.900) the differences
between the soliton profile and the real ground state
small.

Another interesting limit corresponds to collapse. In pr
ciple, one would expect that the cigar-shaped trap wo
allow a larger number of particles to be put in the condens
before collapse occurs. The physical reason is that kee
free the condensate in one spatial direction collapse wo
not occur along that axis, but through compression of
orthogonal ~transverse! directions, which are smaller an
thus ‘‘feel’’ stronger interactions. This means that the syst
would behave in a two-dimensional-like manner and then
collapse conditions should be less severe@14,15#.

To test this hypothesis we have performed simulations
the largestQ value allowed using the same code as for
computation of the ground state. The upper limit found
the cigar-shaped trap isQ517, corresponding toN.1500.
This number is somewhat lower than the Gaussian bo
given in @14#, which isQ519.5, corresponding toN.1710.
These numbers compare favorably with the spherically s
metric results. In that case the limit found using the steep
descent method isQ513.7, corresponding to aboutN
.1200, again lower than the Gaussian boundQ516.7 and
then N51460. So the cigar-shaped trap allows one to
crease the maximum number of particles by 25%. This
small but significant increase. We have checked by num
-
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cal solution of the Gaussian equations of Ref.@14# and nu-
merical simulations of Eq.~3! that the cigar-shaped trap i
the optimal one; i.e., there is no other parabolic trap confi
ration with better collapse-avoiding properties.

As stated in the Introduction, one would like to increa
the number of particles in the condensate as much as
sible. This would allow the control of a large coherent pu
of atoms. To do so one could try to use a higher-order soli
@28#. However, for those solutions the shape performs co
plicated~but periodic! oscillations and develops high spati
and temporal gradients that probably would rule out the
proximation and induce collapse if the order of the soliton
large enough. It is also possible to generate a soliton t
where the solitons have different global phases so that
interaction between them is repulsive. This idea should w
for some situations allowing many particles to be put in t
ground state and we plan to elaborate upon it in future wo
Another possibility is to use a non-Gaussian fundamen
mode for the transverse solution as in@4,29#. However, the
question of the stability of those solutions under gene
three-dimensional perturbations is not trivial and is the s
ject of current research. Finally, other possibilities propos
in the literature could be of use here such as using two c
densates@30# or the control of the value of the scatterin
length @31#.

V. CONCLUSION

We have found compact solutions of Eq.~3! that exist due
to nonlinear effects even when thez trapping potential is
absent. Joining this result with Eq.~15!, we conclude that it
is possible to control the motion of the condensate, wh
could propagate without distortion by using smoothly va
ing external potentials. Thus the atom cloud could be m
nipulated very easily, e.g., with an atom guide. It is intere
ing and curious that this cigar-shaped packet could
transported in that rigid way behaving like a quasipartic
This behavior is specific of negative scattering length c
densates and an advantage over the positive scattering le
ones, which tend to fill all the available space due to
repulsive atom-atom interaction. Additionally, we ha
pointed out that relaxing the trapping potential in one dire
tion in current traps would allow one to increase the num
of particles that can be put into a negative scattering len
condensate.

We hope that this study will stimulate the experimen
efforts in performing BEC with negative scattering leng
and think that the soliton solutions here studied will be
practical applicability in Bose-Einstein condensate ‘‘en
neering.’’
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APPENDIX: DERIVATION OF THE 1D NLSE
BY MULTIPLE-SCALE ANALYSIS

Here we will give the details of a more formal derivatio
of Eqs.~5! and~8! from Eq.~3! using multiple scale analysi
@32#. Let us first choose

u5«1/2u0~t,t8,x,y,z8!1«3u11«11/2u21•••, ~A1a!

lz5«4lz , ~A1b!

z85«z, ~A1c!

t85«2t, ~A1d!

Q5«Q0 . ~A1e!

This scaling satisfies the desirable property that theL2 norm
of u is conserved and that the potential inz is weaker than
the nonlinear interaction~and the later weaker than the tran
verse potential! when«→0. Inserting Eqs.~A1! into Eq.~3!,
we find

i S ]

]t
1«2

]

]t8
D ~«1/2u01«3u11«11/2u21••• !

5F2
1

2
¹xy

2 2
1

2
«2

]2

]z82
1

1

2S r21«4l0
2 1

«2
z82D

2
«Q0

2
«uu01«5/2u11•••u2G ~«1/2u01«3u11••• !.

~A2!

We now separate Eq.~A2! into the different orders in«:

O~«1/2!: i
]u0

]t
5S 2

1

2
¹xy

2 1
1

2
r2Du0, ~A3a!

O~«5/2!: i
]u0

]t8
5S 2

1

2

]2

]z82
1l0

2z82D u02
Q0

2
uu0u2u0 ,

~A3b!

O~«3!: i
]u1

]t
5S 2

1

2
¹xy

2 1
1

2
r2Du1, ~A3c!
an

e

et

.

ys
.

O~«5!: i
]u1

]t8
5S 2

1

2

]

]z82
1l0

2z82D u12
Q0

2
2uu0u2u1 ,

~A3d!

O~«11/2!: i
]u2

]t
5S 2

1

2
¹xy

2 1
1

2
r2Du2 , ~A3e!

O~«15/2!: i
]u2

]t8
5S 2

1

2

]

]z82
1l0

2z82D u22
Q0

2
2uu0u2u2

2
Q0

2
u1

2u0* , ~A3f!

where ¹xy
2 5]2/]x21]2/]y2. Equation ~A3a! implies that

the transverse profile ofu0 is given by the isotropic two-
dimensional harmonic-oscillator equation and thenu0 can be
chosen asu05f(x,y)j(z8,t8)ent. Substituting into Eq.
~A3a!, multiplying by f* , and integrating over the trans
verse coordinatesx,y we obtain

i
]j

]t8
5S 2

1

2

]2

]z82
1l0

2z82D j2
Q0

4
uju2j. ~A4!

This means that the longitudinal profile obeys the nonlin
Schrödinger equation. In thelz50 case the solutions can b
found analytically as discussed in Sec. II. Joining the lon
tudinal and transverse solutions and changing back to
nonscaled variables, we find that the ground-state solu
has the form

u~r,s,t!5A Q

4p
sechS Qs

8p De2r2/2e2 inpt, ~A5!

at least to the first order in«}Q. The corrections are given
by Eqs.~A3c!–~A3f!. It is easy to see that the equations ha
solutionsu15u250, so the solution is determined at least
order e11/2 by u0. This is the reason why the ground-sta
solution is close to the approximate profile given by Eq.~A5!
even in the nonperturbative region as discussed in Sec.
e,
r,

r,
d

k,

.
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