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Bose-Einstein solitons in highly asymmetric traps
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We obtain analytic solutions to the Gross-Pitaevskii equation with negative scattering length in highly
asymmetric traps. We find that in these traps the Bose-Einstein condensates behave like quasiparticles and do
not expand when the trapping in one direction is eliminated. The results can be applicable to the control of the
motion of Bose-Einstein condensatgS1050-294{@8)05005-7

PACS numbd(s): 03.75.Fi, 03.65.Ge

I. INTRODUCTION Recent theoretical work extends the applicability of the GPE
to the high-density limif8,9].

The recent experimental realization of Bose-Einstein con- When a>0 the interaction between the particles in the
densation(BEC) in ultracold atomic gase€d.,2] has triggered  condensate is repulsive, as in most current BEC experiments
the theoretical exploration of the properties of Bose gaseg1,5,10,1]. In opposite casea<0) the interaction is attrac-
Specifically there has been a great interest in the developjye [2,12].
ment of applications that make use of the properties of this  although the GPE is widely accepted as a valid model for
state of matter. Perhaps the recent development of the sgse dynamics of the BEC at=0 K, the knowledge of the
called atom lasef3] is the best example of the interest of g4y namics of the condensates is scarce since the GPE is non-

these applications. . . __iptegrable and explicit solutions are not known. In the posi-
The current model used to describe a system with a flxeg{]

. ) i ve scattering length case E(l) has been solved numeri-
mean numbeN of weakly interacting bosons, trapped in a g leng &)

. X . . . cally for cylindrically symmetric systems and analytically
parabolic potentiaV/(r), is the nonlinear Schdinger equa- . )
tion (NLSE) [which in this context is called the Gross- some work has been done in the framework of the Thomas

Pitaevskii equatioiGPB] Fermi approximatiof4,7,13. The negative scattering length
case is mostly unexplored, except for some numerical results
I 52 [4]. Another approach to the dynamics of the condensate is
ih—=—=—V2y+V(r)y+Uol4|?y, (1) the time-dependent variational techniq{®], which as-
at 2m sumes a fixed profile and computes the evolution of some

L . . . Parameters such as the width by variational techniques.
which is valid when the particle density and temperature o An important fact related to negative scattering length

2
the condensate are small enough. Hége=4x#"a/m char- condensates is that stable solutions to @g.exist only un-

acterizes the mtera_ctlon and is defmed_ m_terms (.)f theder certain conditions for the number of particles and the size
ground-state scattering length The normalization fow) is

B 5 133 ) R of the trap[14—-17. When those conditions are not satisfied
N=[|#|°d°r and the trapping potential is given by the condensate is unstable and destroyed by the collapse phe-
nomenon because the densjiy|? increases up to a point

V(;): Emvz()\zxzﬂ\zyzﬂ\zzz) ) where nonlinear lossemot included in Eq.(1)] become
2 X y = dominant. So, to have #arge stable negative scattering
length condensate collapse must be avoided. Having larger
the\, (7=Xx,y,z) being, as usual, constants describing thecondensates is important to get better experimental observa-
anisotropies of the trapt]. In real experimental systems the tions of BEC. The reason is that the critical number of par-
geometry of the trap imposes the conditibp=A,=1. \, ticles that can be put in the condensate without collapse is
=y,lv is the quotient between the frequency along the very small for current experimental parameters and thus it is
directionv, and the radial one,=v. Equation(1) is strictly  difficult to perform accurate measurements and to obtain ex-
valid in the T=0 and low-density limit, but has been vali- perimental data of the condensation process. Another reason
dated in different ways for the current experimental systemsfor the interest of large condensates is their future practical
e.g., by the comparison of the experimen and theoret- applications(atom interferometers, atom clocks, gtevhere
ical low-energy excitation spectra of the condensf6eg|. coherent atom clouds as large as possible are necessary.
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In this paper we concentrate on the analysis of negative oo  Po Q
scattering length condensates in cigar-shaped traps. We 2i a—+ —2+)\§Sz(p—§|<p|2(p=0. (8)
present a class of solitonlike stable solutions that can be of T ds

interest in the applications of these coherent atom aggre- . , . _
gates. This equation is a one-dimensiordD) NLSE, which in the

\,=0 case can be integrated by the inverse scattering tech-
nique [18]. When\,=0, Eq.(8) has stationary normalized

Il. DERIVATION OF THE MODEL EQUATIONS single-soliton solutions of the type

From now on we will study the solutions of E¢L) in
cylindrically symmetric parabolic trap®). More explicitly, _ \/6 Qs
we will consider cigar-shaped condensates, i.e., the case in o(s)= Esec
which the trapping potential is is much weaker than the
trapping potential irp; mathematically)\ ,<1. From this solution and using the Galilean invariance of the
Let us make the change of variables=vt, agp 1D NLSE it is possible to find traveling soliton solutions that
=r, ags=z, andQ=—8maN/a,, wherea,=A/mvisthe Propagate without distortion.
size of the ground-state solution of the noninteracting GPE The width of the cloud in the direction is related to the
with a harmonic potential of frequency (except for a2 ~ nonlinear coefficient through the relation
facton. Let us also define a wave function agp,s,7)

8l (€)

— J/e2\ — 2
= y(r,2,t)Ja3IN; then Eq.(1) reads We= (%), =47%/QV3. (10)
U 1 1 0 This is remarkable and means that condensates with a small
— =] — Evz+§(p2+ A2s2) — E|u|2 u (3)  humber of particles@ is proportional toN) would be very
or ’

long, while condensates with more particles would be
shorter. If the number of particles is large enough, the con-
with the normalization conditiorf|u|?dr=1. densate is unstable and collapse occurs.

The solution of this nonlinear partial differential equation  To justify approximation(4) let us note that in the trans-
is a challenging problem and no explicit solutions areverse direction the trapping potential and nonlinear force
known. However, due to the different interaction scales intend to compress the wave packet competing against the lin-
volved in our particular problem it is possible to find ap- ear dispersion effect provided by the kinetic-energy term. On
proximate(but very accurateanalytic forms for the ground- the other hand, the trapping force in thelirection has been
state solutions of EQ.(3). A detailed analysis using removed so that along that axis there is only a competition
multiscale expansions is done in the Appendix. Here we willbetween the nonlinear attraction and the dispersion. When
derive the ground-state solution by simple physical arguthe main force on the transverse direction is the one caused

ments. by the trapping potential the approximation will be justified.
We will first assume that it is possible to factor the solu-To check this let us compare both potentillg,,= 1p? and
tion of Eq.(3) as Heeirin= 3Q|ul? for the soliton solution. Their ratio is a
functionq(p,s) given by
U(p,s,7)=(p)&(s,7). (@ )
(p5)= TP 1
. ,S)= .
Then ¢ satisfies alp Q%sectiQs/8n)
1 1 : ; 2/02s
_Evf¢+§p2¢zvp¢,_ (5)  Since sech)<1/2, evidently when 32°/Q°>1, q(p,s)

>1, except for very small values @f. When this condition

is satisfied, the parabolic potential dominates over the self-
Equation(5) is a well-known eigenvalue problem, the two- jnteraction and then the only effect of the nonlinear term on
dimensional isotropic harmonic oscillator. lggound-state  the transverse shape is to provide small shape corrections
solution is near the center of the trap, which is the place where the

parabolic potential is lower and the nonlinear term more rel-

_ 2
Bo(p)=e "2 (6) evant.
To see whether the soliton solutions really exist we have

Multiplying Eq. (3) by ¢* and integrating to eliminate the ~ computed numerically the ground-state solution of E3).
dependence, we find for different values ofv,. In the noninteracting limitsmall

Q) the solution is given by

2
o T Rgreionigeine @) U(p,S) =NV Hex — p2l2-2). (12
S

Decreasing\,, increasingQ, and preserving the condition
where the additional factor 1/2 in the nonlinear term comesy(p,s)>1, we should obtain the soliton solutio8). To
from the quotient/ | po|*p dp/[§|dol?p dp=1/2. compute the ground-state solutions we have used the

Finally, let us make the change(s,7)=£(s,7)e'%" to  steepest-descent method described4hto minimize the
obtain Hamiltonian
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04 ' ‘ ‘ ' ‘ ‘ ‘ file and the solitonic profile are less than 10%. In this case it
is seen that compact solutions exist when the trappirmisn
absent.

On the other hand, when a strong trapping potential is
applied in thes direction (stronger than the nonlinear self-
| interaction term the numerical solution is close to the exact
;, Gaussian ground-state solutigh2) and the effect of the
nonlinear term is only an enhanced compression of the solu-
‘ tion near the center of the trap. This phenomenon is seen in
Fig. 1 (a plot with\,=0.4).

The existence of atomic solitons has been put forfi8i
in the context of the motion of an atom beam in the field of
a traveling-wave laser and in a similar context[20]. In
those papers, however, the trap effect was not considered and
the validity of the transition to 1D equations was not studied.

0.3
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FIG. 1. Sections of the ground-state solution of B).with Q
=5 and different values ok,. From the innermost to the outer-
most curves the\, parameter is\,=0.4,0.2,0.0. The dash-dotted lll. CONTROL OF THE CONDENSATE MOTION
line corresponds to the theoretical predictionXgr=0 given by Eq.

(9), while the dashed line corresponds to the Gaussian solutiop
given by Eq.(12) for A,=0.4. (a) s section forp=0 and (b) p 0

Thus we have numerically established the existence of
calized solutions and obtained their analytical form when
section fors=0. the trapping ins is eliminated(provided the number of par-
ticles Ne<Q is small enough to avoid collapseAlso, there
exist traveling-wave solutions of this type that could propa-
H_f drl gate without distortion. Now it is interesting to study the
= r
response of the center of mass of the condensate to an exter-
nal potential because it could allow one to control the motion
of the condensate.
over a discrete lattice, where the solution is defined. In Fig. 1 Let us then study the evolution of the center of mass of a
we plot sections of the fundamental stafg,s) for different  condensate governed by E@) in an arbitrary external po-
values of the trapping potential is (parametrized by the tential V(x,y,z) (the following results are valid for any po-
value of\,) andQ=5. As the), value decreases the solu- tential not only forparabolic traps. Defining
tions get wider, but when ,=0 the solutions do not widen
indefinitely. The profile is then very close to the one defined )sz dgr"| ¢|2F (14)
by Eq.(9), while the transverse profile is Gaussian as (By.
predicted. ForQ=10 it is seen in Fig. 2 that th&,=0
solutions are not so close to the profiles predicted by(#q. ~and computing its time derivatives using Ed), we find
This is because whe@ is large the approximation involved dX/dt=(P), where P is the usual momentum operat@
in the derivation of Eq(9) is not valid and the nonlinear —=_jzV, and
energy term is comparable to the transverse harmonic trap-
ping energy. However, it is striking that even for this latge d2x
case the differences between the numerically calculated pro-

Q
VUl (p?+ Ngsh)ul?= S ul*| (13

m = —(VV), (15)

' ‘ which is the Ehrenfest theorem of quantum mechanics.
03] (a) up,0)  (b). | Equation(15) means that this theorem is still valid for the
: GPE so that the center of mass of the wave packet behaves
like a classical particle. It is possible to check the validity of
Eqg. (15 for more general NLS equatiorise., more general

02 nonlinear termg a fact that is not well knowh21].
u(O,S) I This result implies that one could manipulate a conden-
sate by using an external potential as is known for the 1D
01y NLSE[22]. Joining this result with the previous one, i.e., the

existence of localized solutions, we find a way to control the

/ | ] motion of a negative scattering length condensate: Just relax

. . : ; ‘ ‘ the trap in one direction and apply an external force along

-40 -20 0 20 40 that axis; the condensate will respond by preserving its shape

and moving like a classical particle. Of course the external

force should be smoothly varying since the localized solu-
FIG. 2. Sections of the ground-state solution of E8).with Q tions have been derived in the limit where no forces are

=10 and\,=0. The dash-dotted line corresponds to the theoreticapresent 23].

prediction for\,=0 given by Eq/(9). (a) s section forp=0 and(b) It is not strictly true that a condensate would respond as a

p section fors=0. whole to the external force. It is well know[i8] that any
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initial data evolving following Eq(8) decomposes into soli- cal solution of the Gaussian equations of H&#] and nu-
tons and ‘“radiation.” So it should be simple to find these merical simulations of Eq(3) that the cigar-shaped trap is
solitonic objects experimentally by just adiabatically relax-the optimal one; i.e., there is no other parabolic trap configu-
ing the trap and applying an external potential. In doing saation with better collapse-avoiding properties.
radiation (which in this context means some free atdms  As stated in the Introduction, one would like to increase
W0u|d be generated and some SO|it0nS Obtained. Only if thme number Of partic|es in the Condensate as much as pos_
initial data are already solitons would there be no breaking of;jple. This would allow the control of a large coherent pulse
the initial data into a soliton train plus radiation. _ of atoms. To do so one could try to use a higher-order soliton

_ Concerning the motion of a soliton wave packet in arpg) However, for those solutions the shape performs com-
highly asymmetric trap(with X, small but different from o404 (but periodi oscillations and develops high spatial

Zelrdt’. It must k?]e sal?)ggt mere are Tﬁ comple;cgl)é stationary, temporal gradients that probably would rule out the ap-
solutions as shown - Mowever, Inere would be a qua- proximation and induce collapse if the order of the soliton is

rswleS:rlflsoenc?]ry ri?illlétli?wntr\:g tzhOGrgu?oSrlwagst?élseml tlser:)oooggg in large enough. It is also possible to generate a soliton train
P 9 Y prop where the solitons have different global phases so that the

[25]. If the number of particles is large enough so that the . ) : g
soliton size is small compared to the scale of variation of th nteraction _betvyeen them. is repulsive. Th's idea shoulq work
or some situations allowing many particles to be put in the

potential, smooth motion of the *“soliton” towards the o
“houndary” is expected. However, if the soliton size and ground state and we plan to elaborate upon it in future work.

trap size are of the same order of magnitude, there will be Another possibility is to use a non-Gaussian fundamental
competition of both scales that can result in quasiperiodi¢node for the transverse solution as[#29]. However, the

motion or even chaotic motion as discusse@i2@]. Another ~ question of the stability of those solutions under general
“tool” to control the motion of the condensate could be a three-dimensional perturbations is not trivial and is the sub-
laser field, as has been put forth[9,27] but in those cases Ject of current research. Finally, other possibilities proposed

the interaction between the transverse laser field and the df the literature could be of use here such as using two con-
oms should be carefully considered. densateg30] or the control of the value of the scattering

length[31].
IV. APPLICATION TO LITHIUM CONDENSATES

Let us analyze the relevance of our results for the lithium V. CONCLUSION

Bose-Einstein condensat¢s,12]. Following Ref.[12], we We have found compact solutions of @) that exist due
will take as parameters = —14.5 A and the usual trapping to nonlinear effects even when tlzetrapping potential is
potentials for the cigar-shaped trap that are abeul50 Hz  gpsent. Joining this result with EQL5), we conclude that it
corresponding t@p=3 pm. - is possible to control the motion of the condensate, which
To ensure the validity of Eq4) it is necessary thafVs  ¢q|d propagate without distortion by using smoothly vary-
>1 and then we find thai~300. However, in Fig. 2 it is  jq external potentials. Thus the atom cloud could be ma-
seen how even in the cag=10 (N=900) the differences pjpylated very easily, e.g., with an atom guide. It is interest-
between the soliton profile and the real ground state arfhg and curious that this cigar-shaped packet could be
small. , o ~ transported in that rigid way behaving like a quasiparticle.
_ Another interesting limit corresponds to collapse. In prin-Thjs pehavior is specific of negative scattering length con-
ciple, one would expect that the cigar-shaped trap woul§jensates and an advantage over the positive scattering length
allow a larger number of particles to be put in the condensatgnes, which tend to fill all the available space due to the
before collapse occurs. The physical reason is that keepingpyisive atom-atom interaction. Additionally, we have
free the condensate in one spatial direction collapse WOU'Bointed out that relaxing the trapping potential in one direc-
not occur along that axis, but through compression of thgjon in current traps would allow one to increase the number

orthogonal (transversg directions, which are smaller and of particles that can be put into a negative scattering length
thus “feel” stronger interactions. This means that the systenygndensate.

would behave in a two-dimensional-like manner and then the  \ye hope that this study will stimulate the experimental

collapse conditions should be less seviar¢15. . efforts in performing BEC with negative scattering length
To test this hypothesis we have performed simulations ofnq think that the soliton solutions here studied will be of

the largesiQ value allowed using the same code as for thepractical applicability in Bose-Einstein condensate “engi-
computation of the ground state. The upper limit found forpeering.”

the cigar-shaped trap ®=17, corresponding tdN=1500.
This number is somewhat lower than the Gaussian bound
given in[14], which isQ=19.5, corresponding thl=1710.
These numbers compare favorably with the spherically sym-
metric results. In that case the limit found using the steepest- V.M.P.-G. and H.M. acknowledge the hospitality of the
descent method iQ=13.7, corresponding to abou Institut fur Theoretische Physik, Universitainnsbruck,
=1200, again lower than the Gaussian bo@w 16.7 and  where part of this work was done. We thank F. Dalfovo for
then N=1460. So the cigar-shaped trap allows one to in-his help with the numerical simulations. This work was sup-
crease the maximum number of particles by 25%. This is gorted in part by the Spanish Ministry of Education and Cul-
small but significant increase. We have checked by numeriture under Grants Nos. PB95-0389 and PB96-0534.
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APPENDIX: DERIVATION OF THE 1D NLSE
BY MULTIPLE-SCALE ANALYSIS

Here we will give the details of a more formal derivation
of Egs.(5) and(8) from Eq.(3) using multiple scale analysis

[32]. Let us first choose

u=ePuy(7,7 x,y,2")+e3u + MU+ -, (Ala)
A=e%\,, (Alb)

Z'=¢z, (Alc)

T =871, (Ald)

Q=¢Qo. (Ale)

This scaling satisfies the desirable property thatlth@orm
of u is conserved and that the potentialzns weaker than

3841
(?Ul 1 QO
O(e®): i—=| —= ——+N\22'2|u;— —2|up|?uy,
( ) (97', ( 2 (92,2 0 1 2 | O| 1
(A3d)
o, 1 1
O(e'*?) |¥=<—§v§y+ E,Jz)uz, (A3e)
du, 1 9 Qo
O(e¥?):; | —=| —= — +\22'2|u,— =2|ug|?u
( 2) ﬁT’ 2 32,2 0 2 2 | 0| 2
—%uiu}j, (A3f)

where Vi, = 3%/ 9x?+9?/dy?. Equation (A3a) implies that
the transverse profile afiy is given by the isotropic two-

the nonlinear interactiof&nd the later weaker than the trans- dimensional harmonic-oscillator equation and th@man be

verse potentialwhene —0. Inserting Eqs(Al) into Eq.(3),
we find

d d
—+e2— | (eYup+e3u+ M, + - - 0)
aT ar'

1 1 .46 1
2_82

AL LR

1
2, N2 2
p+8)\022

£Qo
- _2 8|U0+ 85/2U1+ s |zl(81/2U0+ 83U1+ s )

(A2)

We now separate E4A2) into the different orders ifm:

dug 1 1
2y. _ 2 2
O(e'?): i - —(—nger 5P )uo, (A3a)
dug 1 9° Qo
0(e%?): i—=| -2 ——=+N22"?|up— —|up|?uo,
( ) P ( 2 (92,2 0 0 2 | 0| 0
(A3b)
du, 1 1
3y- H _| " p2 -2
O(e>): I_(97' —( 2ny+ 5P )ul, (A3c)

chosen asug= ¢(x,y)€(z',7')e””. Substituting into Eq.
(A3a), multiplying by ¢*, and integrating over the trans-
verse coordinates,y we obtain

0€ (
|—:
ar’

1

Q
. &Z,Zﬂéz*) E-ldPe (Ag

This means that the longitudinal profile obeys the nonlinear
Schralinger equation. In th&,=0 case the solutions can be
found analytically as discussed in Sec. Il. Joining the longi-
tudinal and transverse solutions and changing back to the
nonscaled variables, we find that the ground-state solution
has the form

u(p,s,7)= \/%seclf g—;) e "2 imT (AB)

at least to the first order inccQ. The corrections are given
by Egs.(A3c)—(A3f). It is easy to see that the equations have
solutionsu;=u,=0, so the solution is determined at least to
order €2 by u,. This is the reason why the ground-state
solution is close to the approximate profile given by Ep)
even in the nonperturbative region as discussed in Sec. Il.
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