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Nonlinear mixing of quasiparticles in an inhomogeneous Bose condensate

S. A. Morgan, S. Choi, and K. Burnett
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

M. Edwards
Department of Physics, Georgia Southern University, Statesboro, Georgia 30460-8031
and National Institute of Standards and Technology, Gaithersburg, Maryland 20899
(Received 12 June 1997; revised manuscript received 24 November 1997

We use a one-dimensional time-dependent nonlinear 8ifger equationNLSE) to study the temporal
evolution of excited-state populations of an inhomogeneous Bose condensate. We show how one can decom-
pose an arbitrary single-particle wave function into a condensate and a collection of quasiparticles and we use
this method to analyze simulations in which the initial wave function contains a finite amount of excitation in
a single mode. The nonlinear mixing of the quasiparticles is dominated by processes that approximately
conserve energy and we see the reversible transfer of excitation between energetically matched modes. We
show analytically how the time scale for nonlinear mixing depends on the amount of initial excitation and the
size of the nonlinearity. We propose that, by averaging over the phase of the excitations, the NLSE can be used
as a simple tool for the simulation of incoherent excitations. This will allow the techniques presented here to
be used to explore finite-temperature mixing effef81050-2947®8)00105-X]

PACS numbdss): 03.75.Fi

[. INTRODUCTION energy and we observe the reversible transfer of population
between energetically matched modes. In Sec. V we take an
Recent experimentfl,2] on the excitation spectrum of analytical approach and derive a result for how the time scale
Bose-condensed trapped alkali gases have provided strikirfgr nonlinear mixing depends on the amount of initial exci-
agreement with theor}3,4] based on the nonlinear Schro tation and the size of the nonlinearity. Finally, in Sec. VI we
dinger equation(NLSE) of Ginzburg and Pitaevskii, and argue that the NLSE can be used to approximately simulate
Gross[5]. As well as measuring the energies of the excita-the evolution of the full guantum field and that therefore the
tions, however, the experiments can also probe their damgechniques presented here for the analysis of nonlinear mix-
ing and observe decay rates that vary strongly with temperang can be extended to study finite-temperature effects such
ture [6]. Theoretical predictions for these decay rates exis@s the decay of excitations.
for homogeneous gasésee, for example, Ref$7,8]) and
recently some predictions for the inhomogeneous conden-

sates of current experiments have appef®etd]. As part of Il. REVIEW OF THE THEORY OF QUASIPARTICLES
an approach to this problem we have been looking at the ) i
nonlinear mixing of the excitation&quasiparticles on the A number of authors have considered the problem of find-

condensate and we present some of the results from th|29 the shapes and frequencies of the excitations on an inho-
work in this paper. Although we concentrate here on simpld09€neous condensa.(Ee.e, for example, Ref§3,4,11,19).
processes at zero temperature, we believe that the techniqub€ fundamental excitations, or normal modes, are termed

used can be extended to estimate finite-temperature mixingiuasiparticles” and at low temperatures the system may be
processes using only the NLSE. considered to consist of a condensate and a thermal popula-

In Sec. Il we briefly review the theory of the zero- tion of weakly inte_ractiljg quasiparticles._ The s_hapes and en-
temperature excitations on the condensate. Conventionall'dies Of the quasiparticles can be obtained either by consid-
the shapes and frequencies of the excitations are given by tiind linear deviations around the condensate or by
Bogoliubov—de Gennes equations and are not orthogonal fieScribing the system using an approximate quadratic Hamil-
the condensate. It is possible to modify them, however, t60n|a_n that can be diagonalized using standar_d methods. The
produce orthogonal excitations and we show how this can b€tails of these two approaches can be found in Réj.and
achieved. In Sec. Il we present a technique that allows on¥/@ 9ive a brief review of the relevant theory below.
to decompose a single-particle wave function into a conden- At very low temperatures a dilute gas of identical bosons
sate and a collection of quasiparticles, even if one uses thg@n form a Bose-Einstein condensé&C) in which all the
conventional excitations that are not orthogonal to the con&0ms are described by the same wave funcitgn,t). The
densate. We use this decomposition technique in Sec. IV tgauation of motion for this wave function is given by the
analyze the results of simulations in which we propagate thdme-dependent NLSE
NLSE with a finite initial population in a single-quasiparticle
mode. As the amount of excitation is increased we observe
nonlinear mixing into other quasiparticle modes. The evolu- Iﬁﬂ: A+ U W |2y 1)
tion is dominated by processes that approximately conserve at 0 0 '
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whereW¥ is normalized to the number of particles in the trap, Lu;+ Uoiﬁévi = wu;,
i.e., fd% |W|?=N. H, is the noninteracting single-particle s
Hamiltonian given by Lvi+Uoihg “Ui= — wjv;, (8)
52 where
~ R, i
HO_ zmvr+vtrap(r): (2) EEHO_M+2UO|‘//Q|2- (9)

. . . . Equations(8) imply that theu;’s andv;’s satisfy the or-
whereV,{r) is the magnetic potential that confines the at'thoggnality a(ngi sy?n>r/netry relations vi fy

oms. In accordance with the current experimental configura-

tions, we will take this to be harmonic. In E{) the particle 3 . o

interactions are modeled by a local potential. In three dimen- d°r {uiuf —vui =6y, (10
sions(3D) this is achieved using the Fermi pseudopotential

13,1

[ 3 ZH fdar {Uivj_l)in}:o. (11)

Vind(r=r")=Ugd(r—r"), 3 . N L
il )=Uodl ) ® In this approach, the normalization whieaj in Eq.(10) can

be freely chosen since Eg¢8) are linear. However, the
above relations have a deeper significance in the fact that the
Anh2a guantum quasiparticle operators obey Bose commutation re-
= i (4) lations and this forces the normalization to 1. Equati8)s
m and(8) completely determine the shapes and frequencies of
the linear excitations on the condensate. Analytical solutions
This is a common approximation in the theoretical approacltan be obtained in the homogeneous case and for the trapped
to BEC and should be valid for the dilute gases under congas in the noninteracting and strong-couplitifhomas-
sideration. A detailed discussion of the validity of this re- Fermi limits [4], but otherwise they must be solved numeri-

whereU, is related to thes-wave scattering length by

Uo

placement can be found in RéfL5].* cally. This is achieved by converting to a basis set and the
Equation(1) has a lowest-energy eigenstate solution ofmethod is described in detail in Ré1.2].
the form One feature of the BAG equations that is particularly im-
portant later in this paper is the existence of an exact solution
W(r,t)=yq(re ", (B with 0=0, ug(r) = yg(r), andvo(r)= — 5 (r). This “con-

densate” mode has zero norm, but otherwise satisfies the
where u is the chemical potential of the system. Thitg  orthogonality and symmetry relations of E¢&0) and(11),
satisfies the time-independent NLSE which both take the form

wihig=Hothg+ Uolvrg|*vg. ©) fdsr {dgui+ i} =0. (12

We can find the excitations on top of this ground-state, oHowever, [d°r {¢yui} and fd3r {¢gui} are not separately
condensate, wave function by considering a small disturzero, so the excitations defined by E¢®). are not orthogo-
bance and linearizing with respect to it. Since the nonlineanal to the condensate. This point is discussed further below,
term in Eq.(1) couples waves traveling in opposite direc- but it is shown in Sec. Il that the partial orthogonality of Eg.

tions we look for a solution of the form (12) is sufficient to allow one to project out the condensate
and quasiparticle contributions to any single-particle wave

it ot function.
W(rt)=e " gy(r)+ Z {ui(r)cie™" The second approach to finding the excitations of the sys-

tem involves working with the many-body Hamiltonian,

o which in the field operator formalism is given by
+ol(r)cret'eit}

: ()

Hzfd3r (WT(r,t)HO\If(r,t)
where thec;’s are constants. If we substitute this into Eg),

linearize with respect to the,’s, and equate coefficients of 1 . - ~ -

e*'“!, then we find the so-called Bogoliubov—de Gennes +5Uo‘I’T(r,t)‘I’T(f.t)‘l’(ht)‘I’(f.t) , (13
(BdG) equations

Where‘if(r,t) is the usual Bose field operator. We follow

Refs.[16,17] and write the field operator as
In our one-dimensional simulations we can still use &, but

the parameteld, can no longer be directly related to tBevave ‘i’(r,t)=e"“t[¢g(r)+ A5(r,t)], (14)
scattering length as in E@4), since this equation is only valid in

3D. In our simulations, thereforél, is an input parameter describ- where y4(r) satisfies Eq(6) and the operatod(r,t) repre-

ing the importance of the nonlinear term, but is not directly relatedsents quantum and thermal fluctuations above the conden-
to physical quantities. sate. If we substitute Eq14) into the Hamiltonian and dis-
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card terms that contain three or fod(r,t) operators then we WhereE, is some constant. Thus the evolution of the quasi-
are left with a quadratic Hamiltonian that can be diagonalParticle operators is given to this order by

ized exactly. This is achieved by the Bogoliubov transforma- . . ot
tion Bi(t)=pB;(0)e" "L (21)

- e If we now allow the quasiparticles to become coherent so
5(f,t)=§i: {ui(n Bi+vi ('} (159  that they have nonvanishing quantum expectation values

(Bi(0))=h;(0)#0, then we find that the expectation value
if the functionsu; andv; are chosen to satisfy the equations of the field operator becomes

f d3r {Ur[ﬁUj‘i‘Uol//éUI‘]‘er[ﬁUi‘i‘Uo(//SZUj]}:wi&ij , (@(r,t))zllf(r,t):e*"“
(16)

wg<r>+2i {ui(r)b;(0)e it

+Ui*(r)bi*(0)e+lwit}} (22)
J d3r {Ui[ﬁvj+UO$; 2Uj]+Ui[£Uj+Uolﬂng]}=0.

(17 which has the same form as E{). This provides the con-

N ) A A ] nection between the two approaches to finding the excita-
In addition, since the operatow(r,t) and{g;} satisfy the {ions of the system. It is of course unsurprising that the two

usual Bose commutation relations, there are further restricyyethods lead to the same result since in the first case we
tions on the possible values af andv;, which are the or- |inearize around a classical field and in the second we define
thonormality and symmetry conditions of Eq0) and(11) 5 quantum field of noninteracting oscillators, which we then

[18]. allow to become classical. One would not expect the order in

Itis clear by inspection that the BdG relations of E@®.  \yhich we carried out these procedures to affect any physical
satisfy Eqs.(16) and(17) and are therefore sufficient to di- pregictions.

agonalize the Hamiltonian. However, it has been pointed out
by Gardiner that they are not necessary conditidhs nec-
essary conditions are given by Eq46) and (17)] and that
this allows one to choose the excitations to be orthogonal to  We have shown in Sec. Il that the quasiparticles are the
the condensatgl9]. This is achieved by projecting out the linear excitations on the condensate. In the limit of infinitesi-
overlap with the condensate from the solutions to the BdGmal excitation, they are therefore the eigenstates of the sys-

Ill. QUASIPARTICLE PROJECTION METHOD

equations. Thus we define nawandv functions by tem. In general, however, finite amounts of excitation will be
_ present and this will result in nonlinear effects owing to the

Uij=U;—aiyg/No, higher-order terms neglected in the linearization procedure.
In order to be able to follow the evolution of the quasiparti-

vi=vF+af g/No, (18  cles, we require a method of decomposing an arbitrary

single-particle wave function into a condensate and a collec-
where a;=[d°r {wg uit=—[d% {ygvi} [the equality of tion of excitations. This is achieved using the orthogonality
these two projections follows from Eq.12)] and and symmetry relations that the quasiparticles satisfy and we
[d3r |¢g|2=No. The new excitations satisfy the modified describe the method we use in this section.

BdG equations In the linear regime the quasiparticles do not interact with
_ _ _ the condensate. Once there is a finite amount of excitation,
Lu;+ Uoz/févi= wi(Uj+aig/No), however, we must consider the change in the condensate due
to the excitations and we therefore write the wave function as
Lui+ Ui U= — wi(vi— a5 INo) (19
—e Iut U )
and still diagonalize the quasiparticle Hamiltonian, giving v(rt=e (1+bg)¢g(r)+i>20 {ui(r)i(t)
the same eigenvalues as before. The orthogonality and sym-
metry relations of Egs(10) and (11) are still satisfied, as +TE(0)b* (1) 23)
they must be since they are required by the Bose commuta- Vi ! '

tion relations. Further discussion of the nature of these exci-

tations (with particular emphasis on the conservation of theThis expansion is a simple extension of that in Eg). that
number of particlgscan be found in Ref$20,21]. In the rest  allows the condensate and quasiparticle populations to vary
of this paper we will refer to the excitations that obey Eg.with time. Any single-particle wave function can be written
(19) as the orthogonal excitations and the ones that obey Edgn this way sincey, and its excitations form a complete set.

(8) as the linear excitations. . ~ The summation excludes the zero-frequency mode since its
After the Bogoliubov transformation the Hamiltonian effect is contained in the imaginary part of the condensate
takes the form coefficient(see the discussion at the end of this segtiéor
convenience we normalize the condensate wave function to 1
A= Eo+z w BB, (20) and change the parametdg in Eqg. (1) to NgUq, whereNg
I

is the number of particles in the condensate. The funciipns
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andv; are normalized according to E¢LO) and the total of this equation with Eq(27) leads to the values of all the
wave function of Eq(23) is therefore normalized as coefficientsb; , which can then be used in E@®8) to deter-
mine the coefficienb .

Thus, whether or not one uses excitations defined to be
orthogonal to the condensate, one can uniquely decompose
an arbitrary single-particle wave function into a condensate

+(ujvbib;+(uf v )bl bl (24)  and a collection of excitations. The relationship between the
coefficients found in the two methods is easily deduced from
The interpretation of the coefficients is therefore thgfl  Egs.(18) to be
+bgy|? gives the condensate population dxglb;|? gives the
number of quasiparticles in level B

Jd3r |\1r|2=|1+|og|2+i2j fd3r {(UFuj+v}v))byb;

i=by, i#
To determine the coefficients;, we need to apply the b g
guasiparticle orthogonality and symmetry conditions. This is
simplest if we work with the orthogonal excitations that were Bo=b.+2 Im [a:b: 30
introduced in Eq.(18). The quasiparticle coefficients can 9 79 Ii;O Laibi], (30

then be obtained by calculating the quantities

where Im means “the imaginary part of” and the tilde indi-
f d3r {’Jj*q,eﬂut_’ljj?c PreTut cates quantities in the basis of orthogonal excitations. Thus
the two descriptions differ only in the imaginary part of the
condensate coefficient. In fact, this corresponds to the zero
bifd3r {urui-viv} mode discussed earlier, as we can see by writing out the
change in the wave function which that mode produces:

-3

+bi*fd3r {ufvf —viul}t=b;, (25 SW(r,t)= hgbo— ¢ by = 14sgIm [by], (31
where we have used Eq4.0) and(11) in the final step. The  where we have used the fact thaj can be chosen to be real.
condensate coefficient is obtained from the expression In the linear limit we haven,~e~'“o', which is a constant

sincewy=0. ThussW¥(r,t) is proportional to the condensate

f d3r {lp;q,eﬂ,a}: 1+bg. (26) and int_je_pendenj[ (_)f time and can therefore be absorbe(_j into

the original definition of the condensate wave function.

However, in the nonlinear limit it is no longer true that
In practice, we carry out this projection procedure within ajm [p,] is independent of time and so in general this mode
basis set description since this is more convenient ”Umerborresponds to a change in the imaginary part of the conden-
cally. sate coefficient. In the limit of small excitatiofor short

Since the linear excitations are the ones conventionallfimey this is equivalent to a rotation of the condensate

defined, it is interesting to note that the above decompositiopnase. We would expect to find such a mode because the
is still possible(although somewhat more complicaleven  Hamiltonian of Eq.(13) is invariant with respect to changes
if we do not use orthogonal excitations. This is because only, the phase of the field operator. This symmetry was broken
the partial orthogonality of Eq12) is actually necessary for i gq. (14) where a specific phase was assigned to the con-
the decomposition. We consider the same expressions as §fgznsate. The remnant of the original symmetry appears in the
Egs. (25 and(26), which now become existence of a mode at zero energy corresponding to a

change in this phase and this is the so-called Goldstone mode

fde’r {uj?\—\l,e%—lut_v]k\l,*e—l,ut}:(z_’_bg+b;)a]k+bj' glzglfilrr:gpears in theories involving spontaneous symmetry
(27) The quasiparticle projection technique described in this

section allows one to analyze in detail the results of any
3 * ot 1t — * ok simulations performed using the NLSE. We shall use it in the
f o {ugwe = 1+b9+2 {bia;=b7 a7}, (28) next sectionpto study the ngnlinear mixing of quasiparticles,
but it can also be used in a variety of other simulations such
where thea;'s are the overlap coefficients defined as in Eg.as a study of the efficiency with which various perturbations
(18), but with Ny set equal to 1, i.e.a;=/d’ {yju}  produce excitations.
=—[d% {ygv;} with [d® |g|?=1. These equations are
no longer suffic_ient to determ_ine all the coefficients and we IV. NONLINEAR MIXING: NUMERICAL RESULTS
must also consider the quantity
The quasiparticle projection method described above al-
lows one to determine the populations of the quasiparticle
modes(by which we mean the coefficients;|?) for an ar-
bitrary wave function. The combination of this with a time
where we have used E@12) in obtaining the right-hand evolver for the NLSE allows one to perform a wide range of
side. Since the coefficientg are all known, the combination simulations to explore the effects of nonlinear mixing of the

fde’r {dfg\lfe“’“Jr z//g\lf*e*"‘t}=2+bg+b;, (29
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excitations. The simplest such simulation is one in which thee™'#t. Unfortunately, this requires a knowledge of the con-
wave function is allowed to evolve freely and initially con- densate coefficient as a function of time, which itself neces-
sists of a condensate and an excitation in a singlesjtates a basis decomposition. Consequently, we first analyze
quasiparticle mode. This is the kind of simulation we shallthe simulations using the original bagfsom which the ini-
discuss in the rest of this paper, although more complicategla| wave function was constructeend from this determine
initial configurations containing many excited modes will bethe rate of rotation of the condensate phase. This provides us
the subject of future work. All our simulations are performedyith the value of the new chemical potential, which we then
in 1D, although the theoretical analysis of Sec. V applies in;ge in Eqs(6) and(8) to find the new wave functions, and

any dimension. v; . The simulations are then reanalyzed using this basis. We
observe that the evolution of the quasiparticle populations is
A. Description of method much smoother when analyzed in this basis than in the origi-

Our numerical procedure is as follows. First we solve thenal one and thus the results are more easily interpreted. The
time-independent problem formulated in Ed8) and (8), choice of basis is a matter of finding the simplest description,

) . . . in which the evolution can be most easily interpreted in
taking as the input the chemical potentialof the system. terms of physical processes involving well-defined quasipar-
This provides us with the condensate populafignand the . | phy P 9 q P
functional forms ofisy and theu;’s andv;’s. Using these we ticles.
construct an initial wave function that consists of a conden- _ )
sate and a certain amount of excitation in a single mode B. Results and interpretation

(modek say.? This is achieved by writing the wave function  |n this section we will describe the results of our numeri-
in the form of Eq.(23) and settingb,(0) equal to the re- cal simulations. In interpreting these results we will speak
quired value and all the othdy; coefficients(includingbg)  loosely of the collision of quasiparticles and their creation
to zero. The total condensate coefficient is therefore 1 iniand annihilation since these are the physical processes occur-
tially. This procedure changes the overall normalization Ofring in the gas. We actually observe a smooth evolution of
the wave function to a value that is greater than 1 by anhe quasiparticle population)b;|?, however, and the results
amount of ordeb?(0). We then propagate this wave func- may equally well be interpreted in terms of harmonic gen-
tion in the time-dependent NLSE of E@l) (with U, re-  eration produced by the nonlinearity.
placed byNyU,) and save the result at various times to  The simplest simulation we can perform is to start with a
produce a set of stored wave functions that sample the evarery small amount of excitation in a single mode and con-
lution. Each of these wave functions is analyzed using thdirm that its evolution is;~e'“' as predicted from the linear
quasiparticle projection method to obtain all the coefficientsesponse analysis of Sec. Il. We did this using a condensate
b; as a function of time. with =1 and an initial excitation in mode 2 given by
Since we are more interested in the quasiparticle populgb,(0)|=0.01. Mode 2 is the lowest-lying nontrivial excita-
tions than in their phases, we construct a number of initiation (mode 1 is a simple displacement of the center of mass
wave functions that differ only in the phase of the initial and corresponds to a “breathing mode” of the condensate.
excitationb,(0). Each of these wave functions is separatelyThe population in the mode did not change significantly dur-
evolved and the evolutions of the quasiparticle populationsng an evolution of length 30 trap periods, which corre-
are obtained by averaging over all these simulations. Thusponds to a time of the order of a few tenths of a second for
we consider |b;|?) = (1/Ng) = 4|b;|?, where angular brackets trap frequencies of order 100 Hz as in current experiments.
denote the mean value ak denotes a sum over thds  In addition, the phase of the excitation evolved at the con-
simulations. The results quoted in this paper come from avstant rate expected from the linear analysis.
eraging over eight simulations with the initial phase uni- As the amount of excitation in the initial mode is in-
formly distributed around the unit circle. Although not di- creased, nonlinear mixing processes into other modes be-
rectly relevant to the results we shall discuss here, this phassme important. We performed simulations with,(0)|
averaging may be seen as an attempt to recover the evolution0.05, 0.1, 0.2, and 0.5, again on top of a condensate with
of incoherent quasiparticles from the coherent evolutionu=1. Results from the last two of these simulations are
given by the NLSHKthis is the subject of Sec. VI shown in Figs. 1 and 2. The effect of the nonlinear mixing is
We should briefly discuss the question of which basispredominantly a transfer of the quasiparticle population be-
should be used to analyze the simulations. The initial waveéween modes 2 and 4. Since mode 4 is at roughly twice the
function is constructed using the solutions to the time-energy of mode 2, this is just the frequency-doubling process
independent NLSE and the BAG equations for some particuhat we would expect from the form of the nonlinearity. In
lar value of the chemical potentigd, so we could describe the case of the simulation witl,(0)|=0.5 (Fig. 2), we can
the evolution using that same basis. However, the addition ofee that the process is reversible. This is a consequence of
a finite amount of excitation changes the chemical potentialhe fact that in a trap there is a discrete set of states rather
of the system and so a better basis to use is one that corrétan the continuum required for an irreversible decay of an
sponds to its new value. This can be found by observing thexcitation.
rotation rate of the condensate phase since this varies as A number of features of Figs. 1 and 2 are of interest. First,
the rate at which the quasiparticle population is transferred
between modes is seen to depend on the amount of initial
2In our simulations we worked with the linear excitations, i.e., theexcitation. This is a consequence of the process being non-
ones that satisfy the BdG relations of E¢®). rather than Eqg19).  linear. Second, we can see that the change in population of
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0.045 ' ' ' ' ' tion is conserved, as is discussed in Sec. V.

We can also observe the effect of nonlinear mixing on the
population of mode 2 by plotting the width of the condensate
as a function of time. This is because mode 2 is a breathing
mode in which the width of the condensate oscillates in time
(this can be seen by looking at its functional form, for ex-
ample, in the Thomas-Fermi limitAs such, it is readily
excited experimentally as one only needs to vary the currents
in the trapping coils symmetrically. In fact, observation of
the width of the condensate mimics the technique used ex-
perimentally to measure the frequencies and decay rates of
the excitationg1,2,6). Figure 3 shows the behavior of the
condensate width for the simulation wigh=1 and|b,(0)]
=0.5. As expected, the width oscillates at a frequency of 1.9
(in units of the trap spacingwhich is the frequency of mode
2 for this condensate. Furthermore, the amplitude of oscilla-
tion does indeed closely follow the population in mode 2 as

FIG. 1. Evolution of the average quasiparticle populations andgiven in Fig. 2. The fact that the reversible transfer of popu-
the change in the condensate populatifh{(by|*~1) for u=1  |ation into and out of mode 2 can be seen in the amplitude of
and |b,(0)|=0.2. The pluses and asterisks are the predictions ofhe oscillations in the condensate width leads us to hope that
Eq. (37 for modes 2 and 4, respectively. it will be possible to observe it experimentally.

So far we have focused on results for a condensate with
mode 2 is roughly twice that of mode 4. This is a conse-;, =1 as the amount of excitation in mode 2 is increased.
quence of the requirement that energy be conserved. Whefhe next thing to consider is what happens when we increase
mode 2 is populated, the mechanism for the transfer of popu;, je., the number of particles in the condensate, while fix-
mode, followed by the formation of a single quasiparticle atjn , involves an increase in the nonlinearity responsible for
twice the energy, i.e., in mode ¢hote that quasiparticle the mixing effects we would naively expect to see much the
number is not conservedTransfer of population from mode same behavior as before, but on a shorter time scale. Al-
4 to mode 2 is achieved via the reverse process, namely, thgough this is observed, we also notice that the magnitude of
decay of a single quasiparticle into two of half the energy. Inye mixing decreases and modes other than mode 4 can play
each case two quasiparticles in mode 2 are involved for each important role. Figures 4 and 5 shows plots of the quasi-
one in mode 4. A third feature of the figures is that theg ticle populations for condensates wijth=2 and 4, re-
change in the condensate population follows that in mode pectively, with an initial excitation db,(0)|=0.2. A com-

A physical explanation for this is that a three-quasiparticleyarison with Fig. 1 shows that the transfer of excitation does
process as described above is composed of the scattering fjeed occur faster than far=1, but with a smaller ampli-
two real particles, in which one particle either enters ory,qe This is a consequence of the fact that the energy match-

leaves the condensate. It can als_o pe viewed as a consige,—g| between modes 2 and @haracterized by the energy
guence of the fact that the normalization of the wave fU”C'differenceAw24= ws—2w,) is less good for the larger val-
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As Aw,, increases, the quasiparticle evolution becomes
less dominated by the coupling between modes 2 and 4 and
the presence of other modes becomes increasingly important.
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form one in mode 6, which is approximately an energy-
conserving process. The effect of this can clearly be seen in
Fig. 4 as a growth and decay in the population in mode 6.
One consequence of the transfer of population to mode 6 is
the absence of one of the repopulation peaks in mode 2, the
remnant of which can just be seen in Fig. 4 betweeb and

10. The three main processes occurring during this time are
the decay of mode 4 to mode 2, frequency doubling of mode
2 to mode 4, and the collision of a quasiparticle in mode 4
with one in mode 2 to give one in mode 6. The net effect is

FIG. 2. Evolution of the average quasiparticle populations anc® depletion of mode 4, a growth in mode 6, and a small

the change in the condensate population for1 and |b,(0)|

growth in mode 2. Subsequently, mode 6 decays back to

=0.5. The pluses and asterisks are results from the numerical simmodes 4 and 2 and almost all the original population even-
lation of Eq.(35) for modes 2 and 4, respectively.

tually returns to mode 2. Processes of this kind provide the
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quasiparticles operators are replaced by complex numbers, so
there is no spontaneous emission term. Thus mode 4 does not
decay to mode 2 in the absence of a population in that mode
and this explains its stability. In reality spontaneous decay
processes will occur and in principle one could put them into
the NLSE by hand using a quantum jump approach, although
this would greatly slow down the computation. However,
one can easily infer the rate for such processes by consider-
ing the corresponding stimulated rate and replacing its de-
pendence on the quasiparticle populatighg? with |b;|?

+1.

Finally, we should discuss how much the evolution of the
quasiparticle populations depend on the phase of the initial
excitation. Since the leading-order term in the evolution of
the quasiparticles is just a phase rotationrresponding to
the energy of the quasiparti¢letwo simulations that start

with a phase difference ap should have the same evolution
FIG. 3. Evolution of the standard deviation width of the wave pyt with the origin of time displaced by an amouptw; , as
function for a condensate with=1 andb,(0)=0.5. long as any nonlinear effects are negligible in this time pe-

mechanism by which the energy, initially in a single mode isrio_d. Thug any fast oscillations in the evolution of the popu-
! !_lations will cancel out when we average over phases and

ultimately dissipated among a large number of modes. Con-

sequently, they limit the number of times the population re_only processes that produce slow changes will have an effect.

turns to the initial state and control how the system relaxes t6t is shown in Sect.hvtthat suc_h tprocfesse?hare ones tha}t tc_on-
equilibrium. Since they rely on the presence of excitation in>€rve energy, so that any variation irom the mean evoiution

more than a single mode they are not the dominant mixin s a consequence of energy-nonconserving processes. These

processes if we start with only one excited mode. At finite ho:’r:dtb;] neghglple Itf' tlhe ”0”"F‘§ar mlxmg rgte_s arFe. smaII6
temperatures, however, when many modes are excited, theS@ at the quasiparticies provide a good basis. Figure

processes can be expected to play a more significant role a@ va[’ﬁ the same tr_elsults asl 'i_'g' 1 except tgat mste_acrjnof_plot-
may lead to an effectively irreversible decay of the initial Ing the quasipartic’e populations averaged over eignt simu-
excitation. lations, the results from each simulation separately are plot-

So far we have only considered the case that mode 2 iEed and superimposed. Each of these simulations corresponds

excited initially and we should briefly mention the behaviorto. a particular choice of phase for the initial excitation and

of other modes. For comparison, we looked at mode 5 sinc ig. 6 clearly shows that the variation in the quasiparticle

it is significantly more energetic and has oppositdd) par- populations fro_m_the_mean value at any time is_ ind_eed very
ity. For a condensate witp=1, this mode is much more small. The variation in the condensate population is larger,

stable than mode 2 and there is very little mixing even for ad“owe"er' a.nd. IS qomparable to Fhe amount it has changed,
initial excitation of |b,(0)|=0.2. The reason for this is that although this is still a small fraction of the total condensate

the dominant mixing should be into mode 10 since this is apopulation. This is a result of the fact that the condensate has

roughly twice the energy. However, the energy g&ps 1 a large response at zero frequency.
=wqp— 2ws is rather large for this condensate and so the
nonlinear mixing is strongly suppressed.

It is also instructive to consider the case that mode 4 is
initially populated. For a condensate wia=1 we have
seen that this mode is energetically very well matched togoossf
mode 2 and we might therefore expect to see it decay;g
strongly into this mode, just as we saw the repopulation of2 °%f
mode 2 from mode 4 in Fig. 2. In fact, this does not happeng .|
and the excitation, like that in mode 5, is very stable. The§
reason for this can be seen from a perturbative argument. 13 o2t
the initial mode has a frequeney, then the dominant non-
linear terms at=0 have frequency components at 0 and L
+2w, . Thus there is a strong coupling to the condensate§ 001k L7 T T T Gondensate
and to the mode nearesip? . There is only a weak coupling, /
however, to the other modes including the one with energy oosr - Mode & Y Cs
closest t03 w, . This is a consequence of using the NLSE to o , e
simulate the quasiparticle evolution. Quantum mechanically 0 5 10 15 20 25

. . Time in units of the trap period
we would expect the rate for a boson scattering process into
some state to be proportionaliie- 1, wheren is the number FIG. 4. Evolution of the average quasiparticle populations and
of bosons already occupying that state. Thus there is a ratee change in the condensate population for2 and |b,(0)]
for the process even ifi=0. In the NLSE, however, the =0.2.
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FIG. 5. Evolution of the average quasiparticle populations and FIG. 6. Evolution of the quasiparticle populations and the
the change in the condensate population fo=4 and |b,(0)| change in the condensate population for1. The results from
=0.2. eight simulations are shown superimposed. These simulations cor-

respond to the initial conditiom,(0)=0.2e'¢ with ¢=0, =/4,

As we increase the nonlinearity or the amount of initial 7/2, . .., 7/4.
excitation then we see a stronger dependence on the initial
phase of the excitation as expected. Eventually we will reach

a regime where the evolution depends so strongly on thgtical approach in which we explicitly obtain the equations

initial phase that we cannot meaningfully interpret the resultg¢ motion for the condensate and quasiparticle coefficients.
of the simulations in terms of the evolution of well-defined This is achieved most simply if we use the excitations

guasiparticles. This is the regime where the amount of exmgat are orthogonal to the condensate as defined in(TSy.

tation is so large that a description of the system in terms o nd all equations in this section are written in terms of

a basis provided by the linear excitations ceases to be usefLi ese excitations. Using these equations we can see what
We can use the phase dependence of the evolution as a test to

S L .processes dominate the evolution and what parameters affect
see whether or not a description in terms of quasiparticles |§_‘

meaningful. For the simulations presented here the quasipa -T time scales f_or r:onflmear ;nt|r>1<|ng. Wi. havg been able _tol
ticle description is applicable, but is beginning to breakSC'Ve an approximate form of the equations in one Specia

down for the simulation depicted in Fig. 5 where the evoly-case and obtain an expression for the rate of nonlinear mix-

tion is strongly dependent on the initial phase. This explaind?d In terms of the nonlinearity and the amount of initial

why the average over phases produces a less smooth plot f¥citation. _ o
this case than for the other simulations. The equations of motion for the coefficieribs are ob-

tained by substituting the expansion of EQ@J) into the
time-dependent NLSE and carrying out the projection proce-
dure described in Sec. Ill analytically. This leads to the fol-

We can make further progress towards understanding thiewing equations of motion for the quasiparticle and conden-
nonlinear mixing processes discussed above by using an ansate coefficientsusing unitsi=1)

V. NONLINEAR MIXING: ANALYTICAL RESULTS

db; -
|—'=wibi+N0U0fd3r {uf[2 Re(bg)| | g+ g A%+ 24hg | A[?+|A[PA]

dt
+ 07 [2 Re(bg)|wgl?y + s A2+ 2y% | A2+ A[2A* T}, (32)
[
dby , , R
|W=22wi Re[aibj]+NoUg | dr {2 Re(by)| iyl A=bg¢g+;{ujbj+0j b’} (34)
+ s A+ 2| A 1P+ g | A 2A}, (33)

and Re means “the real part of.” The above equations can
be simplified somewhat if one uses the fact tiigtcan be
where chosen to be real. The normalization has been chosen as
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discussed in Sec. Il below E@23) and the coefficients,; form of elliptic integrals. In the case thAtw,,=0 and mode
are the same quantities that appear in Ef8), but withN, 4 is initially unpopulated, the solution is particularly simple
set equal to 1. and is given by

The linear terms in the above equations merit a brief dis-

cussion. The leading-order term in E(®2) describes the < s NoU oM 4b3(0)

energy of the quasiparticle mode and in the linear regime is 2(1)=Db3(0)sec 2 t

the only important contribution to the equation of motion.

The term proportional to Reb() is qua}dratic in .effect if_ n.ot b§2 0) NOU0M24b§(O)’
appearance since E(B3) shows that if Relf) is zero ini- a(H==1 a ?‘( t), (37
tially, it can only change as a result of quadratic terms in the 12|b3(0)] V2 |

equation of motion. In addition, we see from E3) that
the excited states affect the imaginary part of the groundwhere the sign* corresponds taNqUoMp4 = 0, respec-
state coefficient at linear order. This is because the equatiort®/ely, and we have taken the matrix eleméms, to be real
are written using excitations orthogonal to the condensatéhis is not a significant restrictionThe relative phase dfy’
and these are not the linear excitations of the sydtés®y  andbj in this solution is always- 7/2 and the equations are
satisfy Eq.(19) rather than Eq(8)]. The form of this linear particularly simple in this case precisely because there is no
term is exactly what we would expect as a result of theevolution of the relative phase. Equatiof3¥) show that the
relation between the coefficients of the orthogonal and lineatime scale for nonlinear mixing is set by the quantity
excitations given in Eq(30). |V2/NgU oM ,405(0)|. Evaluation of this parametd23] us-
The fast motion given by the energy of the excitations ining data appropriate to recent experiments ofetial. [1,6]
Eq. (32) can be removed by defining slowly varying quanti- gives a time scale for the decay of mode 2 of 120 ms, which
ties by by b{=b;e'“i". Substituting this into Eqs(32) and is close to the observed value. We do not believe that the
(33 and expanding\ produces a large number of terms, all present analysis applies in that situation, howeved as, is
of which contain oscillating factors of the foref(“i=“)t, At large compared to this time scale.
this stage some approximation is required to reduce the com- The solution of Eq(37) predicts that the transfer of qua-
plexity of the equations and this is provided by the rotating-siparticle population from mode 2 to mode 4 is complete and
wave approximationRWA), in which one considers only irreversible, which is not what is seen in the simulations. The
terms for which this oscillating factor is close to zero. Thesereason for this is that it applies only to the special case that
terms correspond to processes for which energgnésarly) Aw,,=0. In the more general case whekXe,,# 0, numeri-
conserved and produce a smooth time evolution. The nezal simulation of Eqs(35) shows that the population transfer
glected terms cause rapid oscillations around the mean arig no longer complete and is periodic with a period that de-
have little effect on the long-term motion. In addition, sincecreases adlyU, and A w,, increase. This is a result of the
they are rapidly varying, their effect tends to cancel if wefact that thee'*“24 term can introduce a sign change into the
average over the phase of the excitations. For the case thatjuations on a time of order Ab,,, thereby turning the
mode 2 is initially populated, we have seen that the dominandiepletion of a mode into a growth and vice versa. The period
coupling is to mode 4. If we neglect any variation in the also depends ohlyU,, however, because once the relative
population of the condensate and consider only these modeshase o1b32 andbj, differs from + 7/2, the nonlinearity can
then we obtain the equations of motion cause phase evolution and so also introduce sign changes
into the equation$ As A w,, increases, the time available for
population transfer to occur decreases, leading to a reduction

S
2 —
I ——=NoUoM 03" be™'4w24,

dt in the net amount of transfer that is achieved. This was dis-
cussed in Sec. IV B and can be seen clearly from a compari-
db; 1 2t iAot son of Figs. 1 and 5. The solution of E@7) and a result
gt ~3NoUoMz bz e w24, (35  from the simulation of Eq(35) are compared with the results
from the simulations in Figs. 1 and 2. The agreement is quite
whereM,, is a matrix element given by good, demonstrating that the evolution is dominated by pro-

cesses that approximately conserve enécgyresponding to

i~y -~ the terms we kept when we made the RYVAnd the differ-
Mas= Zfdg’r{ng [2uZviustviviva] ences can be attributed largely to the neglect of the variation
in the condensate population.
+y[2us V3 v+ usuu,l} (36) The evolution of the condensate as given by B3§) is

rather more complicated. One feature of the simulations is

andA w,,= w,—2w,. These equations show that the changethat its phase rotates at a rate greater than the original chemi-
of population in mode 4 is half that of mode(&s required cal potential(we discussed this issue in Sec. IV A when de-
by energy conservatigrand therefore thgb,|?+2|b,|?isa  ciding what basis to use to analyze the simulatiofihe
constant of the motion. They can be extended readily to dealdditional rotation describes the shift in the energy of the
with the more general case that a large number of modes are
strongly coupled.

Equations of precisely this form have been studied in the 3Simulation of Eqs(35) shows that ib$(0) is nonzero and has a
context of harmonic generation in nonlinear opti@&?], phase that is not at- /2 to that of b3*(0) then the population
where it is shown that a general solution can be written in theransfer is periodic even ik w,,=0.



57 NONLINEAR MIXING OF QUASIPARTICLES IN AN ... 3827

condensate caused by the presence of a finite amount of edependent formalism at finite temperatures does gkt it
citation and is observed numerically to be independent ofs computationally prohibitive, especially in more than one
any mixing between excited states that may oéodithough  dimension. Thus, if the NLSE can be used to estimate the
the frequency shift is small, its effect is cumulative and weevolution of incoherent quasiparticles, then it will provide a
must take it into account if we are to be able to treat theyseful tool to attack the problem of finite-temperature damp-
change in the condensate coefficiegtas a small parameter. jng. In fact, the NLSE has recently been used to simulate the
This means that we must describe the wave function using 8xperimental procedure for determining the damping of ex-
basis set corresponding to the new chemical potential. Thgjtations on the condensate and gave a decay rate for the
a_nalytiqal pr_edictions gi_ve the_ best fit to the results of thebreathing mode that was in good agreement with the low-
simulations if we use this basis. temperature experimental resu[4]. This provides addi-

Once the rotation of the Condensate. phase has bgen fonal motivation for attempts to extend the use of the NLSE
moved, we observe that the change in its population iS5 finite temperatures

roughly proportional to the population in mode 4 for the case Use of the NLSE at finite temperatures represents an at-

that only modes 2 and 4 need be considesa® Figs. 1 and tempt to simulate the quantum field using a classical one. We

2). We can understand this from the fact that the evolution

preserves the normalization of the wave function. The norSaw In Sec. |l that a classical approdéhearization on the

malization is given by d®r |¥|?, so substitution of Eq:23) NLS,E) and. a quantum approadtliagonalization of a qua-
leads[as in Eq.(24)] to dratic Hamiltonian gave the same results for the excitations

of the system. This was because the two approaches could be
related by allowing the quasiparticle operators to become
coherent. We wish to extend this idea to consider the dynam-
ics of the system and this involves using the time-dependent
+(Uv)bibj+(Ufv¥)bfbf}=c, (38  NLSE to describe the evolution of the quantum field. The
guantum-mechanical evolution can be obtained from the

wherec is a constant of order 1. This contains terms thatmany-body Hamiltonian of Eq(13) and is given by
oscillate on a fast time scale g must also have fast oscil-

lations if the normalization is to be conserved. However, we

are only interested in the slowly varying terms that describe alif(r 0
gil\?elsong—tme evolution. Consideration of these terms alone t, =HoW(r,t)+ U (r,) W (r,t)¥(r,1),

(41)

J d®r |W|2=|1+by|2+ X fd3r {(ufu;+v}v)bfb;
1)

102+ 3 o (1T 2+ TR n=c~1. 39

o Where\if(r,t) is normalized taN. This has exactly the same
For the case that only modes 2 and 4 are significantly occu-

pied, we also know thalth,|2+2|b,|2 is a constant of the form as the NLSE if we replace the field operat(r,t) by

motion from energy conservation arguments. Using this irftS expectation value in a coherent state, i.e., the funcifon
Eq. (39) gives that appears in Eq1). This is precisely the procedure used

in the linear analysis and motivates the use of the NLSE in

- - the nonlinear regime.
|1+bg?—1~ fd3r {2(Juz>+v,l?) In a recent paper Kagan and Svisturi@] give a justi-
fication for the use of the NLSE in this context and argue
—(|ug?+]v4®} 042, (40)  that it is valid even when no condensate is present and the

system is far from equilibrium, provided that the single-
which shows that the change in the condensate populatioparticle modes are highly occupied. They show that if the
follows that in mode 4. When more modes are involved thissingle-particle density matrix is diagonal in the number-state
result will no longer holdsee Fig. 4, for examplealthough  representation then it is also approximately diagonal in a
extensions of it can readily be derived from E89) and the  coherent-state representation, with no correlation between

new energy conservation condition. the phases of the various coherent states in the ensemble. In
addition, each coherent state evolves independently to a good
VI. EXTENSION TO FINITE TEMPERATURES approximation. Thus, to represent the evolution of the den-

. . . Sity matrix we can perform many classical simulations with
_ The NLSE simulates the evolution of coherent quasipary arioys initial phases and then average over these phases. We
ticles since at all times the coefficiertisin Eq. (23) have a  pight expect this representation to be approximately valid as
well-defined phase in addition to a well-defined amplitude. 'flong as the evolution is not strongly dependent on the phase
one is intgn_asted in extending_the techniques presented hegeq indeed it is argued in Ref25] that for all practical
to study finite-temperature mixing effects then one would, rhoses it is sufficient to consider the evolution of a coher-
need to simulate incoherent quasiparticles. Although a timeant state with one particular phase.
Applying the arguments above in a quasiparticle basis
means that an incoherent quasiparticle with no well-defined
“This energy shift is largelybut not entirely due to the change in  phase can be described by a collection of coherent quasipar-
the normalization of the wave function. ticles with phases distributed evenly around the unit circle.
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We saw in Sec. IV B and Fig. 6 that the quasiparticle evolu-have observed that the evolution is dominated by processes
tion does not strongly depend on the phase of the initiathat conserve energy and that the initial population can be
excitation when the amount of excitation and the nonlinearteversibly transferred to an energetically matched mode.
ity are not too large. This confirms our expectations for theThis is a result of the fact that in an inhomogeneous system
case that the quasiparticles are well defined and form ¢here are only discrete states rather than a continuum. We
meaningful basis. Eventually a description of the evolutionhave shown analytically that the time scale for the transfer of
in terms of quasiparticles involves a strong dependence opopulation is inversely dependent on the nonlinearity and the
their phase, but this represents a breakdown in the quasipaamount of initial excitation and is generally of the order of
ticle description of the system and does not imply that théens of trap cyclegbetween 0.01 and 0.1 s for the current
NLSE can no longer be used to simulate the quantum fieldexperimental traps We do not see the exponential decay of
Thus we propose that the NLSE can be used to approxithe initial population reported in a recent experimiggit but
mately simulate the full quantum field over a wide range ofthis was performed at temperatures that were significant frac-
temperatures. At very low temperatures the justificationtions of the critical temperature. We believe that the revers-
comes from the fact that it can be derived from a producible transfer of population between modes should be observ-
wave function in which all the atoms are in the same singleable at low temperatures and it would be interesting if this
particle state. At high temperatures the justification is thatould be seen experimentally.
the relevant excited statésingle particle or quasiparticle Finally, we have argued that the NLSE can be used to
are highly occupied so that a classical approximation is exapproximately simulate the full quantum field and that there-
pected to be valid. Of course a classical simulation canndfore the techniques presented here can be extended to study
reproduce all aspects of the quantum evolution and one corthe evolution of incoherent quasiparticles in the presence of a
sequence of this that was observed in the numerical simuldhermal component. This means that one can estimate finite-
tions of Sec. IV B is the absence of spontaneous emissiotemperature mixing effects without the need to apply com-
terms in the quasiparticle evolution. Nonetheless, the use of putationally more demanding approaches such as simulating
classical field to represent a quantum one is a common afthe full time-dependent Hartree-Fock-Bogoliubov equations.
proximation in a wide range of physical contexts as it is
often the only approach that is computationally feasible and
it is expected to be accurate enough for practical purposes ACKNOWLEDGMENTS
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