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Nonlinear mixing of quasiparticles in an inhomogeneous Bose condensate
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We use a one-dimensional time-dependent nonlinear Schro¨dinger equation~NLSE! to study the temporal
evolution of excited-state populations of an inhomogeneous Bose condensate. We show how one can decom-
pose an arbitrary single-particle wave function into a condensate and a collection of quasiparticles and we use
this method to analyze simulations in which the initial wave function contains a finite amount of excitation in
a single mode. The nonlinear mixing of the quasiparticles is dominated by processes that approximately
conserve energy and we see the reversible transfer of excitation between energetically matched modes. We
show analytically how the time scale for nonlinear mixing depends on the amount of initial excitation and the
size of the nonlinearity. We propose that, by averaging over the phase of the excitations, the NLSE can be used
as a simple tool for the simulation of incoherent excitations. This will allow the techniques presented here to
be used to explore finite-temperature mixing effects.@S1050-2947~98!00105-X#

PACS number~s!: 03.75.Fi
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I. INTRODUCTION

Recent experiments@1,2# on the excitation spectrum o
Bose-condensed trapped alkali gases have provided str
agreement with theory@3,4# based on the nonlinear Schro¨-
dinger equation~NLSE! of Ginzburg and Pitaevskii, and
Gross@5#. As well as measuring the energies of the exci
tions, however, the experiments can also probe their da
ing and observe decay rates that vary strongly with temp
ture @6#. Theoretical predictions for these decay rates e
for homogeneous gases~see, for example, Refs.@7,8#! and
recently some predictions for the inhomogeneous cond
sates of current experiments have appeared@9,10#. As part of
an approach to this problem we have been looking at
nonlinear mixing of the excitations~quasiparticles! on the
condensate and we present some of the results from
work in this paper. Although we concentrate here on sim
processes at zero temperature, we believe that the techn
used can be extended to estimate finite-temperature mi
processes using only the NLSE.

In Sec. II we briefly review the theory of the zero
temperature excitations on the condensate. Convention
the shapes and frequencies of the excitations are given b
Bogoliubov–de Gennes equations and are not orthogon
the condensate. It is possible to modify them, however
produce orthogonal excitations and we show how this can
achieved. In Sec. III we present a technique that allows
to decompose a single-particle wave function into a cond
sate and a collection of quasiparticles, even if one uses
conventional excitations that are not orthogonal to the c
densate. We use this decomposition technique in Sec. I
analyze the results of simulations in which we propagate
NLSE with a finite initial population in a single-quasipartic
mode. As the amount of excitation is increased we obse
nonlinear mixing into other quasiparticle modes. The evo
tion is dominated by processes that approximately cons
571050-2947/98/57~5!/3818~12!/$15.00
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energy and we observe the reversible transfer of popula
between energetically matched modes. In Sec. V we take
analytical approach and derive a result for how the time sc
for nonlinear mixing depends on the amount of initial ex
tation and the size of the nonlinearity. Finally, in Sec. VI w
argue that the NLSE can be used to approximately simu
the evolution of the full quantum field and that therefore t
techniques presented here for the analysis of nonlinear m
ing can be extended to study finite-temperature effects s
as the decay of excitations.

II. REVIEW OF THE THEORY OF QUASIPARTICLES

A number of authors have considered the problem of fi
ing the shapes and frequencies of the excitations on an in
mogeneous condensate~see, for example, Refs.@3,4,11,12#!.
The fundamental excitations, or normal modes, are term
‘‘quasiparticles’’ and at low temperatures the system may
considered to consist of a condensate and a thermal pop
tion of weakly interacting quasiparticles. The shapes and
ergies of the quasiparticles can be obtained either by con
ering linear deviations around the condensate or
describing the system using an approximate quadratic Ha
tonian that can be diagonalized using standard methods.
details of these two approaches can be found in Ref.@12# and
we give a brief review of the relevant theory below.

At very low temperatures a dilute gas of identical boso
can form a Bose-Einstein condensate~BEC! in which all the
atoms are described by the same wave functionC(r ,t). The
equation of motion for this wave function is given by th
time-dependent NLSE

ı\
]C

]t
5Ĥ0C1U0uCu2C, ~1!
3818 © 1998 The American Physical Society
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57 3819NONLINEAR MIXING OF QUASIPARTICLES IN AN . . .
whereC is normalized to the number of particles in the tra
i.e., *d3r uCu25N. Ĥ0 is the noninteracting single-particl
Hamiltonian given by

Ĥ052
\2

2m
¹ r

21Vtrap~r !, ~2!

whereVtrap(r ) is the magnetic potential that confines the
oms. In accordance with the current experimental configu
tions, we will take this to be harmonic. In Eq.~1! the particle
interactions are modeled by a local potential. In three dim
sions~3D! this is achieved using the Fermi pseudopoten
@13,14#

Vint~r2r 8!5U0d~r2r 8!, ~3!

whereU0 is related to thes-wave scattering lengtha by

U05
4p\2a

m
. ~4!

This is a common approximation in the theoretical appro
to BEC and should be valid for the dilute gases under c
sideration. A detailed discussion of the validity of this r
placement can be found in Ref.@15#.1

Equation ~1! has a lowest-energy eigenstate solution
the form

C~r ,t !5cg~r !e2ımt, ~5!

where m is the chemical potential of the system. Thuscg
satisfies the time-independent NLSE

mcg5Ĥ0cg1U0ucgu2cg . ~6!

We can find the excitations on top of this ground-state,
condensate, wave function by considering a small dis
bance and linearizing with respect to it. Since the nonlin
term in Eq. ~1! couples waves traveling in opposite dire
tions we look for a solution of the form

C~r ,t !5e2ımtFcg~r !1(
i

$ui~r !cie
2ıv i t

1v i* ~r !ci* e1ıv i t%G , ~7!

where theci ’s are constants. If we substitute this into Eq.~1!,
linearize with respect to theci ’s, and equate coefficients o
e6ıvt, then we find the so-called Bogoliubov–de Genn
~BdG! equations

1In our one-dimensional simulations we can still use Eq.~3!, but
the parameterU0 can no longer be directly related to thes-wave
scattering length as in Eq.~4!, since this equation is only valid in
3D. In our simulations, therefore,U0 is an input parameter describ
ing the importance of the nonlinear term, but is not directly rela
to physical quantities.
,

-
a-

-
l

h
-

f

r
r-
r

s

Lui1U0cg
2v i5v iui ,

Lv i1U0cg*
2ui52v iv i , ~8!

where

L[Ĥ02m12U0ucgu2. ~9!

Equations~8! imply that theui ’s and v i ’s satisfy the or-
thogonality and symmetry relations

E d3r $uiuj* 2v iv j* %5d i j , ~10!

E d3r $uiv j2v iuj%50. ~11!

In this approach, the normalization wheni 5 j in Eq. ~10! can
be freely chosen since Eqs.~8! are linear. However, the
above relations have a deeper significance in the fact tha
quantum quasiparticle operators obey Bose commutation
lations and this forces the normalization to 1. Equations~6!
and ~8! completely determine the shapes and frequencie
the linear excitations on the condensate. Analytical soluti
can be obtained in the homogeneous case and for the tra
gas in the noninteracting and strong-coupling~Thomas-
Fermi! limits @4#, but otherwise they must be solved nume
cally. This is achieved by converting to a basis set and
method is described in detail in Ref.@12#.

One feature of the BdG equations that is particularly i
portant later in this paper is the existence of an exact solu
with v50, u0(r )5cg(r ), andv0(r )52cg* (r ). This ‘‘con-
densate’’ mode has zero norm, but otherwise satisfies
orthogonality and symmetry relations of Eqs.~10! and ~11!,
which both take the form

E d3r $cg* ui1cgv i%50. ~12!

However,*d3r $cg* ui% and *d3r $cgv i% are not separately
zero, so the excitations defined by Eqs.~8! are not orthogo-
nal to the condensate. This point is discussed further be
but it is shown in Sec. III that the partial orthogonality of E
~12! is sufficient to allow one to project out the condensa
and quasiparticle contributions to any single-particle wa
function.

The second approach to finding the excitations of the s
tem involves working with the many-body Hamiltonian
which in the field operator formalism is given by

Ĥ5Ed3r H Ĉ†~r ,t !Ĥ0Ĉ~r ,t !

1
1

2
U0Ĉ†~r ,t !Ĉ†~r ,t !Ĉ~r ,t !Ĉ~r ,t !J , ~13!

where Ĉ(r ,t) is the usual Bose field operator. We follo
Refs.@16,17# and write the field operator as

Ĉ~r ,t !5e2ımt@cg~r !1 d̂~r ,t !#, ~14!

wherecg(r ) satisfies Eq.~6! and the operatord̂(r ,t) repre-
sents quantum and thermal fluctuations above the con
sate. If we substitute Eq.~14! into the Hamiltonian and dis-

d
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3820 57S. A. MORGAN, S. CHOI, K. BURNETT, AND M. EDWARDS
card terms that contain three or fourd̂(r ,t) operators then we
are left with a quadratic Hamiltonian that can be diagon
ized exactly. This is achieved by the Bogoliubov transform
tion

d̂~r ,t !5(
i

$ui~r !b î1v i* ~r !b̂ i
†% ~15!

if the functionsui andv i are chosen to satisfy the equatio

E d3r $ui* @Luj1U0cg
2v j #1v i* @Lv j1U0cg*

2uj #%5v id i j ,

~16!

E d3r $ui@Lv j1U0cg*
2uj #1v i@Luj1U0cg

2v j #%50.

~17!

In addition, since the operatorsd̂(r ,t) and $b̂ i% satisfy the
usual Bose commutation relations, there are further res
tions on the possible values ofui and v i , which are the or-
thonormality and symmetry conditions of Eqs.~10! and~11!
@18#.

It is clear by inspection that the BdG relations of Eqs.~8!
satisfy Eqs.~16! and ~17! and are therefore sufficient to d
agonalize the Hamiltonian. However, it has been pointed
by Gardiner that they are not necessary conditions@the nec-
essary conditions are given by Eqs.~16! and ~17!# and that
this allows one to choose the excitations to be orthogona
the condensate@19#. This is achieved by projecting out th
overlap with the condensate from the solutions to the B
equations. Thus we define newu andv functions by

ũ i5ui2aicg /N0 ,

ṽ i* 5v i* 1ai* cg /N0 , ~18!

where ai5*d3r $cg* ui%52*d3r $cgv i% @the equality of
these two projections follows from Eq.~12!# and
*d3r ucgu25N0. The new excitations satisfy the modifie
BdG equations

Lũ i1U0cg
2ṽ i5v i~ ũ i1aicg /N0!,

Lṽ i1U0cg*
2ũ i52v i~ ṽ i2aicg* /N0! ~19!

and still diagonalize the quasiparticle Hamiltonian, givi
the same eigenvalues as before. The orthogonality and s
metry relations of Eqs.~10! and ~11! are still satisfied, as
they must be since they are required by the Bose comm
tion relations. Further discussion of the nature of these e
tations~with particular emphasis on the conservation of t
number of particles! can be found in Refs.@20,21#. In the rest
of this paper we will refer to the excitations that obey E
~19! as the orthogonal excitations and the ones that obey
~8! as the linear excitations.

After the Bogoliubov transformation the Hamiltonia
takes the form

Ĥ5E01(
i

v i b̂ i
†b̂ i , ~20!
l-
-

c-

ut

to

m-

a-
i-

.
q.

whereE0 is some constant. Thus the evolution of the qua
particle operators is given to this order by

b̂ i~ t !5b̂ i~0!e2ıv i t. ~21!

If we now allow the quasiparticles to become coherent
that they have nonvanishing quantum expectation val

^b̂ i(0)&5bi(0)Þ0, then we find that the expectation valu
of the field operator becomes

^Ĉ~r ,t !&5C~r ,t !5e2ımtFcg~r !1(
i

$ui~r !bi~0!e2ıv i t

1v i* ~r !bi* ~0!e1ıv i t%G , ~22!

which has the same form as Eq.~7!. This provides the con-
nection between the two approaches to finding the exc
tions of the system. It is of course unsurprising that the t
methods lead to the same result since in the first case
linearize around a classical field and in the second we de
a quantum field of noninteracting oscillators, which we th
allow to become classical. One would not expect the orde
which we carried out these procedures to affect any phys
predictions.

III. QUASIPARTICLE PROJECTION METHOD

We have shown in Sec. II that the quasiparticles are
linear excitations on the condensate. In the limit of infinite
mal excitation, they are therefore the eigenstates of the
tem. In general, however, finite amounts of excitation will
present and this will result in nonlinear effects owing to t
higher-order terms neglected in the linearization procedu
In order to be able to follow the evolution of the quasipar
cles, we require a method of decomposing an arbitr
single-particle wave function into a condensate and a col
tion of excitations. This is achieved using the orthogona
and symmetry relations that the quasiparticles satisfy and
describe the method we use in this section.

In the linear regime the quasiparticles do not interact w
the condensate. Once there is a finite amount of excitat
however, we must consider the change in the condensate
to the excitations and we therefore write the wave function

C~r ,t !5e2ımtF ~11bg!cg~r !1(
i .0

$ũi~r !bi~ t !

1 ṽ i* ~r !bi* ~ t !%G . ~23!

This expansion is a simple extension of that in Eq.~7! that
allows the condensate and quasiparticle populations to v
with time. Any single-particle wave function can be writte
in this way sincecg and its excitations form a complete se
The summation excludes the zero-frequency mode since
effect is contained in the imaginary part of the condens
coefficient~see the discussion at the end of this section!. For
convenience we normalize the condensate wave function
and change the parameterU0 in Eq. ~1! to N0U0, whereN0
is the number of particles in the condensate. The functionũi
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57 3821NONLINEAR MIXING OF QUASIPARTICLES IN AN . . .
and ṽ i are normalized according to Eq.~10! and the total
wave function of Eq.~23! is therefore normalized as

E d3r uCu25u11bgu21(
i , j

Ed3r $~ ũ i* ũ j1 ṽ i* ṽ j !bi* bj

1~ ũ i ṽ j !bibj1~ ũ i* ṽ j* !bi* bj* %. ~24!

The interpretation of the coefficients is therefore thatN0u1
1bgu2 gives the condensate population andN0ubi u2 gives the
number of quasiparticles in leveli .

To determine the coefficientsbi , we need to apply the
quasiparticle orthogonality and symmetry conditions. This
simplest if we work with the orthogonal excitations that we
introduced in Eq.~18!. The quasiparticle coefficients ca
then be obtained by calculating the quantities

E d3r $ ũ j* Ce1ımt2 ṽ j* C* e2ımt%

5(
i

FbiEd3r $ ũ j* ũ i2 ṽ j* ṽ i%

1bi* Ed3r $ ũ j* ṽ i* 2 ṽ j* ũ i* %G5bj , ~25!

where we have used Eqs.~10! and~11! in the final step. The
condensate coefficient is obtained from the expression

E d3r $cg* Ce1ımt%511bg . ~26!

In practice, we carry out this projection procedure within
basis set description since this is more convenient num
cally.

Since the linear excitations are the ones convention
defined, it is interesting to note that the above decomposi
is still possible~although somewhat more complicated! even
if we do not use orthogonal excitations. This is because o
the partial orthogonality of Eq.~12! is actually necessary fo
the decomposition. We consider the same expressions
Eqs.~25! and ~26!, which now become

E d3r $uj* Ce1ımt2v j* C* e2ımt%5~21bg1bg* !aj* 1bj ,

~27!

E d3r $cg* Ce1ımt%511bg1(
i

$biai2bi* ai* %, ~28!

where theai ’s are the overlap coefficients defined as in E
~18!, but with N0 set equal to 1, i.e.,ai5*d3r $cg* ui%
52*d3r $cgv i% with *d3r ucgu251. These equations ar
no longer sufficient to determine all the coefficients and
must also consider the quantity

E d3r $cg* Ce1ımt1cgC* e2ımt%521bg1bg* , ~29!

where we have used Eq.~12! in obtaining the right-hand
side. Since the coefficientsai are all known, the combination
s

ri-

ly
n

ly

in

.

e

of this equation with Eq.~27! leads to the values of all the
coefficientsbj , which can then be used in Eq.~28! to deter-
mine the coefficientbg .

Thus, whether or not one uses excitations defined to
orthogonal to the condensate, one can uniquely decomp
an arbitrary single-particle wave function into a condens
and a collection of excitations. The relationship between
coefficients found in the two methods is easily deduced fr
Eqs.~18! to be

b̃ i5bi , iÞg

b̃g5bg12ı(
iÞ0

Im @aibi #, ~30!

where Im means ‘‘the imaginary part of’’ and the tilde ind
cates quantities in the basis of orthogonal excitations. T
the two descriptions differ only in the imaginary part of th
condensate coefficient. In fact, this corresponds to the z
mode discussed earlier, as we can see by writing out
change in the wave function which that mode produces:

dC~r ,t !5cgb02cg* b0* 5ıcgIm @b0#, ~31!

where we have used the fact thatcg can be chosen to be rea
In the linear limit we haveb0;e2ıv0t, which is a constant
sincev050. ThusdC(r ,t) is proportional to the condensat
and independent of time and can therefore be absorbed
the original definition of the condensate wave functio
However, in the nonlinear limit it is no longer true tha
Im @b0# is independent of time and so in general this mo
corresponds to a change in the imaginary part of the cond
sate coefficient. In the limit of small excitation~or short
times! this is equivalent to a rotation of the condensa
phase. We would expect to find such a mode because
Hamiltonian of Eq.~13! is invariant with respect to change
in the phase of the field operator. This symmetry was bro
in Eq. ~14! where a specific phase was assigned to the c
densate. The remnant of the original symmetry appears in
existence of a mode at zero energy corresponding t
change in this phase and this is the so-called Goldstone m
that appears in theories involving spontaneous symm
breaking.

The quasiparticle projection technique described in t
section allows one to analyze in detail the results of a
simulations performed using the NLSE. We shall use it in
next section to study the nonlinear mixing of quasiparticl
but it can also be used in a variety of other simulations s
as a study of the efficiency with which various perturbatio
produce excitations.

IV. NONLINEAR MIXING: NUMERICAL RESULTS

The quasiparticle projection method described above
lows one to determine the populations of the quasipart
modes~by which we mean the coefficientsubi u2) for an ar-
bitrary wave function. The combination of this with a tim
evolver for the NLSE allows one to perform a wide range
simulations to explore the effects of nonlinear mixing of t
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excitations. The simplest such simulation is one in which
wave function is allowed to evolve freely and initially con
sists of a condensate and an excitation in a sing
quasiparticle mode. This is the kind of simulation we sh
discuss in the rest of this paper, although more complica
initial configurations containing many excited modes will
the subject of future work. All our simulations are perform
in 1D, although the theoretical analysis of Sec. V applies
any dimension.

A. Description of method

Our numerical procedure is as follows. First we solve
time-independent problem formulated in Eqs.~6! and ~8!,
taking as the input the chemical potentialm of the system.
This provides us with the condensate populationN0 and the
functional forms ofcg and theui ’s andv i ’s. Using these we
construct an initial wave function that consists of a cond
sate and a certain amount of excitation in a single m
~modek say!.2 This is achieved by writing the wave functio
in the form of Eq.~23! and settingbk(0) equal to the re-
quired value and all the otherbi coefficients~including bg)
to zero. The total condensate coefficient is therefore 1
tially. This procedure changes the overall normalization
the wave function to a value that is greater than 1 by
amount of orderbk

2(0). We then propagate this wave func
tion in the time-dependent NLSE of Eq.~1! ~with U0 re-
placed byN0U0) and save the result at various times
produce a set of stored wave functions that sample the
lution. Each of these wave functions is analyzed using
quasiparticle projection method to obtain all the coefficie
bi as a function of time.

Since we are more interested in the quasiparticle pop
tions than in their phases, we construct a number of ini
wave functions that differ only in the phase of the initi
excitationbk(0). Each of these wave functions is separat
evolved and the evolutions of the quasiparticle populati
are obtained by averaging over all these simulations. T
we consider̂ ubi u2&5(1/NS)(Subi u2, where angular bracket
denote the mean value and(S denotes a sum over theNS
simulations. The results quoted in this paper come from
eraging over eight simulations with the initial phase u
formly distributed around the unit circle. Although not d
rectly relevant to the results we shall discuss here, this ph
averaging may be seen as an attempt to recover the evol
of incoherent quasiparticles from the coherent evolut
given by the NLSE~this is the subject of Sec. VI!.

We should briefly discuss the question of which ba
should be used to analyze the simulations. The initial w
function is constructed using the solutions to the tim
independent NLSE and the BdG equations for some part
lar value of the chemical potentialm, so we could describe
the evolution using that same basis. However, the additio
a finite amount of excitation changes the chemical poten
of the system and so a better basis to use is one that c
sponds to its new value. This can be found by observing
rotation rate of the condensate phase since this varie

2In our simulations we worked with the linear excitations, i.e., t
ones that satisfy the BdG relations of Eqs.~8! rather than Eqs.~19!.
e
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e2ımt. Unfortunately, this requires a knowledge of the co
densate coefficient as a function of time, which itself nec
sitates a basis decomposition. Consequently, we first ana
the simulations using the original basis~from which the ini-
tial wave function was constructed! and from this determine
the rate of rotation of the condensate phase. This provide
with the value of the new chemical potential, which we th
use in Eqs.~6! and~8! to find the new wave functionsui and
v i . The simulations are then reanalyzed using this basis.
observe that the evolution of the quasiparticle population
much smoother when analyzed in this basis than in the or
nal one and thus the results are more easily interpreted.
choice of basis is a matter of finding the simplest descripti
in which the evolution can be most easily interpreted
terms of physical processes involving well-defined quasip
ticles.

B. Results and interpretation

In this section we will describe the results of our nume
cal simulations. In interpreting these results we will spe
loosely of the collision of quasiparticles and their creati
and annihilation since these are the physical processes o
ring in the gas. We actually observe a smooth evolution
the quasiparticle populationsubi u2, however, and the result
may equally well be interpreted in terms of harmonic ge
eration produced by the nonlinearity.

The simplest simulation we can perform is to start with
very small amount of excitation in a single mode and co
firm that its evolution isbi;eıv i t as predicted from the linea
response analysis of Sec. II. We did this using a conden
with m51 and an initial excitation in mode 2 given b
ub2(0)u50.01. Mode 2 is the lowest-lying nontrivial excita
tion ~mode 1 is a simple displacement of the center of ma!
and corresponds to a ‘‘breathing mode’’ of the condensa
The population in the mode did not change significantly d
ing an evolution of length 30 trap periods, which corr
sponds to a time of the order of a few tenths of a second
trap frequencies of order 100 Hz as in current experime
In addition, the phase of the excitation evolved at the c
stant rate expected from the linear analysis.

As the amount of excitation in the initial mode is in
creased, nonlinear mixing processes into other modes
come important. We performed simulations withub2(0)u
50.05, 0.1, 0.2, and 0.5, again on top of a condensate w
m51. Results from the last two of these simulations a
shown in Figs. 1 and 2. The effect of the nonlinear mixing
predominantly a transfer of the quasiparticle population
tween modes 2 and 4. Since mode 4 is at roughly twice
energy of mode 2, this is just the frequency-doubling proc
that we would expect from the form of the nonlinearity.
the case of the simulation withub2(0)u50.5 ~Fig. 2!, we can
see that the process is reversible. This is a consequenc
the fact that in a trap there is a discrete set of states ra
than the continuum required for an irreversible decay of
excitation.

A number of features of Figs. 1 and 2 are of interest. Fi
the rate at which the quasiparticle population is transfer
between modes is seen to depend on the amount of in
excitation. This is a consequence of the process being n
linear. Second, we can see that the change in populatio
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mode 2 is roughly twice that of mode 4. This is a cons
quence of the requirement that energy be conserved. W
mode 2 is populated, the mechanism for the transfer of po
lation is the mutual annihilation of two quasiparticles in th
mode, followed by the formation of a single quasiparticle
twice the energy, i.e., in mode 4~note that quasiparticle
number is not conserved!. Transfer of population from mode
4 to mode 2 is achieved via the reverse process, namely
decay of a single quasiparticle into two of half the energy.
each case two quasiparticles in mode 2 are involved for e
one in mode 4. A third feature of the figures is that t
change in the condensate population follows that in mod
A physical explanation for this is that a three-quasiparti
process as described above is composed of the scatteri
two real particles, in which one particle either enters
leaves the condensate. It can also be viewed as a co
quence of the fact that the normalization of the wave fu

FIG. 1. Evolution of the average quasiparticle populations a
the change in the condensate population (u11bgu221) for m51
and ub2(0)u50.2. The pluses and asterisks are the predictions
Eq. ~37! for modes 2 and 4, respectively.

FIG. 2. Evolution of the average quasiparticle populations a
the change in the condensate population form51 and ub2(0)u
50.5. The pluses and asterisks are results from the numerical s
lation of Eq.~35! for modes 2 and 4, respectively.
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tion is conserved, as is discussed in Sec. V.
We can also observe the effect of nonlinear mixing on

population of mode 2 by plotting the width of the condens
as a function of time. This is because mode 2 is a breath
mode in which the width of the condensate oscillates in ti
~this can be seen by looking at its functional form, for e
ample, in the Thomas-Fermi limit!. As such, it is readily
excited experimentally as one only needs to vary the curre
in the trapping coils symmetrically. In fact, observation
the width of the condensate mimics the technique used
perimentally to measure the frequencies and decay rate
the excitations@1,2,6#. Figure 3 shows the behavior of th
condensate width for the simulation withm51 andub2(0)u
50.5. As expected, the width oscillates at a frequency of
~in units of the trap spacing!, which is the frequency of mode
2 for this condensate. Furthermore, the amplitude of osc
tion does indeed closely follow the population in mode 2
given in Fig. 2. The fact that the reversible transfer of pop
lation into and out of mode 2 can be seen in the amplitude
the oscillations in the condensate width leads us to hope
it will be possible to observe it experimentally.

So far we have focused on results for a condensate w
m51, as the amount of excitation in mode 2 is increas
The next thing to consider is what happens when we incre
m, i.e., the number of particles in the condensate, while
ing the amount of excitation in the mode. Since an incre
in m involves an increase in the nonlinearity responsible
the mixing effects we would naively expect to see much
same behavior as before, but on a shorter time scale.
though this is observed, we also notice that the magnitud
the mixing decreases and modes other than mode 4 can
an important role. Figures 4 and 5 shows plots of the qu
particle populations for condensates withm52 and 4, re-
spectively, with an initial excitation ofub2(0)u50.2. A com-
parison with Fig. 1 shows that the transfer of excitation do
indeed occur faster than form51, but with a smaller ampli-
tude. This is a consequence of the fact that the energy ma
ing between modes 2 and 4~characterized by the energ
differenceDv245v422v2) is less good for the larger val
ues ofm, resulting in a suppression of the nonlinear mixin
This effect is discussed further in Sec. V.

As Dv24 increases, the quasiparticle evolution becom
less dominated by the coupling between modes 2 and 4
the presence of other modes becomes increasingly impor
In particular, once we have a significant population in bo
mode 2 and mode 4, we can observe the effect of the a
hilation of a single quasiparticle from each of these mode
form one in mode 6, which is approximately an energ
conserving process. The effect of this can clearly be see
Fig. 4 as a growth and decay in the population in mode
One consequence of the transfer of population to mode
the absence of one of the repopulation peaks in mode 2,
remnant of which can just be seen in Fig. 4 betweent55 and
10. The three main processes occurring during this time
the decay of mode 4 to mode 2, frequency doubling of mo
2 to mode 4, and the collision of a quasiparticle in mode
with one in mode 2 to give one in mode 6. The net effec
a depletion of mode 4, a growth in mode 6, and a sm
growth in mode 2. Subsequently, mode 6 decays back
modes 4 and 2 and almost all the original population ev
tually returns to mode 2. Processes of this kind provide
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mechanism by which the energy, initially in a single mode
ultimately dissipated among a large number of modes. C
sequently, they limit the number of times the population
turns to the initial state and control how the system relaxe
equilibrium. Since they rely on the presence of excitation
more than a single mode they are not the dominant mix
processes if we start with only one excited mode. At fin
temperatures, however, when many modes are excited, t
processes can be expected to play a more significant role
may lead to an effectively irreversible decay of the init
excitation.

So far we have only considered the case that mode
excited initially and we should briefly mention the behav
of other modes. For comparison, we looked at mode 5 s
it is significantly more energetic and has opposite~odd! par-
ity. For a condensate withm51, this mode is much more
stable than mode 2 and there is very little mixing even for
initial excitation of ub2(0)u50.2. The reason for this is tha
the dominant mixing should be into mode 10 since this is
roughly twice the energy. However, the energy gapDv5 10
5v1022v5 is rather large for this condensate and so
nonlinear mixing is strongly suppressed.

It is also instructive to consider the case that mode 4
initially populated. For a condensate withm51 we have
seen that this mode is energetically very well matched
mode 2 and we might therefore expect to see it de
strongly into this mode, just as we saw the repopulation
mode 2 from mode 4 in Fig. 2. In fact, this does not happ
and the excitation, like that in mode 5, is very stable. T
reason for this can be seen from a perturbative argumen
the initial mode has a frequencyvl then the dominant non
linear terms att50 have frequency components at 0 a
62vl . Thus there is a strong coupling to the condens
and to the mode nearest 2vl . There is only a weak coupling
however, to the other modes including the one with ene
closest to1

2 vl . This is a consequence of using the NLSE
simulate the quasiparticle evolution. Quantum mechanic
we would expect the rate for a boson scattering process
some state to be proportional ton11, wheren is the number
of bosons already occupying that state. Thus there is a
for the process even ifn50. In the NLSE, however, the

FIG. 3. Evolution of the standard deviation width of the wa
function for a condensate withm51 andb2(0)50.5.
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quasiparticles operators are replaced by complex number
there is no spontaneous emission term. Thus mode 4 doe
decay to mode 2 in the absence of a population in that m
and this explains its stability. In reality spontaneous dec
processes will occur and in principle one could put them i
the NLSE by hand using a quantum jump approach, altho
this would greatly slow down the computation. Howeve
one can easily infer the rate for such processes by cons
ing the corresponding stimulated rate and replacing its
pendence on the quasiparticle populationsubi u2 with ubi u2

11.
Finally, we should discuss how much the evolution of t

quasiparticle populations depend on the phase of the in
excitation. Since the leading-order term in the evolution
the quasiparticles is just a phase rotation~corresponding to
the energy of the quasiparticle!, two simulations that star
with a phase difference off should have the same evolutio
but with the origin of time displaced by an amountf/v i , as
long as any nonlinear effects are negligible in this time p
riod. Thus any fast oscillations in the evolution of the pop
lations will cancel out when we average over phases
only processes that produce slow changes will have an ef
It is shown in Sec. V that such processes are ones that
serve energy, so that any variation from the mean evolu
is a consequence of energy-nonconserving processes. T
should be negligible if the nonlinear mixing rates are sm
so that the quasiparticles provide a good basis. Figur
shows the same results as Fig. 1 except that instead of
ting the quasiparticle populations averaged over eight sim
lations, the results from each simulation separately are p
ted and superimposed. Each of these simulations corresp
to a particular choice of phase for the initial excitation a
Fig. 6 clearly shows that the variation in the quasiparti
populations from the mean value at any time is indeed v
small. The variation in the condensate population is larg
however, and is comparable to the amount it has chan
although this is still a small fraction of the total condensa
population. This is a result of the fact that the condensate
a large response at zero frequency.

FIG. 4. Evolution of the average quasiparticle populations a
the change in the condensate population form52 and ub2(0)u
50.2.
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57 3825NONLINEAR MIXING OF QUASIPARTICLES IN AN . . .
As we increase the nonlinearity or the amount of init
excitation then we see a stronger dependence on the in
phase of the excitation as expected. Eventually we will re
a regime where the evolution depends so strongly on
initial phase that we cannot meaningfully interpret the res
of the simulations in terms of the evolution of well-define
quasiparticles. This is the regime where the amount of e
tation is so large that a description of the system in terms
a basis provided by the linear excitations ceases to be us
We can use the phase dependence of the evolution as a t
see whether or not a description in terms of quasiparticle
meaningful. For the simulations presented here the quas
ticle description is applicable, but is beginning to bre
down for the simulation depicted in Fig. 5 where the evo
tion is strongly dependent on the initial phase. This expla
why the average over phases produces a less smooth p
this case than for the other simulations.

V. NONLINEAR MIXING: ANALYTICAL RESULTS

We can make further progress towards understanding
nonlinear mixing processes discussed above by using an

FIG. 5. Evolution of the average quasiparticle populations a
the change in the condensate population form54 and ub2(0)u
50.2.
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lytical approach in which we explicitly obtain the equatio
of motion for the condensate and quasiparticle coefficie
This is achieved most simply if we use the excitatio
that are orthogonal to the condensate as defined in Eq.~19!
and all equations in this section are written in terms
these excitations. Using these equations we can see
processes dominate the evolution and what parameters a
the time scales for nonlinear mixing. We have been able
solve an approximate form of the equations in one spe
case and obtain an expression for the rate of nonlinear m
ing in terms of the nonlinearity and the amount of initi
excitation.

The equations of motion for the coefficientsbi are ob-
tained by substituting the expansion of Eq.~23! into the
time-dependent NLSE and carrying out the projection pro
dure described in Sec. III analytically. This leads to the f
lowing equations of motion for the quasiparticle and cond
sate coefficients~using units\51)

d FIG. 6. Evolution of the quasiparticle populations and t
change in the condensate population form51. The results from
eight simulations are shown superimposed. These simulations
respond to the initial conditionb2(0)50.2eıf with f50, p/4,
p/2, . . . ,7p/4.
ı
dbi

dt
5v ibi1N0U0Ed3r $ ũ i* @2 Re~bg!ucgu2cg1cg* D212cguDu21uDu2D#

1 ṽ i* @2 Re~bg!ucgu2cg* 1cg* D212cg* uDu21uDu2D* #%, ~32!
an

n as
ı
dbg

dt
52(

i
v i Re @aibi #1N0U0Ed3r $2 Re~bg!ucgu4

1cg*
2D212ucgDu21cg* uDu2D%, ~33!

where
D5bgcg1(
j

$ ũ jbj1 ṽ j* bj* % ~34!

and Re means ‘‘the real part of.’’ The above equations c
be simplified somewhat if one uses the fact thatcg can be
chosen to be real. The normalization has been chose



is

e
n

th

nd
io
a

th
ea

in
ti-

ll

om
g

s

n
a

ce
e
t
a
e
d

g

e
a

th

th

le

e
no

ity

ich
the

-
nd
he

that

r
e-

e
he

iod
ve

nges
r
tion
is-
ari-

s
uite
ro-

tion

is
emi-
e-

the

3826 57S. A. MORGAN, S. CHOI, K. BURNETT, AND M. EDWARDS
discussed in Sec. III below Eq.~23! and the coefficientsai
are the same quantities that appear in Eqs.~18!, but with N0
set equal to 1.

The linear terms in the above equations merit a brief d
cussion. The leading-order term in Eq.~32! describes the
energy of the quasiparticle mode and in the linear regim
the only important contribution to the equation of motio
The term proportional to Re (bg) is quadratic in effect if not
appearance since Eq.~33! shows that if Re (bg) is zero ini-
tially, it can only change as a result of quadratic terms in
equation of motion. In addition, we see from Eq.~33! that
the excited states affect the imaginary part of the grou
state coefficient at linear order. This is because the equat
are written using excitations orthogonal to the condens
and these are not the linear excitations of the system@they
satisfy Eq.~19! rather than Eq.~8!#. The form of this linear
term is exactly what we would expect as a result of
relation between the coefficients of the orthogonal and lin
excitations given in Eq.~30!.

The fast motion given by the energy of the excitations
Eq. ~32! can be removed by defining slowly varying quan
ties bi

s by bi
s5bie

ıv i t. Substituting this into Eqs.~32! and
~33! and expandingD produces a large number of terms, a
of which contain oscillating factors of the formeı(v i6v j )t. At
this stage some approximation is required to reduce the c
plexity of the equations and this is provided by the rotatin
wave approximation~RWA!, in which one considers only
terms for which this oscillating factor is close to zero. The
terms correspond to processes for which energy is~nearly!
conserved and produce a smooth time evolution. The
glected terms cause rapid oscillations around the mean
have little effect on the long-term motion. In addition, sin
they are rapidly varying, their effect tends to cancel if w
average over the phase of the excitations. For the case
mode 2 is initially populated, we have seen that the domin
coupling is to mode 4. If we neglect any variation in th
population of the condensate and consider only these mo
then we obtain the equations of motion

ı
db2

s

dt
5N0U0M24b2

s* b4
se2ıDv24t,

ı
db4

s

dt
5

1

2
N0U0M24* b2

s2e1ıDv24t, ~35!

whereM24 is a matrix element given by

M2452Ed3r$cg* @2 ũ2* ṽ 2* ũ41 ṽ 2* ṽ 2* ṽ 4#

1cg@2 ũ2* ṽ 2* ṽ 41 ũ2* ũ2* ũ4#% ~36!

andDv245v422v2. These equations show that the chan
of population in mode 4 is half that of mode 2~as required
by energy conservation! and therefore thatub2u212ub4u2 is a
constant of the motion. They can be extended readily to d
with the more general case that a large number of modes
strongly coupled.

Equations of precisely this form have been studied in
context of harmonic generation in nonlinear optics@22#,
where it is shown that a general solution can be written in
-
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form of elliptic integrals. In the case thatDv2450 and mode
4 is initially unpopulated, the solution is particularly simp
and is given by

b2
s~ t !5b2

s~0!sechS UN0U0M24b2
s~0!

A2
Ut D ,

b4
s~ t !56ı

b2
s2~0!

A2ub2
s~0!u

tanhS UN0U0M24b2
s~0!

A2
Ut D , ~37!

where the sign6 corresponds toN0U0M24 .
, 0, respec-

tively, and we have taken the matrix elementM24 to be real
~this is not a significant restriction!. The relative phase ofb2

s2

andb4
s in this solution is always6p/2 and the equations ar

particularly simple in this case precisely because there is
evolution of the relative phase. Equations~37! show that the
time scale for nonlinear mixing is set by the quant
uA2/N0U0M24b2

s(0)u. Evaluation of this parameter@23# us-
ing data appropriate to recent experiments of Jinet al. @1,6#
gives a time scale for the decay of mode 2 of 120 ms, wh
is close to the observed value. We do not believe that
present analysis applies in that situation, however, asDv24 is
large compared to this time scale.

The solution of Eq.~37! predicts that the transfer of qua
siparticle population from mode 2 to mode 4 is complete a
irreversible, which is not what is seen in the simulations. T
reason for this is that it applies only to the special case
Dv2450. In the more general case whereDv24Þ0, numeri-
cal simulation of Eqs.~35! shows that the population transfe
is no longer complete and is periodic with a period that d
creases asN0U0 and Dv24 increase. This is a result of th
fact that theeıDv24t term can introduce a sign change into t
equations on a time of order 1/Dv24, thereby turning the
depletion of a mode into a growth and vice versa. The per
also depends onN0U0, however, because once the relati
phase ofb2

s2 andb4
s differs from 6p/2, the nonlinearity can

cause phase evolution and so also introduce sign cha
into the equations.3 As Dv24 increases, the time available fo
population transfer to occur decreases, leading to a reduc
in the net amount of transfer that is achieved. This was d
cussed in Sec. IV B and can be seen clearly from a comp
son of Figs. 1 and 5. The solution of Eq.~37! and a result
from the simulation of Eq.~35! are compared with the result
from the simulations in Figs. 1 and 2. The agreement is q
good, demonstrating that the evolution is dominated by p
cesses that approximately conserve energy~corresponding to
the terms we kept when we made the RWA!, and the differ-
ences can be attributed largely to the neglect of the varia
in the condensate population.

The evolution of the condensate as given by Eq.~33! is
rather more complicated. One feature of the simulations
that its phase rotates at a rate greater than the original ch
cal potential~we discussed this issue in Sec. IV A when d
ciding what basis to use to analyze the simulations!. The
additional rotation describes the shift in the energy of

3Simulation of Eqs.~35! shows that ifb4
s(0) is nonzero and has a

phase that is not at6p/2 to that of b2
s2(0) then the population

transfer is periodic even ifDv2450.
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57 3827NONLINEAR MIXING OF QUASIPARTICLES IN AN . . .
condensate caused by the presence of a finite amount o
citation and is observed numerically to be independen
any mixing between excited states that may occur.4 Although
the frequency shift is small, its effect is cumulative and
must take it into account if we are to be able to treat
change in the condensate coefficientbg as a small parameter
This means that we must describe the wave function usin
basis set corresponding to the new chemical potential.
analytical predictions give the best fit to the results of
simulations if we use this basis.

Once the rotation of the condensate phase has bee
moved, we observe that the change in its population
roughly proportional to the population in mode 4 for the ca
that only modes 2 and 4 need be considered~see Figs. 1 and
2!. We can understand this from the fact that the evolut
preserves the normalization of the wave function. The n
malization is given by*d3r uCu2, so substitution of Eq.~23!
leads@as in Eq.~24!# to

E d3r uCu25u11bgu21(
i , j

Ed3r $~ ũ i* ũ j1 ṽ i* ṽ j !bi* bj

1~ ũ i ṽ j !bibj1~ ũ i* ṽ j* !bi* bj* %5c, ~38!

where c is a constant of order 1. This contains terms th
oscillate on a fast time scale sobg must also have fast oscil
lations if the normalization is to be conserved. However,
are only interested in the slowly varying terms that descr
the long-time evolution. Consideration of these terms alo
gives

u11bgu21(
i
Ed3r $u ũ i u21u ṽ i u2%ubi u25c;1. ~39!

For the case that only modes 2 and 4 are significantly oc
pied, we also know thatub2u212ub4u2 is a constant of the
motion from energy conservation arguments. Using this
Eq. ~39! gives

u11bgu221;Ed3r $2~ u ũ2u21u ṽ 2u2!

2~ u ũ4u21u ṽ 4u2!%ub4u2, ~40!

which shows that the change in the condensate popula
follows that in mode 4. When more modes are involved t
result will no longer hold~see Fig. 4, for example!, although
extensions of it can readily be derived from Eq.~39! and the
new energy conservation condition.

VI. EXTENSION TO FINITE TEMPERATURES

The NLSE simulates the evolution of coherent quasip
ticles since at all times the coefficientsbi in Eq. ~23! have a
well-defined phase in addition to a well-defined amplitude
one is interested in extending the techniques presented
to study finite-temperature mixing effects then one wo
need to simulate incoherent quasiparticles. Although a tim

4This energy shift is largely~but not entirely! due to the change in
the normalization of the wave function.
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dependent formalism at finite temperatures does exist@17#, it
is computationally prohibitive, especially in more than o
dimension. Thus, if the NLSE can be used to estimate
evolution of incoherent quasiparticles, then it will provide
useful tool to attack the problem of finite-temperature dam
ing. In fact, the NLSE has recently been used to simulate
experimental procedure for determining the damping of
citations on the condensate and gave a decay rate for
breathing mode that was in good agreement with the lo
temperature experimental results@24#. This provides addi-
tional motivation for attempts to extend the use of the NL
to finite temperatures.

Use of the NLSE at finite temperatures represents an
tempt to simulate the quantum field using a classical one.
saw in Sec. II that a classical approach~linearization on the
NLSE! and a quantum approach~diagonalization of a qua-
dratic Hamiltonian! gave the same results for the excitatio
of the system. This was because the two approaches cou
related by allowing the quasiparticle operators to beco
coherent. We wish to extend this idea to consider the dyn
ics of the system and this involves using the time-depend
NLSE to describe the evolution of the quantum field. T
quantum-mechanical evolution can be obtained from
many-body Hamiltonian of Eq.~13! and is given by

ı\
]Ĉ~r ,t !

]t
5Ĥ0Ĉ~r ,t !1U0Ĉ†~r ,t !Ĉ~r ,t !Ĉ~r ,t !,

~41!

whereĈ(r ,t) is normalized toN. This has exactly the sam

form as the NLSE if we replace the field operatorĈ(r ,t) by
its expectation value in a coherent state, i.e., the functionC
that appears in Eq.~1!. This is precisely the procedure use
in the linear analysis and motivates the use of the NLSE
the nonlinear regime.

In a recent paper Kagan and Svistunov@25# give a justi-
fication for the use of the NLSE in this context and arg
that it is valid even when no condensate is present and
system is far from equilibrium, provided that the singl
particle modes are highly occupied. They show that if t
single-particle density matrix is diagonal in the number-st
representation then it is also approximately diagonal in
coherent-state representation, with no correlation betw
the phases of the various coherent states in the ensemb
addition, each coherent state evolves independently to a g
approximation. Thus, to represent the evolution of the d
sity matrix we can perform many classical simulations w
various initial phases and then average over these phases
might expect this representation to be approximately valid
long as the evolution is not strongly dependent on the ph
and indeed it is argued in Ref.@25# that for all practical
purposes it is sufficient to consider the evolution of a coh
ent state with one particular phase.

Applying the arguments above in a quasiparticle ba
means that an incoherent quasiparticle with no well-defin
phase can be described by a collection of coherent quas
ticles with phases distributed evenly around the unit circ
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We saw in Sec. IV B and Fig. 6 that the quasiparticle evo
tion does not strongly depend on the phase of the in
excitation when the amount of excitation and the nonline
ity are not too large. This confirms our expectations for
case that the quasiparticles are well defined and form
meaningful basis. Eventually a description of the evolut
in terms of quasiparticles involves a strong dependence
their phase, but this represents a breakdown in the quas
ticle description of the system and does not imply that
NLSE can no longer be used to simulate the quantum fie

Thus we propose that the NLSE can be used to appr
mately simulate the full quantum field over a wide range
temperatures. At very low temperatures the justificat
comes from the fact that it can be derived from a prod
wave function in which all the atoms are in the same sing
particle state. At high temperatures the justification is t
the relevant excited states~single particle or quasiparticle!
are highly occupied so that a classical approximation is
pected to be valid. Of course a classical simulation can
reproduce all aspects of the quantum evolution and one
sequence of this that was observed in the numerical sim
tions of Sec. IV B is the absence of spontaneous emis
terms in the quasiparticle evolution. Nonetheless, the use
classical field to represent a quantum one is a common
proximation in a wide range of physical contexts as it
often the only approach that is computationally feasible a
it is expected to be accurate enough for practical purpo
@26#.

VII. CONCLUSION

In this paper we have shown how to determine the c
tribution of a condensate and its excitations to any wa
function appearing in the NLSE. We have used this meth
to study the nonlinear mixing of quasiparticles for simu
tions in which we start from an initial wave function th
contains a finite amount of excitation in a single mode. W
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have observed that the evolution is dominated by proce
that conserve energy and that the initial population can
reversibly transferred to an energetically matched mo
This is a result of the fact that in an inhomogeneous sys
there are only discrete states rather than a continuum.
have shown analytically that the time scale for the transfe
population is inversely dependent on the nonlinearity and
amount of initial excitation and is generally of the order
tens of trap cycles~between 0.01 and 0.1 s for the curre
experimental traps!. We do not see the exponential decay
the initial population reported in a recent experiment@6#, but
this was performed at temperatures that were significant f
tions of the critical temperature. We believe that the reve
ible transfer of population between modes should be obs
able at low temperatures and it would be interesting if t
could be seen experimentally.

Finally, we have argued that the NLSE can be used
approximately simulate the full quantum field and that the
fore the techniques presented here can be extended to s
the evolution of incoherent quasiparticles in the presence
thermal component. This means that one can estimate fin
temperature mixing effects without the need to apply co
putationally more demanding approaches such as simula
the full time-dependent Hartree-Fock-Bogoliubov equatio
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