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Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions

Tor Haugset and Hårek Haugerud
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway

~Received 7 August 1997!

We consider systems of a small number of interacting bosons confined to harmonic potentials in one and two
dimensions. By exact numerical diagonalization of the many-body Hamiltonian we determine the low-lying
excitation energies and the ground-state energy and density profile. We discuss the dependence of these
quantities on both interaction strengthg and particle numberN. The ground-state properties are compared to
the predictions of the Gross-Pitaevskii equation, and the agreement is surprisingly good even for relatively low
particle numbers. We also calculate the specific heat based on the obtained energy spectra.
@S1050-2947~98!10504-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db, 32.80.Pj
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I. INTRODUCTION

Recent observations of Bose-Einstein condensation
alkali-metal gases confined to harmonic potentials@1,2# has
led to an extensive study of the ground-state and low-ene
properties of trapped interacting Bose gases. A major pa
this work ~see, e.g., Refs.@3–9#!, presents calculations base
on the Bogoliubov approximation or Hartree-Fock theo
Predicted excitation frequencies agree well with experime
@10,11#. The energy spectrum has also been described
terms of a hydrodynamic formalism@12#, which agrees with
Bogoliubov theory at low energy@8,13#. In the Bogoliubov
approximation the system is described in terms of a do
nating condensate. Fluctuations induced by finite temp
ture and interactions are assumed small. At zero tempera
when the effects of excited particles are neglected, the c
densate satisfies the Gross-Pitaevskii equation@14–16#.

The Bogoliubov approximation is applicable for system
with a large number of particles. In this paper we will, on t
contrary, consider systems with relatively few particles, i
N;10–40. Finite-N effects are then important, and on
should in principle use the complete machinery of ma
body theory when describing these systems. Here we pre
the results of such calculations, limiting ourselves to one
two dimensions. The use of such time- and compu
memory-consuming methods puts severe limitations on
size of the system one may describe. On the other hand,
for such systems the corrections to mean-field calculati
are important.

The results presented here are therefore not immedia
relevant for the experiments performed with trapped B
gases so far. Our aim is rather to gain some insight into
effects of the approximations which form the basis of t
mean-field theories mentioned above, in the limit of sm
particle numbers. We are also interested in effects which
specific to one and two dimensions. In addition, future
periments in lower dimensions may explore the range of
rameters used here.

The plan of this paper is as follows. In Sec. II we rec
the many-body formalism, and describe the steps leadin
the diagonalization of the many-body Hamiltonian. T
Gross-Pitaevskii approximation, to which we compare o
results for the ground state, is discussed in Sec. III. Num
571050-2947/98/57~5!/3809~9!/$15.00
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cal results are presented and discussed in Sec. IV. Finally
draw some conclusions in Sec. IV. The Appendix discus
effective couplings in highly anisotropic systems.

II. MANY-BODY DESCRIPTION

As a model for a trapped interacting Bose gas, we stu
the Hamiltonian density

H5Ĉ†~r !F2
¹2

2m
1Vex~r !GĈ~r !1HI~Ĉ†,Ĉ!, ~2.1!

whereĈ is a bosonic field operator andVex is the external
trapping potential. Units where\51 are used. We will only
consider isotropic harmonic potentials of the formVex(r )
5 1

2 mv2r 2. HI describes the interaction. Assuming sho
range two-body interaction, this may be written

HI5gĈ†Ĉ†ĈĈ~r !. ~2.2!

In the s-wave approximation the coupling constant, or inte
action strengthg is related to the scattering lengtha by the
equationg52pa/m in three dimensions. In the Appendi
we discuss modifications of this relation in highly anis
tropic harmonic traps.

Harmonic modes.As a step toward finding the energ
eigenvalues, we expand the field operator in a complete
of modes

Ĉ~r !5(
k

wk~r !ak . ~2.3!

Hereak annihilates a particle in the statek, andak
† creates a

particle in the same state. The operators satisfy the com
tation relation@ak ,al

†#5dk,l , with other commutators van
ishing. In translation-invariant systems it is convenient
choose a set of plane waves. Here we choose to use
harmonic-oscillator eigenfunctions. The Hamiltonian th
takes the form

H[E dr H5(
k

vkak
†ak1g (

k,l ,m,n
f klmnak

†al
†aman .

~2.4!
3809 © 1998 The American Physical Society
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3810 57TOR HAUGSET AND HÅREK HAUGERUD
Herevk is the single-particle energy of levelk, and f klmn is
an overlap integral over four oscillator eigenfunctions:

f klmn5E dr wk* w l* wmwn~r !. ~2.5!

Notice thatf klmn is symmetric under permutation of the in
dices. For the complete set of eigenfunctions$wk% we will
choose Hermite or Laguerre polynomials for one and t
dimensions, respectively. The corresponding overlap in
grals can be calculated numerically, though some of them
tabulated@17#. The interaction conserves parity. In one d
mension this leads to the constraintk1 l 1m1n5 ~even in-
teger! for nonzerof . In two dimensions the rotational sym
metry of the external potential suggests the use of radial
angular quantum numbers. The interaction conserves ang
momentum, and this again puts a constraint on the poss
combinations of creation and annihilation operators.

Many-particle basis and diagonalization.We apply the
configuration-interaction approximation and diagonalize
Hamiltonian in a many-particle basis, which in th
occupation-number representation may be written in
form

uca&5un0n1n2 . . . nK&a , ~2.6!

with a labeling the different distributions of particles. No
malization to unity is assumed. Herenk is the particle num-
ber in the single-particle statek. The particle number is con
served:(knk5N. In a practical calculation we must trunca
the basis set at some upper state, here denoted byK. This
sets an upper limit for the single-particle energy of the sta
considered. Such a truncation is, however, somewhat unn
ral as far as the many-particle energy is concerned, sinc
includes the many-particle stateu00 . . . NK& with energy
NvK , but not the stateu(N21)0 . . . 1K11& which only has
energyvK111(N21)v0. A more consistent way of truncat
ing the basis set is therefore to include only those sta
which have a total energy up to some maximal valueEmax.
In the actual calculations,Emax will be raised in steps unti
convergence is reached. The creation operator and anni
tion operator act as follows:

akun0 . . . nK&5Ankun0 . . . nk21 . . .nK&,

ak
†un0 . . . nK&5Ank11un0 . . . nk11 . . .nK&. ~2.7!

The number operator is thusak
†ak , with eigenvaluenk .

With a basis set at hand, we may calculate the Ham
tonian matrix elements

Ha8,a5^ca8uHuca&5H0ada8,a1HIa8,a . ~2.8!

The free part of the Hamiltonian contributes to the diago
terms with an amount(kvknk , while the interaction part
yields the contribution

g (
k,l ,m,n

f klmn̂ ca8uak
†al

†amanuca&. ~2.9!

The symmetries of the interaction can be used to reduce
Hamiltonian matrix to a block-diagonal form. Splitting th
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complete Fock space into several symmetry-invariant s
spaces reduces the dimensions of the Hamiltonian ma
considerably, and enables a numerical diagonalization
much larger systems. In one dimension there are an e
and odd-parity subspaces, and the ground state is a sup
sition of even-parity states. In two dimensions the subspa
are labeled by the total angular momentum of the ma
particle state, and the ground state has zero angular mom
tum.

The Hamiltonian matrix is relatively sparse, and the ite
tive Lanczos method@18# is thus well suited for finding the
ground state and the lowest excited states. This method
ables us to diagonalize much larger matrices than would
possible with standard library routines. However, we use
latter when finding the complete set of energy levels nee
for calculating thermodynamic quantities.

Here we would like to emphasize that we have check
the programs thoroughly: They are seen to reproduce w
known results in the case of zero coupling. We have a
done some calculations for smaller systems by hand, and
that both the generation of the Hamiltonian matrix and
diagonalization works correctly.

Density profile.Once the Hamiltonian is diagonalized, w
have the coefficients for the low lying states, and especi
for the ground state. This enables us to find the ground-s
density distributionr(r ). The density operator may be writ
ten

n̂c5(
k,l

uk&nkl^ l u, ~2.10!

where uk& is a single-particle state, andnkl5^cual
†akuc&.

The density is thenr(r )5^r un̂cur &. For a state uc&
5(aCauca& this reads

r~r !5(
k,l

w l* wk~r ! (
a,a8

Ca8
* Ca^ca8ual

†akuca&.

~2.11!

Dipole mode.The excitations in this system will in genera
have interaction-dependent energies. However, as discu
by Fetter and Rokhsar@13#, there exists a dipole mode fo
each spatial dimension of the trap, which corresponds t
harmonic oscillation of the center of mass of the condens
In Ref. @13# the corresponding raising operator was co
structed in the first quantized formalism

Ab
†5(

i 51

N

bb i
† , ~2.12!

where bb i
† is the raising operator for particle numberi in

dimensionb. ~We use a different notation than in Ref.@13#,
in order to avoid confusion with quantities defined her!
With a two-body potential of the formV(r i2r j ) it is easily
shown that the excitation energy isv, i.e., independent of the
interaction. Thus for each energy level there must be a lad
of levels with energy spacingv above. These dipole mode
have been found in calculations based on the Bogoliu
approximation@4,7# and in the hydrodynamic descriptio
@12#. The occurrence of these states will serve as a chec
convergence of the calculated energy levels. For compl
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57 3811EXACT DIAGONALIZATION OF THE HAMILTONIAN . . .
ness we note that the raising operator in terms of crea
and annihilation operators in one dimension takes the fo

A†5(
k

Ak11ak11
† ak . ~2.13!

Herek labels the Hermite polynomials. Commuting the ra
ing operator with the free-particle Hamiltonian, we find

@H0 ,A†#5vA†, ~2.14!

and the excitation energy is thusv. The vanishing of the
commutator ofA† with the interaction term is less obvious
this formalism. The commutator becomes

@HI ,A†#52g (
k,l ,m,n

ak
†Al 11~ f kmnl11an

†al

2 f kmnlal 11
† an!am , ~2.15!

and for each combinationak
†al

†aman the prefactor vanishes
This is due to the following relation between the overl
integrals:

Ad11 f abcd111Ac11 f abc11d5Aa fa21bcd1Ab fab21cd .
~2.16!

Breathing mode.In two dimensions the many-body Hami
tonian has anSO(2,1)-symmetry discovered by Pitaevsk
and Rosch@19#. This symmetry gives rise to excitations o
energy 2v identified with the breathing mode of the conde
sate. The excitation spectra for the planar systems m
therefore contain ladders both with energy spacingv and
2 v. The symmetry is broken when a UV energy cutoff
introduced in the system. Such a cutoff is inherent in o
calculation. We therefore expect that the level spacingv
will be less accurate than the spacingv caused by the dipole
excitations.

III. MEAN-FIELD APPROXIMATION

One of the purposes of this paper is to compare the
dictions of the many-body calculation with those of mea
field theory for quantities such as the ground-state ene
and density distribution. The condensate is in the Gro
Pitaevskii~GP! approximation@14,15# described by a classi
cal, macroscopic Bose field governed by the Hamilton
density per particle

Hcl /N5F* ~r !S 2
¹2

2m
1Vex~r ! DF~r !1gN@F* F~r !#2.

~3.1!

The field is rescaled here to satisfy*drF* F51, thus the
factorN in front of the interaction term. Notice that the co
pling g and the particle numberN occur only in the combi-
nationgN, as opposed to the many-body description. Mi
malization of the corresponding HamiltonianHcl5*drHcl
leads to the nonlinear Schro¨dinger ~or Gross-Pitaevskii!
equation
n

-

st

r

e-
-
y

s-

n

-

S 2
¹2

2m
1Vex~r !2m DF~r !12gNF* FF~r !50.

~3.2!

The chemical potential introduced is given by the normali
tion of F. This equation can be derived from the Hartre
Fock-Bogoliubov approximation when the effect of excit
particles is neglected@16#.

Oscillator basis.The equation forF may be solved intro-
ducing a harmonic-oscillator basis

F~r !5(
k

ckfk~r !. ~3.3!

Normalization now corresponds to(kucku251. The equation
then takes the form

(
k

~vk2m!ckfk~r !12gN (
k,l ,m

ck* clcmfk* f lfm~r !50.

~3.4!

Multiplying with fn* and integrating, we finally end up with
the set of equations

~vn2m!cn12gN (
k,l ,m

ck* clcmf klmn50, ~3.5!

where f again is the overlap integral over four harmoni
oscillator eigenfunctions. The basis set is truncated at so
level K, and K is raised until convergence is reached. T
corresponding finite set of equations may be solved by us
the Newton-Raphson method. This method was applied
Ref. @7# for the case of a three-dimensional Bose gas. So
tions in one dimension have also been obtained earlier@6#.
Again the symmetry of the ground state may be used
choose the proper subset of eigenfunctions. In one dimen
we only have to consider even functions. In two dimensio
only zero angular momentum eigenfunctions contribute.

Once the coefficientsck are determined, one must check
the normalization condition is satisfied. If not, a differe
chemical potential is chosen, and the process is repeated
til normalization is obtained. Having the correct coefficien
we easily find the ground-state density profile

r~r !5U(
k

ckfk~r !U2

. ~3.6!

In addition, the ground-state energy per particle reads

(
k

vkucku21gN(
klmn

ck* cl* cmcnf klmn . ~3.7!

IV. NUMERICAL RESULTS

In the following we present the results of the numeric
diagonalization of the many-body Hamiltonian. In one d
mension we have truncated the many-body basis at a cu
energyEmax538v. This corresponds to a basis with block
of up to 80 524 many-body states. In two dimensions
number of overlap integrals for a givenEmax is considerably
higher than in one dimension. Moreover, the generation
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FIG. 1. Convergence of the ground-state e
ergy. We plot the ratio of the ground-state ener
E0 for the given cutoffEmax and the energyE0

max

found using the highestEmax. The upper graph is
for one dimension, and the lower for two dimen
sions.
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matrix elements turns out to be very time consuming. W
have therefore stopped atEmax514v, with a basis with
blocks of up to 4532 states in two dimensions. Energies
measured in units of the oscillator frequency and length
units of the typical oscillator width 1/Amv. g refers to the
corresponding dimensionless interaction strength (g̃1D , g̃2D)
as obtained in the Appendix.

In Fig. 1 we show the ground-state energy as function
the cutoff energyEmax. The plotted quantity is the ratio o
the ground-state energy for the givenEmax and the energy
found using the highestEmax considered. The upper graph
for one dimension, and the lower for two dimensions. In o
dimension, the relative difference in ground-state energy
ing from 36v to 38v is seen to be about 0.05% or les
Going from 12v to 14v in two dimensions, the shift is
about 0.2%. The convergence of the excitation energie
found to be considerably faster for the lowest levels, bu
slower at high energy. This will be seen below in the dev
tion of the interaction-independent energies from the ex
valuesnv.

A. Ground-state energy

In this subsection we show the effect of the interaction
the energy of the ground state. In all figures the ideal
ground-state energy is set to zero.

Linear Bose gas.Figure 2 shows the ground-state ener
in one dimension, both in the many-body description and
the Gross-Pitaevskii approximation. For a givenNg the en-
ergy resulting from the many-body calculation is seen
converge toward the mean-field value as the particle num
N is increased. The discrepancy between the approximat
increases withNg.

The discrepancies found between the two approximati
might to some extent be removed by the introduction of
effective coupling constant in the mean-field theory. Fo
set of couplingsg0 and particle numbersN, we find the
rescaled coupling which in the GP approximation yields
e
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corresponding energy given by the many-body calculati
In Fig. 3 this rescaled coupling multiplied byN is plotted
~filled circles! as a function of 1/N for various values of the
bare coupling. The corresponding value ofNg0 is found at
1/N50. For the range of parameters considered, the li
look very linear. Below, we compare these results with
effective coupling based on calculations of the core den
in the ground state.

Planar Bose gas.The insert in Fig. 4 shows the Gross
Pitaevskii ground-state energy in two dimensions as func
of Ng. The energy falls rapidly with decreasing, negati
coupling. With a basis of up to 28 oscillator eigenfunction
we have not been able to reach convergence nearE0 /N5
2v. It seems though thatdE0 /d(Ng) approaches infinity as
we get closer to this point, thus indicating that no sta

FIG. 2. Ground-state energyE0 per particle in one dimension
measured in units ofv as a function of interaction strengthg for
particle numbersN510, 12, 15, 20, 30, and 40, starting from
below. The results of the many-body calculation converge tow
the mean-field result as the particle number increases.
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FIG. 3. Effective couplingNg in one ~left!
and two ~right! dimensions. The correspondin
values of Ng0 are found at 1/N50. Effective
couplings based on the energy and the core d
sity of the ground state are compared.
g
em
t

n

ls
la
is

iv
o-
io
ht
of

si

i
w
t
d

s

th
re
o

fo
ie

t
re

o

ence
nts
n-
rre-
the

r
the
lar

nd

re
two

om
ders
s of

-
field
r-
ean-
gth.
ground state may be formed for stronger attractive couplin
This is agreement with Pitaevskii’s analysis of the syst
@20#, where it is shown that an attractive interaction leads
collapse of the gas for energies more thanv below the ideal
gas ground-state energy. Similar conclusions are draw
Ref. @21#.

The Gross-Pitaevskii ground state energy is in Fig. 4 a
plotted together with the results of the many-body calcu
tion for N510, 15, and 20. The mean-field approximation
approached asN increases. We have calculated the effect
coupling Ng which, used in the GP approximation, repr
duces the energy obtained in the many-body calculat
This effective coupling is plotted as filled circles in the rig
graph of Fig. 3. The results are all for the highest cut
energyEmax514v. We again find thatNg depends nearly
linearly on 1/N.

B. Excitations

In Sec. II we saw that the excitation energies must con
of ladders with energy spacingv. This is due to the exis-
tence of the collective raising operatorA†. In two dimen-
sions, the breathing mode leads to additional ladders w
spacing 2v. The bottom of each of the ladders must, ho
ever, be determined by other means, and here we presen
results of the numerical diagonalization of the many-bo
Hamiltonian.

Linear Bose gas.In Fig. 5, the lowest excitation energie
in one dimension are given as functions ofNg for the case of
30 particles. The degeneracy at zero coupling is split by
interaction. For each level in the ideal case, one level
mains independent of the coupling. These levels corresp
to excitations described byA† from the ground state. The
others spread out below, and above each of these we find
mentioned ladder of levels. Similar results are obtained
N510, 12, 15, 20, and 40. The relative shift in the energ
going fromN510–40 with a givenNg is less than 1% for
the range of parameters presented in Fig. 5.

The splitting of the degeneracy by the interaction leads
a more even distribution of energy levels than in the f
case. As an illustration of this, Fig. 6 shows the number
energy levelsn1D(E) ~right curves! below a given energyE
measured from the ground state. We have takenN520, and
s.
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the coupling ranges fromNg50 –2 in steps of 0.2. This
summed density of states is indeed smoothed by the pres
of the interaction. Note that the curves coincide at poi
(E2E0)/v5n. This happens because all interactio
dependent excitation energies lie in the gap below the co
sponding undisturbed level for the considered values of
coupling.

Planar Bose gas.The lowest energy levels of a plana
system with 20 bosons are given in Fig. 7 as function of
dimensionless coupling. For each level with nonzero angu
momentumL, there is a level with the same energy a
angular momentum2L. The degeneracy atg50 is partially
lifted for nonzerog, but again there are levels which a
unaffected by the interaction. These are reached by the
dipole excitations and the breathing mode excitation fr
the ground state. The modes also give rise to a set of lad
above the interaction-dependent levels. Since the energie
all three interaction-independent modes are multiples ofv,

FIG. 4. Ground-state energyE0 per particle in two dimensions
measured in units ofv as a function of interaction strengthg for
particle numbersN510, 15, and 20 starting from below. The re
sults of the many-body calculation are compared to the mean-
approximation~Gross-Pitaevskii!, which is approached as the pa
ticle number increases. The inset shows the energy in the m
field approximation over a broader range of the interaction stren
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FIG. 5. Excitation energies (E2E0)/v in a
one-dimensional system of 30 bosons as a fu
tion of the interaction strengthg.
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there is a high degree of degeneracy even forgÞ0 in this
system.

In Fig. 6 the corresponding summed density of sta
n2D(E) ~left curves! is plotted for 15 bosons with the cou
pling running fromNg521 to 2 in steps of 0.5. Levels fo
both positive and negative angular momentum are includ
The steplike form of the curve for the free case is ag
smoothed by the interaction.

For stronger couplings we do not quite reproduce the
dependence of the interaction. This is due to the truncatio
the basis of states. However, since we know that these le
must approach (E2E0)/v5 integer as the basis set is in
creased, the deviation gives a good indication of the ac
racy of the results. In two dimensions we find that the co
vergence is better for those levels involving only dipo
excitations than for those which are reached~partly! by the

FIG. 6. Summed density of states in one-~right curves,n1D) and
two-dimensional~left curves,n2D) systems of 20 and 15 boson
respectively. The interaction strength is in the rangeNg
50,0.2, . . . ,2 in onedimension, andNg521,20.5, . . .,2.5 in
two dimensions.Ng increases from right to left, and negative inte
action strengths are indicated by dashed lines.
s
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breathing mode. As discussed above, this is an expecte
fect of the existence of the energy cutoff.

C. Ground-state density

The ground state can, in the GP approximation, be writ
as a superposition of oscillator functions with even parity
zero angular momentum in one and two dimensions, resp
tively. In the many-body description this is no longer tru
and single-particle states with other quantum numbers
contribute. We here show how this affects the ground-s
density.

For largegN the interaction energy dominates the kine
energy, and one may neglect the kinetic term in the GP eq
tion. This is the Thomas-Fermi~TF! approximation@3#. The
solution is now simply

uF~r !u25
1

2gN
@m2Vex~r !#u@m2Vex~r !#

FIG. 7. Excitation energies (E2E0)/v in a two-dimensional
system of 20 bosons as a function of the interaction strength.L is
the angular momentum.
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[
mv2

4gN
~R22r 2!u~R22r 2!. ~4.1!

This describes a condensate density which vanishes ou
the radiusR5A2m/mv2. Here we compare the normalize
densityr in the TF approximation with the exact solution
the Gross-Pitaevskii approximation, and also with the f
many-body calculation. The TF approximation in three
mensions was studied earlier in Ref.@5#.

In Figs. 8 and 9 we plot the normalized ground-state d

FIG. 8. Normalized ground-state densityr in one dimension.
The density is plotted as a function of the dimensionless radiux
5rAmv. The solid curves give the density in the Gross-Pitaevs
approximation forNg521, 0, 1, 2, 5, 10, and 50. The dotte
curves show the result of the Thomas-Fermi approximation for
pulsive interaction. The density obtained in the exact many-b
calculation with 30 particles is shown as dashed lines forNg51
and 2.

FIG. 9. Normalized ground-state densityr in two dimensions.
The density is plotted as a function of the dimensionless radiux
5rAmv. The solid curves give the density in the Gross-Pitaevs
approximation forNg521, 0, 1,2, 5, 10, and 50. The dotte
curves show the result of the Thomas-Fermi approximation for
pulsive interactionNg55, 10, and 50. The density obtained in th
exact many-body calculation with 20 particles is shown as das
lines for Ng<5.
ide

ll
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-

sity r(x) as a function of the dimensionless radiusx
5rAmv in one and two dimensions, respectively. T
Thomas-Fermi approximation is seen to reproduce the c
density r(x50) for interaction strengths aboveNg;5 in
one dimension, and aboveNg;10 in two dimensions. The
approximation gets worse as the distance from the cor
increased, where the density has a sharp cutoff in
Thomas-Fermi approximation. For the lowest values of
interaction strength we compare the Gross-Pitaevskii
proximation to the full many-body calculation withN530
and 20 in one and two dimensions, respectively. The
approximation yields quite good results, especially at la
distances, but it tends to overestimate the effect of the in
action. Still, the mean- field theory seems to work better
the density than for the ground-state energy.

We may again try to compensate for the deviation
introducing an effective interaction strength, as done for
energy calculations. The corresponding values ofNg are
shown as triangles in Fig. 3. The one- and two-dimensio
results are forEmax/v538 and 14, respectively.

The effective couplings are different from those based
the energy calculation, and the relative difference increa
with Ng0. The agreement is however quite good forNg0
50.5 and 1 in two dimensions. But, in general, a simp
rescaling of the interaction cannot account for all many-bo
effects in the ground state.

D. Specific heat

Having obtained the lowest excitation energies of the s
tem of trapped bosons, it is straightforward to find the pa
tion function and the thermodynamical quantities one m
derive thereof. The validity of these results is limited to lo
temperaturesT!Emax. Just how low the temperature mu
be will be clear in the examples which follow.

Let us first consider the one-dimensional system. With
particles and a cutoff atEmax526v, we find the specific
heat plotted in the left graph of Fig. 10. The coupling rang
from Ng50 to 2 in steps of 0.5, starting from below at lo
temperatures. The dotted line is the specific heat for 20 n
interacting bosons calculated in the canonical ensemble.
also show the result of a calculation in the grand-canon
ensemble. For particle numbers as low as this, the two
sembles predict somewhat different specific heats. The e
curve agrees with the curve forg50 up to a temperature
around 1.5v. At higher temperatures the many-body calc
lation breaks down. For temperatures where the results
valid, we find that the repulsive interaction yields a high
specific heat than in the case of noninteracting particles. T
happens because the interaction brings most of the en
levels closer to the ground state. The effect of the interac
grows with increasing temperature in this regime.

We have also calculated the specific heat for a tw
dimensional system of 15 bosons. The cutoff here isEmax
514v, and the basis thus contains states with angular m
mentum up toL5614. The specific heat is shown in th
right graph of Fig. 10. The calculation now breaks dow
aroundT/v51. For comparison we have included the sp
cific heat of 15 noninteracting bosons as given in the gra
canonical ensemble. Again, a repulsive interaction increa
the specific heat, while it is decreased in the attractive c
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There is no Bose-Einstein condensation for an ideal,ho-
mogeneousgas in two dimensions. In the presence of a h
monic trapping potential, condensation may, however, oc
@22,23#. The condensation temperatureT05\vAN/z(2)
persists in the thermodynamic limit, which is found by ta
ing N→`,v→0 while keeping the average particle dens
r;Nv2 constant. Recently, Mullin@24# studied a two-
dimensional system with attractive interaction in the therm
dynamic limit. He found that the normal state has a transit
temperatureT,T0, but not to a Bose condensed phase. Th
agrees with the earlier findings of Shevchenko@22#. Keep-
ing, insteadN andv finite, one should find anon-zerotem-
perature at which condensation sets in. Although one m
study this by the method used here, we cannot derive
decisive results as far as the condensation temperatu
concerned. For this one would need excitation energies g
considerably higher than what we have considered.

V. DISCUSSION AND CONCLUSION

In this paper we have presented results of calculation
the configuration-interaction approximation on systems w
10–40 interacting bosons confined to harmonic traps in
and two dimensions. By use of a set of many-body states
decomposition of the fields in harmonic modes, we have
agonalized the Hamiltonian numerically. The resulti
ground-state properties have been compared to the pre
tions of the Gross-Pitaevskii equation. The largest differe
is found for the ground-state energy, while for the groun
state density the mean-field predictions are considera
more accurate, at least for largerNg.

We have tried to compensate by introducing an effect
interaction strength in the mean-field description. This h

FIG. 10. Specific heatCV per particle measured in units ofkB

for one- ~left! and two-dimensional~right! systems of 20 and 15
bosons, respectively. The specific heat is plotted as function of
reduced temperatureT/v. In one dimension the interaction streng
runs fromNg50 to 2 and in two dimensions from21 to 2.5.Ng
increases from below in steps of 0.5. The many-body results~mb!
are compared to the curve for the ideal gas as given in the g
canonical ensemble~GC!. In one dimension we also show the exa
result for the ideal gas in the canonical ensemble~EC!. Notice the
breakdown at higher temperatures due to the cutoff in the en
spectra.
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been done by computing that interaction strength whi
when applied in the Gross-Pitaevskii equation, yields
same ground-state energy and core density as found in
full many-body calculation. In two dimensions, and f
Ng050.5 and 1 the effective couplings obtained fro
matching energy and from matching core density agree q
well. But, in general, rescaling based on ground- state ene
and core density result in different effective couplings. Th
this simple rescaling cannot account for all many-body
fects in the ground state.

We have also considered the lowest excitation energ
In both one and two dimensions we have reproduced
interaction independent levels which must be present in th
systems@13,19#. The interaction breaks the degeneracy in t
noninteracting gas completely in one dimension. In two
mensions the two dipole modes and the breathing mode
sure a high degree of degeneracy even for nonzero inte
tion. We have calculated the specific heat based on th
excitation energies. For low temperatures, where the res
are valid, the repulsive interaction increases the specific h
while it is decreased in the attractive case.

It would be interesting to compare the obtained excitat
energies with the results of calculations based on the Bo
liubov or Hartree-Fock approximations. One might also u
the obtained density of states as a basis for calculations in
microcanonical ensemble. Finally, the parameter range m
be extended by choosing a more suitable basis of sin
particle states, such as the Hartree-Fock states.
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APPENDIX A: EFFECTIVE COUPLING
IN LOWER DIMENSIONS

Inspired by proposed experiments in lower dimensio
@25,26#, here we will here consider the effect of having
strongly anisotropic trapping potential. Assumingvz!vx,y
or vz@vx,y the system should effectively be one or tw
dimensional. When the larger oscillator energy dominates
other energies in the system, we may assume that there
be no excitations in this direction. This means that the fi
operator may be written as

Ĉ~x,y,z!5(
k

f0~x!f0~y!fk~z!a00k ~A1!

for the one-dimensional case, and

Ĉ~x,y,z!5(
k

f0~z!fk~x,y!a0k ~A2!
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for the two-dimensional case. We may then integrate o
the spatial variables corresponding to the stronger oscilla
frequencies. This results in a rescaling of the coupling c
stantg in Eq. ~2.2!:

g2D5g3DAmvz

2p
and g1D5g3D

mvxy

2
. ~A3!

Measuring energy in units of the remaining oscillator fr
quency v and lengths in units of the oscillator leng
1/Amv, we obtain the dimensionless coupling constants

g̃2D5A2p
a

az
and g̃1D5pAvxy

vz

a

axy
, ~A4!
n,
tt.

an

s,
r
n
-

-

whereai5A\/mv i anda5mg3D/2p\2. Here we have rein-
troduced\. The effective coupling is seen to increase w
the strength of the stronger oscillator frequency. This is
effect of reducing the length in which the particle dens
may extend in the dimensions integrated out.

As an example of a possible physical realization, we m
tion that Ketterle and van Druten@25# have suggested a
experiment withvz /vxy;1023 and vxy;200 nK. With a
scattering length of typically 100 Bohr radii, this yields a

effective one-dimensional couplingg̃1D;1. This corre-
sponds to a strong-coupling system for any finite numbe
particles. Other configurations may yield a weaker effect
coupling.
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