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Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions
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We consider systems of a small number of interacting bosons confined to harmonic potentials in one and two
dimensions. By exact numerical diagonalization of the many-body Hamiltonian we determine the low-lying
excitation energies and the ground-state energy and density profile. We discuss the dependence of these
guantities on both interaction strengihand particle numbeN. The ground-state properties are compared to
the predictions of the Gross-Pitaevskii equation, and the agreement is surprisingly good even for relatively low
particle numbers. We also calculate the specific heat based on the obtained energy spectra.
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[. INTRODUCTION cal results are presented and discussed in Sec. IV. Finally we
draw some conclusions in Sec. IV. The Appendix discusses
Recent observations of Bose-Einstein condensation ieffective couplings in highly anisotropic systems.

alkali-metal gases confined to harmonic potentjdlg] has
led to an extensive study of the ground-state and low-energy Il. MANY-BODY DESCRIPTION
properties of trapped interacting Bose gases. A major part of
this work (see, e.g., Ref$3—9]), presents calculations based
on the Bogoliubov approximation or Hartree-Fock theory.
Predicted excitation frequencies agree well with experiments .
[10,11]. The energy spectrum has also been described in H=P¥T(r)
terms of a hydrodynamic formalisfi 2], which agrees with
Bogoliubov theory at low energ}g,13]. In the Bogoliubov - o )
approximation the system is described in terms of a domiwhere¥ is a bosonic field operator and,, is the external
nating condensate. Fluctuations induced by finite temperdf@PPing potential. Units where=1 are used. We will only
ture and interactions are assumed small. At zero temperatur@?”s'dgrZ'SOUOP'C harmonic potentials of the foivg,(r)
when the effects of excited particles are neglected, the cor= zMw . H, describes the interaction. Assuming short-

As a model for a trapped interacting Bose gas, we study
the Hamiltonian density

2

\Y . ..
—%Jrvex(r) Y(r)+H,(PT¥), (2.1

densate satisfies the Gross-Pitaevskii equdtldn-16. range two-body interaction, this may be written
The Bogoliubov approximation is applicable for systems Siaa s
with a large number of particles. In this paper we will, on the Hy=g¥ ¥ "¥W(r). (2.2

contrary, consider systems with relatively few particles, i.e., . . )
N~10-40. FiniteN effects are then important, and one In the s-wave approximation the coupling constant, or inter-

should in principle use the complete machinery of many_action strengtly is related to the scattering lengghby the

body theory when describing these systems. Here we presefiuationg=2ma/m in three dimensions. In the Appendix
the results of such calculations, limiting ourselves to one and/® discuss modifications of this relation in highly aniso-
two dimensions. The use of such time- and computerifOPIC harmonic traps. e
memory-consuming methods puts severe limitations on the Harmonic modesAs a step toward finding the energy
size of the system one may describe. On the other hand, it figenvalues, we expand the field operator in a complete set
for such systems the corrections to mean-field calculation8f modes
are important. A
The results presentgd here are thereforg not immediately \If(r)zz on(r)ay. (2.3
relevant for the experiments performed with trapped Bose k
gases so far. Our aim is rather to gain some insight into the o o +
effects of the approximations which form the basis of theHeréay annihilates a particle in the staeanday creates a
mean-field theories mentioned above, in the limit of smallParticle in the same state. The operators satisfy the commu-
particle numbers. We are also interested in effects which arktion relation[a,,a;]= é,, with other commutators van-
specific to one and two dimensions. In addition, future exdshing. In translation-invariant systems it is convenient to
periments in lower dimensions may explore the range of pachoose a set of plane waves. Here we choose to use the
rameters used here. harmonic-oscillator eigenfunctions. The Hamiltonian then
The plan of this paper is as follows. In Sec. Il we recall takes the form

the many-body formalism, and describe the steps leading to
the diagonalization of the many-body Hamiltonian. The [ _ [ 4; H=Y w.al Tt

= = a,ax+ frimn@e @ aman -
Gross-Pitaevskii approximation, to which we compare our Ek: KKk gk,;r:‘],n KImnk Smn
results for the ground state, is discussed in Sec. lll. Numeri- (2.4
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Here wy is the single-particle energy of levk| andf,;,,is  complete Fock space into several symmetry-invariant sub-
an overlap integral over four oscillator eigenfunctions: spaces reduces the dimensions of the Hamiltonian matrix
considerably, and enables a numerical diagonalization of
much larger systems. In one dimension there are an even-
and odd-parity subspaces, and the ground state is a superpo-
sition of even-parity states. In two dimensions the subspaces
Notice thatfyy,, is symmetric under permutation of the in- are |abeled by the total angular momentum of the many-
dices. For the complete set of eigenfunctidrg} we will  particle state, and the ground state has zero angular momen-
choose Hermite or Laguerre polynomials for one and twoym.
dimensions, respectively. The corresponding overlap inte- The Hamiltonian matrix is relatively sparse, and the itera-
grals can be calculated numerically, though some of them argve Lanczos methofi18] is thus well suited for finding the
tabulated[17]. The interaction conserves parity. In one di- ground state and the lowest excited states. This method en-
mension this leads to the constrakit | +m+n= (evenin-  aples us to diagonalize much larger matrices than would be
tegey for nonzerof. In two dimensions the rotational sym- possible with standard library routines. However, we use the
metry of the external potential suggests the use of radial angtter when finding the complete set of energy levels needed
angular quantum numbers. The interaction conserves angul@r calculating thermodynamic quantities.
momentum, and this again puts a constraint on the possible Here we would like to emphasize that we have checked
combinations of creation and annihilation operators. the programs thoroughly: They are seen to reproduce well-
Many-particle basis and diagonalizatione apply the known results in the case of zero coupling. We have also
configuration-interaction approximation and diagonalize thejone some calculations for smaller systems by hand, and find
Hamiltonian in a many-particle basis, which in the that both the generation of the Hamiltonian matrix and the
occupation-number representation may be written in thejiagonalization works correctly.
form Density profile Once the Hamiltonian is diagonalized, we
have the coefficients for the low lying states, and especially
|a)=INoN1Nz .. . Ni)a, 28 for the ground state. This enables us to find the ground-state
density distributionp(r). The density operator may be writ-
ten

fklmn:f dr QDE‘PT(Pm(Pn(r)- (2.9

with « labeling the different distributions of particles. Nor-
malization to unity is assumed. Heng is the particle num-
ber in the single-particle state The particle number is con- R
served:,n,=N. In a practical calculation we must truncate ny= > [kn(l], (2.10
the basis set at some upper state, here denoted. byhis kil
sets an upper limit for the single-particle energy of the state ; ; . _ +
considered. Such a truncation is, however, somewhatunnatg\l—here'k) !S a. single-particle s:[ate, and = (yajag ).
ral as far as the many-particle energy is concerned, since it€ density is thenp(r)=(r|n,|r). For a state|y)
includes the many-particle staf, . ..Ny) with energy — >aCalt/a) this reads

Nwy, but not the stat¢(N—1), ... 1« 1) which only has

energyoy 41+ (N—1)wo. A more consistent way of truncat- p(N=2 ¢F ei(r) X C*Col thor|afay )

ing the basis set is therefore to include only those states ki a,a’

which have a total energy up to some maximal vahg,. (211
In the actual calculationE 5, will be raised in steps until
convergence is reached. The creation operator and annihil
tion operator act as follows:

Dipole mode.The excitations in this system will in general
fave interaction-dependent energies. However, as discussed
by Fetter and Rokhsdr3], there exists a dipole mode for
an n >=\/n—|n N1 ) each spatial Qimgnsion of the trap, which corresponds to a
KT -+ - TK A harmonic oscillation of the center of mass of the condensate.

In Ref. [13] the corresponding raising operator was con-
+ I Sy
alno - - .M =t 1fng ..Mt 1 o). (2.7) structed in the first quantized formalism

The number operator is thl@ak, with eigenvaluen, . N
With a basis set at hand, we may calculate the Hamil- A};:Z b;i, (2.12
tonian matrix elements =1

Ho o=t H| ) =Houbsr ot Hias a- (2.8) Where b;i is the raising operator for particle humbiefin
dimensiong. (We use a different notation than in R¢1L3],
The free part of the Hamiltonian contributes to the diagonain order to avoid confusion with quantities defined here.
terms with an amounEwyny, while the interaction part With a two-body potential of the forw/(r;—r;) it is easily
yields the contribution shown that the excitation energyds i.e., independent of the
interaction. Thus for each energy level there must be a ladder
tt of levels with energy spacing above. These dipole modes
gk,%,n Famr( Yo' 4@/ @man| ). 2.9 have been found ?X cglculagt];ons based on th% Bogoliubov
approximation[4,7] and in the hydrodynamic description
The symmetries of the interaction can be used to reduce tHd2]. The occurrence of these states will serve as a check of
Hamiltonian matrix to a block-diagonal form. Splitting the convergence of the calculated energy levels. For complete-
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ness we note that the raising operator in terms of creation V2
and annihilation operators in one dimension takes the form ~om T Vexn) —u | ®(r)+2g NP* P (r)=0.
(3.2
T lex1at
A _Ek: K+ 1ay. 8. (213 The chemical potential introduced is given by the normaliza-

tion of ®. This equation can be derived from the Hartree-

Herek labels the Hermite polynomials. Commuting the rais- Fock-Bogoliubov approximation when the effect of excited

ing operator with the free-particle Hamiltonian, we find particles is neglectefl6]. _
Oscillator basis.The equation forb may be solved intro-

[Ho,AT]=wAT, (2.14 ducing a harmonic-oscillator basis
and the excitation energy is thus. The vanishing of the D(r)=2, cry(r). (3.3
commutator ofAT with the interaction term is less obvious in k

this formalism. The commutator becomes o 2 .
Normalization now corresponds Ky|c,|°=1. The equation

then takes the form
[H,,AT]= ZQKE ] af I+ 1(Fmnis 1808y

. > (0= p)Ckdi(1) +29N X i eiCni b (1) =0.
— Femn@i 4+ 180) @, (2.1 k K.I,m 34

and for each combinatioa/aana, the prefactor vanishes.

This is due to the following relation between the overlapMUItIplylng with ¢, and integrating, we finally end up with

the set of equations

integrals:
\/d+1fabcd+1+ \/C+1fabc+ld:\/afaflbcd+ \/Bfabflcd- (wn_M)Cn+ZgNkl2m C: Clcmfklmn: 0, (35)

(2.19

where f again is the overlap integral over four harmonic-
oscillator eigenfunctions. The basis set is truncated at some
level K, andK is raised until convergence is reached. The
corresponding finite set of equations may be solved by use of
he Newton-Raphson method. This method was applied in
ef.[7] for the case of a three-dimensional Bose gas. Solu-

Breathing modeln two dimensions the many-body Hamil-
tonian has ar50(2,1)-symmetry discovered by Pitaevskii
and RoscH19]. This symmetry gives rise to excitations of
energy 2w identified with the breathing mode of the conden-
sate. The excitation spectra for the planar systems mu

therefore contain ladders both with energy spadingnd tions in one dimension have also been obtained edWier

introduced m the 2ystem. Such & cutoft is mherent in ouA03I the symmetry of the ground state may be used to
. Y : . choose the proper subset of eigenfunctions. In one dimension
calculation. We therefore expect that the level spacing 2

will be less accurate than the spaciaccaused by the dinole we only have to consider even functions. In two dimensions
excitations P ¢ y P only zero angular momentum eigenfunctions contribute.

Once the coefficients, are determined, one must check if
the normalization condition is satisfied. If not, a different
ll. MEAN-FIELD APPROXIMATION chemical potential is chosen, and the process is repeated un-
til normalization is obtained. Having the correct coefficients,
One of the purposes of this paper is to compare the prewe easily find the ground-state density profile
dictions of the many-body calculation with those of mean-
field theory for quantities such as the ground-state energy _
and density distribution. The condensate is in the Gross- p(r)—; Cebi(r)
Pitaevskii(GP) approximation 14,15 described by a classi-
cal, macroscopic Bose field governed by the Hamiltoniann addition, the ground-state energy per particle reads
density per particle

2
. (3.6

V2 Ek wk|ck|2+gNk|E CECTCanfmmn- (3.7
HC|/N=<IJ*(r)(—%+Vex(r)>(I)(r)+gN[<I>*<I>(r)]2. m
(3.3) IV. NUMERICAL RESULTS
The field is rescaled here to satisfgr®*® =1, thus the In the following we present the results of the numerical

factorN in front of the interaction term. Notice that the cou- diagonalization of the many-body Hamiltonian. In one di-
pling g and the particle numbe¥ occur only in the combi- mension we have truncated the many-body basis at a cutoff
nationgN, as opposed to the many-body description. Mini-energyE,.,= 38 w. This corresponds to a basis with blocks
malization of the corresponding Hamiltonid;, = fdrH_, of up to 80524 many-body states. In two dimensions the
leads to the nonlinear Schiimger (or Gross-PitaevsKii number of overlap integrals for a givéy,,, is considerably
equation higher than in one dimension. Moreover, the generation of
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matrix elements turns out to be very time consuming. Wecorresponding energy given by the many-body calculation.
have therefore stopped &,.,—=14w, with a basis with In Fig. 3 this rescaled coupling multiplied kY is plotted
blocks of up to 4532 states in two dimensions. Energies aréilled circles as a function of M for various values of the
measured in units of the oscillator frequency and lengths ifbare coupling. The corresponding valueNdj, is found at
units of the typical oscillator width 1mew. g refers to the 1/N=0. For the range of parameters considered, the lines
corresponding dimensionless interaction strengffp(g,p) |00k very linear. Below, we compare these results with the
as obtained in the Appendix. effective coupling based on calculations of the core density
In Fig. 1 we show the ground-state energy as function of" the ground state. . o
the cutoff energyE .. The plotted quantity is the ratio of _ Planar Bose gasThe insert in Fig. 4 shows the Gross-
the ground-state energy for the giv&i,., and the energy Pitaevskii ground-state energy in two dimensions as function
found using the highesE,,.,, considered. The upper graph is of Ng. The energy falls rapidly with decreasing, negative
for one dimension, and the lower for two dimensions. In onefOUPling. With a basis of up to 28 oscillator eigenfunctions,
dimension, the relative difference in ground-state energy go& have not been able to reach convergence BgaN=
ing from 36w to 38w is seen to be about 0.05% or less. — @- It seems though thatE,/d(Ng) approaches infinity as
Going from 12w to 14 in two dimensions, the shift is We get closer to this point, thus indicating that no stable
about 0.2%. The convergence of the excitation energies is
found to be considerably faster for the lowest levels, but is 15

slower at high energy. This will be seen below in the devia- | Gross—Pitasvski
tion of the interaction-independent energies from the exaci —— many-body; N = 10-40 -
valuesnw. /

1.0

A. Ground-state energy

In this subsection we show the effect of the interaction on
the energy of the ground state. In all figures the ideal gasLy
ground-state energy is set to zero.

Linear Bose gaskigure 2 shows the ground-state energy
in one dimension, both in the many-body description and in
the Gross-Pitaevskii approximation. For a giveg the en-
ergy resulting from the many-body calculation is seen to
converge toward the mean-field value as the particle numbe 44 . ‘ . ‘

N is increased. The discrepancy between the approximation 0 1 2 N 3 4 5
increases witiNg. g

The discrepancies found between the two approximations FiG. 2. Ground-state enerdg, per particle in one dimension
might to some extent be removed by the introduction of anmeasured in units o as a function of interaction strengthfor
effective coupling constant in the mean-field theory. For aparticle numberé\=10, 12, 15, 20, 30, and 40, starting from
set of couplingsg, and particle number®N, we find the below. The results of the many-body calculation converge toward
rescaled coupling which in the GP approximation yields thethe mean-field result as the particle number increases.

05 r
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ground state may be formed for stronger attractive couplingshe coupling ranges fronNg=0-2 in steps of 0.2. This
This is agreement with Pitaevskii's analysis of the systemsummed density of states is indeed smoothed by the presence
[20], where it is shown that an attractive interaction leads toof the interaction. Note that the curves coincide at points
collapse of the gas for energies more thatelow the ideal (E—Eg;)/w=n. This happens because all interaction-
gas ground-state energy. Similar conclusions are drawn iflependent excitation energies lie in the gap below the corre-
Ref. [21]. sponding undisturbed level for the considered values of the
The Gross-Pitaevskii ground state energy is in Fig. 4 als@oupling.
plotted together with the results of the many-body calcula- Planar Bose gasThe lowest energy levels of a planar
tion for N=10, 15, and 20. The mean-field approximation issystem with 20 bosons are given in Fig. 7 as function of the
approached all increases. We have calculated the effectivedimensionless coupling. For each level with nonzero angular
coupling Ng which, used in the GP approximation, repro- momentumL, there is a level with the same energy and
duces the energy obtained in the many-body calculationangular momentum-L. The degeneracy @=0 is partially
This effective coupling is plotted as filled circles in the right jifted for nonzerog, but again there are levels which are
graph of Fig. 3. The results are all for the highest cutoffunaffected by the interaction. These are reached by the two
energy Enq.= 14w. We again find thalNg depends nearly dipole excitations and the breathing mode excitation from
linearly on 1N. the ground state. The modes also give rise to a set of ladders
above the interaction-dependent levels. Since the energies of
B. Excitations all three interaction-independent modes are multiples of

In Sec. Il we saw that the excitation energies must consist
of ladders with energy spacing. This is due to the exis-
tence of the collective raising operatéf. In two dimen-
sions, the breathing mode leads to additional ladders with .| |
spacing 2w. The bottom of each of the ladders must, how- ol
ever, be determined by other means, and here we present tt
results of the numerical diagonalization of the many-body ol
Hamiltonian.

Linear Bose gasln Fig. 5, the lowest excitation energies
in one dimension are given as functiona\g for the case of 0.0 ¢
30 particles. The degeneracy at zero coupling is split by the
interaction. For each level in the ideal case, one level re-
mains independent of the coupling. These levels correspon:
to excitations described b from the ground state. The
others spread out below, and above each of these we find th . .
mentioned ladder of levels. Similar results are obtained for -1 0 N 1 2
N=10, 12, 15, 20, and 40. The relative shift in the energies g

going fromN=10-40 with a giverNg is less than 1% for FIG. 4. Ground-state enerdy, per particle in two dimensions
the range of parameters presented in Fig. 5. measured in units of as a function of interaction strengthfor

The splitting of the degeneracy by the interaction leads tgarticle numbersN=10, 15, and 20 starting from below. The re-
a more even distribution of energy levels than in the freesults of the many-body calculation are compared to the mean-field
case. As an illustration of this, Fig. 6 shows the number ofapproximation(Gross-Pitaevskij which is approached as the par-
energy levelsp(E) (right curves below a given energ¥e  ticle number increases. The inset shows the energy in the mean-
measured from the ground state. We have taker20, and field approximation over a broader range of the interaction strength.

—— Gross—Pitasvskii | |

L 1
0 10

E/No

------ Gross-Pitaevskii
—— many-body, N=10,15,20
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5 T T { =

4 |
Ss
=] FIG. 5. Excitation energiesH—Ep)/w in a

| one-dimensional system of 30 bosons as a func-

Ez —— tion of the interaction strengtd.

1

O 1 1 i

0 1 2 3 4
Ng

there is a high degree of degeneracy eveng@O in this  breathing mode. As discussed above, this is an expected ef-
system. fect of the existence of the energy cutoff.

In Fig. 6 the corresponding summed density of states
non(E) (left curves is plotted for 15 bosons with the cou- C. Ground-state density

pling running fromNg= B 110 2 in steps of 0.5. Levgls for The ground state can, in the GP approximation, be written
both positive and negative angular momentum are included,s 5 gyperposition of oscillator functions with even parity or
The steplike form of the curve for the free case is again,grq angular momentum in one and two dimensions, respec-
smoothed by the interaction. tively. In the many-body description this is no longer true,

For stronger couplings we do not quite reproduce the iny 4 single-particle states with other quantum numbers will

dependence of the interaction. This is due to the truncation of jiribute. We here show how this affects the ground-state
the basis of states. However, since we know that these Ieveb%nsity.

must approach&—E,)/w= integer as the basis setis in-  £qr'|argegN the interaction energy dominates the kinetic
creased, the deviation gives a good indication of the aCCUsnergy, and one may neglect the kinetic term in the GP equa-

racy of the results. In two dimensions we find that the consigy This is the Thomas-FerniTF) approximation(3]. The
vergence is better for those levels involving only dipole g tion is now simply

excitations than for those which are reachgpdrtly) by the

1
|CI>(F)|2=2g—N[M—Vex(F)]0[M—Vex(r)]

15000 1 3000
5 ;.E:\‘:\‘i\,
~ 10000 12000 .
=
= =
A E
5000 1 1000 Lrl-l -1
=
2 B
0 ‘ : 0
0 10 20 17
(E-E)/o® — L=0 — =1 ——L-4
----- L=3 —---L=2 ---—- L=5
FIG. 6. Summed density of states in orfieght curvesn,p) and 0 ; : : : ; :

. . -1 0 1 2 0 1 2 0 1 2
two-dimensional(left curves,n,p) systems of 20 and 15 bosons, Ng Ng Ng
respectively. The interaction strength is in the randky
=0,0.2...,2 in onedimension, andNg=—-1,—-0.5,...,2.5 in FIG. 7. Excitation energiesH—Eg)/o in a two-dimensional

two dimensionsNg increases from right to left, and negative inter- system of 20 bosons as a function of the interaction strergih.
action strengths are indicated by dashed lines. the angular momentum.
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0.8 - ‘ ' sity p(x) as a function of the dimensionless radius
=rymw in one and two dimensions, respectively. The

.?;OSS_PiEeVS!(" Thomas-Fermi approximation is seen to reproduce the core
sl V| omas- e.rml i density p(x=0) for interaction strengths abovgg~5 in
~——— Many-body; N = 30 one dimension, and abowég~ 10 in two dimensions. The

approximation gets worse as the distance from the core is
increased, where the density has a sharp cutoff in the
Thomas-Fermi approximation. For the lowest values of the
interaction strength we compare the Gross-Pitaevskii ap-
proximation to the full many-body calculation with=30
and 20 in one and two dimensions, respectively. The GP
approximation yields quite good results, especially at large
distances, but it tends to overestimate the effect of the inter-
action. Still, the mean- field theory seems to work better for
the density than for the ground-state energy.

We may again try to compensate for the deviation by
) o ) _ introducing an effective interaction strength, as done for the

FIG. 8. Normalized ground-state densjtyin one dimension. energy calculations. The corresponding valuesNgf are
The density is plptted as a _function of the _dimensionless_radius"shown as triangles in Fig. 3. The one- and two-dimensional
=rmw. The solid curves give the density in the Gross-Pitaevskii o its are fOIE,../ =38 and 14, respectively.

approximation forNg=-—1, 0, 1, 2, 5, 10, and 50. The dotted " o offactive couplings are different from those based on
curves show the result of the Thomas-Fermi approximation for re-

o . . ) . the energy calculation, and the relative difference increases
pulsive interaction. The density obtained in the exact many-bod ith N The aareement is however quite good 1o
calculation with 30 particles is shown as dashed linesNgr= 1 : %- . g . '.S wev _qU| 9 g.o
and 2. =0.5 and 1 in two dimensions. But, in general, a simple

rescaling of the interaction cannot account for all many-body

effects in the ground state.

P o4 b\

02 r

0.0

2
Mw
E—4gN(R2—r2)9(R2—r2). (4.2)
D. Specific heat

This describes a condensate density which vanishes outside

the radiusR=y2u/mw*. Here we compare the normalized 4o\ ¢ yranned bosons, it is straightforward to find the parti-
densityp in the TF a}pprOX|m§1tlon' with the exact splu'uon of tion function and the thermodynamical quantities one may
the Gross-Pltaevsk|_| approximation, an_d al_so W'th the fu_"derive thereof. The validity of these results is limited to low
many_-body calculat_lon. Th_e T.F approximation in three dI'temperatures'|'< Emax- Just how low the temperature must
Mensions was studied earlier in Rﬁ]'. be will be clear in the examples which follow.

In Figs. 8 and 9 we plot the normalized ground-state den- Let us first consider the one-dimensional system. With 20
particles and a cutoff aE,5=26 w, we find the specific

Having obtained the lowest excitation energies of the sys-

03 heat plotted in the left graph of Fig. 10. The coupling ranges
fffff Many-body; N = 20 from Ng=0 to 2 in steps of 0.5, starting from below at low
04 F —— Gross-Pitaevskii | temperatures. The dotted line is the specific heat for 20 non-
Thomas—Fermi interacting bosons calculated in the canonical ensemble. We

also show the result of a calculation in the grand-canonical
ensemble. For particle numbers as low as this, the two en-
sembles predict somewhat different specific heats. The exact
curve agrees with the curve fg=0 up to a temperature
around 1.%». At higher temperatures the many-body calcu-
lation breaks down. For temperatures where the results are
valid, we find that the repulsive interaction yields a higher
specific heat than in the case of noninteracting particles. This
happens because the interaction brings most of the energy
levels closer to the ground state. The effect of the interaction
grows with increasing temperature in this regime.

We have also calculated the specific heat for a two-

FIG. 9. Normalized ground-state densjtyin two dimensions. (ﬂmensional System of 15 bosons. The CUtO,ff heré j5,
The density is plotted as a function of the dimensionless radius — 14, and the basis thus contains states with angular mo-

—rJma. The solid curves give the density in the Gross-PitaevskiMentum up toL = *+14. The specific heat is shown in the
approximation forNg=—1, 0, 1,2, 5, 10, and 50. The dotted right graph of Fig. 10. The calculation now breaks down
curves show the result of the Thomas-Fermi approximation for rearoundT/w=1. For comparison we have included the spe-
pulsive interactioNg=5, 10, and 50. The density obtained in the Cific heat of 15 noninteracting bosons as given in the grand-
exact many-body calculation with 20 particles is shown as dashe@anonical ensemble. Again, a repulsive interaction increases
lines forNg<5. the specific heat, while it is decreased in the attractive case.
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been done by computing that interaction strength which,
when applied in the Gross-Pitaevskii equation, yields the
same ground-state energy and core density as found in the
full many-body calculation. In two dimensions, and for
Ngy=0.5 and 1 the effective couplings obtained from

1D | 2D

o2 matching energy and from matching core density agree quite
o well. But, in general, rescaling based on ground- state energy
Z and core density result in different effective couplings. Thus
g this simple rescaling cannot account for all many-body ef-

01t fects in the ground state.
We have also considered the lowest excitation energies.

In both one and two dimensions we have reproduced the

—— mb; Ng =0-2

— mhiNg~ yi interaction independent levels which must be present in these

. Geige0 / T aanayTs systemg13,19. The interaction breaks the degeneracy in the

0.0 - ] 2 0.0 o5 7o 0.0 noninteracting gas completely in one dimension. In two di-
T/® ' T/® ' mensions the two dipole modes and the breathing mode as-

_ _ _ _ sure a high degree of degeneracy even for nonzero interac-
FIG. 10. Specific hea€y per particle measured in units 86 jon, We have calculated the specific heat based on these
for one- (left) and two-dimensionalright) systems of 20 and 15 gy citation energies. For low temperatures, where the results
bosons, respectively. The specific heat is plotted as function of thg .o \ 9iq  the repulsive interaction increases the specific heat,
oo cimersion I rleraclon Shero™ whie s decreased i the atracive case
increases fr%r_n below in steps of 0.5. The many-body réﬁﬂt?) It would be interesting to compare the obtained excitation
o ! : nergies with the results of calculations based on the Bogo-
are compared to the curve for the ideal gas as given in the granlubo% or Hartree-Fock approximations. One might also uge

canonical ensembl@C). In one dimension we also show the exact . . . . .
result for the ideal gas in the canonical ensen{&€). Notice the the obtained density of states as a basis for calculations in the

breakdown at higher temperatures due to the cutoff in the energ{fticrocanonical ensemble. Finally, the parameter range might
spectra. e extended by choosing a more suitable basis of single-

particle states, such as the Hartree-Fock states.
There is no Bose-Einstein condensation for an ideal,

mogeneougas in two dimensions. In the presence of a har- ACKNOWLEDGMENTS
monic trapping potential, condensation may, however, occur
[22,23. The condensation temperatufB,=%wN/Z(2) The authors would like to thank F. Ravndal for bringing

persists in the thermodynamic limit, which is found by tak- their attention to this problem and for helpful comments and
ing N—,w—0 while keeping the average particle density Suggestions. S. B. Isakov is acknowledged for informing us
p~Nw? constant. Recently, Mullif24] studied a two- about Ref.[13]. We thank A. Rosch for pointing out Ref.
dimensional system with attractive interaction in the thermo{19], and for useful comments on the breathing mode in two
dynamic limit. He found that the normal state has a transitiorflimensions. We also thank B. D. Esry for comments on an
temperaturd <T,, butnotto a Bose condensed phase. This€arly version of this paper.

agrees with the earlier findings of ShevchenRka]. Keep-
ing, insteadN and w finite, one should find aon-zerotem- )
perature at which condensation sets in. Although one might APPENIE')E AWE';FSEATQ(JE ICONUPLING

study this by the method used here, we cannot derive any © SIONS

decisive results as far as the condensation temperature is |nspired by proposed experiments in lower dimensions
concerned. For this one would need excitation energies goings,2¢, here we will here consider the effect of having a

considerably higher than what we have considered. strongly anisotropic trapping potential. Assuming<< wyy
or w,>wyy the system should effectively be one or two
V. DISCUSSION AND CONCLUSION dimensional. When the larger oscillator energy dominates all

.other energies in the system, we may assume that there will

: - . Lo > e no excitations in this direction. This means that the field

the configuration-interaction approximation on systems with ;
) X s . . operator may be written as

10-40 interacting bosons confined to harmonic traps in one

and two dimensions. By use of a set of many-body states and

decomposition of the fields in harmonic modes, we have di- ~

agonalized the Hamiltonian numerically. The resulting ‘I’(val):; $o(X) ho(y) di(Z)@gn (A1)

ground-state properties have been compared to the predic-

tions of the Gross-Pitaevskii equation. The largest difference

is found for the ground-state energy, while for the ground-for the one-dimensional case, and

state density the mean-field predictions are considerably

more accurate, at least for largdg.

. We have tried to g:ompensate b'y mtroduc_mg an effgctlve \If(x,y,z):E bo(2) di(X,Y) Aok (A2)

interaction strength in the mean-field description. This has K
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for the two-dimensional case. We may then integrate ovewherea;= \/A/mw; anda=mgsp/27%2. Here we have rein-
the spatial variables corresponding to the stronger oscillatiorroduced. The effective coupling is seen to increase with
frequencies. This results in a rescaling of the coupling conthe strength of the stronger oscillator frequency. This is an

stantg in Eq. (2.2: effect of reducing the length in which the particle density
Mo Mo may extend in the dimensions integrated out.
z Xy . . . .
920=0s0\ 5 and g,p= 9~ - (A3) As an example of a possible physical realization, we men-

tion that Ketterle and van Drutef25] have suggested an
Measuring energy in units of the remaining oscillator fre-€Xxperiment withw,/w,,~ 10~° and wyy~200 nK. With a
quency » and lengths in units of the oscillator length Scattering length of typically 100 Bohr radii, this yields an
1/J/mw, we obtain the dimensionless coupling constants  effective one-dimensional couplingg;p~1. This corre-
sponds to a strong-coupling system for any finite number of
~ _ 5=a ~ _ Wyy 8 particles. Other configurations may yield a weaker effective
920= 27Taz and gip=m ®; Ay’ (Ad) coupling.
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