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Echo in optical lattices: Stimulated revival of breathing oscillations

A. Bulatov,1 A. Kuklov,2 B. E. Vugmeister,1 and H. Rabitz1
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~Received 17 December 1997!

We analyze a stimulated revival~echo! effect for the breathing modes of atomic oscillations in optical
lattices. The effect arises from the dephasing due to the weak anharmonicity being partly reversed in time by
means of additional parametric excitation of the optical lattice. The shape of the echo response is obtained by
numerically simulating the equation of motion for the atoms with subsequent averaging over the thermal initial
conditions. A qualitative analysis of the phenomenon shows that the suggested echo mechanism combines the
features of both spin and phonon echoes.@S1050-2947~98!08305-X#

PACS number~s!: 32.80.Lg, 61.43.Fs, 77.22.Ch, 75.50.Lk
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I. INTRODUCTION

The coherent manipulation of the atomic center-of-m
motion in optical lattices@1# by means of the nonstationar
off-resonance dipole potentials has provided experime
capabilities to study dynamical systems with time-depend
potentials @2–5#. In the off-resonant coherent regime, th
parametric nonadiabatic excitations of the optical lattice g
rise to oscillations of the atomic momentum and coordin
distribution dispersions~breathing modes! @3–5# and may be
used for the manipulation of the coordinate or moment
dispersions of the atomic distribution by means of squeez
in phase space@4#.

The squeezed states of matter in various systems h
been extensively discussed in connection with the possib
of overcoming the standard quantum limit for noise impos
by vacuum fluctuations~see, e.g.,@6,7#!. In an optical lattice,
the squeezing effect can be significant in the classical reg
producing classical squeezed states@8# and resulting in the
reduction of thermal fluctuations.

Recently, the breathing modes of atomic oscillations
optical lattices have been observed experimentally with
use of the Bragg scattering techniques based on the fact
the cross section of the Bragg diffraction scales with
Debye-Waller factor, which is related to the dispersion of
atomic coordinate distribution@3,5#. The observed decay o
the oscillations may be due to both the dissipative and
dephasing effects.

In classical oscillating systems with anharmonicity, t
frequencies have a continuous distribution due to the ene
dependent corrections. This leads to the dephasing of s
oscillations@6#. Together with possible irreversible dissip
tion, the dephasing determines an apparent damping of
oscillations. The dephasing, caused by the nonlinearity
fects, can lead to partial revivals under certain circumstan
Examples of such revivals are the phonon~see@9#!, spin, and
photon echo effects@10,11#.

One has to distinguish between the classical stimula
revival ~echo! caused by external perturbations applied to
oscillating system and the quantum revival related to
discrete structure of the energy levels of the system that d
not require any external disturbances@6,12#. As will be
shown below, these two revivals can have different ti
571050-2947/98/57~5!/3788~5!/$15.00
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scales and therefore can be separated.
In this paper we show that an analog of the phonon e

effect exists for the breathing modes of atomic oscillations
optical lattices. However, the proposed echo mechanism
sesses features different from those of the conventional p
non echo mechanism. First, the proposed mechanism is
lated to the oscillations of the dispersion of the atom
distribution as opposed to the average coordinate and
mentum oscillations involved in the phonon echo model@9#.
In contrast to the conventional model of phonon echo@9#, the
excitation of the system in our model is achieved by me
of the parametric modulation of the frequency of the atom
oscillations as opposed to applying a time-dependent ex
nal force to the atoms@9#. As shown below, the suggeste
echo mechanism incorporates the features of both the
~photon! @10,11# and the phonon echo mechanisms due to
specific nature of the parametric excitation of the oscil
tions. This effect can be employed to study the revival a
damping mechanisms of the breathing modes in optical
tices.

II. MODEL AND NUMERICAL RESULTS

An atom subjected to an off-resonance laser field exp
ences an energy shift of the ground state proportional to
intensity of the field. If the field is formed by a standin
wave with large detuning, the effective potential for the
oms in the ground state is given by@13#

U~x!5V@12cos~2qx!#, ~1!

wherex denotes the atomic center-of-mass coordinate,V is
the amplitude of the dipole potential~proportional to the in-
tensity of the laser field!, and q is the wave vector of the
laser field. Normally, the initial state of the system is form
by Doppler cooling, so that the trapped atoms are in ther
equilibrium near the minima of the optical potential and for
an optical lattice. In this paper we will consider the case
temperaturesT much larger than the energy of the atom
oscillations at the bottom of the potential. Consequently,
quantum effects will be taken into account. On the oth
hand, the temperature should be low enough to ensure
3788 © 1998 The American Physical Society
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57 3789ECHO IN OPTICAL LATTICES: STIMULATED . . .
the atoms do not escape from the potential well. If the m
nitude of the optical lattice potential is time dependent, th

V5V0@11k~ t !#, ~2!

wherek(t) describes the parametric excitation of the latt
(V05 const!. Therefore, the effective potential can be a
proximated as an oscillator with weak anharmonicity a
time-dependent frequency. The harmonic frequency co
sponding to the potential~1! is given by

v052qAV0

m
, ~3!

wherem is the atomic mass. We assume that the parame
excitation of the system occurs in the form of two sh
pulses

k~ t !5s1d~ t2t1!1s2d~ t2t2!, ~4!

wheres1,2 andt1,2 characterize the intensities and the insta
when the pulses are applied to the optical lattice, resp
tively. In what follows we assume thatt150 and t25tp .
The equation of motion is given by

ẍ̃52
1

2
sin~2 x̃ !@112j1d~t!12j2d~t2tp!#, ~5!

where we introduced the dimensionless variables

x̃ ~t!5qx~t!, t5v0t, ~6!

with j15v0s1/2, j25v0s2/2, t15v0t150, and t25tp
5v0tp .

The physics of the echo effect in the optical lattice can
understood as follows. We assume that initially the atom
system is in thermal equilibrium characterized by the val
of coordinate and momentum dispersionsmv0

2^x2&T

5^p2&T /m5kBT. The first pulse initiates the squeezing
the atomic phase-space distribution creating the class
squeezed states@8#. In harmonic systems, such squeezi
results in oscillations of̂ x(t)2& and ^p(t)2& with the fre-
quency 2v0. The nonlinearity leads to dephasing and the
fore to the apparent damping of these oscillations. Since
dephasing is reversible in time, one expects to observ
least a partial revival of the oscillations after the applicat
of the second pulse to the system. A qualitative phys
picture of the phenomenon will be discussed in the next s
tion. Here we concentrate on the numerical results.

In order to study the echo effect, we performed a num
cal simulation using the equation of motion~5! with subse-
quent averaging of x̃2(t) over the initial conditions

x̃ (0), ẋ̃ (0) distributed in accordance with the initial therm
ensemble. The results for the normalized average disper

^ x̃2(t)&/^ x̃2&T are presented in Fig. 1. One can see the
pected damping of the squeezing oscillations after each p
due to the dephasing effect. The characteristic damping
increases with an increase of the temperature. The mos
markable feature of the time evolution of^ x̃2(t)& is the
pronounced echo effect att'2tp .
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The revival time is approximately 2tp according to the
general considerations involved in the two-pulse phonon
the spin echo models. Note, however, that the revival

^ x̃2(t)& is only partial~approximately 0.25 of the initial am
plitude!.

In Fig. 2 we present the dependence of the echo amplit
on the intensity of the second pulse. The echo amplitud
very small for small values ofj2; then it increases sharply in
the intermediate region ofj2 and saturates in the nonlinea
regime.

III. QUALITATIVE ANALYSIS: COMPARISON
WITH THE PHONON AND SPIN ECHO

In order to clarify the mechanism of the proposed ec
effect and compare it with the other echo mechanisms,
consider the approximate analytical solution of Eq.~5! valid
for the low temperature~small anharmonicity!. In this case, it
is sufficient to take into account only the first~quartic! cor-
rection to the effective harmonic potential. Equation~5! re-
duces to

FIG. 1. Numerical simulation of the echo effect discussed in
text, g(t)5x2(t). The parameters for the simulations a
tp5105, j150.2, j250.1, andu5T/4V050.03.

FIG. 2. Maximum echo amplitude as a function of the intens
j2 of the second pulse.
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ẍ̃52 x̃ @112j1d~t!12j2d~t2tp!#1
2

3
x̃3, ~7!

where we neglected the modulation of the nonlinear te
assuming that the amplitudes of the pulsesj1 and j2 are
sufficiently small. FortÞ0,tp , Eq. ~7! has an integral of
motion corresponding to the energy of the atomic systemẼ
5E/4V0 ~i.e., there are three different values of energyEk :
k50, 1, and 2 for timest,0, 0,t,tp , andt.tp , respec-
tively!.

For small anharmonicity and amplitudes of the exter
pulses, the solution of Eq.~7! for g(t)5 x̃2(t) up to the
second-order terms inẼk can be obtained in the form

g~t!5Ck1$Akexp@2iv~ Ẽk!t#1Bkexp@4iv~ Ẽk!t#1c.c.%,

Ck5Ẽk1
3

4
Ẽk

2 , ~8!

where k50,1,2. From Eq.~7! it follows that Ak5Ẽk(1
1 2

3 Ẽk)exp(2ifk)/2 and Bk52Ak
2/6, wherefk corresponds

to the phase of the atomic oscillations in different time int
vals. Note thatAk are the complex constants characterizi
both the amplitude and phase of the atomic oscillations
v(Ẽ) stands for the effective frequency. This frequency
determined in the limitẼ→0 as

v~ Ẽ!512
1

2
Ẽ. ~9!

The solution given by Eqs.~8! and ~9! corresponds to the
first term of the asymptotic expansion for the anharmo
oscillator in the limit of weak anharmonicity and large ev
lution time @14#.

Each pulse in Eq.~7! results in a jump ofġ andẼ, while
g remains continuous. We obtain from Eq.~7!

ġ~ts
1!2ġ~ts

2!524jkg~ts!,

Ẽ~ts
1!2Ẽ~ts

2!52jk
2g~ts!2jkġ~ts

2!, ~10!

wherets50,tp ; ts
1 andts

2 denote the moment of time jus
before and just after each pulse, andk51,2. After the appli-
cation of the first pulse, we obtain from Eqs.~8! and~10!, for
small j1,

A15A01 i j1~ Ẽ012A0! ~11!

and

Ẽ15Ẽ022i j1~A02A0* !. ~12!

Combining Eqs.~11! and~9! and averaging over the rando
initial phase and the thermally distributed initial energy
the limit of low temperatures (Q[T/4V0!1), we obtain the
time evolution of the coordinate dispersion in the form

^g~t!&5Q1QS i j1

exp~2i t!

~11 i t/tc!
2

1c.c.D , tp.t.0,

~13!
,

l

-

d
s

c

with the dephasing rate of oscillations defined by

tc
215Q. ~14!

Equation~13! indicates that the amplitude of the oscillation
of the coordinate dispersion exhibits an apparent damp
As discussed above, this damping is caused by the anha
nicity, which results in the dependence of the effective os
lation frequency on energy, and the thermal energy distri
tion leading to an averaging out of the oscillation
Therefore, this damping is reversible in time. The dephas
rate given by Eq.~14! is in good qualitative agreement wit
the numerical results discussed above. Fitting the data
sented in Fig. 1 for 0,t,tp by Eq. ~13! gives the value
tc

21'1.1Q for the dephasing rate in our numerical simul
tions.

Now we will analyze the effect of the second pulse. A
plying Eq. ~10! for ts50 andts5tp consecutively, one ob-
tains the amplitudeA2 in Eq. ~8! after the second pulse (t
.tp)in the limit of smallj2,

Ã2~tp!'Ã1~tp!~112i j2!1 i j2Ẽ12
1

3
i j2Ẽ1Ã1* ~tp!,

~15!

whereÃ1,2(t)5A1,2e
2iv(Ẽ1,2)t correspond to the envelope so

lution for g(t) given by Eq.~8!. The Ã vectors rotate with
the frequencies 2v(Ẽ1,2) in the complex plane. The energ
after the second pulse is given by

Ẽ25Ẽ122i j2~A1e2iv~ Ẽ1!tp2c.c.!, ~16!

with A1 and Ẽ1 defined by Eqs.~11! and ~12!.
In order to obtain a qualitative picture of the echo effe

we disregard the energy change due to both pulses upon
frequenciesv(Ẽ1,2). Equation~15! indicates that the ampli-
tudeÃ2(tp) after the second pulse is a linear combination
the amplitude before the pulse;Ã1(tp) and the amplitude
Ã2e(tp)52 i j2Ẽ1Ã1* (tp)/3. Note that Ã2e(tp) is propor-

tional to the complex conjugate ofÃ1(tp).
In Fig. 3, we present an illustration of the echo mech

nism described above. Two vector amplitudesÃ1 and Ã18
correspond to the two different values of the initial atom
energies and rotate with the frequenciesv1.v18 in a com-
plex plane. If the two vectors have the same phasef50 at
t50 ~the horizontal dotted line in Fig. 3!, then the phase
difference betweenÃ1 and Ã18 is accumulated over the tim
interval tp. The second pulse att5tp mixes the amplitudes
with their complex conjugates so thatÃ1 andÃ18 acquire the
componentsdÃ1;Ã1* and dÃ1* ;Ã18* , respectively. These
components are shown as the mirror reflections with resp
to the line of zero phase. Since fort.tp the new vectors
continue rotating with the same frequencies and in the sa
direction, the phase difference between the vectorsÃ1 and
Ã18 increases, contributing to the dephasing effect. In c
trast, the phase difference betweendÃ1 anddÃ18 vanishes at
the timet52tp, giving rise to the echo effect analogous
the well-known spin and photon echo@10,11#. Taking into
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57 3791ECHO IN OPTICAL LATTICES: STIMULATED . . .
account Eqs.~8!–~10! and~15!, one arrives at the echo con
tribution after thermal averaging in the lowest order w
respect toj1, j2, andQ,

^g~t!&e5Q2 j1j2

exp@2i ~t22tp!#

@11 i ~t22tp!/tc#
3

1c.c., t.tp .

~17!

One can see that the amplitude of the echo is maximal a
time t52tp . Note that the echo amplitude given by Eq.~17!
is proportional to the productj1j2 in contrast to the depen
dence^g&e;j1j2

2 typical for the phonon echo mechanis
~for small j1 ,j2) as a response to the external reson
forces@9#. The mechanism described above also leads to
terms j1j2

2 omitted in Eq.~15!. According to the conven-
tional model, the phonon echo originates from the chang
the rotation frequency of theÃ vectors due to the externa
pulses. This mechanism is also present in our model if
take into account the change of the energyẼ in each time
interval. In this case, the main contribution comes from
second term on the right-hand side of Eq.~15!. However, this
effect is proportional toj1j2

2 and vanishes for small puls
intensities. Analytical calculations in this case become rat
cumbersome and we do not present them here. Since
disregard the change of the rotating frequency due to
second pulse, the approximation leading to Eq.~17! is valid
if j2Ẽ0tp!1. This condition can only be satisfied in th
limit j2!1 for large evolution time (tp@1). This is a con-

FIG. 3. Illustration of the echo mechanism.
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sequence of the asymptotic nature of the proposed analy
solutions@14#. The extension of our results to the quantu
limit ( T;hv0) is straightforward and can be achieved
replacing the continuous Boltzmann distribution with a qua
tum one on the stage of thermal averaging.

Note that the echo effect analyzed above is a stimula
classical revival of breathing oscillations, in contrast to t
effect of spontaneous quantum revival@12# caused by the
discrete nature of the energy levels in quantum systems.
estimated a characteristic time of the quantum revivalt r ~or
t r5vt r) by extending the method of Ref.@12# to finite tem-
peratures. The ratiotc /t r is 4\v0 /3pT and thereforet r
@tc in the classical limit. Since the classical echo mech
nism described above takes place in the time domaint
'2tp , the quantum revival will not contribute to the effe
if tp,t r . For the value ofQ50.03 used in our numerica
simulations and assuming that the number of levels in
potential well ~1! is N'100, we obtaintc'30 and t r
'300. Since 2tp'200, the above-mentioned condition
satisfied.

IV. CONCLUSION

We investigated the dephasing and stimulated rev
~echo! of the breathing oscillations in optical lattices subje
to two-pulse parametric excitation created by the abr
change of off-resonance dipole optical potential induced
the laser field. The dephasing originates from the energy
pendent corrections to the oscillation frequency and due
the thermal distribution of energy. The shape of the ec
response was obtained by numerical simulation using
equation of motion for the atoms with subsequent averag
over the initial thermal distribution. An approximate analy
cal analysis demonstrates that the suggested echo mecha
incorporates the essential physics features of the spin~pho-
ton! echo, where the echo effect is caused by the chang
the phase of the oscillations due to the second pulse, as
as the phonon echo, where the effect is caused by the ch
of the oscillation frequency. An optimal control analys
would be desirable~e.g., as proposed for the spin system
@15#! for optimizing the echo response in view of the rap
development of experimental techniques~as in, e.g.,
@2,5,16,17#! for the coherent manipulation of the atomic m
tion.
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