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Echo in optical lattices: Stimulated revival of breathing oscillations
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We analyze a stimulated revivééchg effect for the breathing modes of atomic oscillations in optical
lattices. The effect arises from the dephasing due to the weak anharmonicity being partly reversed in time by
means of additional parametric excitation of the optical lattice. The shape of the echo response is obtained by
numerically simulating the equation of motion for the atoms with subsequent averaging over the thermal initial
conditions. A qualitative analysis of the phenomenon shows that the suggested echo mechanism combines the
features of both spin and phonon echd&l050-294{@8)08305-X]

PACS numbes): 32.80.Lg, 61.43.Fs, 77.22.Ch, 75.50.Lk

[. INTRODUCTION scales and therefore can be separated.
In this paper we show that an analog of the phonon echo

The coherent manipulation of the atomic center-of-masffect exists for the breathing modes of atomic oscillations in
motion in optical latticeg1] by means of the nonstationary optical lattices. However, the proposed echo mechanism pos-
off-resonance dipole potentials has provided experimentsesses features different from those of the conventional pho-
capabilities to study dynamical systems with time-dependenfon echo mechanism. First, the proposed mechanism is re-
potentia|s[2_5]_ In the off-resonant coherent regime, the lated to the oscillations of the diSperSion of the atomic
parametric nonadiabatic excitations of the optical lattice givedistribution as opposed to the average coordinate and mo-
rise to oscillations of the atomic momentum and coordinaténentum oscillations involved in the phonon echo mdde!
distribution dispersionébreathing modeg3-5] and may be In contrast to the conventional model of phonon e@ipthe
used for the manipulation of the coordinate or momentunfXcitation of the system in our model is achieved by means
dispersions of the atomic distribution by means of squeezin§f the parametric modulation of the frequency of the atomic
in phase spacp]. oscillations as opposed to applying a time-dependent exter-

The squeezed states of matter in various systems hafal force to the atomp9]. As shown below, the suggested
been extensively discussed in connection with the possibilit¢h0o mechanism incorporates the features of both the spin
of overcoming the standard quantum limit for noise imposedPhoton [10,11 and the phonon echo mechanisms due to the
by vacuum fluctuationésee, e.g.[6,7]). In an optical lattice, specific nature of the parametric excitation of the oscilla-
the squeezing effect can be significant in the classical regiméons. This effect can be employed to study the revival and
producing classical squeezed stai@kand resulting in the damping mechanisms of the breathing modes in optical lat-
reduction of thermal fluctuations. tices.

Recently, the breathing modes of atomic oscillations in
optical lattices have been observed experimentally with the
use of the Bragg scattering techniques based on the fact that
the cross section of the Bragg diffraction scales with the An atom subjected to an off-resonance laser field experi-
Debye-Waller factor, which is related to the dispersion of theences an energy shift of the ground state proportional to the
atomic coordinate distributiof8,5]. The observed decay of intensity of the field. If the field is formed by a standing
the oscillations may be due to both the dissipative and thevave with large detuning, the effective potential for the at-

1. MODEL AND NUMERICAL RESULTS

dephasing effects. oms in the ground state is given bY3]
In classical oscillating systems with anharmonicity, the
frequencies have a continuous distribution due to the energy- U(x)=V[1-cog2qx)] 1)

dependent corrections. This leads to the dephasing of small
oscillations[6]. Together with possible irreversible dissipa-
tion, the dephasing determines an apparent damping of the&herex denotes the atomic center-of-mass coordindtés
oscillations. The dephasing, caused by the nonlinearity efthe amplitude of the dipole potentigbroportional to the in-
fects, can lead to partial revivals under certain circumstancesensity of the laser field andq is the wave vector of the
Examples of such revivals are the phor{sae[9]), spin, and laser field. Normally, the initial state of the system is formed
photon echo effectgl0,11]. by Doppler cooling, so that the trapped atoms are in thermal
One has to distinguish between the classical stimulategquilibrium near the minima of the optical potential and form
revival (echg caused by external perturbations applied to thean optical lattice. In this paper we will consider the case of
oscillating system and the quantum revival related to théemperatures much larger than the energy of the atomic
discrete structure of the energy levels of the system that doesscillations at the bottom of the potential. Consequently, no
not require any external disturbancgs,12. As will be  quantum effects will be taken into account. On the other
shown below, these two revivals can have different timehand, the temperature should be low enough to ensure that

1050-2947/98/5(6)/37885)/$15.00 57 3788 © 1998 The American Physical Society



57 ECHO IN OPTICAL LATTICES: STIMULATED ... 3789

the atoms do not escape from the potential well. If the mag- '
nitude of the optical lattice potential is time dependent, then

wherek(t) describes the parametric excitation of the lattice ¥(r) >
(Vo= cons}). Therefore, the effective potential can be ap- P

proximated as an oscillator with weak anharmonicity and
time-dependent frequency. The harmonic frequency corre- 0.9 i
sponding to the potentidll) is given by

V
wo=2( \/HO, 3)
0.6 ' '

wherem is the atomic mass. We assume that the parametric 0 100 200
excitation of the system occurs in the form of two short T

pulses FIG. 1. Numerical simulation of the echo effect discussed in the
text, y(7)=x?(7). The parameters for the simulations are
k(t)=s10(t—t1) +s26(t—to), (4)  7,=105,£=0.2,£,=0.1, andf=T/4V,=0.03.

Wheresl‘z andt1’2 characterize the intensities and the instants The revival time is approximate|y 7-% according to the
when the pulses are applied to the optical lattice, respecgeneral considerations involved in the two-pulse phonon and

tively. In what follows we assume tha{=0 andt,=t,.  the spin echo models. Note, however, that the revival of
The equation of motion is given by (X?(7)) is only partial(approximately 0.25 of the initial am-
) 1 plitude).
X=— =siN(2X)[1+2&,8(7) +2&,8(7— S ) In Fig. 2 we present the dependence of the echo amplitude
2 on the intensity of the second pulse. The echo amplitude is
_ ) ) ) very small for small values dof,; then it increases sharply in
where we introduced the dimensionless variables the intermediate region of, and saturates in the nonlinear
- regime.
X(1)=ax(7),  T=wt, (6)

Ill. QUALITATIVE ANALYSIS: COMPARISON

WIth §1=0081/2, &= weSf2, 1= wety=0, and rp=1, WITH THE PHONON AND SPIN ECHO

= woly .
Thg physics of the echo effect in the optical lattice can be In order to clarify the mechanism of the proposed echo

understood as follows. We assume that initially the atomiceffect and compare it with the other echo mechanisms, we

system is in thermal equilibrium characterized by the valuegonsider the approximate analytical solution of E%).valid

of coordinate and momentum dispersiomawi(x?)y  for the low temperaturésmall anharmonicity In this case, it

=(p?)r/m=kgT. The first pulse initiates the squeezing of is sufficient to take into account only the firguartio cor-

the atomic phase-space distribution creating the classicaiection to the effective harmonic potential. Equati® re-

squeezed statgs]. In harmonic systems, such squeezingduces to

results in oscillations ofx(t)?) and (p(t)?) with the fre-

quency 2v,. The nonlinearity leads to dephasing and there- 0.3 |

fore to the apparent damping of these oscillations. Since the

dephasing is reversible in time, one expects to observe at

least a partial revival of the oscillations after the application

of the second pulse to the system. A qualitative physical 0.2 - i
picture of the phenomenon will be discussed in the next sec-
tion. Here we concentrate on the numerical results. <5(7) >

In order to study the echo effect, we performed a numeri- < v >¢
cal simulation using the equation of moti¢®) with subse-

quent averaging ofx?(7) over the initial conditions 0.1

X(0),X(0) distributed in accordance with the initial thermal
ensemble. The results for the normalized average dispersion

(Xx?(7))/{x?); are presented in Fig. 1. One can see the ex- 0 .
pected damping of the squeezing oscillations after each pulse 0 0.1 0.2
due to the dephasing effect. The characteristic damping rate

increases with an increase of the temperature. The most re- &

markable feature of the time evolution ¢k?(7)) is the FIG. 2. Maximum echo amplitude as a function of the intensity
pronounced echo effect at=27,. &, of the second pulse.
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5 - 2 with the dephasing rate of oscillations defined by
X=—X[1+2£,8(7)+2&8(7— 7)1+ 3 x3, (7

7. 1=0. (14)
where we neglected the modulation of the nonlinear term,
assuming that the amplitudes of the pulsgsand &, are Equation(13) indicates that the amplitude of the oscillations
sufficiently small. Forr+0,r,, Eq. (7) has an integral of Of the coordinate dispersion exhibits an apparent damping.
motion corresponding to the energy of the atomic syskem A.S .d|scus_sed above_, this damping is caused by the. anharr_no-
—E/AV, (i.e., there are three different values of enefay nicity, which results in the dependence of the effective oscil-

k=0, 1, and 2 for times <0, 0< 7<7,, and>r,, respec- Igtlon freq.uency on energy, a_nd the thermal energy d|§tr|bu—
tively). tion leading to an averaging out of the oscillations.

For small anharmonicity and amplitudes of the eXtemalTherefore this damping is reversible in time. The dephasing
~ rate given by Eq(14) is in good qualitative agreement with
pulses, the solution of Ed7) for y(r)=x%(7) up to the  he numerical results discussed above. Fitting the data pre-

second-order terms IEk can be obtained in the form Sented in F|g 1 for &< T by Eq (13) g|ves the value
o~ L~ 1~1.10 for the dephasing rate in our numerical simula-
v(7)=C+{Aexd 2i w(Ey) 7]+ Byexd 4i w(E,) 7] +c.c}, t|ons
3 Now we will analyze the effect of the second pulse. Ap-
C=E + -E2, (8) plying Eqg. (10 _for 7'S=Q andrs= 7, consecutively, one ob-
4 tains the amplitudé\, in Eq. (8) after the second pulsd (

_ > 7p,)in the limit of small§,,
where k=0,1,2. From Eq.(7) it follows that Ay=E,(1

+2E exp(@4)/2 and Bk=—A§/6, where ¢, corresponds _ - ) o~ 1

to the phase of the atomic oscillations in different time inter- ~ A2(7p) ~Ax(7p)(1+2i &) +16E,— 21 EE1A (1),
vals. Note thatA, are the complex constants characterizing (15)
both the amplitude and phase of the atomic oscillations and

w(E) stands for the effective frequency. This frequency iSWhereﬂlyz(T)=A1’2e2i‘”(E1,2)7 correspond to the envelope so-

determined in the lim€—0 as lution for y(7) given by Eq.(8). TheA vectors rotate with
_ 1 the frequencies (Z(Eljz)_in t_he complex plane. The energy
w(E)=1- §E' 9) after the second pulse is given by
The solution given by Eqs8) and (9) corresponds to the Ey=E;—2i,(Ae”“FU—c.c), (16)

first term of the asymptotic expansion for the anharmonic
oscillator in the limit of weak anharmonicity and large evo- with A; andE; defined by Eqgs(11) and (12).

lution time [14]. In order to obtain a qualitative picture of the echo effect,
Each pulse in Eq(7) results in a jump ofy andE, while ~ We disregard Erje energy change due to both pulses upon the
v remains continuous. We obtain from HJ) frequenciesw(E; ). Equation(15) indicates that the ampli-
) ) tudeA,(7,) after the second pulse is a linear combination of
Y(7s) = (75) = —4&y(79), the amplitude before the pulse]&l(rp) and the amplitude
B )~ E(r0) = 262y(r)— Ey(72), 10 Age(Tp)=—1&,E,AT (7)/3. Note thatA,c(7p) is propor-

tional to the complex conjugate afl(rp).

wherer,=0,7,; 7¢ andr; denote the moment of time just In Fig. 3, we present an illustration of the echo mecha-
before and just after each pulse, dod1,2. After the appli-  hism described above. Two vector amplitudes and A;
cation of the first pulse, we obtain from Eq8) and(10), for ~ correspond to the two different values of the initial atomic
small &, energies and rotate with the frequencies>w; in a com-
plex plane. If the two vectors have the same phasd® at
A=Ag+i&(Eg+2A0) (11  7=0 (the horizontal dotted line in Fig.)3then the phase
difference betweer\; andA; is accumulated over the time
interval 7,. The second pulse at= 7, mixes the amplitudes
B =By 2i£,(Ag—AY). (12) with their complex conjugates so thag andA; .acquire the
componentssA; ~A and SA] ~Al*, respectively. These
Combining Eqgs(11) and(9) and averaging over the random components are shown as the mirror reflections with respect
initial phase and the thermally distributed initial energy into the line of zero phase. Since fet> 7, the new vectors
the limit of low temperatures=T/4V,<1), we obtain the continue rotating with the same frequencies and in the same
time evolution of the coordinate dispersion in the form direction, the phase difference between the vecforsand
A; increases, contributing to the dephasing effect. In con-
trast, the phase difference betwedh, and §A; vanishes at
the time 7=27,, giving rise to the echo effect analogous to
(13)  the well-known spin and photon echi®0,11. Taking into

and

exp(2i7)

(7(7))=0+06 l§1m

+c.c.|, Tp>7> 0,
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sequence of the asymptotic nature of the proposed analytical
solutions[14]. The extension of our results to the quantum
limit (T~hwg) is straightforward and can be achieved by
replacing the continuous Boltzmann distribution with a quan-
tum one on the stage of thermal averaging.

Note that the echo effect analyzed above is a stimulated
classical revival of breathing oscillations, in contrast to the
effect of spontaneous quantum revijal2] caused by the
discrete nature of the energy levels in quantum systems. We
estimated a characteristic time of the quantum reviyabr
7. = wt,) by extending the method of RdfL2] to finite tem-
peratures. The ratio/7, is 4hwe/37T and thereforer,
> 1. in the classical limit. Since the classical echo mecha-
nism described above takes place in the time domain
~271,, the quantum revival will not contribute to the effect
if 7,<<7,. For the value 0f®=0.03 used in our numerical
simulations and assuming that the number of levels in the
potential well (1) is N~100, we obtain7,~30 and 7,
~300. Since 2,~200, the above-mentioned condition is
FIG. 3. lllustration of the echo mechanism. satisfied.

agcognt Eqgs(8)—(10) and(15), one grrives at the echo con- IV. CONCLUSION
tribution after thermal averaging in the lowest order with
respect toéy, &, and®, We investigated the dephasing and stimulated revival
(echo of the breathing oscillations in optical lattices subject
) exd2i(r—27,)] to two-pulse parametric excitation created by the abrupt
(¥(7)e=0 5152[1+i( 20 )7 ]? +tC.C., T>Tp. change of off-resonance dipole optical potential induced by
el Te 17 the laser field. The dephasing originates from the energy de-
pendent corrections to the oscillation frequency and due to
One can see that the amplitude of the echo is maximal at théae thermal distribution of energy. The shape of the echo
time 7=27,,. Note that the echo amplitude given by E#7) response was obtained by numerical simulation using the
is proportional to the produd; &, in contrast to the depen- €quation of motion for the atoms with subsequent averaging
dence(y)e~ 5155 typical for the phonon echo mechanism over the iqitial thermal distribution. An approximate analyti-_
(for small &,£,) as a response to the external resonan€al analysis demonstrates that the suggested echo mechanism
forces[9]. The mechanism described above also leads to thiicorporates the essential physics features of the @io-
terms £,£2 omitted in Eq.(15). According to the conven- ton) echo, where the echo effect is caused by the change of
tional model, the phonon echo originates from the change dhe phase of the oscillations due to the second pulse, as well

. ~ as the phonon echo, where the effect is caused by the change
the rotation frequency of thé vectors due to the external of the oscillation frequency. An optimal control analysis

pulses. This mechanism is also presentip our model if WSvould be desirablée.g., as proposed for the spin systems
take into account the change of the enefgyn each time [15)) for optimizing the echo response in view of the rapid
interval. In this case, the main contribution comes from thegeyelopment of experimental techniquéss in, e.g.,
second term on the right-hand side of Etp). However, this  [2 5 16,17) for the coherent manipulation of the atomic mo-
effect is proportional ta¢,£5 and vanishes for small pulse fion.
intensities. Analytical calculations in this case become rather
cumbersome and we do not present them here. Since we
disregard the change of the rotating frequency due to the
second pulse, the approximation leading to Eg) is valid The work at Princeton University was supported by the
if §2E07p<1. This condition can only be satisfied in the National Science Foundation. A.K. acknowledges support by
limit £,<1 for large evolution time £,>1). This is a con- the New York PSC-CUNY Research Award Program.
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