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Hyperspherical close-coupling calculations for helium in a strong magnetic field
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A method for the solution of the two-electron problem in a strong magnetic field is presented that combines
the well-known hyperspherical close-coupling and finite element methods and applied to helium in a magnetic
field of up to 18 T, giving energy levels of low-lying andP states up to a principal quantum numbenef4
as well as wavelengths of selected transitid@1.050-294{®8)01205-0

PACS numbds): 36.60:+i, 32.30—r, 95.30.Ky

[. INTRODUCTION The paper is organized as follows: In Sec. | we briefly
review the Hamiltonian and discuss the symmetries inherent
Since the late 1960s evidence has been emerging thée the system. In Sec. Il we describe the application of the
huge magnetic fields exist in the vicinity of compact cosmichyperspherical close coupling approach to our problem, Sec.
objects such as neutron staB~10"—10° T) and white Il deals with the numerical methods used and we then
dwarf stars B~10°—1C° T). Those strong to very strong Present, in Sec. IV, some results of our calculations for en-
fields cause a drastic change in the atomic structure, angfgies and wavelengths of a number of dipole transitions
perturba‘[ion theory is no |0nger app|icab|e_ Thus at0m|c\N|th and without magnetic field and compare these results
properties such as energy levels and wavelengths need to Béth some already published ones. Finally in Sec. V we
recalculated from scratch. Due to the reduction of symmetryresent our conclusions.
from spherical to cylindrical and due to the increase in the
number of degrees of freedom advanced numerical methods
are necessary. Il. THE TWO-ELECTRON ATOM IN A STRONG
Much work has already been done in calculating atomic MAGNETIC FIELD
energy values and oscillator strengths and as far as the hy-
drogen atom in a strong magnetic field is concerned numeri-
cally exact results have been produced for a wide range of We consider a system consisting of two electrons and a
states and magnetic field strengfti$. Thus the problem of nucleus of charg&e in a homogeneous magnetic fieli
hydrogen in magnetic fields can be considered solved.  along thez axis. If we useZ-scaled atomic units, i.e., as
However, the situation for the helium atom and helium-€nergy unitE,=Z> Rydberg and as length urigan,/Z, and
like atoms in strong magnetic fields is by comparison quitdf we neglect the finite mass of the nucleus, the Hamiltonian
different. So far the problem has mostly been treated on &ads
Hartree-Fock leve]2,3] and expansions in a complete basis 2
set have only been applied recenf§]. In another recent H=> —V?—i+,82(x-2+ 2) |4 2
development large-scale Monte Carlo calculations have been = ol ZXTYi Z|r =1y
employed to obtain energy levels of He in a strong magnetic
field [5]. In this paper we present a method that combines the +2B7[L,+9eS ], (1)
well known hyperspherical close coupliig§—8] and finite
element method$9] to calculate atomic data for the two- )
electron problem in a strong magnetic field and give some ofvith Bz=B/(Z2°X4.7010< _105 T) and theg factor g of the
the results obtained for energies and wavelengths in the ca§éectron. Note that the finite mass, . of the nucleus can be
of He, comparing our results to those in the literature. taken |n_to account in an approximate manner _|f the _unlts are
It has been suggested alreddy)] that certain broad ab- aPpropriately rescalefll1]. We also neglect spin-orbit cou-
sorption features in the spectrum of the white dwarf GD229Pling, as relativistic effects at the level of accuracy required
should be attributed to neutral He at a magnetic field of aboutor @strophysical applications are not considered to be impor-
65 000 T. Therefore the properties of the helium atom intént-
strong magnetic fields are of great relevance.

A. The Hamiltonian

B. Symmetries of the Hamiltonian

*Present address: Theoretische Physik |, FakiiliaPhysik und The Hamiltonian(1) is invariant under rotation with re-
Astronomie, Ruhr-UniversitaBochum, D-44780 Bochum, Ger- spect to thez axis and inversion with respect to the origin,
many. i.e., the parity operation. Therefore the good quantum num-
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bers of the Hamiltonian aré) the z componentM of the B. The eigenfunctions of the symmetric top

total angular momenturh, (ii) the parity P, (iii) the total We are going to expand our wave function in terms of the

spinsS, (iv) its z componenMs. Thus the eigenstates of the gefinite parity eigenfunctions of the symmetric top. They are
Hamiltonian can be labeled byPMSMs;v). However, {efined by[13].

since we are concerned with the casggi 0.05[12] in this 1

paper, it is more convenient to label the states by the corre - _1)J+Q _

sponding field-free states of helium. This correspondence iLPJMQ>Q \/E[lJMQ>Q+ P=DTEIM=Qal, Q>0,
discussed if2]. Therefore we label the states b?ST L,

in terms of the principal quantum numbeythe total orbital
angular momenturh, the magnetic quantum numbigr, and
the total spinS.

1
[PIMO)o=5[[IMO)+P(—1)°|IMO)] (6)

lll. THE HYPERSPHERICAL CLOSE-COUPLING with
APPROACH
A. The coordinates used 2J+1
, _ , |IMK)q=\/ ==D(@.B,7), (7)
Instead of the radius vectorswe use the Jacobi coordi- 8w
nates
1 where the coefficients of the representation of the rotation
5127“1_@ (2)  9group are given by
2
and Dy (@,8,7)=(IM|e~'*te~ Pye™ "2 IM")
- 3) =eMedy, (e ™. ®

& \/§(r1+r2)’

as in these coordinates the symmetry requirements of th€he non-negative quantum numkigdesignates the absolute
Pauli principle are straightforward. Since they are related tovalue of the projection of the angular momentum ontozhe
the radius vectors by an orthogonal transformation, the diaaxis. The eigenfunctions fdP=1 andQ=0 exist only for
magnetic part of the Hamiltonian, quadraticgg, takes the evenJ and the eigenfunctions fdP=—1 andQ=0 exist
same form in terms of the Jacobi vectors. We describe thenly for oddJ.

system by three internal coordinates and three Eulerian
anglesa, B, andvy, that specify the orientation of the body
fixed frame with respect to the laboratory frame. As internal

. . C. Transformation of the Hamiltonian
coordinates, we choose the hyperradius

Except for the diamagnetic part of the Hamiltonian, the

R= &+ &5, (4)  transformation of the Hamiltonian to Eulerian angles and the
internal coordinates can be found [i8]. The diamagnetic
the hyperangle term can be transformed by expressing it in terms of spheri-
& cal harmonics in the laboratory frame and transforming to
¢=arctar<§—1 , () spherical harmonics in the body fixed fraried].

The Hamiltonian is in terms of the internal coordinales
and the angler betweené; and&,. Thez' axis is chosen to ¢, and u, the components of the total angular momentum

be parallel tog; and they’ axis perpendicular t&, and&,.  J;, i=1, ...,3with respect to the body-fixed frame and the
Thus both Jacobi vectors lie in thé-z" plane. eigenfunctions of the symmetric top
a2+5a+1 1 a2_¢ b4 1 a9
== —=t=s=|t=| —= sin ¢ cos¢p—4— —sinu—
dR? RIR| R2\ sing cos¢ j¢? sir? ¢ cos ¢ sinu du du
2iJ i 2 J.J
. RE 205-2 ° 25y 4 cotud , G
Sir? ¢ cos ¢ sifu  cos ¢ cog ¢ R
o2 BT
FBIR 3+ Vg 2, a0 +200)0 | +28,(L+0S,) ©

where
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22

Clg,u)=

1 1
— J’_ ,
Z cos¢ J1l+cosusin2p 1—cosu sin 2¢)

Po(p,u)=— %cos2 d—sir? ¢

co< u—%),

1 .
p1(p,u)= \/—gsm2 ¢ sin 2,

1

\/§sin2 ¢ sir? u. (10)

pz((ﬁ,U) =

By expanding the reduced wave function
®(R,¢,u,Q)=R%?sin ¢ cos pV, (11)

in terms of the eigenfunctions of the symmetric top up to a maxindiwalue J,;.x
J

®= 2 2 P(RU);0IPIMQ)lSMs) (12
and projecting onto thePIMQ), we obtain the following system of coupled partial differential equations:
#? 1 1 & 1 g d Q? 2Q%2-J(J+1)| C(¢,u)
——t—| - ——— — —SsinuU— + — . - + D0
R R?\ 4 9¢? sir® ¢ cog ¢ sinu U U sir? ¢ cos ¢ sirf u cog ¢ R

1, (PIMQ|2id5|PIMQ)d/du +(PIMQ[23,35 PIMQ' Ycot u 2
+ QE ®yo+ BIRE S, | 5850000

cos ¢ JQ
8l
+ ?go (PIMQ|+20k|PI'MQ")py(p,u) | Py o1 +2BAM+gMs]P30=EP;q. (13
|
D. Boundary conditions for the ® ;4 ®,;0(¢,0R)=0 for Q>0 (17)

The boundary conditions fab ;5 have to be determined
from the _Pauli principle and the properties of {RIM Q) . because fou=0 the angley is undefined such that the co-
Exchanging the electrons results §— — &, but leavesé, efficient of|PIMQ)q, has to vanish fo>0
unchanged. In terms of the internal coordinates and the Eu- Q '
lerian angles this means that the hyperradius is unchanged

while [13] E. The adiabatic basis functions
U—m—Uu, The adiabatic basis functions are chosen to satisfy
a—a+, (19 1 P 1 g 9
—2(——2— nz 52 - %SinU£
B—m— B, R d¢p- Sint ¢ cos ¢ sinu
2 2

-J(J+

y—2m7— Y. (15 Q 2Q° I+

+ —
sir? ¢ cos ¢ sir? u cos ¢
Using the definition of thePIM Q) and the properties of
thed? (B) one arrives at the following symmetry require- Clo.u)
MM’ + =
ment:

(¢, U,R)=U; o (R)a;on(¢,U,R).

B m—U,R)=P(~1)5 D ,o($uR). (16 (18

If the u interval is restricted t¢0,7/2], this leads to a con- Since the hyperradiuR is not affected by the exchange of
dition for the derivative with respect to at u= 7/2. The the electrons the same boundary conditions as above are
boundary condition ati=0 is valid for the adiabatic basis functions.
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F. The hyperradial equations

Expanding® in terms of the adiabatic basis functions
=2 fior(R1aso(4,uRIPIMQ0[SM), (19

we obtain the following system of differential equationsRn

9 1 2 , ., J f30u(R)
_EJFUJQ)\(R)_R‘FZﬁz[M +9eMs]+ §BZR fJQ)x(R)_% 2{ ajo\ R Q' (R)T
2 1 J
+{ ayon] — 2307, ) (R)f30u(R) |+ > —| (PIMQ|2iJ5|PIMQ) ay0r| —— — | @30, ) (R)
JQA IR2 JQ" Qu 5 R2 Q coZ b gu | Q' m

cos ¢

+<PJMQ|2J1‘J3|PJMQ’><aJQ)\ aJQ’,u>(R)fJQ’p.(R)

2p2 : 8w ’ ’ —
TR 2 3\ 5 H{PIMQ+20KIPIMQ N asa P ¢ Wlay ) (R)f g u(RI=Efjou(R). (20)

Q'

For the evaluation of the various matrix elements between Hx=AUXx (22)
the|PIMQ), see Appendix A.

that is solved by subspace iteratifib].
IV. NUMERICAL METHODS USED

We employed the method of finite elements for the deter- B. Solution of the hyperradial equations using FEM
mina_tion of the adiabatic pasis 'functio'ns as we[l as for the The interval [OR, ] is subdivided inton, elements
solution of the hyperradial differential equations. Thisrp R,] according to
method has already been applied to a number of problems #1 L
atomic physic§14,15,9,11 i\?2

(n_r) Rmax- (22)
A. Determination of the adiabatic basis functions

The area[0,7/2]X[0,7/2] is subdivided inton,xXn,  The adiabatic basis functions are calculated on a grid con-
rectangular elements. On each element the adiabatic basitsting of the Gauss-Legendre integration points of orger
function a is expanded in terms of biquintic splines. The with respect to the above elements. In addition the adiabatic
expansion coefficients are the 36 values of the adiabatic basimsis functions are also calculated on two grids shifteth by
function and its partial derivatives of up to second ordepin and —h, using the prescription
andu at the 4 corners of the element.

Application of the variational principle leads to a gener- f(R)  f(R+h)—f(R—h) .
alized symmetric eigenvalue problem R on +0(h®) (23
TABLE I. Comparison of energies for low-lyin§ andP states
of He with those of Accadt al. to obtain the derivative of the adiabatic basis functions.
To apply the method of finite elements the variational
State E/E, AE/E, principle is employed to our ansatt9) yielding upon partial
1 — integration a symmetric generalized eigenvalue problem that
1°s —1.451 8580 4.210 is also treated via inverse iteration.
21s —1.072 969 1.&10°5
3's —1.030601 3.%10°° TABLE II. Oscillator strengths for selected dipole transitions
4's —1.0153 1.x10°° between low-lyingS and P states.
21p —1.0610 9.x10°*
233 1,087 6149 2 ¥10°7 Transition This work Tanget al. [10]
33s —1.034 3412 3.310°° 21Py—11s, 0.267 0.276
43s —-1.017 35 9.x10* 3p,—21s, 0.144 0.149
533 —1.0026 8.%x10°3 21Py—21s, 0.423 0.377

23%p —1.0656 9. 104 31py—11s, 0.070 0.074
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TABLE lll. Energies in units ofe; of singletS states foM =0. TABLE V. Energies in units oE; of triplet S states fortM =0.
B 11s 21's 31s 41s B 23s 33s 433
0.000 —1.4518580 —1.072 9690 —1.030 6007 —1.015 2540 0.000 —1.087 6149 —1.034 3412 —1.017 3498
0.002 —1.4518325 —1.0726272 —1.028 8570 —1.011 1947 0.002 —1.087 3710 —1.032 9256 —1.013 5688
0.004 —1.4517562 —1.071 6199 —1.024 2392 —1.000 8726 0.004 —1.086 6474 —1.029 0867 —1.004 0890
0.006 —1.4516289 —1.069 9934 —1.017 6783 —0.987 4711 0.006 —1.085 4659 —1.023 4986 —0.991 7632
0.008 —1.451 4509 —1.067 8065 —1.009 7779 —0.972 4952 0.008 —1.083 8566 —1.016 6489 —0.977 8820
0.010 —1.451 2222 —1.0651190 —1.000 8983 —0.956 4792 0.010 —1.081 8528 —1.008 8511 —0.962 9496
0.012 —1.4509429 —1.061 9856 —0.991 2658 —0.939 6979 0.012 —1.079 4872 —1.000 3111 —0.947 2355
0.014 —1.4506131 —1.058 4537 —0.981 0314 —0.922 3212 0.014 —1.076 7903 —0.991 1698 —0.930 9065
0.016 —1.4502331 —1.054 5644 —0.970 3012 —0.904 4633 0.016 —1.073 7897 —0.981 5281 —0.914 0749
0.018 —1.4498031 —1.050 3524 —0.959 1527 —0.886 2057 0.018 —1.070 5097 —0.971 4602 —0.896 8204
0.020 —1.449 3232 —1.0458473 —0.947 6446 —0.867 6088 0.020 —1.066 9719 —0.961 0230 —0.879 2023
0.030 —1.4461851 —1.019 7087 —0.886 0420 —0.770 8767 0.030 —1.046 0047 —0.904 5799 —0.786 9664
0.040 —1.4418447 —0.988 9480 —0.819 7168 —0.669 9162 0.040 —1.020 6728 —0.843 0189 —0.689 7985
0.050 —1.436 3474 —0.954 7902 —0.750 2266 —0.566 2224 0.050 —0.991 9694 —0.777 8476 —0.589 1934
V. RESULTS AND DISCUSSION deviation from the results of17]. The agreement of our

Using the method explained above the energies of bot§Neraies with the reference values is good to very goo&for

triplet and singletS and P states of He up to a principal states, while fair folP states.
guantum number ofi=4 have been calculated f@,<0.1.
Due to computational requirements of a fully coupled calcu-
lation, we have so far restricted the expansion to one value of As a further test of our method, which is also sensitive to
the total orbital angular momentum. Thus we have been ablthe quality of the wave functions, we compare in Table Il our
to obtain the wavelengths of quite a number of dipole tranfesults obtained for the zero-field oscillator strengths, for a
sitions betweerS and P states. In addition we have calcu- few transitions with those obtained B30]. The agreement is
lated the dipole matrix elements and thus the oscillatoguite satisfactory except for'P,—2'S,, due to the small
strengths for a number of transitions at zero field using @nergy difference, its wavelength being very large and thus

2. Oscillator strengths

formalism detailed in Appendix B unimportant for astrophysical applications.
A. Results without magnetic field B. Results with magnetic field
1. Energies 1. Energies

As a test of our method we consider the eigenstates of In Tables Il to VI we give the results obtained for the
nonrelativistic helium without magnetic field, for which very energies of the singlet and tripltandP states foi3,<0.05
accurate results are available in the literatft@—19. In  and principal quantum number<4. Since the spin only
Table | we give our results for a number of states and theiintroduces a trivial linear energy dependence, we only con-

TABLE IV. Energies(as in Table Il) of singlet P states for TABLE VI. Energies(as in Table 1) of triplet P states for
M=0. M=0.

Bz 21p 3lp 4'p B 23p 3%p 43p
0.000 —1.061 0026 —1.026 7741 —1.013 1498 0.000 —1.065 5938 —1.028 1475 —1.014 0865
0.002 —1.060 7966 —1.025 6291 —1.010 6442 0.002 —1.065 4235 —1.027 1175 —1.011 6499
0.004 —1.060 1888 —1.022 5454 —1.003 8476 0.004 —1.064 9194 —1.024 3209 —1.005 1073
0.006 —1.059 2057 —1.018 1159 —0.994 4838 0.006 —1.064 1004 —1.020 2657 —0.996 1622
0.008 —1.057 8819 —1.012 7566 —0.983 8601 0.008 —1.062 9920 —1.015 3249 —0.986 0204
0.010 —1.056 2534 —1.006 7212 —0.972 4939 0.010 —1.061 6214 —1.009 7349 —0.975 1585
0.012 —1.054 3534 —1.000 1709 —0.960 6010 0.012 —1.060 0148 —1.003 6492 —0.963 7858
0.014 —1.052 2115 —0.993 2132 —0.948 3046 0.014 —1.058 1959 —0.997 1716 —0.952 0227
0.016 —1.049 8530 —0.985 9234 —0.935 6849 0.016 —1.056 1858 —0.990 3755 —0.939 9470
0.018 —1.047 2995 —0.978 3562 —0.922 7979 0.018 —1.054 0025 —0.983 3141 —0.927 6120
0.020 —1.044 5695 —0.970 5526 —0.909 6847 0.020 —1.051 6620 —0.976 0275 —0.915 0558
0.030 —1.028 7533 —0.928 8942 —0.841 6077 0.030 —1.038 0161 —0.937 0880 —0.849 7693
0.040 —1.0101713 —0.884 1787 —0.770 6274 0.040 —1.021 8745 —0.895 2337 —0.781 5296

0.050 —0.989 5395 —0.837 3776 —0.697 6668 0.050 —1.003 8713 —0.851 3485 —0.711 2809




3744 M. BRAUN, W. SCHWEIZER, AND H. ELSTER 57

TABLE VII. Energies of He in units oE, at 8,=0.025 deter- 2. Wavelengths

mined by different methods. In Figs. 1 and 2 the wavelengths obtained with our

method for selected electromagnetic dipole transitions are

State This work Scrinzi Larsen . .
shown as a function g8, for 8,<0.05. From the compari-

11s —1.4479 —1.4477 —1.4468 son with literature values g@8,=0 and with variational and

2P, —1.0365 —1.0403 —1.0402 Monte Carlo calculations foB;>0 above we estimate our

wavelengths to have an accuracy of a few percent for
B7<0.025. A number of the transitions shown exhibit
sider Ms=0 here. The chosen grid g8, values is suffi- maxima in the wavelength, which, as is well known from the
ciently fine to interpolate for values ¢, in between. The Study of hydrogen in the atmosphere of magnetic white
parameters of the calculation werR,=64, n,=20 dwarfs[22], can lead to prominent absorption features.
ny,=10, n, =16, n,= 16, andn,q.=25 adiabatic basis func- Maxima appear only in those transitions in which the
tions were used ign each channel. higher state has a magnetic quantum nunider — 1, which

In Table VIl we compare our results f@,=0.025 with ~ €@n be easily understood since the energy ofRtstate will

the variational calculations by Scringd] and Larser{21]. ~ Show a linear behavior for smafl;, while the influence of
The agreement obtained is good ®while fair for P states. the diamagnetic term takes over for moderately lagze
The ground-state energy obtained by our method is lowerf?aVing the opposite sign. The lower state will have a qua-
while the opposite is true for’P, which can be attributed to  dratic behavior at small values @, but no linear term.
the fact that angular momentum mixing, expected to be mord N0Se maxima are quite pronounced for the singlet case,
important forJ>0 states, was included in their calculations. While rather weak in comparison for the triplet case.

In Table VIII we compare our energies obtained for the
ground state 1and for triplet states with<3 for 8,=0.01, VI. CONCLUSIONS

0.03, and 0.05 with the spin-unrestricted Hartree-Fock o . .
i The combination of the hyperspherical close coupling and
(UHF) results from[3]. Our results for the ground state are finite element method has been shown to provide energy

qwte a bit Iow_er, which is du_e fo the absence of Correla.t'onvalues and wavelengths of sufficient accuracy to be used as
in HF calculations. For the triplet states, where correlations

are less important. the aareement is qood rier2 while input into model calculations for atmospheres of magnetic
there are nge d's:cre angc'es at the Iagr or val dbr white dwarfs. From the comparison with competing methods

_3 all f' théis) ¢ tl Thi bg VI l.mé by th like UHF and RPQMC it seems that our method is superior
=2, especially Tor e state. This can be explained by the ¢, singlet states with a high degree of correlation while the
fact that we did not include a coupling betwe8nand D

Lo ; . UHF results are of comparable quality or better for triplet

states, which is well know[il] to be important in the case of :
hvd . ¢ ic field. wh tead states especially fan=3.

ydrogen in a sdrong magﬂe IIP 1 ,OWTe;]re | f We plan to extend our calculations to include angular mo-
?tat(?s "’;Le g‘;ge ; (ive_n ml_t bel |Wﬁ'|;z—f> : us”our ca Eufa' mentum mixing, which will allow us to obtain accurate re-
tlr?n orthe d'ffs ate 1s tr)etla € O?h}éa;ﬁz sdm3a3pen(:u? :)r sults also for largerB; values and to obtain oscillator

€ energy difierence between an states 1o strengths for nonzero fields, which are an essential input for
dominate over the coupling between them due to the dlama%{ny model calculation of stellar spectra
netic part of the Hamiltonian. '

In Table IX we compare our energies g=0 and 0.01 ACKNOWLEDGMENT

for a number of states with those given[i|, which were CKNO S

obtained using the released-phase quantum Monte Carlo for- The authors acknowledge support from the South African
malism. The agreement #,=0 is quite good, while their Foundation for Research Developme(fRD) and the

energies are, especially for the higher excited states, somgeutsche ForschungsgemeinscHafEG).
what lower atB,=0.01.

Note that the energies of triplet states obtained in both the
UHF and released-phase quantum Monte CAREQMO
calculations are foM s= — 1, which means they have to be ~ Most of the matrix elements involving th®JIMQ) ap-
corrected by a linear term. pearing in Eq(20) can be evaluated by applying well-known

APPENDIX A: VARIOUS MATRIX ELEMENTS

TABLE VIIl. Comparison of energies in units & obtained for He aB,=0.01, 0.03, and 0.05 with the
results of UHF calculations by Jones al.

8 0.01 0.03 0.05

z

State This work Jonest al. This work Jonest al. This work Jonest al.
11s —1.451 2222 —1.4302 —1.446 1851 —1.4252 —1.436 3474 —1.4155
23 —1.081 8528 —1.0815 —1.046 0047 —1.0491 —0.991 9694 —1.0056
33s —1.008 8511 —1.0190 —0.9045799 —-0.97635 —0.777 8476 —0.9308
2 3P0 —-1.061 6214 —-1.0618 —1.0380161 —1.0399 —-1.0038713 —1.0098

33p, —1.009 7349 —1.0147 —0.9370880 —0.9753 —0.851 3485 —0.9351
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TABLE IX. Comparison of energies in units &3, obtained for He a3,=0.0 and 0.01 with the results
of released-phase quantum Monte Carlo calculations by Jetnals

0.0 0.01
Bz
State This work Jonest al. This work Jonest al.
2%s —1.087 6149 —1.087&3) —1.081 8528 —1.08192)
3%s —1.034 3412 —1.03441) —1.008 8511 —1.020%1)
433 —1.017 3498 —1.01831) —0.962 9496 —0.99445)
23%p, —1.065 5938 —1.067@4) —1.061 6214 —1.0625%3)
3 3P0 —1.028 1475 —-1.02911) —1.009 7349 —1.015@2)
43p, —1.014 0865 —-1.01621) —0.975 1585 —0.98897)

relations for the body-fixed components of the angular mofor the integral over the product of three representation co-

mentum. efficients of the rotation group and applying £4.19 from
The matrix elements of thg+20qg) that appear in the [23]

diamagnetic part of the hyperradial equations can be found

by using the following relation23]: J M ]
d_M’_M,(B)Z(_l)M M dM’Mr(B)- (A2)
L PR 8’ , , , ,
f dQDmSmészngmlmi: 213—+1 5m1+m2,m35m1+m§,m§ The final result for the different matrix elements needed is
" i 2| s (PIMQ|2iJ,|PIMQ’)
m;  myMg+m;
=830 00.q'-1VE+Q+1)(I-Q)[1+(v2-1)5q,]
| ER PR
w22 s A 83,3 80,0'+1V(A—QFD)(IFQ)[L+(v2-1) 1],
ml m2 ml+ m2
(A3)
21P-118 21P_1-11S
< Ll 1 = _ _
=< ] = ad z
5100 001 002 ﬁz 003 004 005 5750 001 002 BZ 003 0.04 005
31Py-2'S 3lp_-218
= 1= =3 =
< er 1 < < =
) 001 002 ﬁZ 003 004 005 0 001 002 BZ 003 00+ 005 1500 - oaT 5 [32 oy oot 505
41p;-31S 4'p_-31§ 43p_ 3§
L ] ] = =3 = o
< ool 4 < < <
mo 001 002 BZ 003 0.04 005 mo 001 002 ﬁz 003 004 005

FIG. 1. Wavelengths of selected dipole transitions between sin- FIG. 2. Wavelengths of selected dipole transitions between trip-
gletS andP states. let S and P states.
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(PIMQI23335|PIMQ)= 633 8q,0' - 1V(I+Q+ 1) (I=Q)[ 1+ (V2 1) 8g,0)(Q+1)

+3833:80,0+1VI—Q+1)(I+Q)[1+(V2-1)511(Q—1), (A4)
\/8_772<PJMQ|+2 IPIMQ")= - VZJ,H/JI ZJ)X (J' 2\3)
5 20 2(1+ 8010 (1+ 650) (11 6g0) ¥ 2J+1\M 0O[M Q" aQ
! J J 213 o 2]
_1\J+Q _ _1\J +Q
TP (Q’ q‘—Q * 1)q(Q’ —-q/Q +R(=1) (—Q’ q‘Q”'
(A5)
[
APPENDIX B: DETERMINATION OF DIPOLE MATRIX d(f?)=<f|R(q)|i> (B3)

ELEMENTS

The dipole matrix elements for &M =q transition from it
the initial state

||>:|P|M|SMS,V|> @ 8 —
! R'%= ?fZqu(§2)- (B4)
to the final state
|f>:|PfoSMS;”f>' The transformation to internal coordinates and Eulerian
are defined via angles[11] yields
2 2
(q)_ r (D] 8
< 2 i '> (B1) R@= \/T( V2R sin ¢ cosu|—11q0),,
with — V2R sin ¢ sinu|—11q1)). (B5)
@_~[*T oy p 2
r"= ?ri 1q(Ti)- (B2) Expanding the reduced wave functiods and ®; for the

final and initial states in terms of the definite parity eigen-
In terms of the Jacobi coordinates used the dipole matrifunctions of the symmetric tofPIMQ), and of the adia-

elements take the simpler form batic eigenfunctiong; g, (¢#,U,R),
Jmax
D= 2 > 2 F%(R)ag,u(6,U,R)PIMQy), (B6)
Ji=IM¢l Qf N
Jmax
®;= %‘ 2 2 g, %(R)aiy0u(4,UuR)PIMQ) (B7)
M

the dipole matrix elements take the final form

877-2 Imax max
dif’ =/ (P J:M.O:| — 1190| P J: M. O ) IR R PR Ry g1 @
3 Jf;Md G 35 M\ S )\2 [\/—< fof fol 1q | iMi |Q|>< N | A ( )|gﬂ >R]

~
~[V2(Pr3iMQy| — 1101| P M Q)( ¥R U (R) [ g %] (B8)

with
Ay I(R) = (ar;,q,,/5in & cOSUla ) (BY)

and

\] JI | _ . .
ehff Q (R)=(ar;,olsin ¢ sinulai;q u) g.u- (B10)
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The matrix elements df-,1qQ), between thePIMQ), can be evaluated using similar methods as in Appendix A yielding

\/W(PJMQ|—1Q|PJMQ>— Op.p, —1 /2Ji+1{~]i 1‘Jf (Ji 1Jf)
3 (VR TR " J2(1+ 66,0)(1F 840) (1+ 8g0) 23;+1\M; /M) [\Q; QIQr

3 1] 3 3113
FR(=LE Qi Q’_Qf +(_1)Q(Qi _Q‘Qf)
+P-(—1)Ji+oi< ol Jf”. (B1D)
' -Q Q Qs

For the dipole transition we thus recover the usual selection rules
PiPi=-1 (B12)
and

M:=M;+q. (813)
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