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Hyperspherical close-coupling calculations for helium in a strong magnetic field
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A method for the solution of the two-electron problem in a strong magnetic field is presented that combines
the well-known hyperspherical close-coupling and finite element methods and applied to helium in a magnetic
field of up to 105 T, giving energy levels of low-lyingS andP states up to a principal quantum number ofn54
as well as wavelengths of selected transitions.@S1050-2947~98!01205-0#

PACS number~s!: 36.60.1i, 32.30.2r, 95.30.Ky
th
ic

g
a
i

to
tr

th
o

i
h

e
e

m
it
n
is

e
et
th

-
o

ca

-
2
o
i

fly
rent
the
ec.
en
en-
ns

ults
we

d a

s

ian

are
-
ed
or-

-
n,
m-

-

I. INTRODUCTION

Since the late 1960s evidence has been emerging
huge magnetic fields exist in the vicinity of compact cosm
objects such as neutron stars (B'1072109 T! and white
dwarf stars (B'1022105 T!. Those strong to very stron
fields cause a drastic change in the atomic structure,
perturbation theory is no longer applicable. Thus atom
properties such as energy levels and wavelengths need
recalculated from scratch. Due to the reduction of symme
from spherical to cylindrical and due to the increase in
number of degrees of freedom advanced numerical meth
are necessary.

Much work has already been done in calculating atom
energy values and oscillator strengths and as far as the
drogen atom in a strong magnetic field is concerned num
cally exact results have been produced for a wide rang
states and magnetic field strengths@1#. Thus the problem of
hydrogen in magnetic fields can be considered solved.

However, the situation for the helium atom and heliu
like atoms in strong magnetic fields is by comparison qu
different. So far the problem has mostly been treated o
Hartree-Fock level@2,3# and expansions in a complete bas
set have only been applied recently@4#. In another recent
development large-scale Monte Carlo calculations have b
employed to obtain energy levels of He in a strong magn
field @5#. In this paper we present a method that combines
well known hyperspherical close coupling@6–8# and finite
element methods@9# to calculate atomic data for the two
electron problem in a strong magnetic field and give some
the results obtained for energies and wavelengths in the
of He, comparing our results to those in the literature.

It has been suggested already@10# that certain broad ab
sorption features in the spectrum of the white dwarf GD2
should be attributed to neutral He at a magnetic field of ab
65 000 T. Therefore the properties of the helium atom
strong magnetic fields are of great relevance.

*Present address: Theoretische Physik I, Fakulta¨t für Physik und
Astronomie, Ruhr-Universita¨t Bochum, D-44780 Bochum, Ger
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The paper is organized as follows: In Sec. I we brie
review the Hamiltonian and discuss the symmetries inhe
to the system. In Sec. II we describe the application of
hyperspherical close coupling approach to our problem, S
III deals with the numerical methods used and we th
present, in Sec. IV, some results of our calculations for
ergies and wavelengths of a number of dipole transitio
with and without magnetic field and compare these res
with some already published ones. Finally in Sec. V
present our conclusions.

II. THE TWO-ELECTRON ATOM IN A STRONG
MAGNETIC FIELD

A. The Hamiltonian

We consider a system consisting of two electrons an
nucleus of chargeZe in a homogeneous magnetic fieldB
along thez axis. If we useZ-scaled atomic units, i.e., a
energy unitEZ5Z2 Rydberg and as length unitaBohr/Z, and
if we neglect the finite mass of the nucleus, the Hamilton
reads

H5(
i 51

2 F2¹ i
22

2

ur i u
1bZ

2~xi
21yi

2!G1
2

Zur12r2u

12bZ@Lz1geSz#, ~1!

with bZ5B/(Z234.70103105 T! and theg factorge of the
electron. Note that the finite massmnuc of the nucleus can be
taken into account in an approximate manner if the units
appropriately rescaled@11#. We also neglect spin-orbit cou
pling, as relativistic effects at the level of accuracy requir
for astrophysical applications are not considered to be imp
tant.

B. Symmetries of the Hamiltonian

The Hamiltonian~1! is invariant under rotation with re
spect to thez axis and inversion with respect to the origi
i.e., the parity operation. Therefore the good quantum nu
3739 © 1998 The American Physical Society
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3740 57M. BRAUN, W. SCHWEIZER, AND H. ELSTER
bers of the Hamiltonian are~i! the z componentM of the
total angular momentumL, ~ii ! the parity P, ~iii ! the total
spinS, ~iv! its z componentMS . Thus the eigenstates of th
Hamiltonian can be labeled byuPMSMS ;n&. However,
since we are concerned with the case ofbZ<0.05@12# in this
paper, it is more convenient to label the states by the co
sponding field-free states of helium. This correspondenc
discussed in@2#. Therefore we label the states byN(2S11)LM
in terms of the principal quantum numbern, the total orbital
angular momentumL, the magnetic quantum numberM , and
the total spinS.

III. THE HYPERSPHERICAL CLOSE-COUPLING
APPROACH

A. The coordinates used

Instead of the radius vectorsr i we use the Jacobi coord
nates

j15
1

A2
~r12r2! ~2!

and

j25
1

A2
~r11r2!, ~3!

as in these coordinates the symmetry requirements of
Pauli principle are straightforward. Since they are related
the radius vectors by an orthogonal transformation, the
magnetic part of the Hamiltonian, quadratic inbZ , takes the
same form in terms of the Jacobi vectors. We describe
system by three internal coordinates and three Eule
anglesa, b, andg, that specify the orientation of the bod
fixed frame with respect to the laboratory frame. As inter
coordinates, we choose the hyperradius

R5Aj1
21j2

2, ~4!

the hyperangle

f5arctanSj2

j1
D, ~5!

and the angleu betweenj1 andj2. Thez8 axis is chosen to
be parallel toj1 and they8 axis perpendicular toj1 andj2.
Thus both Jacobi vectors lie in thex8-z8 plane.
e-
is

he
o
a-

e
n

l

B. The eigenfunctions of the symmetric top

We are going to expand our wave function in terms of t
definite parity eigenfunctions of the symmetric top. They a
defined by@13#.

uPJMQ&V5
1

A2
@ uJMQ&V1P~21!J1QuJM2Q&V], Q.0,

uPJM0&V5
1

2
@ uJM0&V1P~21!JuJM0&V] ~6!

with

uJMK&V5A2J11

8p2
DMK

J* ~a,b,g!, ~7!

where the coefficients of the representation of the rotat
group are given by

DMM8
J

~a,b,g!5^JMue2 iaLze2 ibLye2 igLzuJM8&

5e2 iM adMM8
J

~b!e2 iM 8g. ~8!

The non-negative quantum numberQ designates the absolut
value of the projection of the angular momentum onto thez8
axis. The eigenfunctions forP51 andQ50 exist only for
evenJ and the eigenfunctions forP521 andQ50 exist
only for oddJ.

C. Transformation of the Hamiltonian

Except for the diamagnetic part of the Hamiltonian, t
transformation of the Hamiltonian to Eulerian angles and
internal coordinates can be found in@8#. The diamagnetic
term can be transformed by expressing it in terms of sph
cal harmonics in the laboratory frame and transforming
spherical harmonics in the body fixed frame@11#.

The Hamiltonian is in terms of the internal coordinatesR,
f, and u, the components of the total angular momentu
Ji , i 51, . . . ,3with respect to the body-fixed frame and th
eigenfunctions of the symmetric top
H52S ]2

]R2
1

5

R

]

]RD 1
1

R2
S 2

1

sin f cosf

]2

]f2
sin f cosf242

1

sin2 f cos2 f sin u

]

]u
sin u

]

]u

1
J3

2

sin2 f cos2 f sin2 u
2

2J3
22J2

cos2 f
1

2iJ2

]

]u
12 cot uJ1J3

cos2 f
D 1

C~f,u!

R

1bZ
2R2S 2

3
1A8p2

5 (
q50

2

pq~f,u!u120q&VD 12bZ@Lz1geSz#, ~9!

where
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C~f,u!5
A2

Z cosf
22A2S 1

A11cosu sin 2f
1

1

A12cosu sin 2f
D ,

p0~f,u!52
2

3
cos2 f2sin2 fS cos2 u2

1

3D ,

p1~f,u!5
1

A3
sin2 f sin 2u,

p2~f,u!52
1

A3
sin2 f sin2 u. ~10!

By expanding the reduced wave function

F~R,f,u,V!5R5/2 sin f cosfC, ~11!

in terms of the eigenfunctions of the symmetric top up to a maximumJ valueJmax

F5 (
J5uM u

Jmax

(
Q

F~R,f,u!J,QuPJMQ&VuSMS& ~12!

and projecting onto theuPJMQ&V we obtain the following system of coupled partial differential equations:

F2
]2

]R2
1

1

R2S 2
1

4
2

]2

]f2
2

1

sin2 f cos2 f sin u

]

]u
sin u

]

]u
1

Q2

sin2 f cos2 f sin2 u
2

2Q22J~J11!

cos2 f
D 1

C~f,u!

R GFJQ

1
1

R2(
Q8

^PJMQu2iJ2uPJMQ8&]/]u 1^PJMQu2J1J3uPJMQ8&cot u

cos2 f
FJQ81bZ

2R2 (
J8Q8

S 2

3
dJJ8dQQ8

1A8p2

5 (
k50

2

^PJMQu120kuPJ8MQ8&pk~f,u!DFJ8,Q812bZ@M1geMS#FJQ5EFJQ . ~13!
E
g

f
e-

-

f
are
D. Boundary conditions for the FJQ

The boundary conditions forFJQ have to be determined
from the Pauli principle and the properties of theuPJMQ&V .
Exchanging the electrons results inj1→2j1 but leavesj2
unchanged. In terms of the internal coordinates and the
lerian angles this means that the hyperradius is unchan
while @13#

u→p2u,

a→a1p, ~14!

b→p2b,

g→2p2g. ~15!

Using the definition of theuPJMQ&V and the properties o
thedMM8

J (b) one arrives at the following symmetry requir
ment:

FJQ~f,p2u,R!5P~21!S1QFJQ~f,u,R!. ~16!

If the u interval is restricted to@0,p/2#, this leads to a con-
dition for the derivative with respect tou at u5 p/2. The
boundary condition atu50 is
u-
ed

FJQ~f,0,R!50 for Q.0 ~17!

because foru50 the angleg is undefined such that the co
efficient of uPJMQ&V has to vanish forQ.0.

E. The adiabatic basis functions

The adiabatic basis functions are chosen to satisfy

F 1

R2S 2
]2

]f2
2

1

sin2 f cos2 f sin u

]

]u
sin u

]

]u

1
Q2

sin2 f cos2 f sin2 u
2

2Q22J~J11!

cos2 f
D

1
C~f,u!

R GaJQl~f,u,R!5UJQl~R!aJQl~f,u,R!.

~18!

Since the hyperradiusR is not affected by the exchange o
the electrons the same boundary conditions as above
valid for the adiabatic basis functions.
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F. The hyperradial equations

ExpandingF in terms of the adiabatic basis functions

F5(
JQl

f JQl~R!aJQl~f,u,R!uPJMQ&VuSMS&, ~19!

we obtain the following system of differential equations inR

F2
]2

]R2
1UJQl~R!2

1

4R2
12bZ@M1geMS#1

2

3
bZ

2R2G f JQl~R!2(
m

F2K aJQlU ]

]RUaJQ8mL ~R!
] f JQm~R!

]R

1K aJQlU ]2

]R2UaJQ8mL ~R! f JQm~R!G1 (
Q8m

1

R2F ^PJMQu2iJ2uPJMQ8&K aJQlU 1

cos2 f

]

]uUaJQ8mL ~R!

1^PJMQu2J1J3uPJMQ8&K aJQlU cot u

cos2 f
UaJQ8mL ~R! f JQ8m~R!G

1bZ
2R2 (

J8Q8m
(
k50

2 A8p2

5
^PJMQu120kuPJ8MQ8&^aJQlupk~f,u!uaJ8Q8m&~R! f J8Q8m~R!5E fJQl~R!. ~20!
ee
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For the evaluation of the various matrix elements betw
the uPJMQ&V see Appendix A.

IV. NUMERICAL METHODS USED

We employed the method of finite elements for the de
mination of the adiabatic basis functions as well as for
solution of the hyperradial differential equations. Th
method has already been applied to a number of problem
atomic physics@14,15,9,11#

A. Determination of the adiabatic basis functions

The area@0,p/2#3@0,p/2# is subdivided intonf3nu
rectangular elements. On each element the adiabatic b
function a is expanded in terms of biquintic splines. Th
expansion coefficients are the 36 values of the adiabatic b
function and its partial derivatives of up to second order inf
andu at the 4 corners of the element.

Application of the variational principle leads to a gene
alized symmetric eigenvalue problem

TABLE I. Comparison of energies for low-lyingS andP states
of He with those of Accadet al.

State E/EZ DE/EZ

1 1S 21.451 8580 4.231026

2 1S 21.072 969 1.831025

3 1S 21.030 601 3.531025

4 1S 21.0153 1.231023

2 1P 21.0610 9.231024

2 3S 21.087 6149 2.131027

3 3S 21.034 3412 3.331026

4 3S 21.017 35 9.131024

5 3S 21.0026 8.731023

2 3P 21.0656 9.831024
n

r-
e

in

sis

sis

Hx5lUx ~21!

that is solved by subspace iteration@16#.

B. Solution of the hyperradial equations using FEM

The interval @0,Rmax# is subdivided intonr elements
@Ri 21 ,Ri # according to

Ri5S i

nr
D 2

Rmax. ~22!

The adiabatic basis functions are calculated on a grid c
sisting of the Gauss-Legendre integration points of orderng
with respect to the above elements. In addition the adiab
basis functions are also calculated on two grids shifted bh
and2h, using the prescription

] f ~R!

]R
5

f ~R1h!2 f ~R2h!

2h
1O~h3! ~23!

to obtain the derivative of the adiabatic basis functions.
To apply the method of finite elements the variation

principle is employed to our ansatz~19! yielding upon partial
integration a symmetric generalized eigenvalue problem
is also treated via inverse iteration.

TABLE II. Oscillator strengths for selected dipole transition
between low-lyingS andP states.

Transition This work Tanget al. @10#

2 1P0→11S0 0.267 0.276
3 1P0→21S0 0.144 0.149
2 1P0→21S0 0.423 0.377
3 1P0→11S0 0.070 0.074
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V. RESULTS AND DISCUSSION

Using the method explained above the energies of b
triplet and singletS and P states of He up to a principa
quantum number ofn54 have been calculated forbZ<0.1.
Due to computational requirements of a fully coupled cal
lation, we have so far restricted the expansion to one valu
the total orbital angular momentum. Thus we have been a
to obtain the wavelengths of quite a number of dipole tr
sitions betweenS and P states. In addition we have calcu
lated the dipole matrix elements and thus the oscilla
strengths for a number of transitions at zero field usin
formalism detailed in Appendix B

A. Results without magnetic field

1. Energies

As a test of our method we consider the eigenstates
nonrelativistic helium without magnetic field, for which ver
accurate results are available in the literature@17–19#. In
Table I we give our results for a number of states and th

TABLE III. Energies in units ofEZ of singletS states forM50.

bZ 1 1S 2 1S 3 1S 4 1S

0.000 21.451 8580 21.072 9690 21.030 6007 21.015 2540
0.002 21.451 8325 21.072 6272 21.028 8570 21.011 1947
0.004 21.451 7562 21.071 6199 21.024 2392 21.000 8726
0.006 21.451 6289 21.069 9934 21.017 6783 20.987 4711
0.008 21.451 4509 21.067 8065 21.009 7779 20.972 4952
0.010 21.451 2222 21.065 1190 21.000 8983 20.956 4792
0.012 21.450 9429 21.061 9856 20.991 2658 20.939 6979
0.014 21.450 6131 21.058 4537 20.981 0314 20.922 3212
0.016 21.450 2331 21.054 5644 20.970 3012 20.904 4633
0.018 21.449 8031 21.050 3524 20.959 1527 20.886 2057
0.020 21.449 3232 21.045 8473 20.947 6446 20.867 6088
0.030 21.446 1851 21.019 7087 20.886 0420 20.770 8767
0.040 21.441 8447 20.988 9480 20.819 7168 20.669 9162
0.050 21.436 3474 20.954 7902 20.750 2266 20.566 2224

TABLE IV. Energies ~as in Table III! of singlet P states for
M50.

bZ 2 1P 3 1P 4 1P

0.000 21.061 0026 21.026 7741 21.013 1498
0.002 21.060 7966 21.025 6291 21.010 6442
0.004 21.060 1888 21.022 5454 21.003 8476
0.006 21.059 2057 21.018 1159 20.994 4838
0.008 21.057 8819 21.012 7566 20.983 8601
0.010 21.056 2534 21.006 7212 20.972 4939
0.012 21.054 3534 21.000 1709 20.960 6010
0.014 21.052 2115 20.993 2132 20.948 3046
0.016 21.049 8530 20.985 9234 20.935 6849
0.018 21.047 2995 20.978 3562 20.922 7979
0.020 21.044 5695 20.970 5526 20.909 6847
0.030 21.028 7533 20.928 8942 20.841 6077
0.040 21.010 1713 20.884 1787 20.770 6274
0.050 20.989 5395 20.837 3776 20.697 6668
th

-
of
le
-

r
a

of

ir

deviation from the results of@17#. The agreement of ou
energies with the reference values is good to very good foS
states, while fair forP states.

2. Oscillator strengths

As a further test of our method, which is also sensitive
the quality of the wave functions, we compare in Table II o
results obtained for the zero-field oscillator strengths, fo
few transitions with those obtained by@20#. The agreement is
quite satisfactory except for 21P0→21S0, due to the small
energy difference, its wavelength being very large and t
unimportant for astrophysical applications.

B. Results with magnetic field

1. Energies

In Tables III to VI we give the results obtained for th
energies of the singlet and tripletS andP states forbZ<0.05
and principal quantum numbern<4. Since the spin only
introduces a trivial linear energy dependence, we only c

TABLE V. Energies in units ofEZ of triplet S states forM50.

bZ 2 3S 3 3S 4 3S

0.000 21.087 6149 21.034 3412 21.017 3498
0.002 21.087 3710 21.032 9256 21.013 5688
0.004 21.086 6474 21.029 0867 21.004 0890
0.006 21.085 4659 21.023 4986 20.991 7632
0.008 21.083 8566 21.016 6489 20.977 8820
0.010 21.081 8528 21.008 8511 20.962 9496
0.012 21.079 4872 21.000 3111 20.947 2355
0.014 21.076 7903 20.991 1698 20.930 9065
0.016 21.073 7897 20.981 5281 20.914 0749
0.018 21.070 5097 20.971 4602 20.896 8204
0.020 21.066 9719 20.961 0230 20.879 2023
0.030 21.046 0047 20.904 5799 20.786 9664
0.040 21.020 6728 20.843 0189 20.689 7985
0.050 20.991 9694 20.777 8476 20.589 1934

TABLE VI. Energies ~as in Table III! of triplet P states for
M50.

bZ 2 3P 3 3P 4 3P

0.000 21.065 5938 21.028 1475 21.014 0865
0.002 21.065 4235 21.027 1175 21.011 6499
0.004 21.064 9194 21.024 3209 21.005 1073
0.006 21.064 1004 21.020 2657 20.996 1622
0.008 21.062 9920 21.015 3249 20.986 0204
0.010 21.061 6214 21.009 7349 20.975 1585
0.012 21.060 0148 21.003 6492 20.963 7858
0.014 21.058 1959 20.997 1716 20.952 0227
0.016 21.056 1858 20.990 3755 20.939 9470
0.018 21.054 0025 20.983 3141 20.927 6120
0.020 21.051 6620 20.976 0275 20.915 0558
0.030 21.038 0161 20.937 0880 20.849 7693
0.040 21.021 8745 20.895 2337 20.781 5296
0.050 21.003 8713 20.851 3485 20.711 2809
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sider MS50 here. The chosen grid ofbZ values is suffi-
ciently fine to interpolate for values ofbZ in between. The
parameters of the calculation wereRmax564, nf520,
nu510, nr516, ng516, andnadia525 adiabatic basis func
tions were used in each channel.

In Table VII we compare our results forbZ50.025 with
the variational calculations by Scrinzi@4# and Larsen@21#.
The agreement obtained is good forS while fair for P states.
The ground-state energy obtained by our method is low
while the opposite is true for 21P, which can be attributed to
the fact that angular momentum mixing, expected to be m
important forJ.0 states, was included in their calculation

In Table VIII we compare our energies obtained for t
ground state 11 and for triplet states withn<3 for bZ50.01,
0.03, and 0.05 with the spin-unrestricted Hartree-Fo
~UHF! results from@3#. Our results for the ground state a
quite a bit lower, which is due to the absence of correlat
in HF calculations. For the triplet states, where correlatio
are less important, the agreement is good forn52 while
there are some discrepancies at the larger values ofbZ for
n53, especially for theS state. This can be explained by th
fact that we did not include a coupling betweenS and D
states, which is well known@1# to be important in the case o
hydrogen in a strong magnetic field, where the 3s and 3d0
states are mixed even in the limitbZ→0. Thus our calcula-
tion for the 33S state is reliable only forbZ small enough for
the energy difference between the 33D and 3 3P states to
dominate over the coupling between them due to the diam
netic part of the Hamiltonian.

In Table IX we compare our energies atbZ50 and 0.01
for a number of states with those given in@5#, which were
obtained using the released-phase quantum Monte Carlo
malism. The agreement atbZ50 is quite good, while their
energies are, especially for the higher excited states, so
what lower atbZ50.01.

Note that the energies of triplet states obtained in both
UHF and released-phase quantum Monte Carlo~RPQMC!
calculations are forMS521, which means they have to b
corrected by a linear term.

TABLE VII. Energies of He in units ofEZ at bZ50.025 deter-
mined by different methods.

State This work Scrinzi Larsen

1 1S 21.4479 21.4477 21.4468
2 1P0 21.0365 21.0403 21.0402
r,

re
.

k

n
s

g-

r-

e-

e

2. Wavelengths

In Figs. 1 and 2 the wavelengths obtained with o
method for selected electromagnetic dipole transitions
shown as a function ofbZ for bZ<0.05. From the compari-
son with literature values atbZ50 and with variational and
Monte Carlo calculations forbZ.0 above we estimate ou
wavelengths to have an accuracy of a few percent
bZ<0.025. A number of the transitions shown exhib
maxima in the wavelength, which, as is well known from t
study of hydrogen in the atmosphere of magnetic wh
dwarfs @22#, can lead to prominent absorption features.

Maxima appear only in those transitions in which t
higher state has a magnetic quantum numberM521, which
can be easily understood since the energy of theP state will
show a linear behavior for smallbZ , while the influence of
the diamagnetic term takes over for moderately largebZ ,
having the opposite sign. The lower state will have a q
dratic behavior at small values ofbZ , but no linear term.
Those maxima are quite pronounced for the singlet ca
while rather weak in comparison for the triplet case.

VI. CONCLUSIONS

The combination of the hyperspherical close coupling a
finite element method has been shown to provide ene
values and wavelengths of sufficient accuracy to be use
input into model calculations for atmospheres of magne
white dwarfs. From the comparison with competing metho
like UHF and RPQMC it seems that our method is super
for singlet states with a high degree of correlation while t
UHF results are of comparable quality or better for trip
states especially forn>3.

We plan to extend our calculations to include angular m
mentum mixing, which will allow us to obtain accurate r
sults also for largerbZ values and to obtain oscillato
strengths for nonzero fields, which are an essential input
any model calculation of stellar spectra.
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APPENDIX A: VARIOUS MATRIX ELEMENTS

Most of the matrix elements involving theuPJMQ& ap-
pearing in Eq.~20! can be evaluated by applying well-know
TABLE VIII. Comparison of energies in units ofEZ obtained for He atbZ50.01, 0.03, and 0.05 with the
results of UHF calculations by Joneset al.

bZ

State

0.01 0.03 0.05

This work Joneset al. This work Joneset al. This work Joneset al.

1 1S 21.451 2222 21.4302 21.446 1851 21.4252 21.436 3474 21.4155
2 3S 21.081 8528 21.0815 21.046 0047 21.0491 20.991 9694 21.0056
3 3S 21.008 8511 21.0190 20.904 5799 20.976 35 20.777 8476 20.9308
2 3P0 21.061 6214 21.0618 21.038 0161 21.0399 21.003 8713 21.0098
3 3P0 21.009 7349 21.0147 20.937 0880 20.9753 20.851 3485 20.9351



57 3745HYPERSPHERICAL CLOSE-COUPLING CALCULATIONS . . .
TABLE IX. Comparison of energies in units ofEZ obtained for He atbZ50.0 and 0.01 with the results
of released-phase quantum Monte Carlo calculations by Joneset al.

bZ

State

0.0 0.01

This work Joneset al. This work Joneset al.

2 3S 21.087 6149 21.0876~3! 21.081 8528 21.0819~2!

3 3S 21.034 3412 21.0344~1! 21.008 8511 21.0205~1!

4 3S 21.017 3498 21.0183~1! 20.962 9496 20.9944~5!

2 3P0 21.065 5938 21.0670~4! 21.061 6214 21.0625~3!

3 3P0 21.028 1475 21.0291~1! 21.009 7349 21.0150~2!

4 3P0 21.014 0865 21.0162~1! 20.975 1585 20.9889~7!
o

un

co-

is

si rip-
relations for the body-fixed components of the angular m
mentum.

The matrix elements of theu120q& that appear in the
diamagnetic part of the hyperradial equations can be fo
by using the following relation@23#:

E dVD
m3m

38

j 3* D
m2m

28

j 2 D
m1m

18

j 1 5
8p2

2 j 311
dm11m2 ,m3

dm
181m

28 ,m
38

3S j 1 j 2

m1 m2
U j 3

m11m2
D

3S j 1 j 2

m18 m28
U j 3

m181m28
D ~A1!

FIG. 1. Wavelengths of selected dipole transitions between
glet S andP states.
-

d

for the integral over the product of three representation
efficients of the rotation group and applying Eq.~4.19! from
@23#

d2M ,2M8
J

~b!5~21!M2M8dM ,M8
J

~b!. ~A2!

The final result for the different matrix elements needed

^PJMQu2iJ2uPJMQ8&

5dJ,J8dQ,Q821A~J1Q11!~J2Q!@11~A221!dQ,0#

2dJ,J8dQ,Q811A~J2Q11!~J1Q!@11~A221!dQ,1#,

~A3!

n- FIG. 2. Wavelengths of selected dipole transitions between t
let S andP states.



3746 57M. BRAUN, W. SCHWEIZER, AND H. ELSTER
^PJMQu2J1J3uPJMQ8&5dJ,J8dQ,Q821A~J1Q11!~J2Q!@11~A221!dQ,0#~Q11!

1dJ,J8dQ,Q811A~J2Q11!~J1Q!@11~A221!dQ,1#~Q21!, ~A4!

A8p2

5
^PJMQu1,20quPJ8MQ8&5

1

A2~11dQ80!~11dq0!~11dQ0!
A2J811

2J11 S J8 2

M 0
U J
M D 3F S J8 2

Q8 q
U J
QD

1P~21!J1QS J8 2

Q8 q
U J
2QD 1~21!qS J8 2

Q8 2q
U J
QD 1P~21!J81Q8S J8 2

2Q8 q
U J
QD G .

~A5!
tr

ian

n-
APPENDIX B: DETERMINATION OF DIPOLE MATRIX
ELEMENTS

The dipole matrix elements for aDM5q transition from
the initial state

u i &5uPiMiSMS ;n i&.

to the final state

u f &5uPfM fSMS ;n f&.

are defined via

df i
~q!5K fU(

i 51

2

r i
~q!U i L ~B1!

with

r i
~q!5A4p

3
r iY1q~r î !. ~B2!

In terms of the Jacobi coordinates used the dipole ma
elements take the simpler form
ix

df i
~q!5^ f uR~q!u i & ~B3!

with

R~q!5A8p

3
j2Y1q~j2̂!. ~B4!

The transformation to internal coordinates and Euler
angles@11# yields

R~q!5A8p2

3
~A2R sin f cosuu211q0&V

2A2R sin f sin uu211q1&V). ~B5!

Expanding the reduced wave functionsF f and F i for the
final and initial states in terms of the definite parity eige
functions of the symmetric topuPJMQ&V and of the adia-
batic eigenfunctionsaJQl(f,u,R),
F f5 (
Jf5uM f u

Jmax

(
Qf

(
l

f l
JfQf~R!af JfQfl

~f,u,R!uPfJfM fQf&, ~B6!

F i5 (
Ji5uMi u

Jmax

(
Qi

(
m

gm
JiQi~R!aiJiQim

~f,u,R!uPiJiM iQi& ~B7!

the dipole matrix elements take the final form

df i
~q!5A8p2

3 (
Jf5uM f u

Jmax

(
Qf

(
Ji5uMi u

Jmax

(
Qi

(
lm

@A2^PfJfM fQf u211q0uPiJiM iQi&^ f l
JfQf uRdlm

JfQfJiQi~R!ugm
JiQi&R#

2@A2^PfJfM fQf u211q1uPiJiM iQi&^ f l
JfQf uRelm

JfQfJiQi~R!ugm
JiQi&R# ~B8!

with

dlm
JfQfJiQi~R!5^af JfQfl

usin f cosuuaiJiQim
&f,u ~B9!

and

elm
JfQfJiQi~R!5^af JfQfl

usin f sin uuaiJiQim
&f,u . ~B10!
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The matrix elements ofu2,1qQ&V between theuPJMQ&V can be evaluated using similar methods as in Appendix A yield

A8p2

3
^PfJfM fQf u2,1qQuPiJiM iQi&5

dPf Pi ,21

A2~11dQf0
!~11dq0!~11dQ0!

A2Ji11

2Jf11S Ji 1

Mi q
U Jf

M f
D F S Ji 1

Qi Q
U Jf

Qf
D

1Pf~21!Jf1QfS Ji 1

Qi Q
U J
2Qf

D 1~21!QS Ji 1

Qi 2Q
U J
Qf

D
1Pi~21!Ji1QiS Ji 1

2Qi Q
U Jf

Qf
D G . ~B11!

For the dipole transition we thus recover the usual selection rules

Pf Pi521 ~B12!

and

M f5Mi1q. ~B13!
.
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