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Quantum and semiclassical calculations of cold-atom collisions in light fields
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We derive and apply an optical Bloch equati@BE) model for describing collisions of ground and excited
laser cooled alkali atoms in the presence of near-resonant light. Typically these collisions lead to loss of atoms
from traps. We compare the results obtained with a quantum mechanical complex potential treatment, semi-
classical Landau-Zener models with decay, and a quantum time-dependent Monte Carlo waveéaekiex
calculation. We formulate the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the adiabatic OBE results agree quantitatively
with those of the MCWP calculation, and qualitatively with the semiclassical Landau-Zener model with
delayed decay, but that the complex potential method or the traditional Landau-Zener model fail in the
saturation limit.[S1050-294{08)01005-]

PACS numbeps): 32.80.Pj, 42.50.Vk, 42.50.Lc

[. INTRODUCTION where H(R)=T(R) +V(R) is the system Hamiltonian for
kinetic energyT (R) and interaction potentidf(R), andT is
Collision dynamics of cold atoms in laser traps have beenhe decay tensor. Thus, the theoretical treatment of cold atom
extensively investigated over the past few years. When theollisions serves as both prototype and paradigm for new
red detuningA from the atomic resonance frequency is largeconstructs to treat nonequilibrium open systems coupled to
compared to the natural decay ratewe find a photoasso- reservoirs. Since the direct solution of Ed) for cold colli-
ciation Spectrum of isolated bound vibrational-rotational ieV'Sion situations iS beyond Curren“y ava”ab'e Computationa|
els in the attractive excited-state pOtentials. This is now aesourcei6,7], approximate methods for treating the colli-
highly developed subject and is fairly well understood; seesion dynamics in light fields must be developed.
the review[1]. In contrast, wherd is small, on the order of  The methods currently available are the semiclassical lo-
¥, the mechanisms and rate coefficients of trap loss procal equilibrium model of Gallagher and Pritchd®&] or Juli-
cesses that result from photoexcitation of the diatomic quagnne and Viglg9], the semiclassical dynamical Landau-
simolecule at long range are still rather poorly understoodzener models[10-13, the semiclassical optical Bloch
theoretically[2,3], in spite of the numerous experimental equation(OBE) method[14], the quantum complex potential
studies of this subjed®]. method [10,15,14, and the Monte Carlo wave packet
The reason for this is twofold: real hyperfine structuremethod of simulating the full quantum density matfixl—
introduces much complexity into the collision dynamics, and13]. Although the latter is capable in principle of treating the
the prominent role of excited-state spontaneous decay duringll quantum dissipative dynamics for an arbitrary number of
the very long time scale of the collision is difficult to calcu- coupled states in arbitrarily strong laser fields, the method is
late quantum mechanically. The number of degrees of freeextremely computer intensive, and therefore slow and im-
dom associated with the spontaneous emission is, of coursgactical. The complex potential method can quickly treat
infinite. Adiabatically eliminating these degrees of fi’eedommany Coup|ed channels guantum mechanica”y’ induding
leads to a mixed state representation that cannot be describggund state resonances, but only in the limit of very weak
in terms of wave functions but requires solving the|aser fields where no more than one excitation and decay
Liouville—von Neumann equation for the quantum mechani-event per collision occurs.
cal density matrixp(R,R’;t) [5]: The semiclassical methods are very appealing because of
their computational tractability, simple interpretation, and
i physical picture of the collision. However, several quantum
(RR% )=~ [H(R)p(RR")—p(RRHH(RY] calculationg 11-13,16 have shown that both the local equi-
librium and semiclassical OBE metho(ia the formulation
+T'p(R,R";t), (1) given in Ref.[14]) give incorrect results by an order of mag-
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nitude or more for detunings of a fewor less for tempera-
ture T<1 mK, depending on species. So far no practical (a)
theory exists for ultracold collisions for realistic atoms in a
light field with A=+, which is fully quantum mechanical
and also capable of treating dissipation and decay. Therefore,
there is not yet any satisfactory description of trap loss rates
in the small detuning limit. For large detunings3 vy, col-
lision in a light field goes to photoassociation spectroscopy,
in which isolated molecular bound vibrational levels are ex-
cited. Resonant scattering theory does then an excellent job
of explaining the excitation ratgl,17].

Quantum calculations have shown that semiclassical
methods may still be useful in characterizing cold collisions
in a light field with A=+ [11-13. The local equilibrium
model for cold collisions places a prominent emphasis on
off-resonant quasimolecular excitation outside the region
around the Condon poirR:. In contrast to them, a semi-
classical picture based on localized Landau-Zener excitation (b)
nearRq with subsequent semiclassical evolution with decay
inside R gives an excellent representation of the quantum
dynamics forT near 1 mK, when compared with results ob-
tained from quantum mechanical calculations. The Landau-
Zener model only begins to fail nedr=1 uK and at large
intensities[12]. Therefore, since there still seems to be good
opportunities for semiclassical models, we have revisited the
OBE method, and provided a rigorous derivation of the
velocity-corrected semiclassical OBE equations starting with
the appropriate quantum mechanical equatioeglacing the
unsatisfactory approach used in Reif4]). We show that an
adiabaticrather than aliabatic formulation of the semiclas- -~
sical OBE equations gives quite good agreement with the R’
guantum methods, even at saturation, in contrast to the poor
agreement provided by the diabatic treatment. FIG. 1. The basic trap loss mechanisms. The figures show the

We find that the adiabatic OBE calculations are in goodquasimolecule potentials as functions of the internuclear separation
agreement with the Monte Carlo wave packetCWP) re- R. The corresponding asymptotic combinations of the atomic states
sults and time-independent complex potential ressed are also given. Iita) we demonstrate the fine-structure chacig®)
for weak laser fields where this method is appropjiatewn  loss mechanism. The quasimolecule is excited from the ground state
to low collision temperatures. Only upon increasing the lasef to the statee, then it moves towards smeR, where it is trans-
detuning above the onset of resonances due to bound stdféred to thep state aR=R;,. Finally the atoms exit the collision
structure does the adiabatic OBE method fa]. We also on this gtate, sharing a kinetic energy increase equalEolIn (b)
use an improved Landau-Zener model with dissipafit@, the excited sta_tee decays ba(_:k tp the ground statg) (after the
which works even in the presence of strong saturation, wher@lo™s have gained enough kinetic energi] to escape from the
the complex potential method fails. This model offers a'rap- This is the .rad'at've escape mechan(®t). If de9ay takes.

o . ) lace too soon, i.e., &>R;,, then the escape turns into heating

qualitative understanding of the strong field processes. Th% e to insufficient increase in the kinetic enelgye trap depth is
numerical comparisons are for the standard two-state modg:lfJ

. . . ot exceede
on which the quantum and other semiclassical models have A

heretofore been tested. Although these test calculations |gS . . :
nore the complex multistate structure introduced by molecus= lons. Section VI pr.esents the comparison of the numgncal
lar hyperfine structure, the hope is that semiclassical method§Sults from the various methods, and Sec. Vil contains a
can yet be developed that are capable of treating the confUMmmary and conclusion.
plexity of multistate collision dynamics in the presence of
decay. . _ Il. THE QUASIMOLECULE MODEL

This paper is constructed as follows. Sectlc_m Il presents FOR COLD COLLISIONS
the model of trap loss processes we shall use in order to test
the methods developed and employed. Section Ill contains The basic loss processes for atom traps due to cold colli-
the derivation of the OBE method using the two differentsions are fine-structure chandeS and radiative escape
bases. Section IV describes the Monte Carlo method thafRE) [8,9]; these are demonstrated in Fig. 1. Due to the low
serves as the standard against which the approximate mettemperatures we can consider the collision of two atoms as
ods we use are compared. Section V describes the compléxternal dynamics of a diatomic quasimolecule. The simplest
potential method. Section VI develops the generalizedprototype model for the FS mechanism consists of three col-
Landau-Zener approach to strong laser field cold atom collifision channels, i.e., quasimolecule states. The model de-
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scribed here is identical to that used in Rdf8]. We ignore Ug(R)+U(R,I) /0
any rotational structure, i.e., only tleewave is considered, H=T(R)1+ 50 AA+U(R +URD]
but the model can be extended to higher partial waves. Here (RI+Uc(R, )(2)

the three channels are the grouf®y,,+2S,,, state channel

labeledg, the excited?S,,,+ 2Py, state channel labeled,  whereT(R) is the radial kinetic energy operatddy(R) is

and a probe channétorrelating asymptotically witi’S;,,  the ground electronic state which behaves asymptotically as
+2pP,,, state labeledp. Ug(R)=Cg/R% U(R,1)=#%(1+1)/2uR? is the centrifu-

In the FS mechanism the system starts on chagnehd  gal potentialu is the reduced mass of the quasimoledule
is later excited at the Condon poift: to the channek, assume a Gssystem, U,(R) is the excited-state potential
which has an attractive potential. When the atom reaches theorrelating asymptotically t&’S,,+ 2Py, alkali atoms and
crossing between the potentials for taandp channels, it behaving asymptotically as C5/R3, andA is the detuning
may enter thep channel and eventually come out of the from resonance A=E(P3;) —E(S;p) —fiw. Herew is the
collision having gained as kinetic energy the energy differ-laser frequency, and the laser-induced coupling is described
ence between théS,,+ 2P, and 2S,,+ 2P, states. This by the Rabi frequency). The g and e channel potentials
gain is large enough to propel atoms from the shallow trapcross at the Condon poinRc(A) where A=U(R¢)

In the RE mechanism the quasimolecule decays back Uy(Rc). This crossing occurs at large internuclear dis-
from the e channel to theg channel via spontaneous emis- tances. The values used for potential parametersGyre
sion. If this decay does not take place too early, the accel=20.30e%a3 and Cq=6.40x 10°¢%a3, wheree is the elec-
eration on channet will give the atoms enough kinetic en- tron charge ané,=0.529 A is the Bohr radiug9,18]. Note
ergy to escape from the trap. that we express all energy and angular frequency parameters

For both mechanisms we need to find out the probabilityin frequency units.
for the quasimolecule to reach a certain internuclear distance In studies using different laser parameters we have se-
Rin while still remaining on the channel. This can be ob- |ected for a suitable inner distan&g,=1433,, although the
tained from calculations by monitoring the quantum flux methods that we use allow the determinatiod giR) for all
Jo(R) on channek directly as is done when using the OBE values ofR. The atomic excited state has a linewid,
method, the MCWP method, and the Landau-Zener ap=5.13 MHz, and we have taken the molecular linewidth to
proachegtwo-state case Alternatively we can monitor the pe y=(4/3)y,, independent oR. And as mentioned above,
population transferred to the probe chanpgbs happens in  we consider only the cade=0.
the complex potential methodhree-state cage A reasonably complete description of cold atom collision

We need a treatment that contains both the laser-induceginamics in laser traps can be obtained via the time-
excitation atR¢ from g to e, and survival ore. Furthermore,  dependent density matrix(R,R’;t) satisfying the Liouville
for strong fields a proper model must allow any decayedequation(1). The probability of reaching the inner region on
population to be excited back ® if the decay has taken the excited-state potentigbr the particle flux in the inner
place in the vicinity ofRc . Only the MCWP method and the region on the excited state potentiakn be determined di-
OBE approach can handle this reexcitatiafso called popu- rectly from the diagonal density matrix elements
lation recycling quantitatively. Further discussion on the p;(R,,Ri,;t). However, the direct numerical solution for
subtle aspects of these loss mechanisms can be found, e.g. tie density matrix is presently beyond our capabilities for the
Refs.[2-4,9. cold atom collision problem. Instead we shall use various

It should be pointed out that the OBE method, the MCWPapproximations to solve for the dynamics. The time-
method(as we apply it in this papgrand the Landau-Zener dependent MCWP approach basically includes all the phys-
approaches are “one-way” studies. We only consider thecs contained in the Liouville equation, and it will provide
flux going in, but do not allow for any outcoming flux. For the standard against which all other methods are to be
estimating the FS and RE loss this is adequate as long as theiged.
detuning of the laser is about 1-10 atomic linewidths. Then Our model is a simplified representation of the true colli-
the role of bound states in the loss mechanisms is not tosjon situation. Experiments have shown that inclusion of hy-
important yet; see Ref10] for more discussion. For strong perfine structure is necessary to properly treat the collisions
fields the power broadening also diminishes the role of thef |laser cooled alkali speciggt,19]. It is exactly for this
bound states; most of the loss is due to processes associai@eson that it is so important to develop simple and accurate
with the first passage of the critical poiRf, on the channel approximate numerical methods that can conceivably be
e. used on problems including hyperfine dynamics where a

We have presented elsewhere the results obtained with tharge number of channels is required to treat the manifold of
adiabatic OBE method and the MCWP method in the stronghe hyperfine states.
field regime, and discussed the physical implications of the
results[18] (the lack of saturation in trap loss when excita- 1. OPTICAL BLOCH EQUATIONS
tion becomes saturatedn this paper we study in detail the
various theoretical approaches, present the general derivation
of the OBE equations and their application to the two-state In this section we derive the semiclassical optical Bloch
case(Sec. Ill), and show how to extend the Landau-Zenerequations. We start with the Liouville equatiéh) and use
approach to the strong field regime as suggested in[R8f.  Wigner function description into which we introduce semi-
in the case of optical shielding. classical approximations. If we write EQL) by components

The model Hamiltonian is we get

A. General situation
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P #2( 52 52 states, there is na priori reason to regard the adiabatic basis
ih—pij(RR";1)=— 20l o2 " oz pij(R,R";t) better than the diabatic basis. In practice one tends to choose
ot H\ IR JR the diabatic basis, because it allows a simple description of
the spontaneous emission processes. Furthermore, as dis-
+2 [Vi(R)pi(R,R';1) cussed below, we can seleaty initial state inany basis, if
k we allow the system initially enough time to reach locally at
—pi(RR DV, (R')] large R a steady state before the spatial dependence of the

quasimolecule potentials will couple the steady state forma-
) tion and molecular dynamics. In the following derivation of
+|ﬁ% Lijkp(RR' ;). (3 the optical Bloch equations we shall first use the diabatic
basis, and then transform it into the adiabatic basis case.

Here we have explicitly written out the kinetic and potential ~We assume for simplicity that in our current description
energy parts of the Hamiltonia ; the termV(R) contains is independent of position, but it is easy to extend our treat-
the potentials for the internal states of the quasimolecule angnent to allowR dependence iili'; such dependence can eas-
Coup”ngs between them. We assume tWdtas no time de- ||y arise if retardation effects are pl’operly included to the
pendence as we have eliminated the oscillating laser fielguasimolecule potentials and lifetimes. We redefine our spa-
terms using the rotating-wave approximation and an approtial coordinate system by writinR=r+q/2, R"=r—q/2,
priate phase shifthereV contains the potentiald and cou-  Which transforms the kinetic term:

plings (). ) 5
It should be pointed out that our description is time de- & _r e @
pendent, so instead of the boundary conditions used in the 9RZ oR’2 Tar aq°
time-independent scattering theory we have an initial value
problem, i.e., we solve Eq3) starting att=tq with some The density matrip(R,R’;t) contains information about

initial density matrixp(R,R’;tg). If Eq. (3) corresponds to a the spatial coherences in the system. In order to calculate
closed systenino decay out of the selected set of leyels quantum fluxes at some interatomic distarfReve do not
thenp can have steady-state solutions. need all that information, but only the spatially diagonal el-
Typically one takes as the initial state the steady statementsp(R,R;t). However, the evolution of these diagonal
result corresponding to atoms being well separated, with thelements depends on the off-diagopdR,R’;t) elements.
quasimolecule potentials being flat over the distance that thBy using the Wigner functioh20]
system moves within the time it takes to establish the steady
state. In other words, the molecular potentials do not impose ] * . )
any dynamics that would interfere with the steady state for- Wij(p.rit)= Jimdqexq—|pq/h)pij(r+ 24,7 2G50
mation. (5)
In time-independent scattering theory the initial condi-
tions cannot be stated in terms of diabatic states if couplingae can include the spatial coherences and yet effectively
between the states do not disappear asymptotically, as is theork with the spatially diagonal terms only.
case with laser-induced quasimolecule processes. However, First we apply the Fourier transform given in E&) on
since the system at large evolves quickly into the local both sides of Eq(3) in order to obtain the equation of mo-
steady state, which is independent of the selected bast®n for the Wigner function:

J P J - _ 1
EWij(p,r;tH;EWij(p,r;thwdqexp(—lpq/ﬁ)fﬁg [Vik(r +a/2)py;(r +a/2r —q/2;t)
_Pik(r+q/21r_q/2;t)vkj(r_qlz)]_"% Cijkp(r+a/2r—al2;t) ;. (6)

One should note that above we have applied integration by parts in order to repla¢e/oq) with p; this requires that
Iiquiwp(rJr%q,r—%q;t):O, i.e., that the spatial coherences disappear as we move away from the diagonal—this is a
reasonable assumption.

If we integrate the Wigner function over momentynmwe get the spatial probability distribution, which we can define as

~ 1 (=~
Pij(f,t)=mJiwdeij(p,r;t)- (7)

The quantityFij(r,t) equalspj;(r,r;t), as can readily be seen by substituting the expressiowfdip,r;t) in Eq. (5) into the
right hand side of Eq(7) and carrying out the integration ovpr So, by integrating Eq(6) over p we get the equation of
motion for p;;(r,t):
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19
Moor

1 o 1 _ ~ ~
mJ'mdpij(p,rit)} = EEK“ [Vik(r)ij(r;t)—Pik(r;t)ij(r)]+%: Lijki pwi(1,t). (8)

Jd~
P+

Here we have used the fact that there ispndependence on steady-state formatiofthe cycles of excitation and degay
the right-hand side of Eq(6), so that if we perform the quickly mixes these populations and eventually the distribu-
momentum integration first, we obtain&q) function, and tion of momentum on the ground state and the excited state
thus the integration ovey merely setqy=0. would be exactly equal. In other words, because of decay we

If a convenient method of evaluating the kinetic termcan have asymptotic population even on a closed channel,
were available, we could use the res} to obtain exactly but this population is a steady-state reflection of the ground-
the diagonal elements gf at givenr andt, p;;(r,t), which ~ State population and must have the same classical momen-
is the probability of being in channélat positionr and time ~ tum. This result is independent of the selected basis. How-
t. However, since we do not have any exact methods fofVer, as we fix the asymptotic situation by using Bd), we
calculating the second term in E(B), we shall estimate it introduce other problems, which will be discussed in Sec.
using a WKB approach. The WKB approximation for the !l C-

density matrix element is given by Next we insert Eq(9) into Eq. (5), and use the result in
Eqg. (8). The exponential part of the integrand can be ex-
ai(Ri)a* (R';t) ' } panded around:
pij(RR"t) = ————=—=exp{i[ 8i(R) - B;(R")]/%:}, .
! Vpi(R)p;(R") | J o explilBi(r + )~ B;(r—3)1/h}
_ _ o =exp(i[ Bi(r) = B;(N) )k +iz[pi(r)+p;(r)]al/h
where p;(R) is the local classical momentum in state
Bi(R) is the action aR, +0(r?)}. (12
R Then we apply the stationary phase method to obtain
Bi(R)=f dx p(x), (10

1 (= N ~
anda;(R,t) is the amplitude factor for the WKB wave. We 27Tf_wdpij(p’r’t)_ 2LPi(N)+pi(D]pij (D).
consider only the incoming wave, which fixes the sign of the (13
B terms, and assume thatandp; do not depend on position
very strongly. Furthermore, we assume that the classical mg>ubstitution of this expression into E@) yields
mentap;(R) are nonzero and real. It should be noted that by
introducing the classical momenta we have made our equa-

_ 1 0~
— (P ) +=—[p(r)+pi(r)]—pi (r,t
tions energy dependent as well, since P ZM[p'(r) PO 5epii(r.t

PN =2 E- Vi =VaC)l} - (4D = S VAP~ Pl TV (1]

whereE is the asymptotic energy for the WKB wayequal
to the asymptotic relative kinetic energy of the colliding at-
oms.

It should be noted that our definitidiil) of the classical
momenta is clearly different from the one encountered in thédere we have assumed that the classical momenta vary so
traditional scattering theory, if we consider the asymptoticlittle with r that they can be taken outside the derivative
situation. In the time-independent theory the channelgerm.

(state$ are typically either open or closed, depending on the Our aim is to find the total incoming quantum flux at each
collision energy, i.e., their classicGlVKB) momenta are as- positionr (integrated over all timgs and thus we are not
ymptotically either real or imaginary. This is because theyinterested in the actual time dependence. This simplifies our
are defined ag°®{(r) = V2u{E—[V;i(r)—Voo(*)]}, where  model to a great extent. Now the total flux can be obtained as
i =0 corresponds to the channel of the ingoing wave, defined steady-state result from E€L4). Since our model corre-

by the asymptotic boundary conditions. sponds to a “one-way" situation, the steady-state flux &

The difference here is due to the presence of the relaxequal to the total flux that has passed that point. In the steady
ation terms in Eq.3), and is required by the asymptotic state the time derivative in Eq14) vanishes, and we can
situation. In the time-dependent treatment we hawee)  replacep;;(r,t) by (py)s{r). Furthermore, it is convenient
=2urE, which is independent of the state labelThis is  to define the quantity
because asymptotically we have a steady state formation that
is not coupled to the dynamics because the potentials are flat. (N =P PN {Pr)sdT) (15)

For simplicity we base our following discussion on a two-
state system. Assuming that the excited-state and grounshose diagonal elements give the flux in the various states at
state populations had different asymptotic momenta, theositionr. We shall call this quantity the semiclassical den-

+% Tk pwi(r b). (14
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10 1 whereE(R) is the diagonal eigenvalue matrix that gives the

k ] field-dressed quasimolecule potentials. We can now write the
diabatic semiclassical density matrix in terms of the adia-
batic semiclassical density matrif, (R,R’;t):

Pi(RR' D=2 Ci(RIpk(RRHCHR).  (19)

Next we insert thig,(R,R’,t) into Eq.(3), and proceed as

in the diabatic case. When making the WKB approximation
and using the stationary phase approach we assume that the
matrix elementsC;;(R) are slowly varying functions in po-
sition. Thus, by sandwiching the whole equation between
C ! andC we obtain eventually

Energy (MHz)
=

20 ©

25 ©

230 L
0 1000 2000 3000 4000 5000 6000

1 d
—[p(r)+p2 — g
R (units of a) 2#[p|(r) pj(r)]dralj(r)

FIG. 2. The two-state model for trap loss collisions. The solid _i_ _ a_ i a
lines describe the bar@liabatio quasimolecule potentials near the ) [Ej(r)—Ei(r)]oj; % Qiju 2u [Pi(r)
Condon pointR;. Here A=, so Rc=2930,. The dotted lines
describe the field-dressdddiabati¢ potentials.

a a 1/2
—p'(r)p‘(r)l . (20

“‘p?(r)]_rﬁkl]"%(r) = a
sity matrix. The equation of motion for it, within the validity PK(r)pr(r)
range of the WKB approximation, is

where the classical momenpé(r) are now defined using the

1 d adiabatic potential&;(r) in Eqg. (11). The decay term trans-
m[pi(r)—i_pj(r)]aa'ij(r) forms as
pi(r)p;(r)]*? . .
=2 ppi(n) [Liji + Tijaloa(r), Fﬁﬁklmn Cik CiiTimiCmiCrn - (21
(16) . . .
The nonadiabatic coupling that arose when we evaluated
where alar[Cp?(r,t)C 1] is given by
Lii =i[v- () 81— SuVyi ()] 17) ~1,4 0 I 1
T R QijkI:§ Cim (1) 2 Cmk(1) 851 + Gik 2 Gy (1) Crni(1)
This completes the general derivation of the semiclassical 9 p
optical Bloch equations using the Wigner distribution. The =E [Ciml(r)a—cmk(rwj,—5iijm1(r)a—Cm|(r)}
set of equation§16) was obtained by making a semiclassical m r r
approximation, which focuses on classical paths by virtue of = Ai(1) 81— S Ay (1), (22)

using the WKB approximation. Only when the semiclassical
approximation is validwhen the de Broglie wavelength is whereA (1) =3 C-XrY(3/9r)CoAr
smaller than the region where the potentials are vajyivity 1) = ZnCim (1) (9/97) Crui(1).

. L : Another method for deriving the adiabatic OBE equations
this approximation be meaningful.

. . . . of motion involves using the half-collision matrix method
The above der_lvat|on was dong in the diabatic rePréSen-1). This method yields the same result as given by Eqgs.

tathn of the qUQSImqlecuIe pOte”“?"S- The decay tErimas . (20) and(22) for the Hamiltonian part of the dynamics, but

a simple form in this representation, where the electroni annot be used to derive the decay part of the adiabatic OBE

states are also independent of position, and the internal Statgg | 4tions; since the half-collision method does not incorpo-
are directly coupled by the standard dipole term. In the adia:

. ) ; . ._rate the dissipative dynamics due to spontaneous emission
batic representation the electronic wave functions vary W'“Eontained in the density matrix treatment

the internuclear coordinate. In this presentation the laser- '
induced couplings and the decay term become cleRrtie-

pendent. We can move from the simple diabatic representa- B. The two-state case

tion into the adiabatic one, in which the potential matvix We assume that our quasimolecule has only two states,
(which contains the radiative couplings diagonal. The one ground statél) and one excited stat@), with potentials
transformation matriXC(R) is R dependent, V11 andV,,. In our trap loss model these states are as shown
in Fig. 2. The excited state has a constant wiglftand the
2 Cﬁ(l(R)Vk,(R)C”(R): 8,E(R), (18) of_f-dialgonal density matrix elementg{, andp,;) have the
K width 5. Thus we have
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1 do} 2i E,—E NORE
Diio=y, Ton=—v, Toaorm=—5v, Tn=—57, —2__ 7L TP —12(0'a —of
2 2 dr hopatp? 12 03412 22 Y11
(23) 1 2 1 2
and tr_le rest of the elements Bfare zero. L{sing/_lz as thg _ 37 - 02+ 252C2 (03, + o)
coupling between the states, we get the diabatic equations vi+vs
doyy 1 Vi 022 \/U\T
— = O1o— 0) ty—, 24) —|so(1+2c? —o5
dr 7 m( 12~ 021) 7U2 ( o ) vg 22
doy, doyg 2 \/UTZ1 a
So= g (25) +s0(1+2s?) v_i‘gll , (34)
dogp, | 2(Vi— Vo) +iy I 2Vp, do$, dol*
dr ﬁ U1+U2 ﬁvl+U2 dr dr
v U2 Here we use the notatios— sin(¢) and c=cos(). The ve-
X 022 011/, (26) . a a , ) )
Uy Uy locity factorsv{ andv3 are defined as in Eq11), usingE,
andE, as the appropriate potentials. At this point we relabel
dO'Zl d(T’J\:2 r W|th R.
—_=—. (27
dr dr

C. The implementation of the two-state case

Here we have used the classical velocitie@)=p;(r)/w. The optical Bloch equation@4)—(27) and (32)—(35) can

In order 'to move into the adiabatic frame we need theoe solved numerically using various methods. As will be
transformation matrix element&y;(r). In a two-state sys- gpon 'in sec, VII, the diabatic formulation fails whdn

tem it is convenient to define <1 mK for all coupling strength§). If we use the adiabatic
1 oV equations(32)—(35), with the velocity factors given by Eq.
9= —tan l—— 12 (289 (11), we find a good agreement with the MCWP results for
2 Vo=V all temperatures at large couplings, but an increasing devia-
tion with decreasind). Of course, we would like to have an
approach that is good for all and(). Thus we need to look
. into the issue of velocity factors in detail.
Cu Clz) ( C(.)s( 6)  sin( 9)) (29) The velocity factorv§ for the upper adiabatic potential
Cz Cp/ | —sin(6) cogd)/’ (see Fig. 2is the source of the problem for small values of
. L . . ). When the atoms approach each other, a steady state is
and the inverse transformation is obtained from the relat'o'?quickly formed and maintained until the system gets very
C~(6)=C(~ 6). Thus we get close toR. . As discussed earlier, this gives us the advantage
of a basis-independent initial state. At this point the popula-

The transformation matrix is given by

C(r)=(

A:Cﬂ& _ ‘9_0 71§ _ ’9_‘9( 0 1) . (30) tion on the upper adiabatic state 2 is a steady state reflection

ar or a6 dr\—-1 0 of the population of the lower adiabatic state 1. Thus when

the system reaches the Condon point the probability flux on
For convenience, we defirf@=d6/dr. This gives us both adiabatic states ought to in fact have the same momen-

tum. Thus, if we use the velocity factor given by Ef1) for
Q1121= Q1227~=A12=D, Qu11=—An=D, the upper adiabatic state, we get the right velocity asymptoti-
cally, but the wrong velocity at the crossing. We can correct
Qi211= A=~ D. 3D this by redefining 3(R) so thatvj=2E/u for all R.

In other words, because the OBE approach mixes con-
cepts from time-dependent theofgteady-state formation
and time-independent theofKB wave function3, we
must sometimes improve its performance by such a tuning.

After a little algebra, we get the semiclassical optical
Bloch equations in the adiabatic representation:

dielll: D vitug (03,4 0%) — _AUa _ C_40_a Here we need to give the WKB wave functions asymptoti-
dr 23 2t Y pa toan® cally the velocities that describe the steady-state situation
correctly, but at the crossing the dynamics dominates, imply-
sc(c?—s?) a a ing that the classical momenta used in the time-independent

+ ﬁ(ffzﬁ 019 | (32 theory would provide a more accurate description. Devia-

viba tions are visible in the limit of the weak excitation, because

a a then the excited state population is dominated by the small

dizzz_ dill (33) steady-state contribution that, due to the large momentum

dr dr ’ given incorrectly by Eq(11), has a good chance to survive
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on the excited state untiR=R;,. This population over- this gain is partially reduced by the increase in the time re-
whelms the contribution from the dynamical excitation, andquired by the computation. Hence the MCWP simulations
thus gives incorrect results. However, as will be shown inare quite time consuming, and therefore the need for other
Sec. VII, we now have a method that can predict correctl)ﬁpproaChes is q_uite acute. There are several Monte_CarIo
the probability to reach smaR on channek for any prac- apprpaches avallak_ale currently, and we use the Dalibard-
tical 2, and for the temperatures in the cold collisions re_Castm-l\Mjmer ver5|on[24],_adapted to wave packet prob-
gime. It should be noted that an extension of our approach tBams in the manner described in Ref6,11,13. We shall

an ultracold temperature regime, i.e., below the recaoil Iimit,g've here a brief description of the method, but keep the

) i ; ; : . .’main emphasis on aspects related to the particular system

is not likely to succeed, as the semiclassical viewpoint fails died in thi icl
in this regime[22,23 studied in this article. ' '

The previ f rrﬁ lation of optical Bloch tioe] In the MCWP method one does not directly solve the time

€ previous formuiation ot optical Bloch equatl evolution of the density matrix itself. Instead, we look at the

was done in the time frame rather than in the position frame

. time evolution of the state vector
The transition between these two frames was performed by

introducing a reference trajectovy(R), which mapped® to

t. However, as noted in Ref14], this reference trajectory is W (R,t)

. . g 1
not really needed as we can do the calculation inrRHeame \II(RJ;):( ) ; (36)
altogether. Ye(R,1)

In practice when solving the optical Bloch equations we

can set alloj;(Ry) =0, except selecting one state for which . }
oi(Ry)=1. The value ofR, is set suitably large for the yvhere\lf_g and¥, are the_: ground- a_nd excited-state probabil-
atoms to be well apart and potentials flat. Since the classicdly @mplitudes, respectively. In this model the spontaneous
trajectory couplesR andt, evolution inR corresponds to 9€C@y appears as random quantum jumps during the time
evolution int and we find that the system has evolved into a€Velution of the state vector. Hence each time we solve the
steady state distribution of the ground- and excited-statdMe-dependent Schainger equation we obtain a unique
populations after moving a relatively short distance towargState vector evolution, also called a wave-packet history. One

smallerR. This corresponds to numerically determining the €0 form a finite ensemble of such histories and calculate
asymptotic state populations and coherences. ensemble averaged expectation values for physical quanti-
ties. These values are approximations to those provided by

the full density matrix treatment. The accuracy of the en-
semble averages tends to increase with the number of mem-
A direct wave-packet treatment of E{.) with numerical  bers in the ensemble, and in the limit of an infinite ensemble
methods is possiblgs,7]. However, since one has to operate these averages and the density matrix results become equal,
with a two-dimensional spatial grid, the memory sizes cur-as shown, e.g., in Ref24]. So, we expect that by accumu-
rently available in computers strongly limit the use of thislating ensemble members we can eventually reach a suitable
approach: only models that are simplified in the extreme ca@ccuracy at some finite ensemble size. The accuracy to be
be studied. In cold collisions the acceleration of the initially expected of the method is described in H@#]. For wave
slow wave packet on the steep excited-state potential surfaggckets in cold collision problems the appropriate ensemble
forces us to use a large two-dimensional momentum spacgize seems to be roughly 50 members, assuming that all the
while at the same time good momentum resolution is needetlistories are very close to each other in the phase space for
to define adequately the narrow initial wave packet for lowall times. This is quite true for the excited-state survival stud-
temperatures. Similar demands are set for the position spades related to attractive excited states. In general such local-
as well; for more detailed discussion see RETs11]. Hence ization in the phase space for all times is necessary for the
we need many grid points in order to span properly the resuccess of the semiclassical approaches.
quired regions in both the momentum and position spaces. We start the calculation of the state vector evolution from
It may be feasible to avoid some of the computationalsome initial state, which in our case is a Gaussian wave
problems by using grid sizes and resolutions that are adagacket on the ground state moving towards sniallThe
tive; one might utilize the rather deterministic behavior of wave packet in general describes the probability to find the
the wave packet by altering the computational grid propertieswo colliding atoms at certain relative separati@nand its
as a function of either position or time. Then the straightfor-components| W 4(R,t)|* and |¥¢(R,t)|* contain the addi-
ward swapping between momentum and position representéional information about how this probability is distributed
tions using fast Fourier transforms is, however, usually lostbetween the ground and excited states. A Fourier transform
We have chosen to approach the problem from anotheof the state vectoW (R,t) takes the system into the momen-
angle. The Monte Carlo wave packet method allows us tdum representation. We set the initial phaselgfin position
treat Eq.(1) numerically as a one-dimensional problem. Un-representation such that the wave packet starts with a mean
like other approximative methods this approach does nomomentumyp), which corresponds to the temperature of the
adapt any concepts from classical mechanics and, thereforeloud of cooled and trapped atoms. The width of the wave
it is not a semiclassical tool but a fully quantum one. Hencepacket is chosen so that it remains relatively narrow in both
it can be used as a benchmark for the different semiclassicaépresentations. We cannot, of course, violate the Heisenberg
methods described in this article. uncertainty relation, so it is impossible to have infinitely nar-
By using the MCWP method we can greatly diminish therow packets in either representation. It should be pointed out
limitations set by the available computer memory. Howeverthat apart from satisfying the Heisenberg uncertainty relation

IV. MONTE CARLO SIMULATIONS
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the width of the wave packet is not related to any of theof the excited-state component of the state vector are trans-
macroscopic quantities of the physical situation that we try tderred to the ground-state component. This is the source of
simulate. radiative heating, among other things.

Initially the wave packet is located far from the crossing Both the evolution undeH; and the quantum jumps
so that a steady state between the ground and excited stat@sluce the norm of the state vectbr Hence after each time
can form before the wave packet reaches the interaction réiep the state vector is renormalized to unity, even if a jump
gion where the dipole-dipole interaction makes the lasefloes not occur. It should be noted that if we hagi=H,
resonant with the molecular transition. The time scale for thdhen we would always observe a quantum jump for a system
formation of the steady state is roughly 3—5 times the deca%”th nonzeroP, if we wait long enough. For cases where
time scale 14, [25], assuming that the local detuning does Pe<-1 this would be wrong, since there is a nonzero prob-

not change much over the distance covered by the WaVg',bility that the system never was on the excited state. In the

packet during that time. As discussed above, the steady sta‘ﬁéeak field limit P is always very small, so most of the

formation allows us to put the initial wave packet on the ENS€mble members correspond to the time evolution under
the non-Hermitian Hamiltonian with no interruption by

ey macares o o s e o DS, T I e pacl approach redces 1o 3 .
2 ependent version of the complex potential approach. There-
dependent of the initial state. Indeed, we could even placg, e 5 single ensemble member becomes a reasonably accu-
the initial wave packet on the excited state, and yet the wavg,;o approximation to the density matrix result. We have
packet approaching the crossing would still be the steadygseq this property in our weak field stufh2], and have thus
state one. . o _verified that the diabatic formulation of the OBE method
The state vector corresponding to the initial state isjoes not work properly at low temperatures, but the Landau-
step_ped forward in time with its evolution determined by thezener approach and the complex potential method can be
Schradinger equation. Various numerical methods can beaysed instead.
used, and we have applied the combination of split operator Although the MCWP method allows us to use relatively
approach with Crank-Nicholson and Runge-Kutta algo-large grids, the strong change in the excited-state potential
rithms, described in detail in Ref1l]. In the MCWP  corresponds at our probing distanBg =143, to kinetic
method one uses an effective Hamiltonian, energies that are beyond the numerical treatment. Basically it
becomes impossible to correctly track the relevant quantum
mechanical phase term expEt/h), whereE is the kinetic
energy of the wave packet. Hence we must cut the excited-
state potential change by making it flat fef,<R<R.; in
whereH is the system Hamiltoniany is the decay rate for our studies we have used the vaRg~=512a,. At R, we
the excited-state population, and ando ™~ are the standard are basically left with the exponential decay of the excited-

h
Heﬁ:H_i%U+U_, (37)

spinor raising and lowering operators, respectively. state population because of the large local detuning. Hence
For each time step—t+ 8t we calculate the jump prob- We can take the wave packet result §g(R) from R=R.; to
ability R;, by multiplying it with exp(tyang, Wheret, s is the
time it takes to go fronR.; to R;, along the classical path
05=yP4(t)dt, (39 determined by the local velocity. In fact, the same approach

is also applied when the OBE equations are solved numeri-
where Pg(t) is the current excited-state population. By re- cally: otherwise the adequate determination of the term
writing ds asdP, we would end up with the standard expo- exg —ip(R)éR/%] would require impractically small values
nential decay expf{yt) of the excited-state population. Now, of the spatial grid spacingR [here p(R) is the local mo-
we continue by comparing the jump probabilifg with a  mentum atR] whenR<R.
random numbem e[0,1]. A quantum jump occurs when
< &s; this is usually the less likely situation since the basic V. COMPLEX POTENTIAL CALCULATIONS

assumption in. the derivation of the MQWP method is that |, ihe complex potential method one adds a complex term
os<1 all the time(guaranteed by choosing<1/y). When o the excited-state potential in order to describe decay out
a jump occurs one simply replace®  (R,t+dt) with  of these stategl0,15,16. This approach does not allow any
Ve(R,t+6t), and then setsV¢(R,t+6t)=0. The occur- reexcitation, and is thus not appropriate for strong field stud-
rence of the jump corresponds to the observation of a fluoies directly (by including the photon states explicitly one
recence photon, which reduces the wave function: before thmight improve the model although this would drastically in-
jump it had to be in the excited state, and after the jump itcrease the number of channels required to solve even the
must be in the ground state. The important aspect is that asase of two quasimolecule stafds)).

the jump takes place the position and momentum properties In this method one simply uses the Hamiltonian

Ug(R)+Ug(R,) 1nQ 0
H=T(R)+ 1Q A+ U(R) +U(R1)—ifiy/2 1 Qep , (39
0 Q0 Ep+Up(r)+U(R])
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FIG. 4. The ground- and excited-state quxé,}(R) (@ and
J3(R) (b) in the adiabatic representation, calculated using the A-
OBE method. Here\ =y, and the other parameters are as indi-
cated in the figure.

ments, Sy, and S, from which the quantum fluxe(R),

i.e., the quantum mechanical probability of reaching the in-
ner zone, is determined. In the complex potential calcula-
tions we use mainly the same values for parameters as in the
two-state model, given in Sec. Il. However, here the excited-

whereF is the three-component state vector for our modelstate potentialJ¢(R), is taken as a numerical spline having

andE is the asymptotic collision energy.
For this method we have explicitly included the probeasymptotic behavior of- C3/R®. We take the probe poten-

channelp to our Hamiltonian:U (R) is the corresponding tial to be U,(R)=C}/R?, with C§=7.26@%a3. All poten-

potential. The probe channplcrosses the channel poten-
tial at R;,. Because of the disparity betweBa(A) andR;,

a minimum energy of—182 GHz atR=72a, and an

tials have repulsive inner walls so tle<0 region is non-
classical. The other parameters d@g=—3.0 GHz and

the outer zone excitation process is in practice well separated,=1.0 MHz.

from the inner zone process. The couplifig, depends on

As we are now working with the time-independent scat-

the nature of the coupling of the excited state and the probtering theory, we need to consider boundary conditions in-

channel.

We have used the invariant imbedding methd8,2§ (in

stead of initial ones. Since the model potential contains non-

vanishing off-diagonal elements, for strong fields there is a

the diabatic representatipto solve the above close coupling clear mixing of states at largR. Therefore the boundary

equations in a form that directly computes tBenatrix ele-

condition for the complex potential approach has to be de-
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FIG. 5. The excited-state flu¥, at R=143a, as a function of ) )
the laser-induced coupling, calculated using the MCWP, D-OBE, ~ FIG. 6. The excited-state flu, at R=1433, as a function of
and A-OBE methods. Her& = y,,, and the other parameters are as the laser-induced couplin@, calculated using the MCWP, com-
indicated in the figure. plex potential, LZD, and LZDD methods. Herk= y,, and the
other parameters are as indicated in the figure.

fined in terms of the field-dressed, i.e., adiabatic states. Thge |ocation of this curve crossing. When using the complex
transformation between the different bases then takes p|a<iﬁ)tential method we obtain the flux simply by using the re-
as described in Sec. Ill. We assume an incoming Waee-  |ation Je(Rin):|Sgp|2/Pep(Rin)_ The probability P, is al-
responding to the asymptotic collision ener§y on the  most completely insensitive to the laser intensignd to the
lower adiabatic channel formed by statesnde (state 1 in  collision energyE for small detunings.
Fig. 2. In the limit of large detuning and small laser intensity it is
safe to assume that the excitation becomes localized to the
VI. LANDAU-ZENER APPROACHES Condon poinRc. In this limit the dynamical model and the
local equilibrium model tend to agree. In local equilibrium
Since the inner and the outer crossings are isolated imodels one assumes that the motion of the atoms is very
distinctly different regions, we can write the loss probability, slow compared to the steady-state formation, and thus the

i.e., the probability to exit on channpl as steady-state formation dominatgd. This leads to a picture
where off-resonant excitation is important for small One
Pp=1Syp|*=Pep(Rin) Je(Rin), (41)  can express the local excitation in a two-state model in the

steady state regime §85]
where the probabilityP,,=|S. | measures the quantum 0?2
probability of the inner zone— p process due to traversing P ,
the inner curve crossing once in both directions. Heygis *©A(R)24+ 202+ (y/2)2

(42
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FIG. 7. The excited-state flu, at R=143, as a function of the laser-induced couplif)g calculated using the A-OBE, LZD, and
LZDD methods forT=0.3 mK.

whereA(R) is the local detuningf A(R)=U¢(R) —U4(R) wherev4(R;E) is the classical velocity associated with the
+#A. As a final stage in the local equilibrium model one ground state at positioR when the collision energy ig,
weighs the results with Eq42) and integrates over the po- and
sition coordinater.
In the dynamical models it is assumed that as the system dUq(R) dUg(R)|
approache®f the motion and thus the change in the local *~1"4rR _ dR | . (45
detuning become fast compared to the steady-state forma- R=R¢
tion, and thus the excitation becomes a dynamical process
that is localized to a region ne®. . The dynamical excita- In other wordsP; is the one-way Landau-Zener probability
tion can then be described with the Landau-Zener curv®f undergoing a transition from chanrgeto channek at the
crossing mode]10-13. In steady-state models for large de- Condon pointRc(A), and S¢(R,R¢;E,v) is the survival
tunings the integration over the linewidth functioh?) be-  probability from R to R. We can calculate the survival
comes like ad function that singles out the Condon point, probability by assuming a classical trajectory combined with
and thus the two viewpoints agree in this limit. The MCWP exponential(Weisskopf-Wigner decay:
simulations have so far supported the dynamical picture over
the local equilibrium picture; for further discussion see Ref. R
[3]. S=exp(—yta);  ta(RRcIE)= f
In the weak field limit we can assume that the excitation Re
and subsequent decay are uncoupled, and reexcitation is ne\%r-1 . . . :
ligible. Then we can write, using the Landau-Zener model," ereve(R) IS the' clas_S|caI trajegtory yelqmty for the ex-
the expression for the flux on chanrehs cited statg(in th_e diabatic formulation This is the Landau-
Zener model with decail.ZD).
JL2D(R) = S.(R R E. )P The above model fails when excitation and decay do not
e (R)=Se(RRc:E,7)P1z decouple, which happens at strong fields due to reexcitation
=S(R,Rc;E, y)[1—exp —27A)]. (43 of decayed populatiofil1,13. We can think of reexcitation
as a process that delays the start of the exponential decay.
Reexcitation takes place mainly within some region around
the Condon point. We can define an interaction region for
which A(R)<(). By making the simple assumption that ex-
ponential decay can take place only outside this region, we
can rewrite the in Eq. (46) as

ouR) (49

Here

hQ?

A aRoE) “
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FIG. 8. The excited-state flu, at R=143, as a function of the laser-induced couplif)g calculated using the A-OBE, LZD, and
LZDD methods forT=1.0 mK.

R dR We also have calculated thie dependence of the prob-
o= TR (47 apility fluxes[J3(R) andJ2(R)] in the adiabatic presentation
o Ve(R) g e
using the adiabatic OBE method; the results are shown in

whereR,, is defined by the relatioh (Rq)=Q; Rg<Re. Fig. 4 for T=0.3 mK.and .selected values 6I. For very
The modified survival term depends now on the laser inten§ma” Q the lower adiabatic state correlates asymptotically

sity | (1<Q2). We call this approach the Landau-Zener With the diabatic ground state. At smaltlit correlates with

model with delayed decay.ZDD). Obviously the model can the excited diabat.ic state f.OI’ eﬂl As expecteq, no oscilla- _
only give qualitative predictions, especially as the concept ofions are present in the adiabatic representation as a function
the edge of the interaction region is not well defined. How-of R.
ever, it gives a good intuitive undestanding of whyR) for In Fig. 5 we show a comparison between the MCWP
small R keeps increasing even when the excitation saturateggsults, the diabatic OBE result®-OBE), and adiabatic
to unity (and thus the LZD prediction saturatgd8]. This  OBE results(A-OBE). The agreement between the MCWP
picture agrees qualitatively with the results from the OBEand A-OBE results is very satisfactory, whereas the D-OBE
and MCWP calculations, as will be shown in the next sectesults fail by an order of magnitude far=0.3 mK. This
tion. failure increases further ab decreases, as shown in Refs.
[10,12. As discussed in the previous paragraph, the differ-
VIl. COMPARISON OF METHODS ence between D-OBE and A-OBE results suggest strongly
that the basic condition for the validity of the local equilib-
Typically the excited-state flud.(R) shows oscillations rium model is not fulfilled for typical trap parameters.
at R<R( in the bare state picture. This is demonstrated by We compare the complex potential method and the
the MCWP results given in Fig. 3. The oscillations are due toLandau-Zener approaches to the MCWP results in Fig. 6.
the coherences between the two states, established near ffilge LZD method saturates when the Landau-Zener excita-
Condon point. As the couplin§) increases, the situation tion probability P, becomes unity; until then all methods
becomes increasingly adiabatic and the oscillations disapseem to agree well. However, beyond the saturation of the
pear. At the same time the asymptoflarge R) flux ap-  excitation the complex potential approach fails utterly. One
proaches the steady-state result, 1/2. It is interesting to not&hould note that the saturation of the dynamical excitation is
that although the main change in the flux seems to take plaageot the same as the saturation of the atomic excitdtidso,
over a wide region irR, the dynamical view with excitation the atomic excitation saturates to 1/2, but the dynamical ex-
localized toR. works well, as demonstrated by us earlier in citation to unity. The complex potential method fails utterly
Ref.[12]. when one approaches the saturation limit. The LZDD

R
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method agrees well with the MCWP results. This problem might be solved by replacing the WKB wave

We have used the A-OBE and LZDD method to calculatefunction by a proper Airy function solution in our derivation
the flux for various detunings, and the results are given irof the A-OBE method30].

Figs. 7 and 8. As can be expected, the saturation moves to Finally, we have given here as an example only the case
larger Q) when A increases. In Fig. (@ we start to see the of one ground state and one excited state. In reality we have
signs of the failure of the Landau-Zener model at sniall several states involved in the cold collision process, e.g., the
(and smallA). various partial waves and hyperfine states. In such a situation
it is not so easy to write out the transformation to the adia-

batic representation in an analytic form. However, there are
various methods for doing the change of basis numerically.

In this paper we have derived the adiabatic optical Blocha problem may arise from the fact that we had to redefine
equations. When applied to the standard two-state model fafe velocity factors using physical arguments—it is not ob-
loss of laser-cooled atoms from electromagnetic traps, thesgous if such a redefinition in a multistate case would be as
equations prove to be a fast and adequately accurate methgghaightforward and clear as in the two-state case. In any
to predict probabilities to reach any internuclear distance ogase, the A-OBE method should be capable of handling ad-
the excited quasimolecule state. The A-OBE results matc@quatew the case of several partly overlapping strong cross-
very well with the MCWP results, and also agree with thejngs in a system of close-lying states. In such a situation the
results from the qualitative LZDD model. The latter agree-| andau-zZener methods are expected to fail—the A-OBE
ment is surprisingly good, but this can be attributed to amethod can help in testing the validity of the Landau-Zener
fortuitous definition of the edge of the interaction region.  methods in nontrivial crossing situations.

Although the A-OBE method is a useful tool, we are still  For small detunings the Condon point moves to very large
far from having a proper general treatment of trap loss atjistances and the quasimolecule potential does not have the
small detuningS. Firstly, the bound state structure of the ats|mp|e 1R3 dependence any more. Furthermore’ the retarda-
tractive excited state is not taken into account. At small de‘tion effects become important, and then the quasimo'ecu'ar
tunings the vibrational states associated with the attractivgnewidths becomeR dependent even in the diabatic repre-
molecular potential overlap strongly and at strong fields theyantation. The A-OBE method should be very useful in
are also power broadened. In the language of time-dependegi,dying these situations, as it is much faster than the MCWP
nates over all the others. We can remedy the situation tgyger parametersA( and Q) and quasimolecule potentials
some extent by applying the single passage result to muItipI@CS, .

passages, as has been done, e.g., in[Ref. Despite some limitations the A-OBE method is a clear
Secondly, the A-OBE method does not allow for momen-jeap forward in treating theoretically the cold collisions in
tum change; the motion on the ground state is given by thggn fields. The discussion above, however, should be taken
ground-state velocity factor. When the excited-state populagg g warning against trusting the method too blindly. The
tion of the quasimolecule decays back to the ground state, itggts given in this paper and in our previous regdf]
kinetic energy distribution has been affected by the accelergpgicate nevertheless that the method is very good in predict-

tion on the excited state. If this population is excited by, .9.ing the behavior of trap loss due to near-resonant light.
another laser, this excitation depends on the new kinetic en-

VIIl. CONCLUSIONS

ergy distribution. This effect is important in the cases of
radiative heating11] and the radiative enhancem¢g8,29.
Currently only the MCWP method can handle the kinetic
energy changes correct{1].
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