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Quantum and semiclassical calculations of cold-atom collisions in light fields
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We derive and apply an optical Bloch equation~OBE! model for describing collisions of ground and excited
laser cooled alkali atoms in the presence of near-resonant light. Typically these collisions lead to loss of atoms
from traps. We compare the results obtained with a quantum mechanical complex potential treatment, semi-
classical Landau-Zener models with decay, and a quantum time-dependent Monte Carlo wave packet~MCWP!
calculation. We formulate the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the adiabatic OBE results agree quantitatively
with those of the MCWP calculation, and qualitatively with the semiclassical Landau-Zener model with
delayed decay, but that the complex potential method or the traditional Landau-Zener model fail in the
saturation limit.@S1050-2947~98!01005-1#

PACS number~s!: 32.80.Pj, 42.50.Vk, 42.50.Lc
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I. INTRODUCTION

Collision dynamics of cold atoms in laser traps have be
extensively investigated over the past few years. When
red detuningD from the atomic resonance frequency is lar
compared to the natural decay rateg, we find a photoasso
ciation spectrum of isolated bound vibrational-rotational le
els in the attractive excited-state potentials. This is now
highly developed subject and is fairly well understood; s
the review@1#. In contrast, whenD is small, on the order of
g, the mechanisms and rate coefficients of trap loss p
cesses that result from photoexcitation of the diatomic q
simolecule at long range are still rather poorly understo
theoretically @2,3#, in spite of the numerous experiment
studies of this subject@4#.

The reason for this is twofold: real hyperfine structu
introduces much complexity into the collision dynamics, a
the prominent role of excited-state spontaneous decay du
the very long time scale of the collision is difficult to calc
late quantum mechanically. The number of degrees of fr
dom associated with the spontaneous emission is, of cou
infinite. Adiabatically eliminating these degrees of freedo
leads to a mixed state representation that cannot be desc
in terms of wave functions but requires solving t
Liouville–von Neumann equation for the quantum mecha
cal density matrixr(R,R8;t) @5#:

]

]t
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where H(R)5T(R)1V(R) is the system Hamiltonian fo
kinetic energyT(R) and interaction potentialV(R), andG is
the decay tensor. Thus, the theoretical treatment of cold a
collisions serves as both prototype and paradigm for n
constructs to treat nonequilibrium open systems coupled
reservoirs. Since the direct solution of Eq.~1! for cold colli-
sion situations is beyond currently available computatio
resources@6,7#, approximate methods for treating the col
sion dynamics in light fields must be developed.

The methods currently available are the semiclassical
cal equilibrium model of Gallagher and Pritchard@8# or Juli-
enne and Vigue´ @9#, the semiclassical dynamical Landa
Zener models@10–13#, the semiclassical optical Bloch
equation~OBE! method@14#, the quantum complex potentia
method @10,15,16#, and the Monte Carlo wave packe
method of simulating the full quantum density matrix@11–
13#. Although the latter is capable in principle of treating th
full quantum dissipative dynamics for an arbitrary number
coupled states in arbitrarily strong laser fields, the metho
extremely computer intensive, and therefore slow and
practical. The complex potential method can quickly tre
many coupled channels quantum mechanically, includ
bound state resonances, but only in the limit of very we
laser fields where no more than one excitation and de
event per collision occurs.

The semiclassical methods are very appealing becaus
their computational tractability, simple interpretation, a
physical picture of the collision. However, several quantu
calculations@11–13,16# have shown that both the local equ
librium and semiclassical OBE methods~in the formulation
given in Ref.@14#! give incorrect results by an order of mag
3724 © 1998 The American Physical Society
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nitude or more for detunings of a fewg or less for tempera-
ture T,1 mK, depending on species. So far no practi
theory exists for ultracold collisions for realistic atoms in
light field with D.g, which is fully quantum mechanica
and also capable of treating dissipation and decay. There
there is not yet any satisfactory description of trap loss ra
in the small detuning limit. For large detunings,D@g, col-
lision in a light field goes to photoassociation spectrosco
in which isolated molecular bound vibrational levels are e
cited. Resonant scattering theory does then an excellen
of explaining the excitation rate@1,17#.

Quantum calculations have shown that semiclass
methods may still be useful in characterizing cold collisio
in a light field with D.g @11–13#. The local equilibrium
model for cold collisions places a prominent emphasis
off-resonant quasimolecular excitation outside the reg
around the Condon pointRC . In contrast to them, a sem
classical picture based on localized Landau-Zener excita
nearRC with subsequent semiclassical evolution with dec
inside RC gives an excellent representation of the quant
dynamics forT near 1 mK, when compared with results o
tained from quantum mechanical calculations. The Land
Zener model only begins to fail nearT51 mK and at large
intensities@12#. Therefore, since there still seems to be go
opportunities for semiclassical models, we have revisited
OBE method, and provided a rigorous derivation of t
velocity-corrected semiclassical OBE equations starting w
the appropriate quantum mechanical equations~replacing the
unsatisfactory approach used in Ref.@14#!. We show that an
adiabaticrather than adiabatic formulation of the semiclas
sical OBE equations gives quite good agreement with
quantum methods, even at saturation, in contrast to the
agreement provided by the diabatic treatment.

We find that the adiabatic OBE calculations are in go
agreement with the Monte Carlo wave packet~MCWP! re-
sults and time-independent complex potential results~used
for weak laser fields where this method is appropriate!, down
to low collision temperatures. Only upon increasing the la
detuning above the onset of resonances due to bound
structure does the adiabatic OBE method fail@10#. We also
use an improved Landau-Zener model with dissipation@13#,
which works even in the presence of strong saturation, wh
the complex potential method fails. This model offers
qualitative understanding of the strong field processes.
numerical comparisons are for the standard two-state m
on which the quantum and other semiclassical models h
heretofore been tested. Although these test calculations
nore the complex multistate structure introduced by mole
lar hyperfine structure, the hope is that semiclassical meth
can yet be developed that are capable of treating the c
plexity of multistate collision dynamics in the presence
decay.

This paper is constructed as follows. Section II prese
the model of trap loss processes we shall use in order to
the methods developed and employed. Section III conta
the derivation of the OBE method using the two differe
bases. Section IV describes the Monte Carlo method
serves as the standard against which the approximate m
ods we use are compared. Section V describes the com
potential method. Section VI develops the generaliz
Landau-Zener approach to strong laser field cold atom c
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sions. Section VII presents the comparison of the numer
results from the various methods, and Sec. VIII contain
summary and conclusion.

II. THE QUASIMOLECULE MODEL
FOR COLD COLLISIONS

The basic loss processes for atom traps due to cold c
sions are fine-structure change~FS! and radiative escape
~RE! @8,9#; these are demonstrated in Fig. 1. Due to the l
temperatures we can consider the collision of two atoms
internal dynamics of a diatomic quasimolecule. The simpl
prototype model for the FS mechanism consists of three
lision channels, i.e., quasimolecule states. The model

FIG. 1. The basic trap loss mechanisms. The figures show
quasimolecule potentials as functions of the internuclear separa
R. The corresponding asymptotic combinations of the atomic st
are also given. In~a! we demonstrate the fine-structure change~FS!
loss mechanism. The quasimolecule is excited from the ground s
g to the statee, then it moves towards smallR, where it is trans-
ferred to thep state atR5Rin . Finally the atoms exit the collision
on this state, sharing a kinetic energy increase equal toDE. In ~b!
the excited statee decays back to the ground state (g) after the
atoms have gained enough kinetic energy (DE) to escape from the
trap. This is the radiative escape mechanism~RE!. If decay takes
place too soon, i.e., atR.Rin , then the escape turns into heatin
due to insufficient increase in the kinetic energy~the trap depth is
not exceeded!.
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scribed here is identical to that used in Ref.@18#. We ignore
any rotational structure, i.e., only thes wave is considered
but the model can be extended to higher partial waves. H
the three channels are the ground2S1/21

2S1/2 state channe
labeledg, the excited2S1/21

2P3/2 state channel labelede,
and a probe channel~correlating asymptotically with2S1/2
12P1/2 state! labeledp.

In the FS mechanism the system starts on channelg, and
is later excited at the Condon pointRC to the channele,
which has an attractive potential. When the atom reaches
crossing between the potentials for thee and p channels, it
may enter thep channel and eventually come out of th
collision having gained as kinetic energy the energy diff
ence between the2S1/21

2P3/2 and 2S1/21
2P1/2 states. This

gain is large enough to propel atoms from the shallow tr
In the RE mechanism the quasimolecule decays b

from the e channel to theg channel via spontaneous emi
sion. If this decay does not take place too early, the ac
eration on channele will give the atoms enough kinetic en
ergy to escape from the trap.

For both mechanisms we need to find out the probab
for the quasimolecule to reach a certain internuclear dista
Rin while still remaining on the channele. This can be ob-
tained from calculations by monitoring the quantum fl
Je(R) on channele directly as is done when using the OB
method, the MCWP method, and the Landau-Zener
proaches~two-state case!. Alternatively we can monitor the
population transferred to the probe channelp, as happens in
the complex potential method~three-state case!.

We need a treatment that contains both the laser-indu
excitation atRC from g to e, and survival one. Furthermore,
for strong fields a proper model must allow any decay
population to be excited back toe if the decay has taken
place in the vicinity ofRC . Only the MCWP method and th
OBE approach can handle this reexcitation~also called popu-
lation recycling! quantitatively. Further discussion on th
subtle aspects of these loss mechanisms can be found, e
Refs.@2–4,9#.

It should be pointed out that the OBE method, the MCW
method~as we apply it in this paper!, and the Landau-Zene
approaches are ‘‘one-way’’ studies. We only consider
flux going in, but do not allow for any outcoming flux. Fo
estimating the FS and RE loss this is adequate as long a
detuning of the laser is about 1–10 atomic linewidths. Th
the role of bound states in the loss mechanisms is not
important yet; see Ref.@10# for more discussion. For stron
fields the power broadening also diminishes the role of
bound states; most of the loss is due to processes assoc
with the first passage of the critical pointRin on the channel
e.

We have presented elsewhere the results obtained with
adiabatic OBE method and the MCWP method in the stro
field regime, and discussed the physical implications of
results@18# ~the lack of saturation in trap loss when excit
tion becomes saturated!. In this paper we study in detail th
various theoretical approaches, present the general deriv
of the OBE equations and their application to the two-st
case~Sec. III!, and show how to extend the Landau-Zen
approach to the strong field regime as suggested in Ref.@13#
in the case of optical shielding.

The model Hamiltonian is
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H5T~R!11S Ug~R!1Uc~R,l ! \V

\V \D1Ue~R!1Uc~R,l ! D ,

~2!

whereT(R) is the radial kinetic energy operator,Ug(R) is
the ground electronic state which behaves asymptotically
Ug(R)5C6 /R6, Uc(R,l )5\2l ( l 11)/2mR2 is the centrifu-
gal potential,m is the reduced mass of the quasimolecule~we
assume a Cs2 system!, Ue(R) is the excited-state potentia
correlating asymptotically to2S1/21

2P3/2 alkali atoms and
behaving asymptotically as2C3 /R3, andD is the detuning
from resonance,\D5E(P3/2)2E(S1/2)2\v. Herev is the
laser frequency, and the laser-induced coupling is descr
by the Rabi frequencyV. The g and e channel potentials
cross at the Condon pointRC(D) where \D5Ue(RC)
2Ug(RC). This crossing occurs at large internuclear d
tances. The values used for potential parameters areC3

520.30e2a0
2 and C656.403105e2a0

2, wheree is the elec-
tron charge anda050.529 Å is the Bohr radius@9,18#. Note
that we express all energy and angular frequency parame
in frequency units.

In studies using different laser parameters we have
lected for a suitable inner distanceRin5143a0, although the
methods that we use allow the determination ofJe(R) for all
values ofR. The atomic excited state has a linewidthgat
55.13 MHz, and we have taken the molecular linewidth
beg5(4/3)gat, independent ofR. And as mentioned above
we consider only the casel 50.

A reasonably complete description of cold atom collisi
dynamics in laser traps can be obtained via the tim
dependent density matrixr(R,R8;t) satisfying the Liouville
equation~1!. The probability of reaching the inner region o
the excited-state potential~or the particle flux in the inner
region on the excited state potential! can be determined di
rectly from the diagonal density matrix elemen
r i i (Rin ,Rin ;t). However, the direct numerical solution fo
the density matrix is presently beyond our capabilities for
cold atom collision problem. Instead we shall use vario
approximations to solve for the dynamics. The tim
dependent MCWP approach basically includes all the ph
ics contained in the Liouville equation, and it will provid
the standard against which all other methods are to
judged.

Our model is a simplified representation of the true co
sion situation. Experiments have shown that inclusion of
perfine structure is necessary to properly treat the collisi
of laser cooled alkali species@4,19#. It is exactly for this
reason that it is so important to develop simple and accu
approximate numerical methods that can conceivably
used on problems including hyperfine dynamics where
large number of channels is required to treat the manifold
the hyperfine states.

III. OPTICAL BLOCH EQUATIONS

A. General situation

In this section we derive the semiclassical optical Blo
equations. We start with the Liouville equation~1! and use
Wigner function description into which we introduce sem
classical approximations. If we write Eq.~1! by components
we get
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i\
]

]t
r i j ~R,R8;t !52

\2

2mS ]2

]R2
2

]2

]R82D r i j ~R,R8;t !

1(
k

@Vik~R!rk j~R,R8;t !

2r ik~R,R8;t !Vk j~R8!#

1 i\(
kl

G i jkl rkl~R,R8;t !. ~3!

Here we have explicitly written out the kinetic and potent
energy parts of the HamiltonianH; the termV(R) contains
the potentials for the internal states of the quasimolecule
couplings between them. We assume thatV has no time de-
pendence as we have eliminated the oscillating laser fi
terms using the rotating-wave approximation and an app
priate phase shift~hereV contains the potentialsU and cou-
plings \V).

It should be pointed out that our description is time d
pendent, so instead of the boundary conditions used in
time-independent scattering theory we have an initial va
problem, i.e., we solve Eq.~3! starting att5t0 with some
initial density matrixr(R,R8;t0). If Eq. ~3! corresponds to a
closed system~no decay out of the selected set of level!,
thenr can have steady-state solutions.

Typically one takes as the initial state the steady s
result corresponding to atoms being well separated, with
quasimolecule potentials being flat over the distance that
system moves within the time it takes to establish the ste
state. In other words, the molecular potentials do not imp
any dynamics that would interfere with the steady state
mation.

In time-independent scattering theory the initial con
tions cannot be stated in terms of diabatic states if coupli
between the states do not disappear asymptotically, as i
case with laser-induced quasimolecule processes. Howe
since the system at largeR evolves quickly into the loca
steady state, which is independent of the selected b
l
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states, there is noa priori reason to regard the adiabatic bas
better than the diabatic basis. In practice one tends to cho
the diabatic basis, because it allows a simple description
the spontaneous emission processes. Furthermore, as
cussed below, we can selectany initial state inany basis, if
we allow the system initially enough time to reach locally
large R a steady state before the spatial dependence of
quasimolecule potentials will couple the steady state form
tion and molecular dynamics. In the following derivation
the optical Bloch equations we shall first use the diaba
basis, and then transform it into the adiabatic basis case

We assume for simplicity that in our current descriptionG
is independent of position, but it is easy to extend our tre
ment to allowR dependence inG; such dependence can ea
ily arise if retardation effects are properly included to t
quasimolecule potentials and lifetimes. We redefine our s
tial coordinate system by writingR5r 1q/2, R85r 2q/2,
which transforms the kinetic term:

]2

]R2
2

]2

]R82
52

]

]r

]

]q
. ~4!

The density matrixr(R,R8;t) contains information abou
the spatial coherences in the system. In order to calcu
quantum fluxes at some interatomic distanceR we do not
need all that information, but only the spatially diagonal
ementsr(R,R;t). However, the evolution of these diagon
elements depends on the off-diagonalr(R,R8;t) elements.
By using the Wigner function@20#

Wi j ~p,r ;t !5E
2`

`

dqexp~2 ipq/\!r i j ~r 1 1
2 q,r 2 1

2 q;t !

~5!

we can include the spatial coherences and yet effectiv
work with the spatially diagonal terms only.

First we apply the Fourier transform given in Eq.~5! on
both sides of Eq.~3! in order to obtain the equation of mo
tion for the Wigner function:
is is a

as

f

]

]t
Wi j ~p,r ;t !1

p

m

]

]r
Wi j ~p,r ;t !5E

2`

`

dqexp~2 ipq/\!H 1

i\(
k

@Vik~r 1q/2!rk j~r 1q/2,r 2q/2;t !

2r ik~r 1q/2,r 2q/2;t !Vk j~r 2q/2!#1(
kl

G i jkl rkl~r 1q/2,r 2q/2;t !J . ~6!

One should note that above we have applied integration by parts in order to replace2 i\(]/]q) with p; this requires that
limq→6`r(r 1 1

2 q,r 2 1
2 q;t)50, i.e., that the spatial coherences disappear as we move away from the diagonal—th

reasonable assumption.
If we integrate the Wigner function over momentump we get the spatial probability distribution, which we can define

r̃ i j ~r ,t !5
1

2p\E2`

`

dpWi j ~p,r ;t !. ~7!

The quantityr̃ i j (r ,t) equalsr i j (r ,r ;t), as can readily be seen by substituting the expression forWi j (p,r ;t) in Eq. ~5! into the
right hand side of Eq.~7! and carrying out the integration overp. So, by integrating Eq.~6! over p we get the equation o
motion for r̃ i j (r ,t):
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]t
r̃ i j ~r ,t !1

1
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]

]r F 1

2p\E2`

`

dppWi j ~p,r ;t !G5
1

i\(
k

@Vik~r ! r̃ k j~r ;t !2 r̃ ik~r ;t !Vk j~r !#1(
kl

G i jkl r̃ kl~r ,t !. ~8!
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Here we have used the fact that there is nop dependence on
the right-hand side of Eq.~6!, so that if we perform the
momentum integration first, we obtain ad(q) function, and
thus the integration overq merely setsq50.

If a convenient method of evaluating the kinetic ter
were available, we could use the result~8! to obtain exactly
the diagonal elements ofr̃ at givenr and t, r̃ i i (r ,t), which
is the probability of being in channeli at positionr and time
t. However, since we do not have any exact methods
calculating the second term in Eq.~8!, we shall estimate it
using a WKB approach. The WKB approximation for th
density matrix element is given by

r i j ~R,R8;t !.
ai~R;t !aj* ~R8;t !

Api~R!pj~R8!
exp$ i @b i~R!2b j~R8!#/\%,

~9!

where pi(R) is the local classical momentum in statei ,
b i(R) is the action atR,

b i~R!5ER

dx pi~x!, ~10!

andai(R,t) is the amplitude factor for the WKB wave. W
consider only the incoming wave, which fixes the sign of t
b terms, and assume thatai andpi do not depend on position
very strongly. Furthermore, we assume that the classical
mentapi(R) are nonzero and real. It should be noted that
introducing the classical momenta we have made our eq
tions energy dependent as well, since

pi~r !5A2m$E2@Vii ~r !2Vii ~`!#%, ~11!

whereE is the asymptotic energy for the WKB wave~equal
to the asymptotic relative kinetic energy of the colliding a
oms!.

It should be noted that our definition~11! of the classical
momenta is clearly different from the one encountered in
traditional scattering theory, if we consider the asympto
situation. In the time-independent theory the chann
~states! are typically either open or closed, depending on
collision energy, i.e., their classical~WKB! momenta are as
ymptotically either real or imaginary. This is because th
are defined aspi

scatt(r )5A2m$E2@Vii (r )2V00(`)#%, where
i 50 corresponds to the channel of the ingoing wave, defi
by the asymptotic boundary conditions.

The difference here is due to the presence of the re
ation terms in Eq.~3!, and is required by the asymptot
situation. In the time-dependent treatment we havepi(`)
5A2mE, which is independent of the state labeli . This is
because asymptotically we have a steady state formation
is not coupled to the dynamics because the potentials are
For simplicity we base our following discussion on a tw
state system. Assuming that the excited-state and gro
state populations had different asymptotic momenta,
r

e

o-
y
a-

e
c
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e

y

d

x-

at
at.

d-
e

steady-state formation~the cycles of excitation and decay!
quickly mixes these populations and eventually the distri
tion of momentum on the ground state and the excited s
would be exactly equal. In other words, because of decay
can have asymptotic population even on a closed chan
but this population is a steady-state reflection of the grou
state population and must have the same classical mom
tum. This result is independent of the selected basis. H
ever, as we fix the asymptotic situation by using Eq.~11!, we
introduce other problems, which will be discussed in S
III C.

Next we insert Eq.~9! into Eq. ~5!, and use the result in
Eq. ~8!. The exponential part of the integrand can be e
panded aroundr :

exp$ i @b i~r 1 1
2 q!2b j~r 2 1

2 q!#/\%

.exp$ i @b i~r !2b j~r !#/\1 i 1
2 @pi~r !1pj~r !#q/\

1O~r 2!%. ~12!

Then we apply the stationary phase method to obtain

1

2pE2`

`

dppWi j ~p,r ;t !5 1
2 @pi~r !1pj~r !# r̃ i j ~r ,t !.

~13!

Substitution of this expression into Eq.~8! yields

]

]t
r̃ i j ~r ,t !1

1

2m
@pi~r !1pj~r !#

]

]r
r̃ i j ~r ,t !

5
1

i\(
k

@Vik~r ! r̃ k j~r ;t !2 r̃ ik~r ;t !Vk j~r !#

1(
kl

G i jkl r̃ kl~r ,t !. ~14!

Here we have assumed that the classical momenta var
little with r that they can be taken outside the derivati
term.

Our aim is to find the total incoming quantum flux at ea
position r ~integrated over all times!, and thus we are no
interested in the actual time dependence. This simplifies
model to a great extent. Now the total flux can be obtained
a steady-state result from Eq.~14!. Since our model corre-
sponds to a ‘‘one-way’’ situation, the steady-state flux atr is
equal to the total flux that has passed that point. In the ste
state the time derivative in Eq.~14! vanishes, and we can
replacer̃ i j (r ,t) by ^ r̃ kl&ss(r ). Furthermore, it is convenien
to define the quantity

skl~r ![Apk~r !pl~r !^ r̃ kl&ss~r ! ~15!

whose diagonal elements give the flux in the various state
position r . We shall call this quantity the semiclassical de
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sity matrix. The equation of motion for it, within the validit
range of the WKB approximation, is

1

2m
@pi~r !1pj~r !#

d

dr
s i j ~r !

5(
kl

F pi~r !pj~r !

pk~r !pl~r !G
1/2

@Li jkl 1G i jkl #skl~r !,

~16!

where

Li jkl 5
1

i\
@Vik~r !d j l 2d ikVl j ~r !#. ~17!

This completes the general derivation of the semiclass
optical Bloch equations using the Wigner distribution. T
set of equations~16! was obtained by making a semiclassic
approximation, which focuses on classical paths by virtue
using the WKB approximation. Only when the semiclassi
approximation is valid~when the de Broglie wavelength i
smaller than the region where the potentials are varying! will
this approximation be meaningful.

The above derivation was done in the diabatic repres
tation of the quasimolecule potentials. The decay termG has
a simple form in this representation, where the electro
states are also independent of position, and the internal s
are directly coupled by the standard dipole term. In the ad
batic representation the electronic wave functions vary w
the internuclear coordinateR. In this presentation the lase
induced couplings and the decay term become clearlyR de-
pendent. We can move from the simple diabatic represe
tion into the adiabatic one, in which the potential matrixV
~which contains the radiative coupling! is diagonal. The
transformation matrixC(R) is R dependent,

(
kl

Cik
21~R!Vkl~R!Cl j ~R!5d i j Ei~R!, ~18!

FIG. 2. The two-state model for trap loss collisions. The so
lines describe the bare~diabatic! quasimolecule potentials near th
Condon pointRC . Here D5g, so RC.2930a0. The dotted lines
describe the field-dressed~adiabatic! potentials.
al

l
f
l

n-

ic
tes
-

h

a-

whereE(R) is the diagonal eigenvalue matrix that gives t
field-dressed quasimolecule potentials. We can now write
diabatic semiclassical density matrix in terms of the ad
batic semiclassical density matrixr lk

a (R,R8;t):

r i j ~R,R8;t !5(
kl

Cik~R!rkl
a ~R,R8;t !Cl j

21~R8!. ~19!

Next we insert thisr lk(R,R8,t) into Eq. ~3!, and proceed as
in the diabatic case. When making the WKB approximati
and using the stationary phase approach we assume tha
matrix elementsCi j (R) are slowly varying functions in po-
sition. Thus, by sandwiching the whole equation betwe
C21 andC we obtain eventually

1

2m
@pi

a~r !1pj
a~r !#

d

dr
s i j

a ~r !

5
i

\
@Ej~r !2Ei~r !#s i j

a 2(
kl

H Qi jkl

1

2m
@pk

a~r !

1pl
a~r !#2G i jkl

a J skl
a ~r !F pi

a~r !pj
a~r !

pk
a~r !pl

a~r !
G 1/2

, ~20!

where the classical momentapi
a(r ) are now defined using the

adiabatic potentialsEi(r ) in Eq. ~11!. The decay term trans
forms as

G i j rt
a 5 (

klmn
Cik

21Cl j GklmnCmrCtn
21 . ~21!

The nonadiabatic coupling that arose when we evalua
]/]r @C r̃ a(r ,t)C21# is given by

Qi jkl 5(
m

FCim
21~r !

]

]r
Cmk~r !d j l 1d ik

]

]r
Cjm

21~r !Cml~r !G
5(

m
FCim

21~r !
]

]r
Cmk~r !d j l 2d ikCjm

21~r !
]

]r
Cml~r !G

5Aik~r !d j l 2d ikAl j ~r !, ~22!

whereAik(r )5(mCim
21(r )(]/]r )Cmk(r ).

Another method for deriving the adiabatic OBE equatio
of motion involves using the half-collision matrix metho
@21#. This method yields the same result as given by E
~20! and ~22! for the Hamiltonian part of the dynamics, bu
cannot be used to derive the decay part of the adiabatic O
equations, since the half-collision method does not incor
rate the dissipative dynamics due to spontaneous emis
contained in the density matrix treatment.

B. The two-state case

We assume that our quasimolecule has only two sta
one ground state~1! and one excited state~2!, with potentials
V11 andV22. In our trap loss model these states are as sho
in Fig. 2. The excited state has a constant widthg, and the
off-diagonal density matrix elements (r12 andr21) have the
width 1

2 g. Thus we have
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G11225g, G222252g, G212152
1

2
g, G121252

1

2
g,

~23!

and the rest of the elements ofG are zero. UsingV12 as the
coupling between the states, we get the diabatic equatio

ds11

dr
5

i

\

V12

Av1v2

~s122s21!1g
s22

v2
, ~24!

ds22

dr
52

ds11

dr
, ~25!

ds12

dr
5

i

\

2~V112V22!1 ig

v11v2
s122

i

\

2V12

v11v2

3SAv1

v2
s222Av2

v1
s11D , ~26!

ds21

dr
5

ds12*

dr
. ~27!

Here we have used the classical velocitiesv i(r )5pi(r )/m.
In order to move into the adiabatic frame we need

transformation matrix elements,Ci j (r ). In a two-state sys-
tem it is convenient to define

u5
1

2
tan21

2V12

V222V11
. ~28!

The transformation matrix is given by

C~r !5S C11 C12

C21 C22
D 5S cos~u! sin~u!

2sin~u! cos~u!
D , ~29!

and the inverse transformation is obtained from the rela
C21(u)5C(2u). Thus we get

A5C21
]C

]r
5

]u

]r
C21

]C

]u
5

]u

]r S 0 1

21 0D . ~30!

For convenience, we defineD5]u/]r . This gives us

Q11215Q12225A125D, Q111252A215D,

Q121152A1252D. ~31!

After a little algebra, we get the semiclassical optic
Bloch equations in the adiabatic representation:

ds11
a

dr
52D

v1
a1v2

a

2Av1
av2

a
~s21

a 1s12
a !2gF s4

v1
a
s11

a 2
c4

v2
a
s22

a

1
sc~c22s2!

2Av1
av2

a
~s21

a 1s12
a !G , ~32!

ds22
a

dr
52

ds11
a

dr
, ~33!
e

n

l

ds12
a

dr
52

2i

\

E12E2

v1
a1v2

a
s12

a 2D
2Av1

av2
a

v1
a1v2

a
~s22

a 2s11
a !

2
g

v1
a1v2

aH s12
a 12s2c2~s21

a 1s12
a !

2F sc~112c2!Av1
a

v2
a
s22

a

1sc~112s2!Av2
a

v1
a
s11

a G J , ~34!

ds21
a

dr
5

ds12
a *

dr
. ~35!

Here we use the notations5sin(u) and c5cos(u). The ve-
locity factorsv1

a andv2
a are defined as in Eq.~11!, usingE1

andE2 as the appropriate potentials. At this point we relab
r with R.

C. The implementation of the two-state case

The optical Bloch equations~24!–~27! and~32!–~35! can
be solved numerically using various methods. As will
shown in Sec. VII, the diabatic formulation fails whenT
,1 mK for all coupling strengthsV. If we use the adiabatic
equations~32!–~35!, with the velocity factors given by Eq
~11!, we find a good agreement with the MCWP results
all temperatures at large couplings, but an increasing de
tion with decreasingV. Of course, we would like to have a
approach that is good for allT andV. Thus we need to look
into the issue of velocity factors in detail.

The velocity factorv2
a for the upper adiabatic potentia

~see Fig. 2! is the source of the problem for small values
V. When the atoms approach each other, a steady sta
quickly formed and maintained until the system gets ve
close toRC . As discussed earlier, this gives us the advant
of a basis-independent initial state. At this point the popu
tion on the upper adiabatic state 2 is a steady state reflec
of the population of the lower adiabatic state 1. Thus wh
the system reaches the Condon point the probability flux
both adiabatic states ought to in fact have the same mom
tum. Thus, if we use the velocity factor given by Eq.~11! for
the upper adiabatic state, we get the right velocity asympt
cally, but the wrong velocity at the crossing. We can corr
this by redefiningv2

a(R) so thatv2
a5A2E/m for all R.

In other words, because the OBE approach mixes c
cepts from time-dependent theory~steady-state formation!
and time-independent theory~WKB wave functions!, we
must sometimes improve its performance by such a tun
Here we need to give the WKB wave functions asympto
cally the velocities that describe the steady-state situa
correctly, but at the crossing the dynamics dominates, imp
ing that the classical momenta used in the time-independ
theory would provide a more accurate description. Dev
tions are visible in the limit of the weak excitation, becau
then the excited state population is dominated by the sm
steady-state contribution that, due to the large momen
given incorrectly by Eq.~11!, has a good chance to surviv
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on the excited state untilR5Rin . This population over-
whelms the contribution from the dynamical excitation, a
thus gives incorrect results. However, as will be shown
Sec. VII, we now have a method that can predict correc
the probability to reach smallR on channele for any prac-
tical V, and for the temperatures in the cold collisions
gime. It should be noted that an extension of our approac
an ultracold temperature regime, i.e., below the recoil lim
is not likely to succeed, as the semiclassical viewpoint fa
in this regime@22,23#.

The previous formulation of optical Bloch equations@14#
was done in the time frame rather than in the position fram
The transition between these two frames was performed
introducing a reference trajectoryv0(R), which mappedR to
t. However, as noted in Ref.@14#, this reference trajectory is
not really needed as we can do the calculation in theR frame
altogether.

In practice when solving the optical Bloch equations
can set alls i j (R0)50, except selecting one state for whic
s i i (R0)51. The value ofR0 is set suitably large for the
atoms to be well apart and potentials flat. Since the class
trajectory couplesR and t, evolution in R corresponds to
evolution int and we find that the system has evolved into
steady state distribution of the ground- and excited-s
populations after moving a relatively short distance towa
smallerR. This corresponds to numerically determining t
asymptotic state populations and coherences.

IV. MONTE CARLO SIMULATIONS

A direct wave-packet treatment of Eq.~1! with numerical
methods is possible@6,7#. However, since one has to opera
with a two-dimensional spatial grid, the memory sizes c
rently available in computers strongly limit the use of th
approach: only models that are simplified in the extreme
be studied. In cold collisions the acceleration of the initia
slow wave packet on the steep excited-state potential sur
forces us to use a large two-dimensional momentum sp
while at the same time good momentum resolution is nee
to define adequately the narrow initial wave packet for l
temperatures. Similar demands are set for the position s
as well; for more detailed discussion see Refs.@7,11#. Hence
we need many grid points in order to span properly the
quired regions in both the momentum and position space

It may be feasible to avoid some of the computatio
problems by using grid sizes and resolutions that are ad
tive; one might utilize the rather deterministic behavior
the wave packet by altering the computational grid proper
as a function of either position or time. Then the straightf
ward swapping between momentum and position represe
tions using fast Fourier transforms is, however, usually lo
We have chosen to approach the problem from ano
angle. The Monte Carlo wave packet method allows us
treat Eq.~1! numerically as a one-dimensional problem. U
like other approximative methods this approach does
adapt any concepts from classical mechanics and, there
it is not a semiclassical tool but a fully quantum one. Hen
it can be used as a benchmark for the different semiclass
methods described in this article.

By using the MCWP method we can greatly diminish t
limitations set by the available computer memory. Howev
n
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this gain is partially reduced by the increase in the time
quired by the computation. Hence the MCWP simulatio
are quite time consuming, and therefore the need for o
approaches is quite acute. There are several Monte C
approaches available currently, and we use the Daliba
Castin-Mo” lmer version@24#, adapted to wave packet prob
lems in the manner described in Refs.@6,11,13#. We shall
give here a brief description of the method, but keep
main emphasis on aspects related to the particular sys
studied in this article.

In the MCWP method one does not directly solve the tim
evolution of the density matrix itself. Instead, we look at t
time evolution of the state vector

C~R,t !5S Cg~R,t !

Ce~R,t ! D , ~36!

whereCg andCe are the ground- and excited-state probab
ity amplitudes, respectively. In this model the spontane
decay appears as random quantum jumps during the
evolution of the state vector. Hence each time we solve
time-dependent Schro¨dinger equation we obtain a uniqu
state vector evolution, also called a wave-packet history. O
can form a finite ensemble of such histories and calcu
ensemble averaged expectation values for physical qua
ties. These values are approximations to those provided
the full density matrix treatment. The accuracy of the e
semble averages tends to increase with the number of m
bers in the ensemble, and in the limit of an infinite ensem
these averages and the density matrix results become e
as shown, e.g., in Ref.@24#. So, we expect that by accumu
lating ensemble members we can eventually reach a suit
accuracy at some finite ensemble size. The accuracy to
expected of the method is described in Ref.@24#. For wave
packets in cold collision problems the appropriate ensem
size seems to be roughly 50 members, assuming that al
histories are very close to each other in the phase spac
all times. This is quite true for the excited-state survival stu
ies related to attractive excited states. In general such lo
ization in the phase space for all times is necessary for
success of the semiclassical approaches.

We start the calculation of the state vector evolution fro
some initial state, which in our case is a Gaussian w
packet on the ground state moving towards smallR. The
wave packet in general describes the probability to find
two colliding atoms at certain relative separationR, and its
componentsuCg(R,t)u2 and uCe(R,t)u2 contain the addi-
tional information about how this probability is distribute
between the ground and excited states. A Fourier transf
of the state vectorC(R,t) takes the system into the mome
tum representation. We set the initial phase ofCg in position
representation such that the wave packet starts with a m
momentum̂ p&, which corresponds to the temperature of t
cloud of cooled and trapped atoms. The width of the wa
packet is chosen so that it remains relatively narrow in b
representations. We cannot, of course, violate the Heisen
uncertainty relation, so it is impossible to have infinitely na
row packets in either representation. It should be pointed
that apart from satisfying the Heisenberg uncertainty relat
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the width of the wave packet is not related to any of t
macroscopic quantities of the physical situation that we try
simulate.

Initially the wave packet is located far from the crossi
so that a steady state between the ground and excited s
can form before the wave packet reaches the interaction
gion where the dipole-dipole interaction makes the la
resonant with the molecular transition. The time scale for
formation of the steady state is roughly 3–5 times the de
time scale 1/gmol @25#, assuming that the local detuning do
not change much over the distance covered by the w
packet during that time. As discussed above, the steady
formation allows us to put the initial wave packet on t
diabatic ground state even when the laser-induced coup
is large asymptotically, because the final steady state is
dependent of the initial state. Indeed, we could even pl
the initial wave packet on the excited state, and yet the w
packet approaching the crossing would still be the stea
state one.

The state vector corresponding to the initial state
stepped forward in time with its evolution determined by t
Schrödinger equation. Various numerical methods can
used, and we have applied the combination of split oper
approach with Crank-Nicholson and Runge-Kutta alg
rithms, described in detail in Ref.@11#. In the MCWP
method one uses an effective Hamiltonian,

Heff5H2 i
\g

2
s1s2, ~37!

whereH is the system Hamiltonian,g is the decay rate for
the excited-state population, ands1 ands2 are the standard
spinor raising and lowering operators, respectively.

For each time stept→t1dt we calculate the jump prob
ability

ds5gPe~ t !dt, ~38!

where Pe(t) is the current excited-state population. By r
writing ds asdPe we would end up with the standard exp
nential decay exp(2gt) of the excited-state population. Now
we continue by comparing the jump probabilityds with a
random numberhP@0,1#. A quantum jump occurs whenh
,ds; this is usually the less likely situation since the ba
assumption in the derivation of the MCWP method is th
ds!1 all the time~guaranteed by choosingdt!1/g). When
a jump occurs one simply replacesCg(R,t1dt) with
Ce(R,t1dt), and then setsCe(R,t1dt)50. The occur-
rence of the jump corresponds to the observation of a fl
recence photon, which reduces the wave function: before
jump it had to be in the excited state, and after the jum
must be in the ground state. The important aspect is tha
the jump takes place the position and momentum prope
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of the excited-state component of the state vector are tr
ferred to the ground-state component. This is the source
radiative heating, among other things.

Both the evolution underHeff and the quantum jumps
reduce the norm of the state vectorC. Hence after each time
step the state vector is renormalized to unity, even if a ju
does not occur. It should be noted that if we hadHeff5H,
then we would always observe a quantum jump for a sys
with nonzeroPe if we wait long enough. For cases whe
Pe,1 this would be wrong, since there is a nonzero pro
ability that the system never was on the excited state. In
weak field limit Pe is always very small, so most of th
ensemble members correspond to the time evolution un
the non-Hermitian Hamiltonian with no interruption b
jumps. Then the wave packet approach reduces to a ti
dependent version of the complex potential approach. Th
fore a single ensemble member becomes a reasonably a
rate approximation to the density matrix result. We ha
used this property in our weak field study@12#, and have thus
verified that the diabatic formulation of the OBE metho
does not work properly at low temperatures, but the Land
Zener approach and the complex potential method can
used instead.

Although the MCWP method allows us to use relative
large grids, the strong change in the excited-state poten
corresponds at our probing distanceRin5143a0 to kinetic
energies that are beyond the numerical treatment. Basica
becomes impossible to correctly track the relevant quan
mechanical phase term exp(2iEdt/\), whereE is the kinetic
energy of the wave packet. Hence we must cut the exci
state potential change by making it flat forRin,R,Rcut; in
our studies we have used the valueRcut5512a0. At Rcut we
are basically left with the exponential decay of the excite
state population because of the large local detuning. He
we can take the wave packet result forJe(R) from R5Rcut to
Rin by multiplying it with exp(2gttrans), where t trans is the
time it takes to go fromRcut to Rin along the classical path
determined by the local velocity. In fact, the same appro
is also applied when the OBE equations are solved num
cally: otherwise the adequate determination of the te
exp@2ip(R)dR/\# would require impractically small value
of the spatial grid spacingdR @herep(R) is the local mo-
mentum atR# whenR,Rcut.

V. COMPLEX POTENTIAL CALCULATIONS

In the complex potential method one adds a complex te
on the excited-state potential in order to describe decay
of these states@10,15,16#. This approach does not allow an
reexcitation, and is thus not appropriate for strong field st
ies directly ~by including the photon states explicitly on
might improve the model although this would drastically i
crease the number of channels required to solve even
case of two quasimolecule states@16#!.

In this method one simply uses the Hamiltonian
H5T~R!1S Ug~R!1Uc~R,l ! \V 0

\V \D1Ue~R!1Uc~R,l !2 i\g/2 \Vep

0 \Vep Ep1Up~r !1Uc~R,l !
D , ~39!
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and solves the time-independent Schro¨dinger equation

d2F~R!

dR2
1

2m

\2
@E2U~R!#F~R!50, ~40!

whereF is the three-component state vector for our mo
andE is the asymptotic collision energy.

For this method we have explicitly included the pro
channelp to our Hamiltonian:Up(R) is the corresponding
potential. The probe channelp crosses thee channel poten-
tial at Rin . Because of the disparity betweenRC(D) andRin
the outer zone excitation process is in practice well separ
from the inner zone process. The couplingVep depends on
the nature of the coupling of the excited state and the pr
channel.

We have used the invariant imbedding method@15,26# ~in
the diabatic representation! to solve the above close couplin
equations in a form that directly computes theS matrix ele-

FIG. 3. The excited-state fluxJe(R) calculated using the
MCWP method. HereD5gat , and the other parameters are as
dicated in the figure.
l

ed

e

ments,Sgp and Sep , from which the quantum fluxJe(R),
i.e., the quantum mechanical probability of reaching the
ner zone, is determined. In the complex potential calcu
tions we use mainly the same values for parameters as in
two-state model, given in Sec. II. However, here the excit
state potential,Ue(R), is taken as a numerical spline havin
a minimum energy of2182 GHz at R572a0 and an
asymptotic behavior of2C3 /R3. We take the probe poten
tial to be Up(R)5C3

p/R3, with C3
p57.260e2a0

2. All poten-
tials have repulsive inner walls so theR,0 region is non-
classical. The other parameters areEp523.0 GHz and
Vep51.0 MHz.

As we are now working with the time-independent sc
tering theory, we need to consider boundary conditions
stead of initial ones. Since the model potential contains n
vanishing off-diagonal elements, for strong fields there i
clear mixing of states at largeR. Therefore the boundary
condition for the complex potential approach has to be

FIG. 4. The ground- and excited-state fluxesJg
a(R) ~a! and

Je
a(R) ~b! in the adiabatic representation, calculated using the

OBE method. HereD5gat , and the other parameters are as in
cated in the figure.
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3734 57SUOMINEN, BAND, TUVI, BURNETT, AND JULIENNE
fined in terms of the field-dressed, i.e., adiabatic states.
transformation between the different bases then takes p
as described in Sec. III. We assume an incoming wave~cor-
responding to the asymptotic collision energyE) on the
lower adiabatic channel formed by statesg ande ~state 1 in
Fig. 2!.

VI. LANDAU-ZENER APPROACHES

Since the inner and the outer crossings are isolated
distinctly different regions, we can write the loss probabili
i.e., the probability to exit on channelp as

Pp5uSgpu25Pep~Rin!Je~Rin!, ~41!

where the probabilityPep5uSepu2 measures the quantum
probability of the inner zonee→p process due to traversin
the inner curve crossing once in both directions. HereRin is

FIG. 5. The excited-state fluxJe at R5143a0 as a function of
the laser-induced couplingV, calculated using the MCWP, D-OBE
and A-OBE methods. HereD5gat , and the other parameters are
indicated in the figure.
he
ce

in
,

the location of this curve crossing. When using the comp
potential method we obtain the flux simply by using the
lation Je(Rin)5uSgpu2/Pep(Rin). The probabilityPep is al-
most completely insensitive to the laser intensityI and to the
collision energyE for small detunings.

In the limit of large detuning and small laser intensity it
safe to assume that the excitation becomes localized to
Condon pointRC . In this limit the dynamical model and th
local equilibrium model tend to agree. In local equilibriu
models one assumes that the motion of the atoms is v
slow compared to the steady-state formation, and thus
steady-state formation dominates@8#. This leads to a picture
where off-resonant excitation is important for smallD. One
can express the local excitation in a two-state model in
steady state regime as@25#

see5
V2

D~R!212V21~g/2!2
, ~42!

FIG. 6. The excited-state fluxJe at R5143a0 as a function of
the laser-induced couplingV, calculated using the MCWP, com
plex potential, LZD, and LZDD methods. HereD5gat , and the
other parameters are as indicated in the figure.
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FIG. 7. The excited-state fluxJe at R5143a0 as a function of the laser-induced couplingV, calculated using the A-OBE, LZD, and
LZDD methods forT50.3 mK.
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whereD(R) is the local detuning,\D(R)5Ue(R)2Ug(R)
1\D. As a final stage in the local equilibrium model on
weighs the results with Eq.~42! and integrates over the po
sition coordinateR.

In the dynamical models it is assumed that as the sys
approachesRC the motion and thus the change in the loc
detuning become fast compared to the steady-state fo
tion, and thus the excitation becomes a dynamical proc
that is localized to a region nearRC . The dynamical excita-
tion can then be described with the Landau-Zener cu
crossing model@10–13#. In steady-state models for large d
tunings the integration over the linewidth function~42! be-
comes like ad function that singles out the Condon poin
and thus the two viewpoints agree in this limit. The MCW
simulations have so far supported the dynamical picture o
the local equilibrium picture; for further discussion see R
@3#.

In the weak field limit we can assume that the excitat
and subsequent decay are uncoupled, and reexcitation is
ligible. Then we can write, using the Landau-Zener mod
the expression for the flux on channele as

Je
LZD~R!5Se~R,RC ;E,g!PLZ

5Se~R,RC ;E,g!@12exp~22pL!#. ~43!

Here

L5
\V2

avg~RC ;E!
, ~44!
m
l
a-
ss

e

er
.

eg-
l,

wherevg(R;E) is the classical velocity associated with th
ground state at positionR when the collision energy isE,
and

a5UdUe~R!

dR
2

dUg~R!

dR U
R5RC

. ~45!

In other words,PLZ is the one-way Landau-Zener probabili
of undergoing a transition from channelg to channele at the
Condon pointRC(D), and Se(R,RC ;E,g) is the survival
probability from RC to R. We can calculate the surviva
probability by assuming a classical trajectory combined w
exponential~Weisskopf-Wigner! decay:

S5exp~2gtcl!; tcl~R,RC ;E!5E
RC

R dR

ve~R!
, ~46!

whereve(R) is the classical trajectory velocity for the ex
cited state~in the diabatic formulation!. This is the Landau-
Zener model with decay~LZD!.

The above model fails when excitation and decay do
decouple, which happens at strong fields due to reexcita
of decayed population@11,13#. We can think of reexcitation
as a process that delays the start of the exponential de
Reexcitation takes place mainly within some region arou
the Condon point. We can define an interaction region
which D(R),V. By making the simple assumption that e
ponential decay can take place only outside this region,
can rewrite thetcl in Eq. ~46! as
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FIG. 8. The excited-state fluxJe at R5143a0 as a function of the laser-induced couplingV, calculated using the A-OBE, LZD, and
LZDD methods forT51.0 mK.
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R dR

ve~R!
, ~47!

whereRV is defined by the relationD(RV)5V; RV,RC .
The modified survival term depends now on the laser int
sity I (I}V2). We call this approach the Landau-Zen
model with delayed decay~LZDD!. Obviously the model can
only give qualitative predictions, especially as the concep
the edge of the interaction region is not well defined. Ho
ever, it gives a good intuitive undestanding of whyJe(R) for
small R keeps increasing even when the excitation satur
to unity ~and thus the LZD prediction saturates! @18#. This
picture agrees qualitatively with the results from the OB
and MCWP calculations, as will be shown in the next s
tion.

VII. COMPARISON OF METHODS

Typically the excited-state fluxJe(R) shows oscillations
at R,RC in the bare state picture. This is demonstrated
the MCWP results given in Fig. 3. The oscillations are due
the coherences between the two states, established nea
Condon point. As the couplingV increases, the situatio
becomes increasingly adiabatic and the oscillations dis
pear. At the same time the asymptotic~large R) flux ap-
proaches the steady-state result, 1/2. It is interesting to
that although the main change in the flux seems to take p
over a wide region inR, the dynamical view with excitation
localized toRC works well, as demonstrated by us earlier
Ref. @12#.
-
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y
o
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ce

We also have calculated theR dependence of the prob
ability fluxes@Jg

a(R) andJe
a(R)# in the adiabatic presentatio

using the adiabatic OBE method; the results are shown
Fig. 4 for T50.3 mK and selected values ofV. For very
small V the lower adiabatic state correlates asymptotica
with the diabatic ground state. At smallR it correlates with
the excited diabatic state for allV. As expected, no oscilla
tions are present in the adiabatic representation as a func
of R.

In Fig. 5 we show a comparison between the MCW
results, the diabatic OBE results~D-OBE!, and adiabatic
OBE results~A-OBE!. The agreement between the MCW
and A-OBE results is very satisfactory, whereas the D-O
results fail by an order of magnitude forT50.3 mK. This
failure increases further asT decreases, as shown in Ref
@10,12#. As discussed in the previous paragraph, the diff
ence between D-OBE and A-OBE results suggest stron
that the basic condition for the validity of the local equilib
rium model is not fulfilled for typical trap parameters.

We compare the complex potential method and
Landau-Zener approaches to the MCWP results in Fig
The LZD method saturates when the Landau-Zener exc
tion probability PLZ becomes unity; until then all method
seem to agree well. However, beyond the saturation of
excitation the complex potential approach fails utterly. O
should note that the saturation of the dynamical excitation
not the same as the saturation of the atomic excitation~also,
the atomic excitation saturates to 1/2, but the dynamical
citation to unity!. The complex potential method fails utterl
when one approaches the saturation limit. The LZD
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method agrees well with the MCWP results.
We have used the A-OBE and LZDD method to calcul

the flux for various detunings, and the results are given
Figs. 7 and 8. As can be expected, the saturation move
larger V when D increases. In Fig. 7~a! we start to see the
signs of the failure of the Landau-Zener model at smalT
~and smallD).

VIII. CONCLUSIONS

In this paper we have derived the adiabatic optical Blo
equations. When applied to the standard two-state mode
loss of laser-cooled atoms from electromagnetic traps, th
equations prove to be a fast and adequately accurate me
to predict probabilities to reach any internuclear distance
the excited quasimolecule state. The A-OBE results ma
very well with the MCWP results, and also agree with t
results from the qualitative LZDD model. The latter agre
ment is surprisingly good, but this can be attributed to
fortuitous definition of the edge of the interaction region.

Although the A-OBE method is a useful tool, we are s
far from having a proper general treatment of trap loss
small detunings. Firstly, the bound state structure of the
tractive excited state is not taken into account. At small
tunings the vibrational states associated with the attrac
molecular potential overlap strongly and at strong fields th
are also power broadened. In the language of time-depen
approach, the first ‘‘vibration’’ of the quasimolecule dom
nates over all the others. We can remedy the situation
some extent by applying the single passage result to mul
passages, as has been done, e.g., in Ref.@27#.

Secondly, the A-OBE method does not allow for mome
tum change; the motion on the ground state is given by
ground-state velocity factor. When the excited-state pop
tion of the quasimolecule decays back to the ground state
kinetic energy distribution has been affected by the accel
tion on the excited state. If this population is excited by, e
another laser, this excitation depends on the new kinetic
ergy distribution. This effect is important in the cases
radiative heating@11# and the radiative enhancement@28,29#.
Currently only the MCWP method can handle the kine
energy changes correctly@11#.

Thirdly, the velocity factors diverge at classical turnin
points. Thus the A-OBE method is not capable of treating
case of optical shielding@3,13#, which involves excitation to
a repulsive quasimolecule potential by a blue-detuned la
ys
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This problem might be solved by replacing the WKB wa
function by a proper Airy function solution in our derivatio
of the A-OBE method@30#.

Finally, we have given here as an example only the c
of one ground state and one excited state. In reality we h
several states involved in the cold collision process, e.g.,
various partial waves and hyperfine states. In such a situa
it is not so easy to write out the transformation to the ad
batic representation in an analytic form. However, there
various methods for doing the change of basis numerica
A problem may arise from the fact that we had to redefi
the velocity factors using physical arguments—it is not o
vious if such a redefinition in a multistate case would be
straightforward and clear as in the two-state case. In
case, the A-OBE method should be capable of handling
equately the case of several partly overlapping strong cr
ings in a system of close-lying states. In such a situation
Landau-Zener methods are expected to fail—the A-O
method can help in testing the validity of the Landau-Zen
methods in nontrivial crossing situations.

For small detunings the Condon point moves to very la
distances and the quasimolecule potential does not have
simple 1/R3 dependence any more. Furthermore, the retar
tion effects become important, and then the quasimolec
linewidths becomeR dependent even in the diabatic repr
sentation. The A-OBE method should be very useful
studying these situations, as it is much faster than the MC
method when exploring a wide range of cases with vary
laser parameters (D and V) and quasimolecule potential
(C3, l ).

Despite some limitations the A-OBE method is a cle
leap forward in treating theoretically the cold collisions
light fields. The discussion above, however, should be ta
as a warning against trusting the method too blindly. T
results given in this paper and in our previous report@18#
indicate nevertheless that the method is very good in pred
ing the behavior of trap loss due to near-resonant light.
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