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Analytical formulas for the third-order diamagnetic energy of a hydrogen atom

V. D. Ovsiannikov
Department of Physics, Voronezh State University, Voronezh 394693, Russia
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Analytical expressions are presented for the third-order diamagnetic corrections to the energy of nondegen-
erate hydrogen levels with arbitrary principal quantum numband the magnetic quantum number =n
—1n-2n-3. The leading term for the third-order energy correction for levels with higddetermined to
be AE®~:35n1%B®. Together with the well-known first- and second-order correctidE$? ~ 2n*B? and
AE@~ — £5n1%B* it determines the upper and lower bounds for the level energy in field and also the range of
magnetic fields where the first- and second-order perturbation theory terms are valid for calculating the Zeeman
energy in hydrogenlike states of atomiS1050-2947®8)00705-7

PACS numbds): 32.60:+i, 31.15—p

[. INTRODUCTION splitting of atomic stategspecifically, Rydberg states with
high principal quantum numbeérand on the upper limits in
A significant amount of precise information on the Zee-the magnetic field strength for the use of the first few terms
man effect in atoms is now availabisee, e.g.[1-4], and  Of perturbation theory in numerical calculations of the
references therejnAccurate analytical formulas have been Pound-state energy.
obtained for the magnetic field—induced energy corrections (il Quite @ common situation appears for Rydberg atoms

in hydrogenlike states up to the second order in diamagneti@ magnetic fiel_ds of mod(_arn Iabora_to_ries, when the .Iowest-
interaction[5]. Witwit and Killingbeck [6] have calculated order perturbation theory is not suf]‘lment for calculating the
numerically the third-order corrections for the lowest IevelsZeeman effect and therefore the higher-order terms are aiso

with n=3 in a field of B=0.1 a.u. The difficulties in such needed. Besides that, these terms may be used to control the

lculati d by the lack of for th accuracy of calculations with the first few terms.
calculations are caused by the lack of a symmetry for the iy The increase of the accuracy of calculations with the

diamagnetic Hamlltoman. In contrast to thfa case of t_he Starljﬁigher-order terms is rather important when they are used to
effect, where the variables are separable in parabolic coordgheck the results of different nonperturbative approaches in
nates, for Zeeman gffect the paraboll_c cpordmates may bge perturbative region of magnetic field strengths.
used only as a basis for the diagonalization of the diamag- |t js necessary to note that the terms of the perturbation
netic Hamiltonian[5], which was constructed up to the series for the diamagnetic energy of hydrogenlike states are
second-order terms by Delande and Gay sign alternating. So, two consecutive terms in the region of
We have demonstrated that the Sturm series presentatioheir validity determine the upper and the lower bounds for
for the Coulomb Green function in spherical coordinates alsdhe exact atomic energy. That is why to increase the preci-
provides a powerful tool in deriving the analytical expres-sion of calculations at a given field strength the terms of
sions for the higher-order diamagnetic matrix elementshigher orders of perturbation theory should be calculated,
which may be used for diagonalization in a subspace of dewhile they are forming a convergent sequence.
generate hydrogenic states. The analytical expressions for the In addition, the analytical results for the higher-order dia-
second-order susceptibilities together with numerical datgnagnetic susceptibilities for nondegenerate hydrogen states
have thus been obtained. A similar representation of the va¥ith high angulad and magnetien quantum numberecir-
lence electron Green function in many-electron atoms hagular stateshold also for many-electron atoms where such
also made it possible to calculate the diamagnetic suscepfiates are also hydrogenlike. So, the derivation of analytical
bilities for the ground and excited states of alkali and noblg@rmulas for the high-order diamagnetic susceptibilities is
gas atoms8,9]. quite a general problem in atomic physics and may be re-

General analytical expressions for higher-order diamag]ferred to as one of the _fundamental quantum mechanical
goblems, similar to the higher-order perturbation theory for

netic susceptibilities, at least for the nondegenerate substat%1 Stark off hich has b ved ticall .
of an excited hydrogenic manifold, may also be obtained ori e Stark efiect, which has been solved analytically quite a

the basis of this approach. Besides a purely theoretical inte Qr}g t'mg 290[10]’ thanks tlo th? s]é_/rrllgwtry of tht?.CouIIomrt:'
est to derive analytical expressions for diamagnetic susceﬂ'—e an omogener:)us e?Ct.”CI 1€ Isupferporfltlor?_. dn td's
tibilities of a solvable quantum-mechanical system, there ar@2Per We present the analytical results for the third-order

many practical reasons to search for such expressions. T 'amag_netic susceptibilities of npndegener(aiiecglar and
following are the most important of them: near circular hydrogen states with the magnetic quantum

(i) The relations between coefficients for consecutive orhumber|m[=n-3.
de_rs provide useful |nf(_)rmat|0_n both on the analytlcal_prop- Il THIRD-ORDER DIAMAGNETIC ENERGY OF ATOM
erties of the perturbation series for the Zeeman shift and

The third-order diamagnetic energy of an atom in a non-
degenerate stat@lm) is determined by the diagonal matrix
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1050-2947/98/5(6)/37195)/$15.00 57 3719 © 1998 The American Physical Society



3720 V. D. OVSIANNIKOV 57

AEX =(nIm[V(r){[G¢_(r,r")V(r")]?~AE® Pl =14 Lo 12—m? 6
) PN, Q"m_(2|—1)(2I+3)’ bmT221-1)(21+1)° ©)
X[Gg, (r,r")]V(r")}nIm) 1)
of the diamagnetic operatdthe atomic units are used with TPSL)Js-theldep;nd.ence onthe magnlgt!ﬁ quanturrr]] num.tﬁ:]ar
the unit magnetic field oB,=2.35x 10° T) Xnim 1S already given in Eq(5) explicitly. Together with a
simple expression for the mean quadratic radius of the state,
1 , B, (nl|r?Inly=3n?[5n2+1-3I(1+1)], the analytical expres-
V(r)=g[BXr]"=75r11-Cal0,0)]. (2)  sions for the third-order radial matrix elements may also be

written in the form of polynomials of andl. The derivation
G (r,r') here denotes the reduced atomic Green functio®f these expressions may be carried out with the use of the
with the energyE,, of a free atom. Sturm series presentation for the reduced radial Green func-

On analogy with the general relations for the first- andtion: gi"(r,r"), in the third-order matrix elementd), simi-
second-order energy correctiof@, the third-order diamag- & to the second-order matrix elemefigs11]. In the next

netic susceptibility may be introduced according to the relaS€ction we describe a procedure for such calculations based
tion on the Sturm series for the Coulomb Green function and on

the orthogonality properties of Laguerre polynomials.
6
AE@=— 23 3)
6! Ill. ANALYTICAL CALCULATIONS OF THE
. . . . THIRD-ORDER RADIAL MATRIX ELEMENTS
After integration over angular variables, the susceptibility

x&), may be presented in terms of the third-order radial ma- When the energy of the Green function equals that of the

trix elements, bound statgthis case is usual for calculations of the static
- atomic susceptibilitiesthe radial function of this state, say
[ 3=(nl|r"g!Prm2g PV r"snl), (4) R, (r), equals one of the Sturm functions from the basis set,
' F(x), in which the Green function is resolvéd2]:
as follows
@ 45 222 2752 27r
anm:_Z{QI72,m|-|71,m|-|,mp|72,|72 Rni(r) = 2 Fodl 77| @)
+2Q) mbi—1.mby mpP5,+ 3p222
Qi 2mb1 =20+ (Q )P whereZ is the charge of atomic nucleus,=n—1-1 is the
+2Q) mbi+ 1mbi+2mPP5, radial quantum number of the state,
+Qri2mbic1mbis2mPf 25y 42— Qrm(nlr?nl) \/T
_ : —xi2y 1) 21+1
XL(Qum) I+ Li- 1 mb1 P 2 Fa=Vigaepre Xt . @
+ L ambis2mPioe) 421} 5

Lg(x) is the Laguerre polynomial. The Sturm series resolu-
Here the notation is introduced for the factors of the angulation for the reduced Green function with the energy of the
integration: bound stateé7) may be written as follows:

47 F /(er/n)F r(ZZI’,/II) n2 5 dR ,(r) dR ,(r’)
(n) "o ki kl f nl f ' nl
,rr)=— +— =R /(R (r")+r———R,;/(r") + Ry (r)r' ——|.
g| ( ) n kzr,; | |’ 22 2 nl ( ) nl ( ) dr nl ( ) nl ( ) i’

(€)

When substituting the left-hand side of this expression for the Green functions in the radial matrix el@nemtsdeal with
a number of integrals of the type:

27Zr 27Zr
<FkI<T)|rq|Fk’l’(T>>v (10)

whereq=0,1,2,3,|'=1,I = 2. These integrals consist of few terms, each including a Kronecker sysppolccording to the
orthogonality properties of Laguerre polynomifls]. For example,
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n\° kik'! *
For2IE,, =(_> \/ f e X2 AL 21+ Ly | 24y gy
(FulrIFen={ 57 (k+21+1)1 (K +21+1)! Jo 00k 09

5
= (%) {=V(k=2)3(k+21—1)38rk—3+ 6(k+1)V(k—1)o(k+20) 25k

—3[(K+ 21 +2) 5+ 3(k—1)(K+ 21 + 2) + (k= 2), ] VK(K+ 21 + 1) 8y 1+ [ (K+ 21 + 2) 5+ Ok(K+ 21 + 2)»
+9(k—1)5(K+ 21 +2) + (K—2) 3] 8 c— 3[(K+ 21 +3) 5+ 3k(k+ 21 + 3) + (k—1),]

XA(K+1)(k+2142) 81+ 6(k+1+2) V(k+ 1) 5(k+ 21 +2) 58 is 2— V(k+ 1) 3(k+ 21+ 2) 3¢+ 3)-

11
|
Common notation for the Pochhammer symbol is used here: 5
(a)p=ax(a+1)x---x(a+p—1); the integral is reduced  xi)_; 1=~ ——=n*(n+1)(2160*+108N°+ 20487
to a number of the orthogonality condition integrals with the 642
help of the recursion formula for Laguerre polynomigls]: + 170t +528), (17)
LEOO=LE™ 00~ L1 ().
it — (3) B +1)(n—-1
Hence, only the terms wittkk=n,=1,n,+2n,+3 con- Xnn-1n-2=" 7 o5" (n+1)(n—1)
tribute to the Sturm series and the matrix elements in(&q.
are presented as polynomials of the principalnd orbitall X (18n3+63n%+62n+ 10). (18

guantum numbers. In a general case of arbitreand| these
expressions are rather long and complicated. However, they _ _
simplify significantly for particular values df So, forl=n  For another pair of states, wilh=n—2, m= =1, =(1-1),

—1 they are corresponding radial matrix elements are
nlo TABLE I. Third-order diamagnetic susceptibilities of the hydro-
pﬁ|22= 10(n+ 1)(2n+1)(96n°+111M*+ 4513 genlike atom in nondegeneratém states as calculated from Egs.
6z (17) and(18) and(24) and(25) and corresponding values of critical
487062 +817In+ 3030, (12) Ellt(e]ld:sfdl( andB,; the number in brackets represents the power of ten
22 _ NP 5 , State
p|,|+2—@(n+1)(n+2)(2n+1)(2n+3)(56n +336n nl|m| — X 710 B, B,
+681In+471), (13) 1s 872.03125 0.9517 0.4774
2s 1.6206[7] 0.1480 8.414 —2]
10 2p0 3.0528[6] 0.1890 9.953 — 2]
22 _ 2pl 1.1658[7] 0.1610 8.464 —2]
Priai+2 288210(n+1)(n+2)(”+3)(2n+1)(2n+3) 3p0 2.4827[9] 5.050[ — 2] 3.200[ — 2]
, 3pl 6.3879[9] 5.000[ — 2] 2.848[ —2]
X (2n+5)(9n2+56n+88), (149 341 1.6594[9] 6.048[ - 2] 3.267[-2]
3d2 3.9282[9] 5.403[ - 2] 2.911[ 2]
o N° . , 4d1 2.4340[11] 2.297[-2] 1.427[ - 2]
PPl =4828(n+ 1)(2n+1)(48n°+ 195"+ 26+ 126), 4d2 4.6256[11] 2.244[ - 2] 1.292[ - 2]
(15 4f2 1.4262[11] 2.665[ —2] 1.460[ - 2]
4f3 2.7048[11] 2.444[ - 2] 1.335[—2]
o 5f2 8.0190[12] 1.226[—2] 7.481[ —3]
n
202 _ 5f3 1.3209[13] 1.193[ 2] 6.919[ —3]
=——(n+1)(n+2)(2n+1)(2n+3
Pivai+2 14428( Y(n+2)( ) ) 593 4.5538[12] 1.403[ —2] 7.760[ — 3]
) 5g4 7.5841[12] 1.308[ - 2] 7.213[ 3]
X(9n“+44n+54). (16) g3 1.3783[14] 7.295[ - 3] 4.409 - 3]
694 2.0793[14] 7.092[-3] 4.128[ - 3]
For susceptibilitiesy(3) of the circular hydrogenic states ghs 7.7830[13] 8.282[ - 3] 4.609[ - 3]
(with the highest angular and magnetic quantum numbersshs 1.1897[14] 7.805[ — 3] 4.333[-3]

these equations yield
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10
222__
=

P (2n—1)(288°+ 217>+ 1755h*+2497Hh3

96210
+6241h%+ 251651+ 21210, (19

10

222 _ n 4 3
Pie=— 96210(2n—1)(n+1)(2n-|— 1)(8n"—248M

—616N%—1162%— 10230, (20)

222 _ nlO
P2+ 2= =7 (2n—=1)(n+1)(n+2)(2n+1)

288710
X (2n+3)(9n%+ 8952+ 342 + 3432,
(21
n8
pry= Gl 1)(144n*+15n°
+198?%— 287+ 1830, (22

p?%2 =n—8(2n—1)(n+ 1)(2n+1)
1+2]+2 14478

X (9n+640°+172N0+1188, (23

and for the susceptibilities we have
(3) =— inlf’(n—1)(27n5+585n4+26n3
Xnn-2n-2 g710
+364N%— 123N+ 2772, (24

(3)

5
X3 a=— n%(n—2)(72n°+144:n*— 1833

64710
+1237h%— 12711+ 20856. (25)

It is interesting to note that the matrix elememt&? and
222
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these atomic states up to the third-order terms of perturbation
theory. The values of two critical magnetic fielBs andB,
determined from equationg\ Eg},)n(Bl)=AE§12”)n(Bl) and
AE®@ (B,)=AE() (B,) are also presented in the table.
These values determine the upper bounds for the use of cor-
responding orders of the perturbation theory in calculating
the diamagnetic energy.

As it follows from the data of Table I, the relatioB,
< B, holds everywheréthe valueB, is almost half the value
of B,), as is characteristic of the asymptotic series regulari-
ties. In particular, the second-order perturbation theory is
valid for the diamagnetic energy correction in the states with
n=6 up to the magnetic field oB,~4x10 3 (for the
second-order correctiprand of B;~7x 102 (for the first-
order correction For the states witm=3 corresponding
values of field ar8,~3x 10 ? andB;~5x 10 2. The up-
per magnetic field limitB; for the use of the third-order
correction to energy can also be determined from a similar
equation involving the fourth-order correctioAE() (Bs)
=AEM (By). Itis evident thaB;<B, and the exact ratio of
B; andB, depends on a concrete stagm).

We have calculated the values of energy taking into ac-
count the diamagnetic corrections up to the first, second, and
third orders of perturbation theory,

N K)
X(mo

2k
DT B (26)

E&T&(B)zEn—%B—
for the spin-down statess] 2s, and 3 with m=0 (the
linear inB term corresponds to the magnetic field interaction
with spin). The numerical results have been compared with
those of theB-splines method 3], which seems to be the
most precise available in the literature at present. This com-
parison is presented in Table Il for the binding energy,
—Enm(B). Within the bounds of validity for perturbation
theory, B<B,, the third-order energyEﬁr)n(B), is much
closer to the exact values of th8-splines method,
E(B-9(B), than the second-order enerdy'Z) (B) [for B
<B,/2, E®) (B) is an order of magnitude closer to

nim

EB-9(B) thanE{3) (B)]. Moreover, the valuek(3) (B) and

P+ 2 have the asymptotic power dependence on the princig(3) (B) give in the regionrB<B, the upper and the lower

pal quantum number of the order 17 with the coefficient Ofbounds Corresponding|y for the exact ener&ﬁxactB)’ of
the leading term depending on the orbital quantum nurhber siate in field,
The senior term in the power dependence of the matrix ele-

ment p’?3, ., is n*® with the I-independent coefficient.

fm

EZ) (B)<ESRYB)<ES)(B).

However, the leading terms cancel out of the susceptibility

(5) so thaty3) ~ — 8°n18 with thel-independent coefficient.

The results(17)—(18) and (24)—(25) for the third-order

This property of susceptibility for hydrogenic states does nofUSceptibilities of highly excited Rydberg states with 10
hold for the states of many-electron atoms with low angulafM@y be even more important for the practice, since the

momenta, similarly to the second-order susceptibijfy),

[8]: the dependence on the effective principal quantum num
ber v of the form y&) ~ »'8 characteristic of the radial ma-

trix elements, may be expected here.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The numerical values for the susceptibilities of some low-
est states witm<6 are given in Table |. Together with the
data for the first-order and second-order susceptibil(igds

higher-order corrections in states with=40 become signifi-
cant already in fields of about 1 T, available in laboratories.
The asymptotic values of the critical fields for the states with
high n, as it follows from the analytical expressions for
X X3 18], and xS presented above, are

g B2

which confirms the general relatid,<B;, characteristic of

they complete the information on the diamagnetic energy osymptotic series.



of the first-order|E

(B)|, second-ordedE

(2)
nl0
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TABLE Il. The binding energies of spin-down states witl= 0 (in Rydbergs, as calculated with account
(B)|, and third-order perturbation theory for the diamagnetic

interaction,| EG)(B)|, in comparison with corresponding results of espline method|E(E; 9| [3].
nl B |G EW Gl |Efo °)
1s 0.002 1.001998 0 1.001 998 000 1.001 998 000 1.001998 000 O
0.02 1.0198000 1.019 800 088 1.019 800 088 1.019800 087 8
0.2 1.180 000 0 1.180 883 333 1.180 728 305 1.180763 123 5
2s 0.002 0.25172 00 0.2519720051 0.251972005 1 0.251972 00
0.01 0.259 300 00 0.259 303186 7 0.259303 1417 0.259 30312
0.02 0.267 200 00 0.267 250 986 7 0.267 248 105 6 0.267 248 35
0.04 0.278 800 00 0.279615786 7 0.279 4313975 0.279 479 64
0.06 0.284 800 00 0.288 929 9200 0.286 829 6120 0.287 726 92
0.1 0.280 000 00 0.311 866 666 7 0.266849 777 8 0.296 178 30
2p 0.002 0.251 988 00 0.251 988 001 3 0.251988 001 3 0.251 988 00
0.01 0.259 700 00 0.2597008400 0.259 7008315 0.259 700 83
0.02 0.268 800 00 0.268 8134400 0.268 812 897 3 0.268 812 93
0.04 0.285 200 00 0.2854150400 0.285 380 3059 0.285 387 41
0.06 0.299 200 00 0.300 288 6400 0.299 892997 1 0.300 032 53
0.1 0.320 000 00 0.328 400 000 O 0.319 920 000 0 0.324 820 15
3p 0.001 0.112 09311 0.112 0931182 0.112 093118 2 0.112 093 12
0.002 0.113039 11 0.113039 224 1 0.113039 2237 0.113 069 76
0.01 0.11931111 0.1193817361 0.119 3748398 0.11937573
0.02 0.123911 11 0.125041 1111 0.124 599 749 3 0.124 757 12
0.04 0.122 31111 0.1403911111 0.112 143 957 3 0.130812 75

V. CONCLUSIONS may also be useful for calculating the fourth and higher or-
. : : . ._ders of perturbation theory for the diamagnetic energy of
Analytical expressions for the third-order d|amagnet|catoms, providing more exact information on the upper and

susceptibilities make it pqssible to increase essentially th?ower bounds for the energy in the perturbative region of
accuracy of the perturbation theory results for the Zeemalﬂ elds

effect of hydrogen levels. We believe that the formulbg—

(18) and(24)—(25) are the first in analytical presentations for
the third-order diamagnetic energy of hydrogenlike states.
Similar expressions but involving square-root radicals may
be obtained for the double-degenerate states With=n The financial support for this research from the Russian
-3,n—4,l=n-1,n-3, and|m/=n—4,n—-5,1=n—2, Ministry for General and Special Educati¢Grant No. 95-
n—4. The method presented above for analytical summatiof5.3-13, and from the Russian Foundation for Basic Re-
of the Sturm-series expansions for the radial matrix elementsearch(Grant No. 97-02-16407s gratefully acknowledged.
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