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Analytical formulas for the third-order diamagnetic energy of a hydrogen atom

V. D. Ovsiannikov*

Department of Physics, Voronezh State University, Voronezh 394693, Russia
~Received 12 November 1997!

Analytical expressions are presented for the third-order diamagnetic corrections to the energy of nondegen-
erate hydrogen levels with arbitrary principal quantum numbern and the magnetic quantum numberumu5n
21,n22,n23. The leading term for the third-order energy correction for levels with highn is determined to
be DE(3)' 3

128n16B6. Together with the well-known first- and second-order correctionsDE(1)' 1
8 n4B2 and

DE(2)'2
1

32n10B4 it determines the upper and lower bounds for the level energy in field and also the range of
magnetic fields where the first- and second-order perturbation theory terms are valid for calculating the Zeeman
energy in hydrogenlike states of atoms.@S1050-2947~98!00705-7#

PACS number~s!: 32.60.1i, 31.15.2p
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I. INTRODUCTION

A significant amount of precise information on the Ze
man effect in atoms is now available~see, e.g.,@1–4#, and
references therein!. Accurate analytical formulas have bee
obtained for the magnetic field–induced energy correcti
in hydrogenlike states up to the second order in diamagn
interaction@5#. Witwit and Killingbeck @6# have calculated
numerically the third-order corrections for the lowest lev
with n<3 in a field of B50.1 a.u. The difficulties in such
calculations are caused by the lack of a symmetry for
diamagnetic Hamiltonian. In contrast to the case of the S
effect, where the variables are separable in parabolic coo
nates, for Zeeman effect the parabolic coordinates may
used only as a basis for the diagonalization of the diam
netic Hamiltonian @5#, which was constructed up to th
second-order terms by Delande and Gay@7#.

We have demonstrated that the Sturm series present
for the Coulomb Green function in spherical coordinates a
provides a powerful tool in deriving the analytical expre
sions for the higher-order diamagnetic matrix elemen
which may be used for diagonalization in a subspace of
generate hydrogenic states. The analytical expressions fo
second-order susceptibilities together with numerical d
have thus been obtained. A similar representation of the
lence electron Green function in many-electron atoms
also made it possible to calculate the diamagnetic susc
bilities for the ground and excited states of alkali and no
gas atoms@8,9#.

General analytical expressions for higher-order diam
netic susceptibilities, at least for the nondegenerate subs
of an excited hydrogenic manifold, may also be obtained
the basis of this approach. Besides a purely theoretical in
est to derive analytical expressions for diamagnetic sus
tibilities of a solvable quantum-mechanical system, there
many practical reasons to search for such expressions.
following are the most important of them:

~i! The relations between coefficients for consecutive
ders provide useful information both on the analytical pro
erties of the perturbation series for the Zeeman shift

*Electronic address: vit@ovd.vsu.ru
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splitting of atomic states~specifically, Rydberg states with
high principal quantum numbers! and on the upper limits in
the magnetic field strength for the use of the first few ter
of perturbation theory in numerical calculations of th
bound-state energy.

~ii ! Quite a common situation appears for Rydberg ato
in magnetic fields of modern laboratories, when the lowe
order perturbation theory is not sufficient for calculating t
Zeeman effect and therefore the higher-order terms are
needed. Besides that, these terms may be used to contro
accuracy of calculations with the first few terms.

~iii ! The increase of the accuracy of calculations with t
higher-order terms is rather important when they are use
check the results of different nonperturbative approache
the perturbative region of magnetic field strengths.

It is necessary to note that the terms of the perturba
series for the diamagnetic energy of hydrogenlike states
sign alternating. So, two consecutive terms in the region
their validity determine the upper and the lower bounds
the exact atomic energy. That is why to increase the pr
sion of calculations at a given field strength the terms
higher orders of perturbation theory should be calculat
while they are forming a convergent sequence.

In addition, the analytical results for the higher-order d
magnetic susceptibilities for nondegenerate hydrogen st
with high angularl and magneticm quantum numbers~cir-
cular states! hold also for many-electron atoms where su
states are also hydrogenlike. So, the derivation of analyt
formulas for the high-order diamagnetic susceptibilities
quite a general problem in atomic physics and may be
ferred to as one of the fundamental quantum mechan
problems, similar to the higher-order perturbation theory
the Stark effect, which has been solved analytically quit
long time ago@10#, thanks to the symmetry of the Coulom
field and homogeneous electric field superposition. In t
paper we present the analytical results for the third-or
diamagnetic susceptibilities of nondegenerate~circular and
near circular! hydrogen states with the magnetic quantu
numberumu>n23.

II. THIRD-ORDER DIAMAGNETIC ENERGY OF ATOM

The third-order diamagnetic energy of an atom in a no
degenerate stateunlm& is determined by the diagonal matri
element
3719 © 1998 The American Physical Society
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3720 57V. D. OVSIANNIKOV
DEl
~3!5^nlmuV~r !$@GEnl

8 ~r ,r 8!V~r 8!#22DE~1!

3@GEnl
8 ~r ,r 8!#2V~r 8!%unlm& ~1!

of the diamagnetic operator~the atomic units are used wit
the unit magnetic field ofB052.353105 T!

V~r !5
1

8
@B3r #25

B2

12
r 2@12C20~u,w!#. ~2!

GEnl
8 (r ,r 8) here denotes the reduced atomic Green func

with the energyEnl of a free atom.
On analogy with the general relations for the first- a

second-order energy corrections@8#, the third-order diamag-
netic susceptibility may be introduced according to the re
tion

DEl
~3!52

B6

6!
xnlm

~3! . ~3!

After integration over angular variables, the susceptibi
xnlm

(3) may be presented in terms of the third-order radial m
trix elements,

p
l 8,l 9

n1n2n35^nlur n1gl 8
~n!r n2gl 9

~n!r n3unl&, ~4!

as follows

xnlm
~3! 52

45

4
$Ql 22,mLl 21,mLl ,mpl 22,l 22

222

12Ql ,mLl 21,mLl ,mpl 22,l
222 1~Ql ,m!3pl ,l

222

12Ql ,mLl 11,mLl 12,mpl 12,l
222

1Ql 12,mLl 11,mLl 12,mpl 12,l 12
222 2Ql ,m^nlur 2unl&

3@~Ql ,m!2pl ,l
2021Ll 21,mLl ,mpl 22,l 22

202

1Ll 11,mLl 12,mpl 12,l 12
202 #%. ~5!

Here the notation is introduced for the factors of the angu
integration:
n

-

-

r

Ql ,m5
l 21 l 211m2

~2l 21!~2l 13!
, Ll ,m5

l 22m2

2~2l 21!~2l 11!
. ~6!

Thus the dependence on the magnetic quantum numberm for
xnlm

(3) is already given in Eq.~5! explicitly. Together with a
simple expression for the mean quadratic radius of the st
^nlur 2unl&5 1

2 n2@5n21123l ( l 11)#, the analytical expres-
sions for the third-order radial matrix elements may also
written in the form of polynomials ofn andl . The derivation
of these expressions may be carried out with the use of
Sturm series presentation for the reduced radial Green fu
tion, gl

(n)(r ,r 8), in the third-order matrix elements~4!, simi-
lar to the second-order matrix elements@8,11#. In the next
section we describe a procedure for such calculations ba
on the Sturm series for the Coulomb Green function and
the orthogonality properties of Laguerre polynomials.

III. ANALYTICAL CALCULATIONS OF THE
THIRD-ORDER RADIAL MATRIX ELEMENTS

When the energy of the Green function equals that of
bound state~this case is usual for calculations of the sta
atomic susceptibilities! the radial function of this state, sa
Rnl(r ), equals one of the Sturm functions from the basis s
Fkl(x), in which the Green function is resolved@12#:

Rnl~r !5
2Z3/2

n2
Fnr l S 2Zr

n D , ~7!

whereZ is the charge of atomic nucleus,nr5n2 l 21 is the
radial quantum number of the state,

Fkl~x!5A k!

~k12l 11!!
e2x/2xlLk

2l 11~x!, ~8!

Lk
a(x) is the Laguerre polynomial. The Sturm series reso

tion for the reduced Green function with the energy of t
bound state~7! may be written as follows:
gl 8
~n!

~r ,r 8!5
4Z

n (
kÞnr8

`
Fkl8~2Zr/n!Fkl8~2Zr8/n!

k1 l 8112n
1

n2

Z2F5

2
Rnl8~r !Rnl8~r 8!1r

dRnl8~r !

dr
Rnl8~r 8!1Rnl8~r !r 8

dRnl8~r 8!

dr8
G .

~9!

When substituting the left-hand side of this expression for the Green functions in the radial matrix elements~4!, we deal with
a number of integrals of the type:

K FklS 2Zr

n D ur quFk8 l 8S 2Zr

n D L , ~10!

whereq50,1,2,3,l 85 l ,l 62. These integrals consist of few terms, each including a Kronecker symboldkk8, according to the
orthogonality properties of Laguerre polynomials@13#. For example,
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^Fklur 2uFk8 l&5S n

2ZD 5A k!k8!

~k12l 11!! ~k812l 11!!
E

0

`

e2xx2l 14Lk
2l 11~x!Lk8

2l 11
~x!dx

5S n

2ZD 5

$2A~k22!3~k12l 21!3dk8k2316~k1 l !A~k21!2~k12l !2dk8k22

23@~k12l 12!213~k21!~k12l 12!1~k22!2#Ak~k12l 11!dk8k211@~k12l 12!319k~k12l 12!2

19~k21!2~k12l 12!1~k22!3#dk8k23@~k12l 13!213k~k12l 13!1~k21!2#

3A~k11!~k12l 12!dk8k1116~k1 l 12!A~k11!2~k12l 12!2dk8k122A~k11!3~k12l 12!3dk8k13%.

~11!
er

he

th

s
er

o-
s.
l
ten
Common notation for the Pochhammer symbol is used h
(a)p5a3(a11)3•••3(a1p21); the integral is reduced
to a number of the orthogonality condition integrals with t
help of the recursion formula for Laguerre polynomials@13#:

Lk
a~x!5Lk

a11~x!2Lk21
a11~x!.

Hence, only the terms withk5nr61,nr62,nr63 con-
tribute to the Sturm series and the matrix elements in Eq.~5!
are presented as polynomials of the principaln and orbitall
quantum numbers. In a general case of arbitraryn andl these
expressions are rather long and complicated. However,
simplify significantly for particular values ofl . So, for l 5n
21 they are

pl ,l
2225

n10

96Z10
~n11!~2n11!~96n511110n414519n3

18706n218171n13030!, ~12!

pl ,l 12
222 5

n10

96Z10
~n11!~n12!~2n11!~2n13!~56n31336n2

1681n1471!, ~13!

pl 12,l 12
222 5

n10

288Z10
~n11!~n12!~n13!~2n11!~2n13!

3~2n15!~9n2156n188!, ~14!

pl ,l
2025

n8

48Z8
~n11!~2n11!~48n31195n21269n1126!,

~15!

pl 12,l 12
202 5

n8

144Z8
~n11!~n12!~2n11!~2n13!

3~9n2144n154!. ~16!

For susceptibilitiesxnlm
(3) of the circular hydrogenic state

~with the highest angular and magnetic quantum numb!
these equations yield
e:

ey

s

xn n21 n21
~3! 52

5

64Z10
n11~n11!~216n411089n312048n2

11700n1528!, ~17!

xn n21 n22
~3! 52

15

16Z10
n11~n11!~n21!

3~18n3163n2162n110!. ~18!

For another pair of states, withl 5n22, m56 l , 6( l 21),
corresponding radial matrix elements are

TABLE I. Third-order diamagnetic susceptibilities of the hydr
genlike atom in nondegeneratenlm states as calculated from Eq
~17! and~18! and~24! and~25! and corresponding values of critica
fieldsB1 andB2; the number in brackets represents the power of
@k#510k.

State
nlumu 2xnlm

(3)
•Z10 B1 B2

1s 872.03125 0.9517 0.4774
2s 1.6206@7# 0.1480 8.414@22#

2p0 3.0528@6# 0.1890 9.953@22#

2p1 1.1658@7# 0.1610 8.464@22#

3p0 2.4827@9# 5.050@22# 3.200@22#

3p1 6.3879@9# 5.000@22# 2.848@22#

3d1 1.6594@9# 6.048@22# 3.267@22#

3d2 3.9282@9# 5.403@22# 2.911@22#

4d1 2.4340@11# 2.297@22# 1.427@22#

4d2 4.6256@11# 2.244@22# 1.292@22#

4 f 2 1.4262@11# 2.665@22# 1.460@22#

4 f 3 2.7048@11# 2.444@22# 1.335@22#

5 f 2 8.0190@12# 1.226@22# 7.481@23#

5 f 3 1.3209@13# 1.193@22# 6.919@23#

5g3 4.5538@12# 1.403@22# 7.760@23#

5g4 7.5841@12# 1.308@22# 7.213@23#

6g3 1.3783@14# 7.295@23# 4.409@23#

6g4 2.0793@14# 7.092@23# 4.128@23#

6h4 7.7830@13# 8.282@23# 4.609@23#

6h5 1.1897@14# 7.805@23# 4.333@23#
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pl ,l
2225

n10

96Z10
~2n21!~288n612178n5117557n4124977n3

162417n2125165n121210!, ~19!

pl ,l 12
222 52

n10

96Z10
~2n21!~n11!~2n11!~8n422480n3

26169n2211629n210230!, ~20!

pl 12,l 12
222 5

n10

288Z10
~2n21!~n11!~n12!~2n11!

3~2n13!~9n31895n213424n13432!,

~21!

pl ,l
2025

n8

48Z8
~2n21!~144n41153n3

11988n22287n11830!, ~22!

pl 12,l 12
202 5

n8

144Z8
~2n21!~n11!~2n11!

3~9n31646n211722n11188!, ~23!

and for the susceptibilities we have

xn n22 n22
~3! 52

5

8Z10
n10~n21!~27n51585n4126n3

13649n221239n12772!, ~24!

xn n22 n23
~3! 52

15

64Z10
n10~n22!~72n511449n421835n3

112372n2212712n120856!. ~25!

It is interesting to note that the matrix elementspl ,l
222 and

pl ,l 12
222 have the asymptotic power dependence on the pri

pal quantum number of the order 17 with the coefficient
the leading term depending on the orbital quantum numbel .
The senior term in the power dependence of the matrix
ment pl 12,l 12

222 is n18 with the l -independent coefficient14.
However, the leading terms cancel out of the susceptib
~5! so thatxnlm

(3) ;2 135
8 n16 with the l -independent coefficient

This property of susceptibility for hydrogenic states does
hold for the states of many-electron atoms with low angu
momenta, similarly to the second-order susceptibilityxnlm

(2)

@8#: the dependence on the effective principal quantum nu
ber n of the formxnlm

(3) ;n18, characteristic of the radial ma
trix elements, may be expected here.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The numerical values for the susceptibilities of some lo
est states withn<6 are given in Table I. Together with th
data for the first-order and second-order susceptibilities@8#
they complete the information on the diamagnetic energy
i-
f

e-

y

t
r

-

-

f

these atomic states up to the third-order terms of perturba
theory. The values of two critical magnetic fieldsB1 andB2

determined from equationsDEnlm
(1) (B1)5DEnlm

(2) (B1) and
DEnlm

(2) (B2)5DEnlm
(3) (B2) are also presented in the tabl

These values determine the upper bounds for the use of
responding orders of the perturbation theory in calculat
the diamagnetic energy.

As it follows from the data of Table I, the relationB2
,B1 holds everywhere~the valueB2 is almost half the value
of B1), as is characteristic of the asymptotic series regul
ties. In particular, the second-order perturbation theory
valid for the diamagnetic energy correction in the states w
n56 up to the magnetic field ofB2'431023 ~for the
second-order correction! and of B1'731023 ~for the first-
order correction!. For the states withn53 corresponding
values of field areB2'331022 andB1'531022. The up-
per magnetic field limitB3 for the use of the third-orde
correction to energy can also be determined from a sim
equation involving the fourth-order correction:DEnlm

(3) (B3)
5DEnlm

(4) (B3). It is evident thatB3,B2 and the exact ratio of
B3 andB2 depends on a concrete stateunlm&.

We have calculated the values of energy taking into
count the diamagnetic corrections up to the first, second,
third orders of perturbation theory,

Enl0
~N!~B!5En2

1

2
B2 (

k51

N xnl0
~k!

2k!
B2k ~26!

for the spin-down states 1s, 2s, and 3p with m50 ~the
linear inB term corresponds to the magnetic field interacti
with spin!. The numerical results have been compared w
those of theB-splines method@3#, which seems to be the
most precise available in the literature at present. This co
parison is presented in Table II for the binding energ
2Enlm(B). Within the bounds of validity for perturbation
theory, B,B2, the third-order energy,Enlm

(3) (B), is much
closer to the exact values of theB-splines method,
Enlm

(B2s)(B), than the second-order energy,Enlm
(2) (B) @for B

,B2/2, Enlm
(3) (B) is an order of magnitude closer t

Enlm
(B2s)(B) thanEnlm

(2) (B)#. Moreover, the valuesEnlm
(2) (B) and

Enlm
(3) (B) give in the regionB,B2 the upper and the lowe

bounds correspondingly for the exact energy,Enlm
exact(B), of

state in field,

Enlm
~2! ~B!,Enlm

exact~B!,Enlm
~3! ~B!.

The results~17!–~18! and ~24!–~25! for the third-order
susceptibilities of highly excited Rydberg states withn.10
may be even more important for the practice, since
higher-order corrections in states withn'40 become signifi-
cant already in fields of about 1 T, available in laboratori
The asymptotic values of the critical fields for the states w
high n, as it follows from the analytical expressions fo
xnlm

(1) , xnlm
(2) @8#, andxnlm

(3) presented above, are

B2'
B1

A3
'

2

A3n3
,

which confirms the general relationB2,B1, characteristic of
asymptotic series.
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TABLE II. The binding energies of spin-down states withm50 ~in Rydbergs!, as calculated with accoun
of the first-order,uEnl0

(1) (B)u, second-order,uEnl0
(2) (B)u, and third-order perturbation theory for the diamagne

interaction,uEnl0
(3) (B)u, in comparison with corresponding results of theB-spline method,uEnl0

(B2s)u @3#.

nl B uEnl0
(1) u uEnl0

(2) u uEnl0
(3) u uEnl0

(B2s)u

1s 0.002 1.001 998 0 1.001 998 000 1.001 998 000 1.001998 000
0.02 1.019 800 0 1.019 800 088 1.019 800 088 1.019800 087
0.2 1.180 000 0 1.180 883 333 1.180 728 305 1.180763 123

2s 0.002 0.251 72 00 0.251 972 005 1 0.251 972 005 1 0.251 972 00
0.01 0.259 300 00 0.259 303 186 7 0.259 303 141 7 0.259 303 12
0.02 0.267 200 00 0.267 250 986 7 0.267 248 105 6 0.267 248 35
0.04 0.278 800 00 0.279 615 786 7 0.279 431 397 5 0.279 479 64
0.06 0.284 800 00 0.288 929 920 0 0.286 829 612 0 0.287 726 92
0.1 0.280 000 00 0.311 866 666 7 0.266 849 777 8 0.296 178 30

2p 0.002 0.251 988 00 0.251 988 001 3 0.251 988 001 3 0.251 988 00
0.01 0.259 700 00 0.259 700 840 0 0.259 700 831 5 0.259 700 83
0.02 0.268 800 00 0.268 813 440 0 0.268 812 897 3 0.268 812 93
0.04 0.285 200 00 0.285 415 040 0 0.285 380 305 9 0.285 387 41
0.06 0.299 200 00 0.300 288 640 0 0.299 892 997 1 0.300 032 53
0.1 0.320 000 00 0.328 400 000 0 0.319 920 000 0 0.324 820 15

3p 0.001 0.112 093 11 0.112 093 118 2 0.112 093 118 2 0.112 093 12
0.002 0.113 039 11 0.113 039 224 1 0.113 039 223 7 0.113 069 76
0.01 0.119 311 11 0.119 381 736 1 0.119 374 839 8 0.119 375 73
0.02 0.123 911 11 0.125 041 111 1 0.124 599 749 3 0.124 757 12
0.04 0.122 311 11 0.140 391 111 1 0.112 143 957 3 0.130 812 75
tic
th
a

or
te
a

tio
n

or-
of
nd
of

ian

e-
.

V. CONCLUSIONS

Analytical expressions for the third-order diamagne
susceptibilities make it possible to increase essentially
accuracy of the perturbation theory results for the Zeem
effect of hydrogen levels. We believe that the formulas~17!–
~18! and~24!–~25! are the first in analytical presentations f
the third-order diamagnetic energy of hydrogenlike sta
Similar expressions but involving square-root radicals m
be obtained for the double-degenerate states withumu5n
23, n24, l 5n21, n23, andumu5n24, n25, l 5n22,
n24. The method presented above for analytical summa
of the Sturm-series expansions for the radial matrix eleme
ys
e
n

s.
y

n
ts

may also be useful for calculating the fourth and higher
ders of perturbation theory for the diamagnetic energy
atoms, providing more exact information on the upper a
lower bounds for the energy in the perturbative region
fields.
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