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Phase and rise-time dependence using rf pulses in multiphoton processes

W. M. Griffith, Michael W. Noel, and T. F. Gallagher
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 12 May 1997; revised manuscript received 26 November 1997!

With this experiment we demonstrate that excitation of a two-state system with radio-frequency fields
differing in phase by 90° produces nonintuitively different results, even for very long pulses. In addition, we
show how the phase dependence of the transition probability of long pulses can be easily understood by using
the single cycle time propagator. Finally, we have found surprising results for real pulses in the strong-field
regime, i.e., pulses having appreciable rise and fall times.@S1050-2947~98!01104-4#

PACS number~s!: 32.80.Wr
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I. INTRODUCTION

The physics of a strong, sinusoidally oscillating laser fie
interacting with an atom has been largely understood
terms of Floquet theory@1#, which takes account of the
strong, and hence nonperturbative, field effects and assu
a constant field amplitude. Floquet theory is often done
using the well-defined periodicity of the interaction Ham
tonian and transforming it into the time-independent Floq
Hamiltonian, which is represented by an infinite matrix
the basis of states ‘‘dressed’’ withn photons, where
n50,61,62,..., or more simply dressed states. By ree
tending the Floquet picture into the time domain, it has a
been shown to describe sinusoidally oscillating fields that
slowly varying in either amplitude@2–7# or frequency@8–
10#. Other studies of these systems, following an alterna
route of investigation, have deepened our understandin
the effects of finite duration pulses@11–14#. These descrip-
tions exploit the periodic nature of the exciting field in
different way by building up the response of the atom o
cycle at a time. While many of the underlying concepts t
connect the latter approach to Floquet theory have been
posed, it is unclear how both of these paths to understan
a generalized excitation may be applied to real pulses, s
as those produced by a short-pulse laser that contains o
few optical cycles. Real pulse characteristics such as ph
finite pulse length, and envelope shape affect the respons
the system and as such are a necessary part of any de
tion of an arbitrary excitation. In particular, when the env
lope shape changes appreciably on a time scale compa
to the period of the carrier, it is clear that the corresponde
between Floquet theory and experimental results must b
down.

In our experimental and theoretical studies, we are n
able to decompose the separate effects of pulse length, p
and envelope rise time from the well-known time and ph
averaged response@1#. We present here the observation
the response of a two-level system to radio-frequency~rf!
pulses in which we can precisely control each of the para
eters mentioned above. First, we study the near ideal ca
examining how the transition probability of the two-lev
system differs for an rf pulse with a sine or a cosine pha
We additionally examine how this response to a pulse
many cycles at a fixed phase can be built up from the
sponse to a single cycle of the same phase. Second, we
571050-2947/98/57~5!/3698~7!/$15.00
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amine how departures from the ideal rf pulse, either in ph
or by the imposition of a finite envelope rise time, can
related to the simpler ideal case.

II. THEORY

A. Single cycle Floquet approach

If a system consisting ofM states is described att50 by
the state vectorv0, at some later timet it is described by the
vectorv(t) related tov0 by the unitary transformation matrix
U(t). Explicitly,

v~ t !5U~ t !v0. ~1!

If the M basis functions used to describe the system
energy eigenfunctions and there is no time-dependent c
pling between them,U(t) is a diagonal matrix with element
U j j 5e2 iWj t, whereWj is the energy of thej th eigenstate.
The effect of the time evolution is simply to alter the pha
of the j th state by2Wjt. Explicitly,

vj~ t !5e2 iWj tv0j . ~2!

Now imagine that we introduce a periodic interaction,
period t, which couples the energy eigenstates. Over o
cycle of the interaction the evolution is described by t
unitary transformationU and the resulting state vector afte
one periodv1[v(t) is related to the original state vector b

v15Uv0. ~3!

We can diagonalizeU with a unitary matrixT to obtainU8,
with diagonal elementsU j j8 5eif j and whereU5T21U8T.
This relation allows us to transform Eq.~3! into the basis
defined byT,

v185U8v08 , ~4!

where we have definedv18[Tv1 andv08[Tv0. If there areN
periods of the interaction, the time evolution matrix isUN

and afterN periods the system is described by the state v
tor vN[v(Nt) given by

vN5UNv0. ~5!
3698 © 1998 The American Physical Society
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57 3699PHASE AND RISE-TIME DEPENDENCE USING . . .
Defining vN8[TvN and using the fact thatUN5T21(U8)NT,
we can follow the same reasoning as in Eq.~4! and arrive at

vN8 5~U8!Nv08 . ~6!

Since (U8)N is diagonal with elementseiNf j , the effect of
N cycles is to alter the phase of thej th component byNf j ,
so that

vN j8 5eiNf jv0 j8 . ~7!

This is precisely the same effect as the evolution of Eq.~1!
for energy eigenstates, as shown by Eq.~2!, so we identify
the rate of phase accumulation of statej as its Floquet en-
ergy ~also called the quasienergy!. Explicitly,

Wj5
2f j

t
~8!

and the Floquet eigenstates are related to the energy e
states by the unitary transformationT, which does not de-
pend in any way on the number of periods. Note that
eigenvalues ofU that define thef j allow for the substitution
f j→f j22pn, where n50,61,..., which allow an arbi-
trariness in the Floquet energiesWj→Wj1nv, where
v52p/t.

In practice, the matrixU can be determined by integratin
the Schro¨dinger equation over one period of the interacti
using the energy eigenstates. Simply finding the eigenva
of U gives the elements of the diagonal matrixU8 and hence
the Floquet energy eigenvalues. Finding the unitary trans
mationT that connectsU andU8, lets us describe the Flo
quet eigenvectorv08 in terms of the energy eigenvector.

B. Transitions in a two-level system

We assume that initially all population is in one of th
two energy eigenstates, state 1, so that in the basis of en
eigenstates

v05S 1
0D . ~9!

After N cycles the state vector is given by

vN5UNv0, ~10!

whereU is the single cycle evolution matrix, which can b
diagonalized to obtainU8. We can expressUN of Eq. ~10! as

UN5T21S eiNf1 0

0 eiNf2
DT. ~11!

The transition probability to state 2 is then given by

uvN2u254uT12T11u2 sin2S F

2 D , ~12!

where the phase differenceF[N(f12f2). The transition
probability depends on the single cycle transformation m
trix T and an oscillatory term that represents Rabi osci
tions. Note that it is simply the product of the difference
the Floquet energies and the time. For some purposes
en-

e

es

r-

rgy

-
-

f
is

useful to average over the Rabi oscillations, i.e., take
average overF. Doing so yields

uvN 2u252uT12T11u2, ~13!

which depends only on the single-cycle transformationT.
The unitary evolution matrixU describing the evolution

of the eigenstates over one period can be written as

U5eiGS cosu eid sinu eif

2sinu e2 if cosu e2 idD . ~14!

The eigenvalues ofU are

l1,25ei ~G6A!, ~15!

where cosA[cosu cosd. Consequently, the Floquet energ
eigenvalues differ by 2A/t and the phase differenc
F52NA. If we take a unitary form forT, we are able to
calculate the parts of the matrix that we need for the tran
tion probabilities of Eqs.~12! and ~13! by diagonalizingU.
This exercise yields

uT12T11u25
1

4~cot2u sin2d11!
. ~16!

C. Specific example of a two-level system
with a sinusoidal interaction

Our two-level system, shown in Fig. 1, is found at the fi
anticrossing of the potassium 21s-19f states, where we us
the convention of labeling our states by their adiabatica
connected atomic states at zero electric field. These st
which have been extensively studied@15,16#, repel due to the
electron core coupling and the center of this anticross
serves as an ideal location for an experiment for at
avoided crossing the system closely approximates an a
that is at zero field and excited by a laser. In the vicinity

FIG. 1. Energy-level diagram showing the K states adiabatic
connected to the 21s and 19f states vs static field. We define th
static field in the figure such that the point whereE50 corresponds
to the central point of the anticrossing. All data described in t
article were taken at this static field. The inset shows the ene
levels of the two states vs the true electric field. The actual loca
of the crossing point is 304.2 V/cm.
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3700 57W. M. GRIFFITH, MICHAEL W. NOEL, AND T. F. GALLAGHER
the anticrossing, the 21s and 19f states, the latter of which
has a linear Stark shift, can be described by the Hamilton

H5S 2kE
v0

2

v0

2
0
D , ~17!

wherek5546 MHz/~V/cm! is the slope of state 1 andv0/2
is the core coupling so thatv05339 MHz is the minimum
energy spacing at the avoided crossing. We have defined
electric fieldE such thatE50 corresponds to the interse
tion, in the absence of coupling, between the two states. T
is the standard description of two levels that cross and ha
finite interaction. When transformed to the ‘‘upper’’ an
‘‘lower’’ state basis, which are stationary whenE50,

H85S 2
v0

2
2

kE

2

2
kE

2

v0

2

D , ~18!

after shifting the zero of energy. This Hamiltonian is t
standard description of two levels, separated byv0 , with an
interaction that varies with the electric field.

The result of a time-averaged and phase-averaged sin
dally oscillating electric fieldE(t)5Erf cos(vt1f) in the
interaction described by Eq.~18! was presented by Shirley i
1965 @1#. In the last figure of his paper, Shirley plots th
transition probabilityP as a function of the frequency of th
exciting field, obtained from the Floquet energiesW using
the formula

P5
1

2 F124S ]W

]v0
D 2G . ~19!

In Fig. 2~a! we show the transition probability as a functio
of frequency calculated using Eq.~19! for our problem with
a resonance frequency of 339 MHz and a field amplitu

FIG. 2. rf pulse frequency scan with~a! time and phase averag
ing, ~b! sine phase (f590°), and~c! cosine phase (f50°), cal-
culated at an rf pulse amplitude of 0.87 mV/cm. The thin verti
line is drawn at 160 MHz, the location of the three-photon re
nance.
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E50.87 V/cm. We also show in Figs. 2~b! and 2~c! the re-
sults obtained by applying the analysis of Sec. II B to t
Hamiltonian of Eq. ~18! for the two phasesf50 and
f5p/2. First, it should be noted that the quasienergies u
to obtain Fig. 2~a! were produced not by use of the Floqu
Hamiltonian, but rather by use of the single cycle propaga
as outlined in Sec. II A. The eigenvalues of the propaga
matrix U give the Floquet energies, which through Eq.~19!
give time- and phase-averaged transition probabilities. Si
it is clear that neither the Floquet energies nor the time-
phase-averaged transition probabilities can depend onf, the
phase of the sinusoid used to generateU, it must be true that
for everyU5U(f),

U~f!5T21~f!U8T~f!, ~20!

whereU8 is independent off. Clearly the fixed-phase, time
averaged, single cycle results obtained using Eq.~13!, shown
in Figs. 2~b! and 2~c! for a sine (f5p/2) and for a cosine
(f50), respectively, are quite different from the phas
averaged result of Fig. 2~a!. The surprising result is that a
pulse of an integral number of cycles, no matter how ma
will follow the envelope defined by the single cycle prop
gator of the same phase. For example, an integral numbe
cycles of the sine phase at a frequency just above a m
photon resonance will transfer no population into the up
state. It has not escaped our attention that the sine and co
results resemble Fano profiles. The zeros in the transi
probabilities, seen near the multiphoton resonances, ap
to be a result of interference between the multiphoton re
nance and the broad one-photon resonance background
zeros are always on the high-frequency side of the multip
ton resonances for both the sine and cosine phases.

Unfortunately, the creation of rf pulses with a fixed num
ber of cycles while scanning the rf frequency is difficult
implement experimentally. A different method that exhib
the same effect is to create a single pulse of fixed freque
and number of cycles and scan its amplitude. The freque
of the pulse is chosen such that at some power level in
scan the system will be brought into multiphoton resona
by the ac Stark shift. We have found it convenient to stu
the three-photon resonance that occurs at 113 MHz at ze
power. Note that since the levels are pushed further a
with higher power, the low-power side of the resonance
also the side where the rf frequency is larger than neces
for resonance and vice versa. As an example, the results
calculation made in this fashion of the standard time- a
phase-averaged Floquet picture is shown in Fig. 3~a!. The rf
frequency is 160 MHz and at an amplitude of;0.9 V/cm the
three-photon transition is shifted into resonance. The fix
phase, time-averaged results for a sine phase@Fig. 3~b!# and
a cosine phase@Fig. 3~c!# differ markedly from the phase
averaged results in the same fashion as the frequency
shown above.

III. EXPERIMENTAL APPROACH

The experimental setup used here is very similar to w
has been described previously@14#. As illustrated in Fig. 4,
K atoms effusing from a resistively heated oven pass
tween the two plates of a brass transmission line and
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57 3701PHASE AND RISE-TIME DEPENDENCE USING . . .
excited by two counterpropagating nanosecond dye las
that stimulate the 4s→4p and 4p→21s transitions. As
shown by the timing diagram in Fig. 5, the atoms are excit
in a static field 5 V/cm below the avoided crossing. The fie
is ramped up to the field of the avoided crossing in 300 n
bringing the atoms adiabatically from the 21s state to the
lower state of the avoided crossing. There the desired
pulse is applied to drive transitions to the upper state. Aft
the rf field is turned off, the static field is reduced in 300 n
to 5 V/cm below the avoided crossing, so those atoms th
are in the lower~upper! state pass adiabatically to the 21s
(19f ) state. Finally, the field ionization pulse with an am
plitude of 2400 V/cm is applied, which is sufficient to ionize
the 19f but not the 21s state. The resulting ions pass throug
a hole in the top plate of the transmission line and are d
tected by a dual microchannel plate detector, whose am
fied signal is recorded with a gated integrator and stored o
personal computer~PC!.

The transmission line’s geometry is such that it has
characteristic impedance of 50V over a broad frequency
range. The lower plate is connected to the outer conductor
the BNC connectors at each end by 100-pF capacitors. Th
capacitors have negligible impedance at high (.100 MHz)
frequencies, but high impedance at low (,1 MHz) frequen-
cies, allowing us to apply the static field and the slow
rising field ionization pulse to the lower plate without dis
turbing the rf field, which is traveling down the transmissio
line. The upper plate is connected to the center pin of t

FIG. 3. rf pulse amplitude scan with~a! time and phase averag-
ing, ~b! sine phase, and~c! cosine phase, calculated at an rf puls
frequency of 160 MHz. The thin vertical line is drawn at 0.8
V/cm, the location of the three photon resonance.

FIG. 4. Diagram of our experimental setup.
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BNC connectors, so that negative voltages~with respect to
the outer conductor on the BNC connection! cause an in-
crease in the electric field between the plates.

The phase-locked rf pulses are created in a fash
slightly different from our previous experiment@14#. Instead
of using a FM feedback mechanism, we use a Tektro
AWG2040 arbitrary waveform generator~AWG! that can
generate a very long sinusoidal pulse along with a squ
pulse that is locked to its phase. The square pulse from
AWG is used to trigger a Philips PM5785B pulse genera
@or a Hewlett-Packard~HP! 8082A pulse generator for th
variable rise-time pulses#, whose output is a pulse with
variable delay and width. The rf output from the AWG
mixed with the pulse out of the Philips~or HP! pulse gen-
erator in a pair of cascaded Watkins Johnson M1A mixe
By mixing the rf and the pulse in this way we create an
pulse whose phase and length can be precisely adjuste
changing the delay and length of the pulse from the Phi
pulse generator. The resultant rf pulse is then amplified b
Mini-Circuits Laboratories ZHL-42W amplifier, attenuate
by a variable amount using a Watkins Johnson WJ-G1 v
age controlled attenuator governed by the PC, and then
ther amplified by an Amplifier Research 1W1000 amplifie
The fully amplified output is combined with a voltage ram
supplied by a HP 8112A pulse generator. The rf1ramp pulse
combination is fed into the vacuum chamber and applied
one end of the transmission line. During the rf pulse,
ramp pulse remains flat to within;20 mV/cm. The other
end of the transmission line is coupled out of the cham
and terminated in 50V on a Tektronix TDS 520B digital
oscilloscope, where we can also monitor and store the ac
rf pulse shape, which can then be downloaded to the PC.
simplicity of this setup, compared to the FM feedback me
ods of phase locking, allows us to make rf pulses of defin
phase and lengths exceeding 120 cycles that remain s
for extended periods of time.

IV. RESULTS AND DISCUSSION

The experimental response of K atoms prepared in
lower state of our chosen anticrossing has a remarkable
pendence on pulse phase, as shown in Fig. 6. Here the p
length was 30 cycles at a frequency of 160 MHz and the
pulse phase seen by the atoms is thef590° sine phase@Fig.
6~a!# and thef50° cosine phase@Fig. 6~b!#. The figure
insets show the rf pulse observed on the oscilloscope a
passing through the transmission line, which were de
mined to be;30° shifted from the phase seen by the ato

FIG. 5. Electric field experienced by the K atoms as a funct
of time in our experiment.
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3702 57W. M. GRIFFITH, MICHAEL W. NOEL, AND T. F. GALLAGHER
by comparison with numerical simulations. The envelope
the transition probability in Fig. 6~a! for an rf pulse excita-
tion with a sine phase matches the expected result show
Fig. 3~b!. The data in Fig. 6~b!, where the rf pulse has
cosine phase, have an envelope that also compares well
the prediction shown in Fig. 3~c!. Slight disparities in the
high-amplitude region can be attributed to the finite rise ti
of the rf pulse. The result of direct integration of the Sch¨-
dinger equation for both of these cases appear immedia
below the data. In these calculations, we tried to mimic
closely as possible the actual rf pulse shape experience
the atoms, including the precise number of cycles and
pulse rise time.

The experimental results for the sine phase rf pulse e
tations of different pulse lengths are shown in Fig. 7,
pulse lengths of 1, 3, 12, and 90 cycles at 160 MHz.
explained previously@14#, the transition probabilities for the
many cycle pulses can be explained in terms of the sin
cycle response of the same phase. For example, one com
aspect in all of the data for the multiple cycle rf pulses is
very low transition probability in the low-amplitude regio
(,0.8 V/cm) and is a consequence of the fact that the o
cycle pulse also has a very low transition probability the
The only significant difference between the data for differ

FIG. 6. Experimental result of amplitude scans with 30 cycles
a frequency of 160 MHz, where the dependence on rf pulse pha
~a! f590°, or sine phase,~b! f50°, or cosine phase. The data
the main graphs were taken with the corresponding rf pulse sh
in its inset, which was recorded as discussed in the text. The
served rf pulses are shifted from this phase by 30°. The simulat
shown immediately below the data were calculated using an rf p
of 30 cycles and a 1.5-ns rise time.
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pulse lengths is in the number of Rabi oscillations per unit
rf pulse amplitude.

The data already presented were taken under the ne
ideal rf pulse conditions. A closer study of the dependence
the transition probability on rf pulse phase was done w
pulse lengths of ten cycles at 160 MHz, as shown in Fig
for ~a! f590°, ~b! f560°, ~c! f50°, and~d! f5230°. The
inset oscilloscope traces again represent the rf pulse u
~recall the;30° phase shift from the actual rf pulse phas!
in each data set. It can be observed from these data tha
amplitude scan can be divided into two regions separated
the three-photon resonance at 0.87 V/cm. The low-amplit
region ~,0.8 V/cm! is almost completely quiescent for th
f590° sine phase and rises slightly as the phase chang
60°. The high-amplitude region~.0.9 V/cm! is most sup-
pressed for thef50° cosine phase and rises rapidly as t
phase changes to230°. At what appears to be the mo
nonideal rf pulse phase presented here, atf5230°, it is seen
that neither the low- nor the high-amplitude regions are s
pressed and transitions can be seen for nearly any amplit

Next we study the effect of excitation using an rf pul
with an appreciable rise time~we always use equal rise an
fall times!. As shown in Fig. 9, a rise time of only one cyc
leaves thef590° sine phase rf pulse results almost co
pletely unchanged from the short-rise-time case. In
f50° cosine phase rf pulse there is a suppression of
oscillations in the low-amplitude region and an increas
response in the high-amplitude region compared to the sh
rise-time case. The difficulty of determining the precise
pulse phases shown in the insets of Fig. 9 has diminis
importance here because of the fact that numerical stu
show that a rise time of this magnitude produces a respo
that is nearly independent of phase. Surprisingly, both
sponses are almost identical to the response to a fast-
time sine phase rf pulse, but are quite dissimilar to the pha

t
is

n
b-
ns
se

FIG. 7. Experimental result of amplitude scans for the rf pu
sine phase, showing the dependence on the pulse length:~a! 1 cycle,
~b! 3 cycles,~c! 12 cycles, and~d! 90 cycles.
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57 3703PHASE AND RISE-TIME DEPENDENCE USING . . .
FIG. 8. Experimental result of amplitude scans with ten cyc
at a frequency of 160 MHz for several values of the rf pulse pha
~a! f590°, ~b! f560°, ~c! f50°, and~d! f5230°. The simu-
lations shown immediately below the data were calculated usin
rf pulse of 9.95 cycles and a 1.5-ns rise time.
and time-averaged results obtained with Floquet the
shown in Fig. 3~a!.

The effects of an appreciable rise time can be underst
in a simple way by examining the Fourier transform of anN
cycle pulse for both a sine and a cosine phase of the car
At a frequencyv0 , both the sine and cosine transform in
two sinc functions in the frequency domain, centered
v56v0 . For the cosine, both central maxima are posit
and add constructively on the high-frequency sides~i.e., for
uvu.v0! of the central extrema and destructively on t
low-frequency sides (uvu,v0). For the sine, one centra
maximum of the sinc is positive and the other is negati
causing destructive interference on the high-frequency s
of the central extrema (uvu.v0) and constructive interfer-
ence on the low-frequency side. As the number of cycle
increased, more of the energy is concentrated in the car
apparently diminishing the importance of the frequency d
parity between the two phases. However, the nonlinearity
the strongly driven two-level quantum system ensures
this small change in the frequency composition of the pu
can cause the observed difference in the response. In o
words, the power in the difference of the spectra of the t
phases is comparable to the power in a single cycle, wh
we know has a nontrivial affect on the system. The hig
frequency components of the cosine are clearly caused by
very abrupt steps at the start and end of the pulse. The
placement of these steps with ramps of an appreciable

s
e:

n

FIG. 9. Experimental result of rf pulse amplitude scans w
ten-cycle pulses at 160 MHz and a rise time of one cycle:~a!
f590° and~b! f50°. The simulations shown immediately belo
the data were calculated using an rf pulse of ten-cycle FWHM
a 6.3-ns rise time.
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3704 57W. M. GRIFFITH, MICHAEL W. NOEL, AND T. F. GALLAGHER
time suppress the high-frequency components of the co
pulse, whereas the sine pulse is not as dramatically affec
If we assume that the transitions in the low-amplitude reg
~i.e., with an amplitude less than the three-photon resona!
of the cosine rf pulse are in fact caused by the high
frequency components driving a one-photon transition, t
it is unsurprising that the imposition of an appreciable r
time that suppresses these components would also sup
the transitions.

While the preceding analysis is a good heuristic argum
to understanding the transition probability when an rf pu
having an appreciable rise time is applied, it should be
membered that perhaps the only field that can be regarde
an atom as truly monochromatic is one that varies in time
eivt. This point of view is motivated by the fact that when
two-level atom is in a strong field, it is necessary to inclu
the e2 ivt counterrotating term, which will interfere with th
rotating term. It may then be misleading to think that we c
regard as separate the spectral components in a sing
pulse. We can then see that the phase- and time-aver
results of Shirley using an ostensibly monochromatic fi
were actually a particular average over the spectral com
nents due toall of the phases being present. The use of
single cycle time propagator, which obtains transition pro
abilities for phase-dependent rf pulses, similarly folds
spectral components other than the carrier, but only th
from asinglephase. The significant consequence of this f
is that an rf pulse of sine phase does a reasonable jo
modeling the response to an rf pulse of any phase with
appreciable rise time. The blind application of Shirley
time- and phase-averaged results to problems involving
rise times can lead us astray because the process of p
averaging includes the high-frequency components in co
phases, components that are actually suppressed in the r
pulse because of its finite rise time.

The fact that an appreciable rise time can destroy
phase dependence then has some interesting conseque
When the envelope of the applied field is slowly varying, t
use of Floquet theory as it has been reextended into the
domain is a good approximation of the two-level dynami
In its most easily applied form, this method automatica
performs a phase average, which as stated is not undesi
hy
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since the phase dependence nearly disappears. Where
clear that this reextended Floquet theory must fail is in ca
where the rf pulse envelope is not slowly varying and t
phase is locked. In cases where the envelope is not slo
varying and the field has a fixed phase, it is necessary
integrate the Schro¨dinger equation numerically over the in
dividual field cycles of the rf pulse. The propagator, ho
ever, is still a valuable numerical tool that can decrease
time needed to calculate transition probabilities over
parts of the field amplitude that are constant.

V. CONCLUSIONS

The single cycle time propagator is a powerful tool in t
examination of any quantum system undergoing a tim
periodic interaction. It is related in a simple and transpar
way to Floquet theory and contains all the information giv
by the Floquet Hamiltonian. While any particular sing
cycle propagator of a sinusoidal interaction depends on
phase with which it was evolved, its eigenvalues are in
pendent of this phase and hence also contain phase-
time-averaged transition probabilities as given by Shirl
Nevertheless, the phase dependence is a strong point o
single cycle time propagator, as it is often more desirable
obtain such a result rather than a phase- and/or ti
averaged one. For example, in real pulses with appreci
rise and fall times~on the order of one period!, the shapes of
the resonances become phase independent but appear
like the fast-rise-time sine response rather than the ph
averaged result that would be indicated by the Floquet p
ture for a constant field amplitude. These results are part
larly important for ultrafast oscillations such as hig
intensity short pulse lasers, where rise times and pu
lengths are on the order of a few cycles@17#.
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