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Phase and rise-time dependence using rf pulses in multiphoton processes
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With this experiment we demonstrate that excitation of a two-state system with radio-frequency fields
differing in phase by 90° produces nonintuitively different results, even for very long pulses. In addition, we
show how the phase dependence of the transition probability of long pulses can be easily understood by using
the single cycle time propagator. Finally, we have found surprising results for real pulses in the strong-field
regime, i.e., pulses having appreciable rise and fall tif®$050-2947®8)01104-4

PACS numbe(s): 32.80.Wr

[. INTRODUCTION amine how departures from the ideal rf pulse, either in phase
or by the imposition of a finite envelope rise time, can be
The physics of a strong, sinusoidally oscillating laser fieldrelated to the simpler ideal case.
interacting with an atom has been largely understood in

terms of Floquet theory1], which takes account of the Il. THEORY

strong, and hence nonperturbative, field effects and assumes )

a constant field amplitude. Floquet theory is often done by A. Single cycle Floguet approach

using the well-defined periodicity of the interaction Hamil-  |f a system consisting df1 states is described &0 by

tonian and transforming it into the time-independent Floquethe state vectov,, at some later time it is described by the

Hamiltonian, which is represented by an infinite matrix invectorv(t) related tov, by the unitary transformation matrix
the basis of states “dressed” witm photons, where y(t). Explicitly,

n=0,£1,+2,..., ormore simply dressed states. By reex-

tending the Floquet picture into the time domain, it has also v(t)=U(t)vp. 1
been shown to describe sinusoidally oscillating fields that are

slowly varying in either amplitud¢2—7] or frequency{8—  If the M basis functions used to describe the system are

10]. Other studies of these systems, following an alternativeenergy eigenfunctions and there is no time-dependent cou-
route of investigation, have deepened our understanding gfling between themJ(t) is a diagonal matrix with elements
the effects of finite duration puls¢41-14. These descrip- Uj; =e Wit, whereW,; is the energy of thgth eigenstate.
tions exploit the periodic nature of the exciting field in a The effect of the time evolution is simply to alter the phase
different way by building up the response of the atom oneof the jth state by—W;t. Explicitly,

cycle at a time. While many of the underlying concepts that

connect the latter approach to Floquet theory have been ex- vj(t):e*iWitvOj ) 2
posed, it is unclear how both of these paths to understanding

a generalized excitation may be applied to real pulses, such Now imagine that we introduce a periodic interaction, of
as those produced by a short-pulse laser that contains onlygriod 7, which couples the energy eigenstates. Over one
few optical cycles. Real pulse characteristics such as phasgycle of the interaction the evolution is described by the
finite pulse length, and envelope shape affect the response ghitary transformatiory and the resulting state vector after

the system and as such are a necessary part of any descrihe periodv,=v(r) is related to the original state vector by
tion of an arbitrary excitation. In particular, when the enve-

lope shape changes appreciably on a time scale comparable v.=Uv 3)
. . o 1 0-
to the period of the carrier, it is clear that the correspondence

between Floquet theory and experimental results must bregf. -4n diagonaliz&) with a unitary matrixT to obtainU’,

down. with diagonal elements)/. =e'% and whereU=T"*U'T.

In our experimental and theoretical studies, we are NOWrhis relation allows us to transform E{3) into the basis
able to decompose the separate effects of pulse length, pha%%.ﬁn ed byT

and envelope rise time from the well-known time and phase
averaged respongd]. We present here the observation of
the response of a two-level system to radio-frequefr€y
pulses in which we can precisely control each of the param-

eters mentioned above. First, we study the near ideal caseghere we have definedi=Tv; andvo=Tv,. If there areN
examining how the transition probability of the two-level periods of the interaction, the time evolution matrixUs
system differs for an rf pulse with a sine or a cosine phaseand afterN periods the system is described by the state vec-
We additionally examine how this response to a pulse ofor vy=V(N7) given by

many cycles at a fixed phase can be built up from the re-

sponse to a single cycle of the same phase. Second, we ex- vy=UNv,. 5)

vi=U'vg, 4
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Defining v{,=Tvy and using the fact thatN=T"1(U")NT, 3 - T
we can follow the same reasoning as in E&).and arrive at 1500197
2 =
V= (U")Nvg. (6) 122
3 21s
Since U’)N is diagonal with elementsN?i, the effect of = 1f 0 '
N i T | 0 100 200 300 400
N cycles is to alter the phase of tith component bN¢; , g
so that <
g or 3
. o 4
vy =eNivp; . (7) : t
o . . A 339 MHz 1
This is precisely the same effect as the evolution of @&g.
for energy eigenstates, as shown by E?), so we identify N .
the rate of phase accumulation of statas its Floquet en- "301 302 303 304 305 306 307
ergy (also called the quasienengyExplicitly, electric field (V/om)

— FIG. 1. Energy-level diagram showing the K states adiabatically
= ! (8) connected to the Zland 19 states vs static field. We define the
T static field in the figure such that the point wh&e 0 corresponds

i . to the central point of the anticrossing. All data described in this
and the Floquet eigenstates are related to the energy eigefnicle were taken at this static field. The inset shows the energy

states by the unitary transformatidh which does not de- |eyels of the two states vs the true electric field. The actual location
pend in any way on the number of periods. Note that thesf the crossing point is 304.2 V/icm.

eigenvalues oU that define thep; allow for the substitution
¢j— ¢j—2mn, wheren=0,+1,..., which allow an arbi- yseful to average over the Rabi oscillations, i.e., take the
trariness in the Floquet energied/;—W;+nw, where average oved. Doing so yields
w=2mlT.
In practice, the matri}J can be determined by integrating [Vn2l?=2|T1,Tyl2, (13
the Schradinger equation over one period of the interaction
using the energy eigenstates. Simply finding the eigenvaluggnich depends only on the single-cycle transformation
of U gives the elements of the diagonal matdx and hence The unitary evolution matrixJ describing the evolution

mation T that connectdJ andU’, lets us describe the Flo-

W

quet eigenvectoy), in terms of the energy eigenvector. . cosd e? sing e'?
U = el . . B . 14
itions i —singe ' coxe'? (149
B. Transitions in a two-level system
We assume that initially all population is in one of the The eigenvalues o) are
two energy eigenstates, state 1, so that in the basis of energy .
eigenstates Ny =eT=A) (15)
v :(1> 9) where cosA=cosd coss. Consequently, the Floguet energy
°o—lo) eigenvalues differ by &/r and the phase difference

o ®=2NA. If we take a unitary form fofT, we are able to
After N cycles the state vector is given by calculate the parts of the matrix that we need for the transi-
Ve UMy (10) tion probabilities of Eqs(12) and (13) by diagonalizingU.
N 0 This exercise yields

whereU is the single cycle evolution matrix, which can be

diagonalized to obtait)’. We can expresg™ of Eq.(10) as 2_ 1
| Tl ™=7copg sits+ 1) (19
eIN</>1 0
UN=T‘1< iN¢2>T. (12)
0 € C. Specific example of a two-level system

The transition probability to state 2 is then given by with & sinusoidal interaction

Our two-level system, shown in Fig. 1, is found at the first
anticrossing of the potassium 219f states, where we use
the convention of labeling our states by their adiabatically
connected atomic states at zero electric field. These states,
where the phase differencB=N(¢,— ¢,). The transition which have been extensively studiidb,16, repel due to the
probability depends on the single cycle transformation maelectron core coupling and the center of this anticrossing
trix T and an oscillatory term that represents Rabi oscillaserves as an ideal location for an experiment for at the
tions. Note that it is simply the product of the difference of avoided crossing the system closely approximates an atom
the Floquet energies and the time. For some purposes it ibat is at zero field and excited by a laser. In the vicinity of

@
VN2l 2= 4 T15T 19 smz(E), (12
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E=0.87 V/cm. We also show in Figs(l® and Zc) the re-
sults obtained by applying the analysis of Sec. Il B to the
Hamiltonian of Eq.(18) for the two phases$=0 and
= /2. First, it should be noted that the quasienergies used
to obtain Fig. 2a) were produced not by use of the Floquet
Hamiltonian, but rather by use of the single cycle propagator,
as outlined in Sec. Il A. The eigenvalues of the propagator
matrix U give the Floquet energies, which through EP)
give time- and phase-averaged transition probabilities. Since
it is clear that neither the Floquet energies nor the time- and
phase-averaged transition probabilities can depend,dhe
_ phase of the sinusoid used to genetateat must be true that
0z 03 04 05 06 07 for everyU=U(¢),

RF pulse frequency (GHz)

transition probability
o
N
IIIIIIIIIIIIIIIIII

U()=T HU'T(¢), (20)

FIG. 2. rf pulse frequency scan with) time and phase averag-
ing, (b) sine phase ¢=90°), and(c) cosine phase4=0°), cal-
culated at an rf pulse amplitude of 0.87 mV/cm. The thin vertical
line is drawn at 160 MHz, the location of the three-photon reso-
nance.

whereU’ is independent oé. Clearly the fixed-phase, time-
averaged, single cycle results obtained using(Eg), shown

in Figs. 2b) and Zc) for a sine = w/2) and for a cosine
(¢=0), respectively, are quite different from the phase-
averaged result of Fig.(8). The surprising result is that a
Hulse of an integral number of cycles, no matter how many,
will follow the envelope defined by the single cycle propa-

the anticrossing, the 2land 19 states, the latter of which
has a linear Stark shift, can be described by the Hamiltonia

wo gator of the same phase. For example, an integral number of

—kE > cycles of the sine phase at a frequency just above a multi-

H= ' 17) photon resonance will transfer no _population in_to the upper
@9 0 state. It has not escaped our attention that the sine and cosine

2 results resemble Fano profiles. The zeros in the transition

probabilities, seen near the multiphoton resonances, appear
wherek=546 MHz/(V/cm) is the slope of state 1 andy/2  to be a result of interference between the multiphoton reso-
is the core coupling so that,=339 MHz is the minimum nance and the broad one-photon resonance background. The
energy spacing at the avoided crossing. We have defined tixeros are always on the high-frequency side of the multipho-
electric fieldE such thatE=0 corresponds to the intersec- ton resonances for both the sine and cosine phases.
tion, in the absence of coupling, between the two states. This Unfortunately, the creation of rf pulses with a fixed num-
is the standard description of two levels that cross and havelzer of cycles while scanning the rf frequency is difficult to
finite interaction. When transformed to the “upper” and implement experimentally. A different method that exhibits

“lower” state basis, which are stationary whé&n=0, the same effect is to create a single pulse of fixed frequency
and number of cycles and scan its amplitude. The frequency
g kE of the pulse is chosen such that at some power level in the
T T o scan the system will be brought into multiphoton resonance
H' = , (19 by the ac Stark shift. We have found it convenient to study
_ k_E @o the three-photon resonance that occurs at 113 MHz at zero rf
2 2 power. Note that since the levels are pushed further apart

with higher power, the low-power side of the resonance is

after shifting the zero of energy. This Hamiltonian is the also the side where the rf frequency is larger than necessary
standard description of two levels, separateddgy with an  for resonance and vice versa. As an example, the results of a
interaction that varies with the electric field. calculation made in this fashion of the standard time- and

The result of a time-averaged and phase-averaged sinus@jhase-averaged Floquet picture is shown in Fig).3rhe rf
dally oscillating electric fieldE(t)=E; cost+¢) in the  frequency is 160 MHz and at an amplitude-00.9 V/cm the
interaction described by E¢18) was presented by Shirley in three-photon transition is shifted into resonance. The fixed-
1965 [1]. In the last figure of his paper, Shirley plots the phase, time-averaged results for a sine pti&ag 3(b)] and
transition probabilityP as a function of the frequency of the a cosine phasgFig. 3(c)] differ markedly from the phase-
exciting field, obtained from the Floquet energMsusing  averaged results in the same fashion as the frequency plots
the formula shown above.

14 20

b 1
—E (9(1)0

(19 I1l. EXPERIMENTAL APPROACH

The experimental setup used here is very similar to what
In Fig. 2(a@) we show the transition probability as a function has been described previou$id]. As illustrated in Fig. 4,
of frequency calculated using E(L9) for our problem with K atoms effusing from a resistively heated oven pass be-
a resonance frequency of 339 MHz and a field amplituddween the two plates of a brass transmission line and are
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RF pulse amplitude (V/cm) BNC connectors, so that negative voltagesth respect to

the outer conductor on the BNC connecliaause an in-
FIG. 3. rf pulse amplitude scan witla) time and phase averag- crease in the electric field between the plates.

ing, (b) sine phase, antt) cosine phase, calculated at an rf pulse  The phase-locked rf pulses are created in a fashion
frequency of 160 MHz. The thin vertical line is drawn at 0.87 slightly different from our previous experimefit4]. Instead
Viem, the location of the three photon resonance. of using a FM feedback mechanism, we use a Tektronix

AWG2040 arbitrary waveform generat¢AWG) that can
excited by two counterpropagating nanosecond dye lase@enerate a very long sinusoidal pulse along with a square
that stimulate the ¢—4p and 4p—21s transitions. As Pulse that is locked to its phase. The square pulse from the
shown by the timing diagram in Fig. 5, the atoms are excited?WG is used to trigger a Philips PM5785B pulse generator
in a static field 5 V/cm below the avoided crossing. The fieldlor @ Hewlett-PackardHP) 8082A pulse generator for the
is ramped up to the field of the avoided crossing in 300 nsyariable rise-time pulséswhose output is a pulse with a
bringing the atoms adiabatically from the state to the Variable delay and width. The rf output from the AWG is
lower state of the avoided crossing. There the desired rfixed with the pulse out of the Philig®r HP) pulse gen-
pulse is applied to drive transitions to the upper state. Aftefrator in a pair of cascaded Watkins Johnson M1A mixers.
the rf field is turned off, the static field is reduced in 300 nsBy mixing the rf and the pulse in this way we create an rf
to 5 V/cm below the avoided crossing, so those atoms thaRulse whose phase and length can be precisely adjusted by
are in the lower(uppe) state pass adiabatically to thes21 changing the delay and length of the pulse from the Philips
(19f ) state. Finally, the field ionization pulse with an am- Pulse generator. The resultant rf pulse is then amplified by a
plitude of 2400 V/cm is applied, which is sufficient to ionize Mini-Circuits Laboratories ZHL-42W amplifier, attenuated
the 1& but not the 2% state. The resulting ions pass through Py @ variable amount using a Watkins Johnson WJ-G1 volt-
a hole in the top plate of the transmission line and are de@de controlled attenuator governed by the PC, and then fur-
tected by a dual microchannel plate detector, whose ampliher amplified by an Amplifier Research 1W1000 amplifier.
fied signal is recorded with a gated integrator and stored on &he fully amplified output is combined with a voltage ramp
personal computeiPQ). supplied by a HP 8112A pulse generator. Therdmp pulse

The transmission line’'s geometry is such that it has @£0mbination is fed into the vacuum chamber and applied to

characteristic impedance of 50 over a broad frequency ©On€ end of the transmission line. During the rf pulse, the
range. The lower plate is connected to the outer conductor RMP Pulse remains flat to withirr20 mv/cm. The other
the BNC connectors at each end by 100-pF capacitors. The§&d of the transmission line is coupled out of the chamber
capacitors have negligible impedance at highlp0 MHz) ~ and terminated in 5@) on a Tektronix TDS 520B digital
frequencies, but high impedance at low { MHz) frequen- oscilloscope, wher.e we can also monitor and store the actual
cies, allowing us to apply the static field and the slowly!f Pulse shape, which can then be downloaded to the PC. The
rising field ionization pulse to the lower plate without dis- SIMPIicity of this setup, compared to the FM feedback meth-
turbing the rf field, which is traveling down the transmission ©ds of phase locking, allows us to make rf pulses of definite

line. The upper plate is connected to the center pin of thehase and lengths exceeding 120 cycles that remain stable
for extended periods of time.

K atoms

IV. RESULTS AND DISCUSSION

The experimental response of K atoms prepared in the
lower state of our chosen anticrossing has a remarkable de-
50Q pendence on pulse phase, as shown in Fig. 6. Here the pulse
length was 30 cycles at a frequency of 160 MHz and the rf
pulse phase seen by the atoms is#e90° sine phasg-ig.
6(a)] and the »=0° cosine phasé¢Fig. 6b)]. The figure
insets show the rf pulse observed on the oscilloscope after
passing through the transmission line, which were deter-
FIG. 4. Diagram of our experimental setup. mined to be~30° shifted from the phase seen by the atoms

Static Field and
Field lonization Pulse Lasers
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FIG. 7. Experimental result of amplitude scans for the rf pulse
sine phase, showing the dependence on the pulse Idiagthcycle,
(b) 3 cycles,(c) 12 cycles, andd) 90 cycles.

0

03 04 05 06 07 08 09 1.0 141

pulse lengths is in the number of Rabi oscillations per unit of
rf pulse amplitude.

FIG. 6. Experimental result of amplitude scans with 30 cycles at The data alreac_i)_/ presented were taken under the nearly
a frequency of 160 MHz, where the dependence on rf pulse phase ealrf pL_JI_se Condltlor]_s. A closer study of the dependence. of
(a) $=90°, or sine phasdb) ¢=0°, or cosine phase. The data in the transition probability on rf pulse phase was d(_)ne.wnh
the main graphs were taken with the corresponding rf pulse shownmse lengths of ten cycles at 160 MHz, as shown in Fig. 8,
in its inset, which was recorded as discussed in the text. The odOr @ $=90°, (b) $=60°, (© =0, and(d) ¢=-30°. The
served rf pulses are shifted from this phase by 30°. The simulationdS€t oscilloscope traces again represent the rf pulse used
shown immediately below the data were calculated using an rf pulsé'ecall the~30° phase shift from the actual rf pulse phase
of 30 cycles and a 1.5-ns rise time. in each data set. It can be observed from these data that the

amplitude scan can be divided into two regions separated by

by comparison with numerical simulations. The envelope ofthe three-photon resonance at 0.87 V/cm. The low-amplitude
the transition probability in Fig. @) for an rf pulse excita- region(<0.8 V/cm) is almost completely quiescent for the
tion with a sine phase matches the expected result shown ih=90° sine phase and rises slightly as the phase changes to
Fig. 3b). The data in Fig. @), where the rf pulse has a 60°. The high-amplitude regiot>0.9 V/cm) is most sup-
cosine phase, have an envelope that also compares well wighhessed for theb=0° cosine phase and rises rapidly as the
the prediction shown in Fig. (8). Slight disparities in the phase changes te-30°. At what appears to be the most
high-amplitude region can be attributed to the finite rise timenonideal rf pulse phase presented herejat-30°, it is seen
of the rf pulse. The result of direct integration of the Sehro that neither the low- nor the high-amplitude regions are sup-
dinger equation for both of these cases appear immediatelyressed and transitions can be seen for nearly any amplitude.
below the data. In these calculations, we tried to mimic as Next we study the effect of excitation using an rf pulse
closely as possible the actual rf pulse shape experienced lwith an appreciable rise tim@ve always use equal rise and
the atoms, including the precise number of cycles and théall times). As shown in Fig. 9, a rise time of only one cycle
pulse rise time. leaves thep=90° sine phase rf pulse results almost com-

The experimental results for the sine phase rf pulse excipletely unchanged from the short-rise-time case. In the
tations of different pulse lengths are shown in Fig. 7, for¢=0° cosine phase rf pulse there is a suppression of the
pulse lengths of 1, 3, 12, and 90 cycles at 160 MHz. Asoscillations in the low-amplitude region and an increased
explained previously14], the transition probabilities for the response in the high-amplitude region compared to the short-
many cycle pulses can be explained in terms of the singleéise-time case. The difficulty of determining the precise rf
cycle response of the same phase. For example, one commpulse phases shown in the insets of Fig. 9 has diminished
aspect in all of the data for the multiple cycle rf pulses is theimportance here because of the fact that numerical studies
very low transition probability in the low-amplitude region show that a rise time of this magnitude produces a response
(<0.8 V/Icm) and is a consequence of the fact that the onethat is nearly independent of phase. Surprisingly, both re-
cycle pulse also has a very low transition probability theresponses are almost identical to the response to a fast-rise-
The only significant difference between the data for differentime sine phase rf pulse, but are quite dissimilar to the phase-

field amplitude (V/cm)
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FIG. 9. Experimental result of rf pulse amplitude scans with
ten-cycle pulses at 160 MHz and a rise time of one cy&:
$=90° and(b) #=0°. The simulations shown immediately below
the data were calculated using an rf pulse of ten-cycle FWHM and
a 6.3-ns rise time.

and time-averaged results obtained with Floquet theory
shown in Fig. 8a).

The effects of an appreciable rise time can be understood
in a simple way by examining the Fourier transform ofNin
cycle pulse for both a sine and a cosine phase of the carrier.
At a frequencywg, both the sine and cosine transform into
two sinc functions in the frequency domain, centered at
w=* wy. For the cosine, both central maxima are positive
and add constructively on the high-frequency sifes, for
|w|>w,) of the central extrema and destructively on the
low-frequency sides || <wy). For the sine, one central
maximum of the sinc is positive and the other is negative,
causing destructive interference on the high-frequency side
of the central extremal|>w,) and constructive interfer-
ence on the low-frequency side. As the number of cycles is
increased, more of the energy is concentrated in the carrier,
apparently diminishing the importance of the frequency dis-
parity between the two phases. However, the nonlinearity of
the strongly driven two-level quantum system ensures that
this small change in the frequency composition of the pulse
can cause the observed difference in the response. In other
words, the power in the difference of the spectra of the two

FIG. 8. Experimental result of amplitude scans with ten cyclesPhases is comparable to the power in a single cycle, which
at a frequency of 160 MHz for several values of the rf pulse phaseve know has a nontrivial affect on the system. The high-

(@ ¢$=90°, (b) $=60°, (c) $=0°, and(d) ¢=—30°. The simu-

frequency components of the cosine are clearly caused by the

lations shown immediately below the data were calculated using amery abrupt steps at the start and end of the pulse. The re-
rf pulse of 9.95 cycles and a 1.5-ns rise time.

placement of these steps with ramps of an appreciable rise
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time suppress the high-frequency components of the cosingince the phase dependence nearly disappears. Where it is

pulse, whereas the sine pulse is not as dramatically affectedlear that this reextended Floquet theory must fail is in cases

If we assume that the transitions in the low-amplitude regiorwhere the rf pulse envelope is not slowly varying and the

(i.e., with an amplitude less than the three-photon resonancehase is locked. In cases where the envelope is not slowly

of the cosine rf pulse are in fact caused by the highervarying and the field has a fixed phase, it is necessary to

frequency components driving a one-photon transition, theimtegrate the Schoinger equation numerically over the in-

it is unsurprising that the imposition of an appreciable risedividual field cycles of the rf pulse. The propagator, how-

time that suppresses these components would also suppreseer, is still a valuable numerical tool that can decrease the

the transitions. time needed to calculate transition probabilities over the
While the preceding analysis is a good heuristic argumenparts of the field amplitude that are constant.

to understanding the transition probability when an rf pulse

having an appreciable rise time is applied, it should be re- V. CONCLUSIONS

membered that perhaps the only field that can be regarded by

an atom as truly monochromatic is one that varies in time as x;r:?n:tri]c?rie g]}/ Callfl tlmi;)r:?upr?]ggtosrt;na L;j)r(])(\j/\(/;arrfgilntoo!rltitmhg_
e'“!, This point of view is motivated by the fact that when a y d y going

two-level atom is in a strong field. it is necessary to includeperiodic interaction. It is related in a simple and transparent

the e ! counterrotating term, which will interfere with the way to Floguet theory and contains all the information given

rotating term. It may then be misleading to think that we canby the Floquet Hamiltonian. While any particular single

. ; cycle propagator of a sinusoidal interaction depends on the
regard as separate the spectral components in a single

oulse. We can then see that the phase- and time-averagg ase with which it was evolved, its eigenvalues are inde-
results of Shirley using an ostensibly monochromatic fieIdpendent of this phase and hence also contain phase- and

; time-averaged transition probabilities as given by Shirley.
were actually a particular average over the spectral comp

nents due tall of the phases being present. The use of thce}ilevertheless, the phase dependence is a strong point of the
sinale cvele time bro F; ator whic?w F())btains.transition rob_single cycle time propagator, as it is often more desirable to
ge cy propagator, IO btain such a result rather than a phase- and/or time-

abilities for phase-dependent rf pulses, similarly folds iN_veraged one. For example. in real pulses with aporeciable
spectral components other than the carrier, but only those 9 ' bie, P PP

. S . ise and fall timegon the order of one perigdthe shapes of
from asinglephase. The significant consequence of this fac{he resonances become phase independent but appear more

'S tha’g an rf pulse of sine phase does a reasonable .JOb ﬁﬁe the fast-rise-time sine response rather than the phase-
modeling the response to an rf pulse of any phase with an

appreciable rise time. The blind application of Shirley’s averaged result that would be indicated by the Floquet pic-

. : . tpre for a constant field amplitude. These results are particu-
time- and phase-averaged results to problems involving fa?arly important for ultrafast oscillations such as high-

rise times can lead us astray because the process of phas? . . ,
e . . . Intensity short pulse lasers, where rise times and pulse
averaging includes the high-frequency components in cosmF
; epgths are on the order of a few cycld¥].
phases, components that are actually suppressed in the real ¥
pulse because of its finite rise time.

The fact that an appreciable rise time can destroy the
phase dependence then has some interesting consequencesWe would like to thank R. R. Jones for our many discus-
When the envelope of the applied field is slowly varying, thesions on this study and Jim Carden at Intel Corp. for his help
use of Floguet theory as it has been reextended into the timea obtaining and installing the Intel Fortran Reference com-
domain is a good approximation of the two-level dynamics.piler for use on an Intel donated Pentium Pro system. This
In its most easily applied form, this method automaticallywork was supported by the Air Force Office of Scientific
performs a phase average, which as stated is not undesiraf®esearciAFOSR.
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