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We examine the long-range part of the rare-gas diatomic potentials that connect R§(the1)p°ns}
+R{(n—1)p5np} atomic states in the separated atom lifrit=3, 4, 5, and 6 for Ne, Ar, Kr, and Xe,
respectively. We obtain our potentials by diagonalization of a Hamiltonian matrix containing the atomic
energies and the electric dipole-dipole interaction, with experimentally determined parata&ters ener-
gies, lifetimes, transition wavelengths, and branching ragsinput. Our numerical studies focus on Ne and
Kr in this paper, but apply in principle to all other rare gases lacking hyperfine structure. These diatomic
potentials are essential for applications in which homonuclear rare-gas pairs interact at large internuclear
separations, greater than about 20 Bohr radii. Among such applications are the study of cold atomic collisions
and photoassociative spectroscoffy1050-294{8)07605-1

PACS numbe(s): 34.20.Mq, 34.20.Cf, 32.80.Pj

[. INTRODUCTION ered here. Since the most abundant rare-gas isotopes lack
hyperfine structur¢25], this is not a serious limitation. Fi-

The increasing use of atomic traps as an experimental andhlly, we do not consider two of the rare gases in this article:
technological too[1] has kindled a keen interest in collisions He and Rn. Helium is an exceptional case among the rare
at ultralow temperature. “Bad” collisions place a limit on gases, having aslcore, with a 2 or 2p valence electron.
trap densities, leading to signal logee Ref[2], and refer-  while, in principle, our calculations would apply equally
ences therein “Good” collisions allow evaporative cooling \ell to He, the notation and level schemes would all be
of trapped atoms, the key to reaching the degenerate quagjfferent. The treatment of Rn is problematic because of the

tum regime in which Bose-Einstein condensati®EC) is  annarent lack of necessary experimental data, and our calcu-
observed3,4]. Aside from these issues, cold collisions are 0f| tions are based in experimentally obtained quantities, as
interest in themselves as a fundamental quantum mechani% Il be explained in Sec. Il C

phenomenon: purs-wave scattering can only be understood Aside from these few limitations, our numerical calcula-

correctly as a quantum mechanical eff56). . tions are applicable to any of the homonuclear rare-gas di-
The new technique of ultracold photoassociative spectros-

copy (PAS) has been used, with considerable success, to deq_tor_nlc §yste_ms. Since their energy-level schemes_ are all
termine atomic properties of the alkali-metal atofiis-16), §|m|lar, in this paper we concentrate when appropriate on
and is equally appropriate for studies of the rare gases. Od'St W0 example systems, N&ec. \ and Kr(Sec. V). In
own experimental efforts in this directiga 7,18, as well as >€C- Il we discuss differences between the rare-gas atomic
those of otherd19-24, motivate our theoretical work on systems and the alkali-metal atomic systems, since the Iattgr
cold collisions among such atoms. As a first step toward$lave been under much study, both theoretically and experi-
predicting photoassociative spectra, we have investigated tHgentally, as a subject for laser cooling and trapping. Theo-
long-range parts of the heavy rare-gas diatomic potentialgetical background is given in Sec. Il and the method of
R{ns}+R{np}, whereR=Ne, Ar, Kr, and Xe anch=3, 4, calculating the diatomic rare-gas potentials, with some
5, and 6, respectively. This configuration is of particular in-analysis, is presented in Sec. IV. Conclusions are presented
terest because all the rare gases have metafdbkg states in Sec. VIIL.
that are likely “ground states” for atom trapping and cool-
ing. Most of the fine-structure energy levels in R s} and
R{np} configurations are connected by optical transitions, Il. THE HEAVY RARE-GAS ATOMS:
R{ns}<+R{np}. In samples of trapped ‘“ground state” A BRIEF OVERVIEW
(metastablpR{ns} atoms, it is therefore possible to do spec-
troscopy of theexcited Rns}+R{np} configurations that
are the subject of this paper. Most attention to the study of rare-gas atoms at low tem-
There are a few limitations to our treatment of the rare-peratures has focused on metastable helium, which was
gas diatomic potentials in this article. First and most impor-shown to be a good candidate for Bose-Einstein condensa-
tant, we are considering only the interaction that is strongegion [26], but there is na priori reason to have lower ex-
at large internuclear separatioRs Our treatment does not pectations of the heavier rare gases. To assess the possibili-
take into account short-range diatomic forces, such as exies, it will be necessary to investigate their collisional
change forces, or the very long-range Casimir-Polder retamproperties experimentally in the same way as is being done
dation effect; see Sec. Ill A for a full discussion of the regionfor alkali-metal atoms[8-11,13—-1& With the relatively
of validity of our potentials. Third, the effect due to a nuclearnew technique of photoassociative spectroscopy, very pre-
magnetic momenthyperfine structurehas not been consid- cise information about the relevant atom-atom interactions

A. Rare-gas atoms at low temperature
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can be obtained. In this way it should be possible to deterexperimentalist attempting to optically cool and trap these

mine, e.g., scattering lengths for the various rare-gas eleatoms.

ments. Furthermore, if the source is situated near the trapping
Out of the many rare-gas isotopes available, one may exX€gion, collisions with the high-energy, background atoms

pect several to form stable and others to form unstable BosgcCUr 00 frequently to maintain a dense trap. Such collisions

condensates. In addition, there are abundant stable isotopB< already problematic in alkali-metal traps, but in a meta-
. . stable rare-gas trap the proportion of atoms suitable for trap-
of Kr and Xe with half-integral total angular momenta

: ) _ ' ping (namely, metastablgselative to background is much
which would form degenerate Fermi gases at sufficiently IOV‘gmaller, as already mentioned. This means that a gas cell

temperature. In order for experiments in this area to be sUcontaining the metastable source is generally not well suited
cessful, Penning ionization due to binary collisions must beor a rare-gas trap30]. Instead, metastables must be cooled
suppressed. In He it has been shown that a suppression factatid slowed after production, and only then loaded into a
of 10° can be reached in samples that are fully stretched itrap, leading to a rather complicated experimental setup. Yet
electronic spin angular momentuf26,27. In other rare another difficulty comes from trap loss through ionizing col-
gases, the situation is as yet unclear. Nevertheless, it remaifigions (this is in addition to the usual collision-induced
true that the fully stretched states are forbidden to ionize dut?SSes, that are known to occur in alkali-metal trggfs,32).

to spin selection rules, for any of the rare gases. Such Statégmzanon-mduged loss is e§t|.mat.ed to be of about the same
have both the maximum possible L, andS, as well as the order of magnitude as collision-induced losses among the

. . L alkalis[2]. Finally, the finite lifetime of the metastables, on
maximum possible projection of angular momentum onto th(%he order of several tens of seconds, places a limit to the

axis of quantization. lonization occurs when a valence eleczmount of time spent by an individual atom in the trap
tron fills up the hole in one of thR{(n—1)p®} cores. With [33,34.

fully stretched-state atoms, however, the available electron

state in the core has the opposite spin from the valence elec- ¢ Rare-gas versus alkali atoms: Theoretical aspects

tron. Hence, the spin of this valence electron would have to

flip in order to fill the hole, a process that is forbidden by therule, the most abundant isotopes have total nuclear spin

usual process of Pennﬁng ionization. Spin flip then_ocqur'sequal to zero, so hyperfine structure is not pre§28} The
only through less effective processes such as the spin-dipolgiensive hyperfine structure of most alkalis severely com-
interaction[26,27) and the spin-orbit interaction. plicates the theoretical description of low-temperature colli-
Photoassociative spectroscopy is a particularly useful toddions[11]. One simple reason for this is that it increases the
for studying ionization, since the widths of observed levelsnumber of states involved in a homonuclear, diatomic mol-
are directly related to the ionization probability and theecule by a factor (B+ 1)? wherel is the nuclear spin quan-
atomic lifetimes. In fact, in our studies we have found thattum number. Herel, ranges froms for *Na, among others,
several other diatomic states exist with somewhat suppresséd 5 for ***Cs. Second and more important, since the hyper-
ionization rates. Such states should have spectral lines théifie splitting is generally of the same order of magnitude as

are narrow enough for observation in PAS experiments' the kinetic energy in cold CO”iSionS, it also influences the
collision dynamics through angular momentum decoupling

and recoupling phenomenal-13,18.
On the other hand, singly excited rare-gas atoms are com-
Cold collisions of alkali-metal atoms have attracted muchplicated by extensive fine structure. The valence electronic
attention[ 7—16], while such collisions among rare-gas atomsstructure of a singly excited rare-gas atom is the same as that
have been somewhat neglec{@®2—-24,28. This is true de- of the ground state of an alkali atom, for which thgor np
spite the fact that the rare gases are model atomic systemglence electron alone produces the electronic term structure.
playing an important role in fundamental atomic physics, adn the case of alkali atoms, there are ar&(°S,;,) and two
well as in technological applications. The principal reasomp (2P1,2,3,2) nondegenerate fine-structure states; counting
for this neglect appears to be the relative experimental easgegenerate magnetic sublevels makes a total ofrtwand
of building and operating an optical trap for alkali-metal at- six np states(neglecting hyperfine structyreFor the rare-
oms. Optical transitions in alkali-metal atoms may be excitedyas atoms, in addition, the angular momentum of the
from the ground state with ordinary lasers, so that a trap catn— 1)p® core couples to that of thes or np valence elec-
be produced within a vapor cell. In contrast, excitation of thetron, so that more terms result. The spin and orbital quantum
rare-gas atoms is not easily possible via optical transitionsumbers of the cord.=1 ands.= 3 lead to an increase in
from the ground state, since this requires extreme-ultraviolethe number of terms by a factor of 6. There are then four
lasers. energy levels in thas configuration, which add up to a total
Fortunately for atom trappers, two of the first-excited of 12 atomic states when degenerate magnetic sublevels are
R{(n—1)p°ns} states are metastable, and can be used asken into account; thep configuration has ten energy lev-
effective ground states in laser cooling processels, for a total of 36 magnetic sublevékee Fig. 1
(R=Ne, ..., Xeforn=3,...,8. From there, transitions via A quick calculation reveals how very many diatomic po-
optical excitation to thdR{(n—1)p°np} states are possible. tentials are possible for the rare gases, when only the subset
Unfortunately, the usual method of metastable productiorof {ns} and{np} states are included: (#236)>=2304. This
using a plasma discharge is an inefficient process: at bestumber is quite comparable to a typical case with alkali at-
only about 1 in 18 atoms exiting the source are in the meta-oms: for 2°Na with | =2, the number is 1024. The main
stable stat¢29]. This provides a poor starting point for the difference is then that the asymptotic energy differences be-

The rare gases differ from the alkalis in that, as a general

B. Rare-gas versus alkali-metal atoms: Experimental aspects
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generally onlyJ is a good quantum number for any of
3p’(112)0 these states. It so happens that trestates withJ=0 or

2, and thenp state with J=3, also have well-defined

L and S (total electronic orbital and spin angular momen-
tum, respectively Therefore these states may also
be denoted asn—1)p°(ns3Py), (n—1)p°(ns3P,), and

0.69 | , 1 (n—1)p®(np 3D3), following Russell-Saunders (L-S
3p (1/2), gggg;l 3’ (3/2), coupling notation.
L G Atomic lifetimes for decay from levels in the Ne and Kr
3 (3/2) 3p (312), ns andnp configuration are also given in Table I. Note that
2=oh 3 (512) only the ns’'(1/2), andns(3/2), states are metastable. The
=22 3p (572); branching ratiosBy_,, for transitions of the sorR(np)

—R(ns), between energy levelk and k’, are given in

0.68 Tables Il and IlI, for Ne and Kr.

3p (1/2), IIl. HAMILTONIAN FOR LONG-RANGE INTERACTION
] OF HEAVY RARE GASES

A. Regions of validity for the long-range interaction

Population of very long-range diatomic bound states by
photoassociative techniques is an experimental reality
[14,15, with varied applications. We are interested in de-
scribing such states that may be populated by optical excita-
35°(1/2)0 T tion during collisions that occur at large internuclear separa-
35 (3/2) tions in a beam or trap of metastal{les} atoms. We now

35 (3/2), address what is meant by “long range” here.

061 L - i The dominant interaction between two neutral, homo-

1=0 J=1 =2 =3 nuclear atoms at sufficiently large internuclear separation is
the Van der Waals interactiofi37], p. 1130 fj. When the
two atoms have different energids, #E,, this is referred
to as theresonantelectric dipole-dipole interaction; when
they have the same enerdy; =E,, it is called theinduced
electric dipole-dipole interaction. Several authors have
tween the diatomic states are in general much larger for thgeated the dipole-dipole interaction between a ground-state
rare gases. Hyperfine splittings of the ground-stetén the  alkali-metal atom and an excited alkali-metal atf88,39,
alkali-metal atoms are typically several GHz; those of thebut to our knowledge this situation has not yet been explored
first-excitednp state are even smaller. This should be con-in the rare-gas systems.
trasted with the fine-structure splittings of times and np At short range, the van der Waals interaction is not suit-
states in the rare gases, which are typically thousands @fble for description of interatomic interactions, where the
GHz. This shifts the complications in the theoretical treat-overlap of the electron charge distributions leading to inter-
ment from long range for alkaligl1,15 to short range for ~atomic repulsion is not negligible. A Crlije estimate of the
the rare gases. In the case of the alkalis, long-range complexpectation value of the radial position,,, of an outer
cations have been circumvented by working with carefullyn-shell electron of a many-electron atom is given by a sim-
chosen potentials, such as doubly spin-polarized sf@iger  plified Hartree mode]40]:
states with no hyperfine splitting,16].

Atomic energy eigenvalues (atomic units)

0.62 | 35°(1/2), .

FIG. 1. Energy eigenvalues of atomic Nes 8nd 3 configu-
rations. Energies are given relative to the N& @jround state, and
states are labeled with intermediate coupling” (Racah notation.

r,~nag, @
D. Spectroscopic notation and selected atomic properties

The energy spacings of the excited states of the rare gastdiere the Bohr radius,=0.529<10" " m. In Ref. [40],
have all been experimentally obtain&dr Ne and Kr, these this result is said to overestimate the correct number by
energies are given in Table I, and have been taken from Refabout a factor of 2. Then for the overlap of electron clouds to
[35,36). The states, written as/(K), or n/’(K),, are be negligible, internuclear separatidRshould be somewhat
identified inJ.-/" notation(also known as intermediate cou- larger than this average distané&>r,. In Ne, withn=3,

pling or Racah notation The angular momentur is de-  this meansR>r_n=3~3a0, while in Xe, it requiresR

fined bylZ=jc+/7, whereJ, is the total electronic angular >r,_g~6a,. Forces due to electron cloud overlap are not
momentum guantum number of the cor€,is the orbital included in our treatment, so its validity is then restricted to
angular momentum quantum number of the valence electrork greater than about &9 or 20a,. See Sec. V C for further
andJ is the total electronic angular momentum of the atom.details.

A configuration marked with a prime originates from the It is known that for internuclear separations on the order
(n—1)p>(®Py,) core; unprimed configurations originate of the transition wavelength involvedR ~%c/|E,— E,|
from the (n—1)p®(?Pg),) core. It should be emphasized that =\/27, the atom-atom interaction is affected by the delay
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TABLE I. EnergiesE of first excited states of Nen=3) and Kr (1=5) relative to the ground state,
(n—1)p®. Neon energies are taken from RES5], while Kr energies are taken from R¢86] (more digits
are given in these referengeblotation isJ.-/" coupling; see Sec. Il D. Note that the Ne energies are ordered
according to energy, while for Kr there is some disorder in this respect. Radiative lifetilnesrfbr these
states are also given. Unless noted otherwise, lifetimes of Ne are taken frofp®gefor Kr, lifetimes were
taken from Ref[60] when possible, because of the reported accuracy of their measurements.

State Ne energy Kr energy
n/(K), (a.u) Ne 1I' (a.u) Kr 1/T
ns'(1/2), 0.61916 1.70 s 0.39115 3.87 ifs
ns'(1/2), 0.61428 430 % 0.38816 0.488'%
ns(3/2), 0.61264 12.8 rfs 0.36868 431 1%
ns(3/2), 0.61074 24.4% 0.36438 38%
np’(1/2), 0.69699 14.5 s 0.45042 221 1fs
np’'(1/2), 0.68818 18.28 ns 0.44615 23.5°ns
np(1/2), 0.68763 17.38 ns 0.42872 23.5'ns
np’(3/2), 0.68736 18.69 ns 0.44627 28.5°ns
np’(3/2), 0.68697 19.05 ns 0.44468 29.5%ns
np(3/2), 0.68489 19.38 ns 0.42430 27.35 ns
np(3/2), 0.68400 19.49 ns 0.42358 29.51 ns
np(5/2), 0.68265 19.56 ns 0.42058 32.10 ns
np(5/2); 0.68189 19.42 ns 0.42052 27.73 ns
np(1/2), 0.67551 25.43 s 0.41539 40.0 s
8Referencd 70].
bReferencd61]. But see the caveat in RdB4], and also see following footnote.
‘Referencd 71].
dReferencd 72].
®Referencd62]. More recent but less complete data are found in F&S].
Referencd 73].
9Referencq 64].
"Referencd 63].

due to the finite speed of lighH41,42. Transition wave- Ho=H;+H,, (3a)

lengths forR{ns} to R{np} vary, but satisfyx >500 nm.
The effects of this Casimir-Polder retarded interaction then

play a small role folR< 150_0510, whiqh_ is an approximate HiZE Ekz K, Ji, M) (K Je My, (3b)
upper bound omR for the region of validity of our treatment. K M,

B. Unperturbed Hamiltonian for i=1,2. The atomic Hamiltonians; are diagonal opera-

At infinitely large internuclear separatioR=, the total ~ ors whose elements are the atomic energiesThe labelk
energy of an isolated, two-atom system is just the sum of thédentifies the atomic state, which may be any of the fosr

individual, unperturbed atomic energies, or tennp orbitals(the restriction of our basis set is discussed
in Sec. VII A). The total electronic angular momentum of
Easym=E1+E;, R—. (2)  that stateJ,, is also given, along with the projection df
onto the internuclear axid ;.
Here, E; is the atomic energy of atorn in an individual The eigenvector§a) of the unperturbed HamiltoniaH o

energy level in then/” configuration, as given in Table | for are solutions of the equatidiy|a)=E,|a). SinceH, is di-
Ne and Kr. The quantum mechanical Hamiltonian for theagonal in the basis of product states of atomic states, these
two separated atoms is then are the eigenvectors:

TABLE II. Branching ratiod65] B,._,,» (%), for transitions Ne(®) — Ne(3s). Values are not listed when the transition is electric dipole
forbidden. Referencfs4] also gives values for these branching ratios that are very similar to those presented here.

nl’'(K); 3p’(1/2) 3p’'(1/2); 3p(1/2), 3p'(3/2), 3p’'(3/2); 3p(3/2), 3p(3/2); 3p(5/2), 3p(5/2); 3p(1/2);

3s'(1/2), 98.65 4223 1.37 43.08 43.46 34.00 3.74 5.93 0.33
3s'(1/2), 26.94 48.11 20.09 6.29
3s(3/2), 1.35 10.05 98.63 33.73 1.30 7.89 64.26 58.33 25.70

3s(3/2), 20.79 23.19 7.13 58.12 11.91 35.74 100.00 67.68
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TABLE Ill. Branching ratiog66], B,_.,/ (%), for transitions Kr(%)—Kr(5s). Values are not listed when the transition is electric dipole
forbidden.

nl"(K), 5p’'(1/2)y  5p'(1/2),  5p(1/2)g 5p'(3/2), 5p’(3/2)y 5p(3/2), 5p(3/2), 5p(5/2), 5p(5/2); 5p(1/2)

5s'(1/2), 99.24 43.10 0.00 96.60 51.91 1.03 0.43 0.41 0.47
5s'(1/2), 52.78 47.96 0.20 0.67
5s(3/2), 0.76 0.25 100.00 2.80 0.12 25.56 85.95 69.74 12.42
5s(3/2), 3.87 0.60 0.01 73.41 13.42 29.85 100.00 86.44
|2y =k, Ji, M )1 |k’ 3p, M ,)s. (4  higher multipole terms vanish in a first-order treatmesete,
e.g., Refs[67] and[37], p. 1059 fj and will therefore not be
considered.

We will call these individual product states the “unperturbed
diatomic basis,” because they are the eigenstatd$,0fthe
Hamiltonian atR=oc.

Quantizing&i in Eq. (5) results in the following expres-
sion for the dipole-dipole interactiog37], p. 1130 ff:

C. Interaction term Wy.g=— W[dm dz,f + dl,f d2,+ + 2d1,0d2,o]- (7)

When two atoms are sufficiently separated so that their ) . . .
charge distributions do not overlap, the interaction betweer] "€ interaction has been written in terms of the standard
them can be expressed in a multipole expansion, which hagomponents of the irreducible tensor operatorof rank 1:
the form of a power series in R/[43,44. For two neutral d,=—(d,+id,)/v2, d_=(dx—id,)/v2, anddy=d, ([45)).
atoms, the first nonzero term in this expansion is associatefihe electric dipole operators , are labeled byi=1 or 2

with the electrostatic dipole-dipole interaction. The classicalccording to whether they operate on the first or second

expression for the interaction between two electric dipoles IS tom. The matrix elements «ﬁlfﬂ can be expressed in terms

. . S, of reduced dipole matrix elementgk||d|k’) through the
Wy.g= 7 —3ldi-d2—3(d;-ur)(d2-Ur)]. (5 Wigner-Eckart theorerfd5]:
47780R

. N . ;oo (Klldlky
The electric dipole momentd; and d, are expressed as (kaMJId,LIk’Jk,MJ,)=ﬁ(\]k,lMJ,MJKMJ).
d= —eZﬂ, where the sum ovdris a sum over the position K

) 8
vectors of all electrons relative to the nucleus of the atom ®)

considered. The permittivity of vacuum is given by  The full Hamiltonian is symbolically written as follows:
£0=8.85x10 2 Fm!, ande=1.602<10 1°C is the el-

ementary charge. The unit vectog points from the center H=Ho+Wq.q. ©)

of the first dipole to the center of the second one. There are numerous parameters implicit in E@): the

In many of the excited states that we are considering in . . .
this paper, rare-gas atoms have a nonvanishing quadrupo omic energies dR{ns} andR{np} and the reduced dipole

moment. This is due to the existence of incompletely 1‘iIIed_r|T}fg”r):a delljig];gtis ofl?a r rﬁgtﬁiegltgrcn:rﬁggilIg\éviilct:rualgtsgcljoprz.m
(n—1)p and/ornp shells. As a result, and in contrast to the P

case of alkali atoms, the next first-order term in the multipoleatom'c properties: the atomic lifetima = 1T of statek;

expansion is the quadrupole-quadrupole term, with behavigi'® Pranching rati®,._, from statek to k’; and the wave-
[67] length for that transition\,_,,. . The expression is as fol-

lows [45]:

Wqy.q=Cs/R>. (6) W
(el |= 3ot M52 Ty 2341

While it would be possible to include this term in the Hamil- (10)
tonian that we consider in this paper, we have found it to be
quite small in the expecteld range of validity of our poten- The notationl’,_,,»=B,_ /Iy has been used.
tials, discussed in Sec. Il A. A detailed treatment has shown Values of the atomic properties needed for the explicit
that compared to the first-«R™3) and second-order evaluation of Eq(9) have been determined in experimental
(<R~ ®) perturbations due to the dipole-dipole interaction, studies of the rare gases. Atomic energies have already been
the quadrupole-quadrupole interaction is generally a minolisted in Table | for Ne and Kr. Other experimental values
effect. We therefore postpone the discussion of its expectedre taken from the literature and are repeated here in Tables
order of magnitude and its effect on the calculated potentiall and Ill, for Ne and Kr(wavelengths were calculated from
curves to Sec. VII. energies and have not been tabulated héneour numerical

For the states considered in this paper, which contain inealculations, we use these experimentally obtained values of
complete electron shells with angular momentum gquantunthese atomic propertigshe exception being the Kr branch-
numberl no greater than ong.e., onlys andp orbitalg, all  ing ratios, which were theoretically determine®ur pri-
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mary interest in theR{ns}-R{np} diatomic potentials is in IS)1lp) o< |P)1lp)2- (12)
the calculation of low-energy collision problems, which can

be described predominantly in terms of the long-range parts

of the potentialg9,46]. Therefore we have not attempted an A restriction of our basis set is implicit in Eqél1) and(12).
ab initio determination of these potentials, as would be ré-only R{nss and R{np} states (R=Ne,...Xe;
quired for an accurate description of chemical bonding forces, — 3, ..

. ,6, respectively are included in our calculations.
between atoms at short range.

Other state{n’/} wheren’#n have been excluded. This
restriction is investigated in Sec. VII A.

IV. ANALYSIS OF THE HAMILTONIAN Connections of the type given in E(L18 are consistent
A. Block diagonalization of the Hamiltonian with the resonantelectric dipole-dipole interaction. This in-

I . . . teraction is proportional to the inverse of the third power of
The total Hamiltonian of Eq(9) is not diagonal in the the internuclear separation<R~3). If atom 1 is in ans

unperturbed diatomic basis. Nevertheless, the matrix .eleérbital, atom 2 must be in p orbital and vice versa, express-
ments ofH are conveniently evaluated within it: the matrix

. . : ing conservation of parity. For a physical picture, one might
elements ofH, are just sums of atomic energies, and the d party bhy b 9

. . imagine atom 1 in @ orbital releasing dvirtual) photon in
matrix elements ofV,.4 are expressed in terms of products g P ga ) P

f reduced dipol trix el ts with Clebsch-Gord the process of making a transition to tkelevel; atom 2
gﬁirgeztcse Ipole matrix elements wi ebseh-5ordan Coqzpsorps the photon and is excited to the correspongding

- . . state. The two atoms behave like coupled harmonic oscilla-
Before beginning any computations, it pays to take a clos

> . R : fors.
look at the interaction termiW,.4, which is entirely off- The connections given in Eq11b) are of the type de-
diagonal. The dipole operator produces excitation or deexci

ion. Thus. in Ea(7). th d £ dinol ¢ Scribed by theinducedelectric dipole-dipole interaction. In
Eﬁt'qna. 'dus,lmt a(?) t € prtc% l:ﬁ]s 0 i |po? operatq;s orl this case, either both atoms are in thetate or both are in

€ indivicual atoms require that the interaction permits oniyy,q p state. In a semiclassical description, the negatively
the following types of connections:

charged electrons move about the positively charged

1)11p)2=|P)alS)s (113 nucleus, so that each atom has a fluctuating dipole moment.
’ The dipole of one atom is the source of an electric field that
|S)4]S)2 | PYa| P2 (11p  induces a dipole moment in the other atom; the interaction

between the two momentarily formed dipoles is proportional
In each of these cases=s or p, and theA/=+1 selec- to the inverse of the sixth power of the internuclear separa-
tion rule [25] holds for each individual atom. The notation tion (xR™°).
has been shortened, so thé} is used to mean an individual The only types of transitions allowed by the dipole-dipole
fine-structure level in th&/ configuration. Forbidden con- interaction are indicated in Egel1g and(11b). This is also

nections are of the sort seen if the interaction is written in symbolic form:
|
( 0 1(sl2{pIW[p)|s). 0 0
1(Pl2(s|WIs)1|p)- 0 00
Wy.q= . (13
(0 0) ( 0 1(sl2(s|W| p)1|p>2>
0 0 1Pl pIW[s)4]S)2 0

The interaction matrix is thus conveniently split into two ucts of dipole operators W, 4 always act to conserve

uncoupled blocks(Each of the “matrix elements” of these M;+M,, the sum of the projections Q_fl and jz_ Once

blocks is in itself a block matrix.The upper-left block con-  again, only transitions of a certain sort are allowed:

tains the matrix elements described by Etflg, while the

lower-right block contains matrix elements described by Eq. [3,M)1[3",M")5=[3",M")1|3",M"),

(11b). The form of this matrix makes it clear that eigenstates (forbidden unlessM+M’=M"+M"). (14)

of the resonant dipole-dipole interaction do not mix with

those of the induced dipole-dipole interaction. In this article,(Implicit are the usual electric dipole selection rules Joy

we are interested in finding eigenfunctions of the resonantVe defineQ=|M,+ M,|. States with differingQ) do not

dipole-dipole interaction. At sufficiently largR, these are couple, and consequently the Hamiltonian is block diagonal

the states that give the potentials on which an exgitetiate  in ). Considering values d <0 is redundant because these

rare-gas atom collides with its metastable partner. Thereforstates are not essentially different from those Witk 0. The

we will pay no further attention to the lower-right block in change in sign of) is equivalent to a reflection in a plane

Eq. (13), but instead focus on the upper-left block. containing the internuclear axiguantization axig for this
Closer inspection of the dipole-dipole interaction yieldsreason,Q) is usually taken to be non-negative47], Chap.

another conservation rule. As indicated in Ef), the prod-  V.2).
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TABLE IV. Number of matrix elements in eadh block. pole allowed, sgJ;—J,|=1 or 0 (excluding J;=J,=0).
The Hamiltonian for this truncated system is written in sym-
Q 0 1 2 3 4 5  polic matrix form as

No. of elements 192 166 106 48 14 2

Hiune= (E1+Ex) 1 + Wy g, (16)

Diagonalizing the Hamiltonian has now become someWherel is the identity matrix, and all the matrix elements of
what simplified. There are 236X 2=864 product states of Wa.q are off-diagonal and proportional ®°. Since all the
R{ns} with R{np}, when all fine-structure levels are in- diagonal elements are equal, it is easy to show that the ei-
cluded, each having a well-defindgdwith its complement of genvalues have aR dependence that is purely inverse cubic,
2J+1 degenerate magnetic sublevels. The multiplicativeCouplings to yet another stater states of different energy
factor of 2 comes about because there are two possible pefenergies introduces the higher-order terms, suchRs’,
mutations,|s);|p), and|p)4|s),. Discarding all states with Presentin Eq(15). _ _

Q' <0 leaves a total of 528 states. When the matrix is made The coefficients in Eq(15) are obtained by numerically
block diagonal inQ}, each block is considerably smaller; as fitting the computed? dependence of the eigenvaluestbf
an example, th&)=5 case produces a2 matrix. The !0 such a power seri¢50]. Each potential curve of the mani-

sizes of the other matrices are presented in Table IV. fold of states connecting & s,mpcan be expressed in this
way. In order to obtain accurate numerical valuesGaf

. . o o . alone, one diagonalizes the truncated system as given in Eq.
B. Evaluation and diagonalization of Hamiltonian matrix (16). Numerically, it is easier to fit the potentials resulting

The computation of the eigenvalues and eigenvectors dfom such a truncated basis, since they have a |Riré
H is made considerably easier by block diagonalization. Télependence, in principle. Including all foais and tennp
obtain diatomic potentials, each block of the Hamiltonian isstates of the full basis set results in higher-order terms, which
first numerically evaluated at a specific valueRif Eigen-  hecessarily increase the complications for a numerical fitting
values and eigenvectors of the separate blocks of the Hamifoutine.
tonian are found by a numerical matrix diagonalization rou- Since values o€3 can be found from the truncated basis
tine [48]. A new value ofR is chosen and the procedure is alone, “reducedC; coefficients” C5 may be obtained.
repeated, to obtain the dependence of the diatomic poten- These coefficients are numerical factors that do not depend
tials. These states may be labeled according to their invelen atomic properties, so that they are identical for all the
sion symmetry(g or u), as well as their reflection symmetry rare-gas atoms. They need only be multiplied by a faEtpr
(+ or —) in the case)=0 [47,49. These symmetries are that depends only on the electric dipole matrix elements
determined from the eigenvectors found in the diagonaliza¢ns|d|np), or equivalently on the transition probabilities,
tion procedure. wavelengths, and branching ratios for individual states,
which differ from one rare-gas species to another. The value
C. General form of the diatomic potentials and numerical of C; for a particular rare-gas system is obtained by using
tests

, o I : =F,C¥d 17
Block diagonalization of the Hamiltonian makes the ei- Ca=FnCs (173
genvalue problem considerably smaller. Ideally, one would .3
diagonalize the Hamiltonian analytically to find expressions Fa=N ol

for the diatomic potential8/(R) in closed form. Realisti- ,
cally, diagonalization of most of the blocks is only feasible Wherek stands for thenp) state anc’ is the|ns) state. A

. d . .
numerically. Nevertheless, one can gain some insight intg@oulation ofC5 for all of the hundreds of diatomic poten-

(17b

the potentials by exploring the Hamiltonian further. tials would be quite lengthy, so this is not done here.
Potentials obtained using the full system are expressed as
an expansion in powers & 3, since in the approximation D. Special case: Laser cooling transition

made in Sec. Il C theR™° term due to the quadrupole-
quadrupole interaction is abse(the validity of this approxi-

mation is investigated in Sec. VII)B As a general rule,

therefore,

As stated in the Introduction, we have a special interest in
the potential curves connecting asymptotically with the
ns(3/2),+np(5/2); separated atomic states, because these
atomic states form the cycling transition that is used for cool-

Cs Cs ing and t_rapping. T_here are 40 potenti_al curves connecting
V(R)=Cy+ R7+ RT+W . (15) asymptotically to this separated atom limit: 10, 10, 8, 6, 4,
and 2 curves fof)=0, 1, 2, 3, 4, and 5, respectively.
Of all these potentials, th@ =5 case is especially inter-
The termC3R ™2 results from electric dipole-allowed cou- esting. In this case, the Hamiltonian block is exactly 2,
plings. This can be seen by examining a truncated atomiith no dipole-dipole coupling to any other states. Therefore
system, with only two fine-structure levels of different par- these potentials have exactlyRE/behavior, as is easily seen
ity, having total angular momentuth andJ,, and energies 0 occur when diagonalizing a matrix of the sort
E, andE,. For such a system, &<, a whole manifold of 3
potential curves approach the asymptotic energy of the sepa- H :( E AR ) (18)
rated atomsE symg=E1+E,. The transition;«—J, is di- A/IR® E
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The two solutions consist of one attractive and one repulsive TABLE V. Values of C; obtained from truncated basis
potential, V(R) =E+ C3/R3, with C;=+A. The attractive Nns(3/2),+np(5/2); for Ne, and Kr, (n=3,5 respectivelyand re-
potential curve has symmetry, and can therefore be excited duced value<s* valid for all R=Ne, . . ., Xe. Spontaneous decay
from anQ =4 “ground state,”ns(3/2),+ ns(3/2),, which  rates of diatomic states,,, are given in terms of , the sponta-
hasg symmetry. neous decay rate of thep(5/2); atomic state in this example.

Also, recall that metastable rare gases can easily be lost

- N e B A Ne, C Kr, C 10’ ¢
from atomic traps in ionizing collisions. But th@ =5 di- 3 23 33
atomic states are made up of internal angular momentum St€ (@) (au)  (hartreeag nsinnf) T /T,
states that are forbidden to ionize, due to spin selection rules. 0 —1042 —14.84 —7.701 1.323
This is seen by examining the associated eigenfunctions, 0y —7725 —11.01 —5.712 1.000
which are particularly simple: o) _5677 —8.090 —4.198 1.217
1 Oy —3.845 —5.480 —2.843 1.000
o} —3.487 —4.969 —2.578 1.060
55)=—I[1(ns)2,2)41{(np)3,3),+|(np)3,31|(nS)2,2),], u
| o 1/2“( )2,2)1/(np)3,3),+((np)3,3)4/(ns)2,2),] 0; 3.487 4.960 2578 0.940
(193 0, 3.845 5.480 2.843 1.000
Og 5.677 8.090 4.198 0.783
1 0, 7.725 11.01 5.712 1.000
|5u>=E[I(ns)2,2>1|(np)3,3>2—|(np)3,3>1|(ns)2,2)2]. 3 10.42 14.84 7.701 0.677
(19b) 1, —10.28 —14.64 —7.598 1.264
1, —7.523 —10.72 —5.562 0.869
Individual kets on the right-hand side of Eq49) are total 1, —5.280 —7.524 —3.904 1.045
angular momentum states for each atdm/)J,M);. The 1, —4.057 —5.781 —3.000 0.845
components are products of atomic states that are fully 1, —-0.028 —0.041 —-0.021 1.005
stretched in both spin and orbital electronic angular momen- 1, 0.028 0.041 0.021 0.995
tum: They have both the maximum possillleL, andS, as 1, 4.057 5.781 3.000 1.155
well as the maximum possible projection of angular momen- 14 5.280 7.524 3.904 0.955
tum onto the internuclear axis. As explained in Sec. Il A, 1 7.523 10.72 5.562 1.131
ionization is severely suppressed for such states. Out of all 1, 10.28 14.64 7.598 0.736
Fhe possible states, tfé=5 case is the only one where this 5 —9856 —14.05 —7.288 1.302
Is true. 2 -6.879  —9.803 —5.086 0.992
Reduced C; coefficients for thens(3/2),+np(5/2); 23 —4.490 —6.398 —3.320 1.198
manifold have been obtained using the method described in , 0348 —0.496 0257 0.974
- g . . . .
Sec. IV C. All but two of the f'lne—structure'e_nergy levels 2, 0.348 0.496 0.257 1026
were removed from the Hamiltonian, retainirgnly the
. . 2 4.490 6.398 3.320 0.802
ns(3/2), and np(5/2); atomic states, so all of the potential 5 6.8
3 u .879 9.803 5.086 1.008
curves follow perfectlyR™~ power laws. The reduced coef-
e . - 2 9.856 14.05 7.288 0.698
ficients can be used to obtai@; values for all potential
. . . - 3. —9.144 —-13.03 —6.761 1.387
curves in this manifold, when multiplied by a factef, [see 3 _5756  —8.202 _4.956 0.654
Eq. (17a] that depends only on the electric dipole matrix 39 1'507 2'147 1‘114 1'200
elements for a specific rare-gas atom, 3“ h 1'507 h 2 147 h 1 114 6 800
(ns(3/2),]|d|Inp(5/2);). These reduced coefficients are pre- .° ' ' ' '
. 3y 5.756 8.202 4.256 1.146
sented in Table V. The calculated values of 3 0.144 13.03 6.761 0.613
~ . g . g . . . .
(_ns(3/2)2||d||np(5/2)3) andF, for this specific manifold are 4, _8112 1156 _ 50998 1.230
listed in Table VI, for Ne, Ar, Kr, and Xe, together with the 4 _ 3662 _5218 2708 0.897
lengths and lifetimes used for the calculations ¢ ' : : '
wave : 4, 3.662 5.218 2.708 1.104
4 8.112 11.56 5.998 0.771
E. Diatomic lifetimes 53 —6.675 —9.512 —4.936 2.000
Once the eigenvecto}§) of the diatomic states have been 5 6.675 9.512 4.936 0.000
determined, their lifetimes I can also be found. The ma-
trix elements ofd; ,+d,,=dy, between these diatomic _ _ _ _
states and the diatomic “ground states$s},|s),, are calcu- In general, the diatomic state eigenvectors vary \Ri{tso
lated, squared, and summed to obtain these lifetimes: that the diatomic lifetimes are also a functionRf At large
R, these eigenvectors vary only slightly, and the diatomic
- lifetimes approach a constant value. Table V contains the
= 'y 2 2 . . . . .
T E MJ%.J, % |1 (kIMfoK" I My [ dror,u] ) diatomic state lifetimes for all the states in the truncated

(20) system that was discussed in Sec. IV D. These diatomic state

lifetimes were determined as written in Ed20), at
Here, the sum ovek andk’ is now only a sum oveR{ns} = R=100a,, and are expressed in terms of the atomic state
states;R{np} states are excluded. lifetime. For this truncated system, the eigenvectors do not
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TABLE VI. Wavelengths\ (in vacug, lifetimes 7, and derived  fine-structure changing collisions, which is another trap-loss
reduced dipole matrix elements for transitioR6’P,) ~R(*Dz).  mechanism in addition to ionization. In some cases, these
The conversion factdf,, may be used to obtain approximate values gypided crossings produce “humps” in attractive potentials
of Cs for all rare-gas specie¢See text. [a hump is a region wher¥(R)>E,q,md. Such potentials
may support quasibound states. In this complicated inner re-

3 3 —7
A T (*P2ld|'Ds) 107 Fa gion, one also finds attractive potentials with wells and steep,

Atom (nm) (n9 (eap) (nmP/ns) .

repulsive walls. Naturally, these are not perfect representa-
WNe 640.402 19.42 5.777 1.352 tions of the true short-range potentials, since at smaller in-
40Ar 811.754 33.1° 6.14 1.62 ternuclear distances contributions from exchange forces
84Kr 811.51% 27.7% 6.896 1.927 compete with the dipole-dipole interactidgeee Sec. Il A.
136xe 882.184 348 7.06 2.02 Nevertheless, it is clear that there are both pitfalls and op-

portunities at smalR. The pitfalls stem from the complica-
:Reference{SS]. tions in dealing with such a tangle of potentials, while the
Referencg59]. " . o )
*Referencd 74]. opportunities can be found in this rich structure with so
dReferencd 36] many phenomena available for investigation.
eReference{60].. At long range R=30a,), the potential curves smoothly
"Referencd 75]. approach thgir asymptotic limits. If a potential sFems from a
IReferencd 76]. pair of atomic states that are connected by a dipole-allowed

transition, the long-range behavior is of the foRn>. If the

depend on the particular rare-gas system being consideretfansition is dipole forbidden, the@;=0, and the long-
These diatomic lifetimes are then good for any of the heavyange behavior is of the forR~° to lowest order. This has
rare-gas diatomic molecules in thes(3/2),+np(5/2),  been verified by numerically fittin50] the potential curves
manifold. Their values range from half the value of theto the first three terms in Eq15), in the region 58,=<R
atomic lifetime to infinity. =<500a,. Even when the asymptotic atomic states are con-

nected by a dipole-allowed transition, nonexistent branching
ratios between the two asymptotic atomic states can result in
potentials withR™® behavior. Such potentials generally ap-
In the following discussion of specific diatomic potentials, pear almost constant at long range, on the scale of the fig-
certain concepts repeatedly arise that deserve special notares.
tion. Every pair of atomic states gives rise taranifold of The magnitudes o€4 for these many potentials vary by
potentials. For each pair of atomic states, the sum of theeveral orders of magnitude. A fairly small value,
energies of these atomic states, each measured from t@~10—2 a.u., is found in theQ=1 manifold of the
single atomic ground state, is the asymptotic endigym, Ne 3s(3/2),+Ne 3p'(3/2), state, located at Eggymp
=E1+E,. [It should be noted that this is the coeffici®®§  — 1 2977 a.u. The largest 8;=10.4 a.u., and is found in
in Eq. (15).] An attractive potential has a minimutwell) of ., 0 =0 state of the Ne §3/2),+ Ne 3p(5/2); manifold
f‘rﬁpth Vlmi“ tr;"\i/t is .'OC‘?‘ted at internucfle_ar ds_(];:-fparatilamfin. (Easymg=1.2926 a.u.). In fact, for every value &, the larg-
i ponk o 2 e v €5 Valies o1 Co are all found in the Ne &32)
srﬁéﬂgst value oR that satisfieslxn/(R)— £ Y +Ne 3p(5/2); st.a.te. ' This comes about b'ecause this
asymp J=2~J=3 transition involves the largest possible Clebsch-

A word about units is also in order. In atomic units, the Gordon coefficient, 1, and a relatively large dipole transition
hartree is the unit of energy, 1 hartre27.2 eV, and the . P X .
o matrix elemenidue to the 100% branching ratio

Bohr radiusay=0.529<10 °m is the unit of distance.
Hence, wherCs is given in a.u., it should be clear that this

V. APPLICATION TO Ne

3 .
means hartre@g. In some cases, when speaking of a laser B. Diatomic Ne potentials: inverse sixth potentials
detuning, it is also useful to give a frequency, e.g., 1 GHz
corresponds to 1.5210 7 a.u. Referencef51,33 contain Some of the diatomic potentials shown in Fig. 2 have
useful conversion factors and discussions of units. C;=0, so that in the approximation made in Sec. Il C where

theR~° term due to the quadrupole-quadrupole interaction is

neglected, they are actually of the for@,R® in lowest

] ] . order (the validity of this approximation is investigated in
The potentials for diatomic Ne have been calculated nugec. v B). An interesting example of this occurs for two of

merically, using the method described in Sec. IV B. Thesghe )= 2 curves in the Ne §3/2),+ Ne 3p(5/2), manifold

potentials are presented separately, for different valué€s, of (Easym=1.2934 a.u.). The two eigenvectors can be written
in Fig. 2. A general pattern is evident at first: the potential

curves at the lowest energies are forced downward, due to

couplings with the large number of states with the same sym- 5 y— Z11(35)2.0),1(30)2.2).— |(35)2.2)-|(3p)2.0
metry above them, while those at the highest energies are| W 2[|( 12.011(3P)2.92-1(39)2.24/(3p)2.02
forced upward. Within the cluster of potentials in the center, _
crossings and avoided crossings appear at shorter range 1(3p)2.011/(39)2,2)2+(3p)2,2)1(35)2.02],
(R=30a,). Avoided crossings provide opportunities for (21a

A. Diatomic Ne potentials: inverse cubic potentials
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R (units of ag)
FIG. 2. Diatomic Ne potential€2=0, . . . ,4(see Fig. 4 fo)=5).
1 while their Cq coefficients are typical for all of these curves,
12¢)= §[|(35)2,0)1|(3p)2,2)2—|(3S)2,2>1|(3p)2,0>2 on the order of 1Ha.u. The transitiold’ =2<J=0 is di-
pole forbidden, so matrix elements of the form
+[(3p)2,001/(35)2,2),—(3p)2,2)4/(35)2,0),], 1(38"(1/2)o| o3P’ (3/2)2| Wy.a|3p" (3/2)2)4]3s" (1/2)o), are

exactly zero, and these diatomic states are connected only in
second order, resulting i63;=0.

When C; is very small and negative, a positive value of
where the notation used in Eq4.9) is also used here. The Cg can result in very shallow attractive potentials with
states in Egs.(21) are unusual in consisting entirely of minima at fairly largeR. An example is the Ne $(1/2),
dipole-forbidden connectiongbecause|M;—M,|=2>1).  +Ne 3p(1/2), state, aE 5ymp=1.3068 a.u. All values o€
Stated mathematically2,|Wy.4|2,) =0, and the same holds associated with this manifold are on the order of only
for |2). 10"2 a.u., while|Cg| is on the order of 1bor 1¢° a.u.; for

As another example of aR™® potential, we turn to the these potentialsV,,, is on the order of 1 to 0.1 GHz,
diatomic state Ne §(1/2),+Ne 3p’(3/2),, located at with R, located at tens ofa,. While the transition
Easymg=1.3016 a.u. The variation in these potentials is onlyJ=1-J"=0 is dipole allowed, the branching ratio between
visible atR=<30a,. A numerical fit to these curves produces these two atomic states is almost zero, as shown in Table 1.
C; coefficients that are practically zerpC;|<107° a.u., It should be noted that many of the dipole-allowed transi-

(21b
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Q=2 1
35 (312),43p (5/2);

V(R) (THz)

35 (3/2),+3p (5/2)s

20 40
R (units of ag) R (units of ag) R (units of ag)

FIG. 3. Diatomic Ne potentials connecting asymptotically &§32),+ 3p(5/2); and 3(3/2),+ 3p(5/2), limits (asymptotic energies
are 1.2926 a.u. and 1.2933 a.u., respectivell=0,1,2. The 3(3/2),+ 3p(5/2); asymptotic limit has been chosen as the zero of energy,
here.

tions have very small branching ratios. This follows from the + Na 3p(2P;;,) asymptote. The maximum values of angular
general rule for the heavy rare gases that transitions thahomenta for a fully stretched Natom arel ;=1 andS,,

preserve the state of the cotg, are strongly preferrethis  —1 and further, ther symmetry must be preserved. The,Na
IS by no means an exact selection rule, howev@hus  giatomic state that most closely corresponds to ous|\és
s'<>p ands—p’ transitions have low branching ratios. e japeled®Il, . Excited Na potentials have been calcu-

Unfortunately, the values of¢ quoted are not expected | a4 by Konowalowet al. and later by Jeund52]. At
to be exact. These values @f; result from second-order R=15a,, the Konowalow potential has a depth of

contributions to the dipole-dipole interaction betwd®ms} ~0.0024 a.u. and the Jeung valuei§.0020 a.u. This is to

22rdneR{n?r}orsr,]tateSstaat1(Iec;ne. tﬁgtrthe;rgontglibl;té?ns i?s rr;l:]setr be compared with the NB, potential, which has a depth of
9 gy’—0.0020 a.u. aR=15. Differences are due to several fac-

R{(n+1)p},R{(n+2)p},..., e.tc. hese h|gher-energy ;[]ors: (a) the overlap of the valence electrons is not included
terms have not been included in our calculations, but shoul A e
in our calculation;(b) the Ne and Na cores differ; andc)

produce only small corrections to our potential curysse our basis set is more restricted than that used in [,

Sec. VI A). The values ofC, are not affected by this prob- Even so, the difference between the Konowalow result and
lem, since only a single pair of atomic states contributes to ’ . .
their value, as pointed out in Sec. IV C. our c_:%lculated potential atR=153, is then iny
' 4x10 " a.u., about 20%, while Jeung’s result coincides
with ours. Therefore we conclude thatR#=15a, chemical
C. Diatomic Ne potentials: Estimate of behavior at short bonding is fairly unimportant; furthermore, its effects drop
range off rapidly asR increases.

The potentials are somewhat unreliable at short range,
where overlap of the electron clouds of the two atoms be-
comes significant. An estimate of approximately where this As stated in the Introduction, we have a special interest in
takes place was given in Sec. Ill A; for Ne the overlapthe potential curves connecting asymptotically with the
should be large at arouri=3a,. A better estimate is nec- Ne 3s(3/2),+ Ne 3p(5/2); separated atomic states, because
essary to determine where chemical bonding effects begin tthese atomic states form the cycling transition that is used for
become important. To our knowledge, the chemical structureooling and trapping. These potential curves, 40 in all, are
of the excited Nediatomic molecule, N s} +Ne{np}, has  shown in closeup in Figs. 3 and 4. At long range, half the
not been calculated. Excited Naas been investigated ex- potentials are attractiveQ3;<0) and half are repulsive
tensively, however. The latter differs from Neue to its (C3>0). The latter potentials may be useful for suppression
filled core, but its valence electron occupies the same orbitabf trap-loss collisions, a mechanism that has already been
Assuming that chemical bonds are predominantly due to thetudied in Xe[24,28 and Kr[23], for example. The attrac-
valence electron, a good estimate of the short-rangeifNe tive potentials support bound states that will be suitable for
teraction can be obtained by studying that of,Na photoassociative spectroscopy.

The easiest case to work with is the State, with the The Q=5 potentials have pur® 3 dependence, with
Ne 3s(3/2),+ Ne 3p(5/2); asymptote. This can also be |C5|/=6.7 a.u. As explained in Sec. V C above, chemical
written Ne 3(3P,)+ Ne 3p(3D;), because these states bonding makes these potentials unreliable at internuclear
have good quantum numbeksandS; for the 3s Ne atom, separations less than abdt 15a,. The attractive potential
L=S=1, while for the  atom,L=2 andS=1. Since the 5, is quite deep there, withf(15a,) = —0.0020 a.u. In com-

5, state is fully stretched in electronic spin and orbital angu{parison, photoassociative spectroscopy is usually carried out
lar momentum(see Sec. IV [ adding these angular mo- with detunings below atomic resonance on the order of sev-
menta must result in maximum values of these angular moeral GHz~10"" a.u. As an example, a detuning-66 GHz
menta for the diatomic state, i.d;,=3 and S;;=2. The  will excite colliding atomic pairs to bound states of thg 5
corresponding state in  Na has the Na 8(3Sy,) potential at abouR=2008,. In contrast, the same detuning

D. Laser cooling transition in Ne
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" a=-4 I\’ " Q-5
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FIG. 4. Same as in Fig. 3, only fd2 =3,4,5. Note that there are fd=5 potentials in the §(3/2),+ 3p(5/2), manifold.

will produce excitation to bound states of the most shallowmwould have to be made for an experimental test of the accu-
attractive 1, state, seen in Fig. 3, at aboRt=20a,. This  racy of these values df¢. If it is assumed that these pure
state has a very small coefficie@g=—10 2 a.u. long-range attractive potentials have the forf(R)=
Applying laser light that is detuned close below the_|(;3|R*3+|CG|R*6, a small correction t€g, in the form
3s(3/2),+>3p(5/2); transition to a gas of metastable Ne will of a multiplicative factor (1 x) for x<1, introduces a mul-
excite colliding atoms to bound states in all of the 40 potenyjpjicative correction factor of (%x/3) to Ry, and
tials approaching the asymptote, resulting in a complicateql_x) to V. For example, a 25% decrease in the value of

spectrum, with rotational and vibrational spectra from allc6 results in about a 25% increase in the well depth: whether

thesg poteptials overlapping each other. It should be pO_SSibELnot a shift in the vibrational spectrum would be detectable
to distinguish between the spectra because the spacing g pends largely on the ionization widths of the levels. These

B B . _3 . .
vibrational '”.‘?S due to &R~ potential at long range is widths are expected to be quite small because atoms in these
related specifically to the value €5 [53,54. Also, the rate
states never get much closer to each other thax 3lon-

of transitions occurring at smei will be small compared to ization probabilities decrease exponentially with internuclear
those at largeR, since the excitation cross sections scale P P y

with R?. Another distinguishing factor is the ionization prob- s?b?:ratlon, and at this large distance they should be negli-
ability, which is quite large for states other th@=5. It is 9 As. another example, in thesX(1/2),+ 3p’ (1/2), mani-
possible that only th€ =5 spectrum will be distinguishable, P, 17 3P 1

- ; v fold  (Eggymp=1.3073 a.u.), another shallow wellV;,
as sharp peaks rising above the broad irresolvable |on|zat|o£113 GHz) can be found whefd=0, with R,,=27a,.

spectrum due to the other potentials. If the other spectra ar&gain this well seems to result from the competition be-

resolvable, however, it will be possible to obtain informationtWeen 2 positiveC.— 1 5% 10* a.u. and a somewhat weak
about ionization from the spectral line shapes. We are cur- P 6~ o ’

rently studying the ionization probabilities of these states169alVeC,=— 1.2 a.u. term. Careful inspection of the large
and will present our results elsewhere. humber of potential curves reveals more of these shallow,

pure long-range potentials, not visible on the scale of Fig. 2.

A pure long-range potential was recently used to make an
accurate measurement of the lifetime of{Rs} and to ob-

In Fig. 2, there are several potentials that are “pure longserve the Casimir-Polder retarded fofd¢€]. We expect that
range.” This is a rather loose term, which is related to theseveral of the pure long-range potentials in the heavy rare
inner turning pointR;,. A potential is said to beurelong  gases may be useful for similar types of precision measure-
range ifR;, is so large that even the inner repulsive part ofments. A complication in this case is that only two of the
the potential is well described by the long-range forces, aR{ns} states are metastable, tms’(1/2), and ns(3/2),
opposed to exchange forces, which are due to overlap of th&tates. For example, with Ne, it would then be extremely
electron charge distributiori§5]. difficult to populate the particulars3(1/2),+3p’(1/2), po-

As noted in Sec. V C, exchange forces are competitiveential just mentioned above, since it would have to be popu-
with the electric dipole-dipole interaction &<15a,, so lated via excitation from the short-liveds31/2), state,
such pure long-range potentials must ha&g=15a,. For  which is essentially empty in any Ne gas cell or atomic
example, among theQ)=3 potentials of the §(3/2), beam. The 3(3/2),+ 3p’(3/2), potential described earlier is
+3p’(3/2), manifold (E,sym=1.2981 a.u.), there are two a promising candidate, however, since it can be populated by
attractive and two repulsive potentials. Of the attractive polaser excitation from a metastable state.
tentials, the higher curve has a very shallow well\&gf;,
=-0.35x10"°a.u=—-23 GHz, below the asymptote, and VI. APPLICATION TO Kr
R,=31a,. A fit to this curve indicates thatC;=
—0.43 a.u., andCg=1x10* a.u. Therefore it is apparent
that this potential is pure long range becauseGhdaerm is The potentials for diatomic Kr are shown in Fig. 5. These
competitive with the fairly smalC; at unusually larg&R. In  potentials are similar to those for diatomic Ne. On this scale,
Sec. V B, it was noted that our calculat€g is not wholly  the most notable difference is the clustering of the potentials
reliable. Spectroscopic measurements of this particular staiato three groups. In the heavier rare gases, such as Kr and

E. Pure long-range Ne potentials

A. Diatomic Kr potentials
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FIG. 5. Diatomic Kr potentials{=0, ... ,4(see Fig. 7 fo)=5).

Xe, the splitting betweems and ns’ is more pronounced pling at long range of these two separated atom states are
than in Ne; the same is true of the splitting betwegnand  shown in Figs. 6 and 7. The values ©f are tabulated in
np’. This is the result of stronger spin-orbit coupling in the Table V, alongside those for diatomic Ne. In comparison
(n—1)p® core for these heavier atorfig5]. In Fig. 5, then,  to diatomic Ne, these curves tend to be steeper, with a
one sees a lower-energy group asymptotically connecting tf,5ximum of|C5|=14.84 a.u. This is due to the difference
separated atom pairs withs$ 5p, a medium-energy group ;- yhe  jifeimes and transition wavelengths of the
connecting to §'+5p and S+5p’, and a higher-energy ns(3/2),<np(5/2); transition in Ne and Kr. Using Eq10),

group connecting to § +5p’. . . . o
Otherwise, the Kr potentials appear similar to those for°"® finds that for this manifold, th€; coefficients for Ne

Ne. The potentials can be written as a power serig®ia,  aré smaller than those for Kr by a factor of 0.70.
and at smaller values &, numerous avoided crossings can

be seen, resulting in a complicatdthe-structure “spa- C. Pure long-range Kr potentials
ghett. Pure long-range potentials are evident in Fig. 5; for ex-
) o ample, anQ) =4 potential in the §(3/2),+5p(3/2), mani-
B. Laser cooling transition in Kr fold (Easymg=0.788 68 a.u.) has a minimum at about8

For Kr, the laser cooling transition is sB3/2), Even more noteworthy is thesg3/2),+5p(5/2), manifold
—5p(5/2)3. The diatomic potentials resulting from the cou- (Easyms=0.784 96 a.u.). The attractive potentials arery
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FIG. 6. Diatomic Kr potentials connecting asymptotically &(3/2),+ 5p(5/2), and 5(3/2),+ 5p(5/2); limits (asymptotic energies are
0.7850 a.u. and 0.7849 a.u., respectiyelgr 2 =0,1,2. The 5(3/2),+ 5p(5/2), asymptotic limit has been chosen as the zero of energy. In
the upper set, the plots focus in on thg(3/2),+ 5p(5/2), asymptote; note the change of scaleVifR).

pure long range, having minima anywhere betwdgn tials, these particular pure long-range potentials do not result
~40a, and 12@,. They are so shallow that it would not be from very small, negative values d€; which are over-
possible to discern them clearly on the scale of Fig. 5, so awhelmed at long range by positiveg terms; values ofC4
exploded view is given in Figs. 6 and 7. range from at leastC;=—0.55a.u. to at mostCs;=
These shallow potentials are the result of avoided cross—4.81 a.u.[For =2, there are also the two states with
ings that occur when the repulsives(8/2),+5p(3/2); po-  C53=0, which have already been discussed in Sec. V A. See
tentials rise up to meet the attractives(8/2),+5p(3/2), Egs.(21).] In Kr, these avoided crossings occur at such long
potentials. States of the same symmetry repel each other, sange because thep$3/2), is fortuitously close in energy to
that the downward-turning attractive potentials are forced ughe 5p(3/2); state, only about 5210 °a.u=13cmi?!
again. Such avoided crossings occur among other states, away. A potential in the §3/2),+ 5p(3/2), manifold hav-
was shown for diatomic Ne in Sec. V E. Unlike those poten-ing a large and negativ€; term approaches thesg3/2),

T 55(312),+5p(512) 4
)
o
°
g
>
Q=5
. 5'2 - 5.
or S5s(3/2),+5p(5/2),
N
jas}
Q
@ -250 F
>
55(3/2),+5p(5/2);5
80 120 40 80 120
R (units of ay) R (units of ay) R (units of a)

FIG. 7. Same as in Fig. 6, only fd2 =3,4,5. Note that there are fd=>5 potentials in the §3/2),+5p(5/2), manifold. There is a
change of scale ivV(R) in the upper set of plots.
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+5p(3/2); neighboring manifold at relatively large dis- large CqR™® component. As an example, R¢fL0] gives
tances, and then turns up in an avoided crossing, creating@;=—6.2 a.u. for the § pure long-range potential in the
well at largeR. Na 3?Pg,+ Na 3°S,, manifold. This curve has a potential
The 55(3/2),+5p(3/2), potentials look very promising minimum V,=—57 GHz atR;,=71a,. Such a minimum
for experimental studies of atomic properties. They are aceccurs when theCq term in Eq. (15 is set equal to
cessible via 810 nm laser excitation from the metastablg.1x10° a.u. This value is several orders of magnitude
5s(3/2), state. By numerical integration of the Sctimger  |arger than the value of4 derived in Refs[57,58. It ap-
equation using the method of R¢66], we have determined pears, then, that for Na, the effect of higher-energy terms on
that all of these potentials have vibrational bound statespure long-range potentials is quite small. In R&7], it is
even the very shallowest one, which is in te=1 mani-  mentioned that for the heavier alkali diatomic molecules, the
fold. Photoassociative spectroscopy of these potentialdisturbing effect of higher-energy terms becomes somewhat
should be possible with well-resolved spectra, since at suchore significant.
large internuclear separations, ionization is negligible. A calculation of theCq dispersion coefficients for the
One also expects to find similar pure long-range potentialgxcited heavy rare-gas diatomic systems would be useful, but
that result from all the § and 5’ states connecting to the application of the results for the alkalis is informative. A fit
5p(3/2), state. There are limitations to the uses of thesef our pure long-range potentials yields values|/@f| that
other potentials. Such potentials connecting to the short-livedre typically between 1 and ¥010* a.u. for Ne, and in the
5s'(1/2), and 5(3/2), states are difficult to populate. And range of 5 and 58 10* a.u. for Kr. The values given in Ref.
the 5s'(1/2),+5p(3/2), state can only be populated via a [57] are then at least 2% and at most 40% of our typ@al
dipole-forbidden transition from the metastable’@l/2),  values. This means that qualitatively, there are no changes to
state J=0~J=2). our calculated potential curves. Quantitatively, a correction
to our Cg values of 10% alters the positions 6f,;, by 10%

VII. LIMITATIONS and R, by about 3%, as noted in Sec. V E. The exclusion
of higher-energy levels then appears to be a reasonable re-
striction of our basis set. In some of our restricted-basis po-

As noted earlier, in the calculation of our diatomic poten-tentials, C; approaches lower values, between* 18nd
tials we have used a restricted basis &ts} and R{np}, 107 a.u. The accurate study of these cases would seem to
R=Ne, ... ,Xeandh=3, ... 6respectively. A more precise require a larger basis set. In general, it should be emphasized
calculation would have to take into account contributions tothat values oV, and R, quoted in the present work are
the electric dipole-dipole interaction due to other states ohot exact.
higher energiesR{(n+1)p}, R{(n+2)p}, etc. One expects Xenon is an exception to the analysis given above. In Xe,
such states to have only a small effect on the shape of thihe 6p’ levels intermingle with the @ levels. In this case, a
potentials calculated here, because the energy differenagseful approach might be to restrict the basis to ordyafid
between diatomic states R{ns}+R{(n+1)p} and 6p levels, excluding the relatively distanp6 states, which
R{ns}+R{np} is in general quite large. Furthermore, the are about 410 2a.u=8x10°cm ! higher in energy than
inclusion of such states will not change the valu&gffor a  the 6p states.
particular diatomic potential, since that depends only on the
dipole matrix element for the transition between the two B. Neglect of quadrupole-quadrupole interaction
separated atomic states. The inclusion of higher-energy
stateswill change the higher-order terms in E45), how-

A. Restriction of basis states

In Sec. Il C, we dropped the quadrupole-quadrupole in-
ever, theC, terms in particular. These are important for the teraction from our Hamiltonian, citing its relative unimpor-
ance. We will now consider this term in more detail and

study of pure long-range potentials, since they are primarilys >~ . . . .
responsible for the radial positions and energy depths of pOQerlve its order of magnitude for comparison with the dipole-

tential well minima, as was discussed in Sec. VE. It is therfj'poIe terms used exclus_|vely until now.
desirable to obtain an estimate of the degree to which such The quantum r_’nechanlcal expression for the quadrupole-
higher-energy states would affect the calculated potentials, ﬁquadrupole term 43,67
they were included. Unfortunately, such an estimate is diffi- e?
cult because of the scarcity of available data for transitions W q=-——-5{Q1 _,Q,,t4Q; _1Q21+6Q; Q20
from higher-energy states ®{ns}. The situation has been 4meoR
studied in the alkali atoms, however, so we turn our attention +4Q11Q, 1+ Q1 Qs 1}=CsR5, (22)
there for the moment.

Bussery and Aubert-Feen [57] (and more recently Ma-
rinescu and Dalgarn®8]) have calculated values @fs dis-  where the operato® consists of a sum over terms from all
persion coefficients for diatomic alkalis+np molecules.  contributing electrons, while the subscript£, . . . ,2denote
They included many basis states with atomic term numbergs spherical tensor componefit3,45. The operatof) con-
n’>n. For Na,Cg is in the range of 2 to #10° a.u., while  serves parity. For the states considered in this paper, this
for Rb, it is between 1 and210" a.u. When spin-orbit cou- means that all matrix elements requiring a connection be-
pling is included, however, potentials with's of opposite  tweens andp states vanish:
sign connected to different atomic fine-structure states,,
and °P,,,, anticross[10,38,53. The resulting curves no
longer have pureC;R™2 behavior, but have an additional, 1(8]2(P|Wq-q|P)1/5)2=0, (23
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TABLE VII. Expectation valuegr?) and(r3) forthenpandns  states mentioned above, gave differences ofr@ad 0.25r,

valence electron and the { 1)p core hole for Ne =3) [68] and  respectively, on a total of & While for the heavier rare

Kr (n=5) [69] together with data for thas valence electron of the  gasesC increases somewnhat due to the larger extent of the

corresponding alkali atonj$9]. The(r;) for Kr(Sp) was obtained  gjectron orbitals, the same is true for the resonant and in-

by scaling the Ne(B) value with the ratio (rf)[Rb(Ss)]/ duced dipole-dipole interactions. For example, for Ky

(rd)[Na(3s)]. values are about 7.8 times larger than for Ne,®glis about
(r2) [(n—1)p] (3 [ns] (r2) [np] twq times larger a_md, consequentigg about four times.
Atom n (a2) (a2) (a2) This means that in these cases as well, the quadrupole-
quadrupole interaction remains a minor effect.
Ne 3 1.01 22.9 45.9
Na 3 20.7
Kr 5 4.5 80 C. Adiabatic corrections
Rb 5 36.2

The dynamical aspects of ultracold collisions taking place
on the adiabatic potentials developed so far are determined
by the nuclear kinetic energy operatdk. Part of this,
namely Ta%"= — (7.2/2,,) (#?/ 9R?), can be incorporated in
so that only matrix elementsg(s|,(p|Wq.q|S)1|p). need be the adiabatic potentialt3]. In our case, where the lowest-
considered. For the+p manifold we are concerned with, order interaction haR~3 behavior, these adiabatic correc-
Cs will thus be of order tions conform toTa%@=C,/R®. This comes about because

the first-order correctioha’), to the asymptotic wave func-

tions |a) also hasR™2 behavior, while in additiona’|a)
(rﬁ)(rf)), (24  =0. Therefore adiabatic corrections are only a small pertur-

bation at largeR (we have foundCg to be of order
4x10° a.u. for Ne.

eZ

C5: O(

47eg

with the subscriptdh andv denoting the (-1)p core hole
and thenp valence electron, respectively.

For Ne, we have calculated tmé expectation values in-
volved from electron wave functions developed by Haber- We have determined the long-range behavior of diatomic
land [68]. These are displayed in Table VII, together with potentials of the heavy rare gases due to the electric dipole-
similar values for Kr that we have estimated based on pubdipole interaction, using an approach based on experimen-
lished(r?) values for the rare-gas and the equivalent alkali-tally measured quantities. The potentials are valid for inter-
metal atoms[69]. The table points toCs~46 a.u. for nuclear separations from aboutah5up to about 1508 .
Ne(3s)+Ne(3p); a full treatment has shown that, in prac- Numerical calculations have been presented for diatomic
tice, Cs never reaches beyond 16 a.u. in this case, due tetates connecting asymptotically to tRéns}+ R{np} sepa-
additional Clebsch-Gordan coefficients; by scaling this givegated atom limit, withR=Ne and Kr, as a preliminary step
a maximum value oC5=128 a.u. for Kr. These values are towards predicting photoassociative spectra. At large inter-
of the same order of magnitude as most of @hevalues that  nuclear separation®@=30a, the potentials have a predomi-
we have found, in which case a notable influence of thenantly R™2 or R™® behavior, while at short range they are
quadrupole-quadrupole term is limited to smRll where, severely complicated by anticrossings among the numerous
however, the multipole expansion loses validity. We haveatomic fine-structure states. A truncated basis was used to
checked that as long a;|>0.25 a.u., the quadrupole- determineC; coefficients for theRng3/2),+ Rnp(5/2); la-
quadrupole term never reaches beyond 2% of the dipoleser cooling transition, for alR=Ne, .. .,Xe. Our calcula-
dipole term in the range 28<<R<150Q,. Even whenC;  tions can easily be applied to other rare gases without hyper-
is vanishingly small, however, the influence of the fine structure, and qualitatively, our results apply for them as
quadrupole-quadrupole term turns out to be very limitedwell. One source of error in our results comes from the ac-
since theCs values are also orders of magnitude smaller tharcuracy to which the atomic lifetimes and branching ratios are
the generalCq values that we have developed, even to theknown; any error in these values linearly affects @eval-
extent that the(calculablé quadrupole-quadrupole term is ues of our potentials. Smaller branching ratios are known
smaller than the uncertainty in the induced dipole term asvith less accuracy; on the other hand, for the laser cooling
discussed in Sec. VII A. In fact, for Ne€3+ Ne(3p), there transition the branching ratio is certainly 100%, so that in
are only two curves supporting bound states where this is nahat case error is introduced from the value of the atomic
true. These two states, given by Eg1), have vanishingC, lifetime alone. A second source of error is the exclusion of
as well as particularly smallg~—5x 10° a.u. effects due to the restriction of our basis set. Particularly

To obtain a quantitative estimate of the relative impor-noteworthy is the discovery of pure long-range states in both
tance of the quadrupole-quadrupole term, we have calculategiatomic Ne and Kr, which might be used to precisely deter-
the JWKB phase for all 864 Nepotentials for vanishing mine atomic properties, in conjunction with spectroscopic
asymptotic kinetic energy, with and without the quadrupole-measurements.
qguadrupole term. In all cases but two, the difference in ac- The multitude of potentials made it impossible to discuss
cumulated phase in the rangeag®:R<1500, amounts to  all of them in detail. Interested readers are welcome to con-
less than 0.4. The two exceptions, the samg, 2nd 2,  tact the authors for more specific information.

VIIl. CONCLUSIONS
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