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Long-range diatomic s1p potentials of heavy rare gases

M. R. Doery, E. J. D. Vredenbregt, J. G. C. Tempelaars, H. C. W. Beijerinck, and B. J. Verhaar
Department of Physics, P.O. Box 513, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

~Received 14 April 1997; revised manuscript received 14 August 1997!

We examine the long-range part of the rare-gas diatomic potentials that connect to theR$(n21)p5ns%
1R$(n21)p5np% atomic states in the separated atom limit~n53, 4, 5, and 6 for Ne, Ar, Kr, and Xe,
respectively!. We obtain our potentials by diagonalization of a Hamiltonian matrix containing the atomic
energies and the electric dipole-dipole interaction, with experimentally determined parameters~atomic ener-
gies, lifetimes, transition wavelengths, and branching ratios! as input. Our numerical studies focus on Ne and
Kr in this paper, but apply in principle to all other rare gases lacking hyperfine structure. These diatomic
potentials are essential for applications in which homonuclear rare-gas pairs interact at large internuclear
separations, greater than about 20 Bohr radii. Among such applications are the study of cold atomic collisions
and photoassociative spectroscopy.@S1050-2947~98!07605-7#

PACS number~s!: 34.20.Mq, 34.20.Cf, 32.80.Pj
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I. INTRODUCTION

The increasing use of atomic traps as an experimental
technological tool@1# has kindled a keen interest in collision
at ultralow temperature. ‘‘Bad’’ collisions place a limit o
trap densities, leading to signal loss~see Ref.@2#, and refer-
ences therein!. ‘‘Good’’ collisions allow evaporative cooling
of trapped atoms, the key to reaching the degenerate q
tum regime in which Bose-Einstein condensation~BEC! is
observed@3,4#. Aside from these issues, cold collisions are
interest in themselves as a fundamental quantum mecha
phenomenon: pures-wave scattering can only be understo
correctly as a quantum mechanical effect@5,6#.

The new technique of ultracold photoassociative spect
copy ~PAS! has been used, with considerable success, to
termine atomic properties of the alkali-metal atoms@7–16#,
and is equally appropriate for studies of the rare gases.
own experimental efforts in this direction@17,18#, as well as
those of others@19–24#, motivate our theoretical work on
cold collisions among such atoms. As a first step towa
predicting photoassociative spectra, we have investigated
long-range parts of the heavy rare-gas diatomic poten
R$ns%1R$np%, whereR5Ne, Ar, Kr, and Xe andn53, 4,
5, and 6, respectively. This configuration is of particular
terest because all the rare gases have metastableR$ns% states
that are likely ‘‘ground states’’ for atom trapping and coo
ing. Most of the fine-structure energy levels in theR$ns% and
R$np% configurations are connected by optical transitio
R$ns%↔R$np%. In samples of trapped ‘‘ground state
~metastable! R$ns% atoms, it is therefore possible to do spe
troscopy of theexcited R$ns%1R$np% configurations that
are the subject of this paper.

There are a few limitations to our treatment of the ra
gas diatomic potentials in this article. First and most imp
tant, we are considering only the interaction that is strong
at large internuclear separationsR. Our treatment does no
take into account short-range diatomic forces, such as
change forces, or the very long-range Casimir-Polder re
dation effect; see Sec. III A for a full discussion of the regi
of validity of our potentials. Third, the effect due to a nucle
magnetic moment~hyperfine structure! has not been consid
571050-2947/98/57~5!/3603~18!/$15.00
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ered here. Since the most abundant rare-gas isotopes
hyperfine structure@25#, this is not a serious limitation. Fi
nally, we do not consider two of the rare gases in this artic
He and Rn. Helium is an exceptional case among the
gases, having a 1s core, with a 2s or 2p valence electron.
While, in principle, our calculations would apply equal
well to He, the notation and level schemes would all
different. The treatment of Rn is problematic because of
apparent lack of necessary experimental data, and our ca
lations are based in experimentally obtained quantities
will be explained in Sec. III C.

Aside from these few limitations, our numerical calcul
tions are applicable to any of the homonuclear rare-gas
atomic systems. Since their energy-level schemes are
similar, in this paper we concentrate when appropriate
just two example systems, Ne~Sec. V! and Kr ~Sec. VI!. In
Sec. II we discuss differences between the rare-gas ato
systems and the alkali-metal atomic systems, since the la
have been under much study, both theoretically and exp
mentally, as a subject for laser cooling and trapping. Th
retical background is given in Sec. III and the method
calculating the diatomic rare-gas potentials, with so
analysis, is presented in Sec. IV. Conclusions are prese
in Sec. VIII.

II. THE HEAVY RARE-GAS ATOMS:
A BRIEF OVERVIEW

A. Rare-gas atoms at low temperature

Most attention to the study of rare-gas atoms at low te
peratures has focused on metastable helium, which
shown to be a good candidate for Bose-Einstein conde
tion @26#, but there is noa priori reason to have lower ex
pectations of the heavier rare gases. To assess the poss
ties, it will be necessary to investigate their collision
properties experimentally in the same way as is being d
for alkali-metal atoms@8–11,13–16#. With the relatively
new technique of photoassociative spectroscopy, very
cise information about the relevant atom-atom interactio
3603 © 1998 The American Physical Society
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can be obtained. In this way it should be possible to de
mine, e.g., scattering lengths for the various rare-gas
ments.

Out of the many rare-gas isotopes available, one may
pect several to form stable and others to form unstable B
condensates. In addition, there are abundant stable isot
of Kr and Xe with half-integral total angular moment
which would form degenerate Fermi gases at sufficiently l
temperature. In order for experiments in this area to be s
cessful, Penning ionization due to binary collisions must
suppressed. In He it has been shown that a suppression f
of 105 can be reached in samples that are fully stretched
electronic spin angular momentum@26,27#. In other rare
gases, the situation is as yet unclear. Nevertheless, it rem
true that the fully stretched states are forbidden to ionize
to spin selection rules, for any of the rare gases. Such s
have both the maximum possibleJ, L, andS, as well as the
maximum possible projection of angular momentum onto
axis of quantization. Ionization occurs when a valence e
tron fills up the hole in one of theR$(n21)p5% cores. With
fully stretched-state atoms, however, the available elec
state in the core has the opposite spin from the valence e
tron. Hence, the spin of this valence electron would have
flip in order to fill the hole, a process that is forbidden by t
usual process of Penning ionization. Spin flip then occ
only through less effective processes such as the spin-di
interaction@26,27# and the spin-orbit interaction.

Photoassociative spectroscopy is a particularly useful
for studying ionization, since the widths of observed lev
are directly related to the ionization probability and t
atomic lifetimes. In fact, in our studies we have found th
several other diatomic states exist with somewhat suppre
ionization rates. Such states should have spectral lines
are narrow enough for observation in PAS experiments.

B. Rare-gas versus alkali-metal atoms: Experimental aspects

Cold collisions of alkali-metal atoms have attracted mu
attention@7–16#, while such collisions among rare-gas atom
have been somewhat neglected@22–24,28#. This is true de-
spite the fact that the rare gases are model atomic syst
playing an important role in fundamental atomic physics,
well as in technological applications. The principal reas
for this neglect appears to be the relative experimental e
of building and operating an optical trap for alkali-metal a
oms. Optical transitions in alkali-metal atoms may be exci
from the ground state with ordinary lasers, so that a trap
be produced within a vapor cell. In contrast, excitation of
rare-gas atoms is not easily possible via optical transiti
from the ground state, since this requires extreme-ultravi
lasers.

Fortunately for atom trappers, two of the first-excit
R$(n21)p5ns% states are metastable, and can be used
effective ground states in laser cooling proces
(R5Ne, . . . ,Xe forn53, . . . ,6!. From there, transitions via
optical excitation to theR$(n21)p5np% states are possible
Unfortunately, the usual method of metastable product
using a plasma discharge is an inefficient process: at b
only about 1 in 103 atoms exiting the source are in the me
stable state@29#. This provides a poor starting point for th
r-
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experimentalist attempting to optically cool and trap the
atoms.

Furthermore, if the source is situated near the trapp
region, collisions with the high-energy, background ato
occur too frequently to maintain a dense trap. Such collisi
are already problematic in alkali-metal traps, but in a me
stable rare-gas trap the proportion of atoms suitable for tr
ping ~namely, metastables! relative to background is much
smaller, as already mentioned. This means that a gas
containing the metastable source is generally not well su
for a rare-gas trap@30#. Instead, metastables must be cool
and slowed after production, and only then loaded into
trap, leading to a rather complicated experimental setup.
another difficulty comes from trap loss through ionizing co
lisions ~this is in addition to the usual collision-induce
losses, that are known to occur in alkali-metal traps@31,32#!.
Ionization-induced loss is estimated to be of about the sa
order of magnitude as collision-induced losses among
alkalis @2#. Finally, the finite lifetime of the metastables, o
the order of several tens of seconds, places a limit to
amount of time spent by an individual atom in the tr
@33,34#.

C. Rare-gas versus alkali atoms: Theoretical aspects

The rare gases differ from the alkalis in that, as a gene
rule, the most abundant isotopes have total nuclear s
equal to zero, so hyperfine structure is not present@25#. The
extensive hyperfine structure of most alkalis severely co
plicates the theoretical description of low-temperature co
sions@11#. One simple reason for this is that it increases
number of states involved in a homonuclear, diatomic m
ecule by a factor (2I 11)2 whereI is the nuclear spin quan
tum number. Here,I ranges from3

2 for 23Na, among others
to 7

2 for 133Cs. Second and more important, since the hyp
fine splitting is generally of the same order of magnitude
the kinetic energy in cold collisions, it also influences t
collision dynamics through angular momentum decoupl
and recoupling phenomena@11–13,16#.

On the other hand, singly excited rare-gas atoms are c
plicated by extensive fine structure. The valence electro
structure of a singly excited rare-gas atom is the same as
of the ground state of an alkali atom, for which thens or np
valence electron alone produces the electronic term struc
In the case of alkali atoms, there are onens (2S1/2) and two
np (2P1/2,3/2) nondegenerate fine-structure states; count
degenerate magnetic sublevels makes a total of twons and
six np states~neglecting hyperfine structure!. For the rare-
gas atoms, in addition, the angular momentum of
(n21)p5 core couples to that of thens or np valence elec-
tron, so that more terms result. The spin and orbital quan
numbers of the core,l c51 andsc5 1

2 lead to an increase in
the number of terms by a factor of 6. There are then fo
energy levels in thens configuration, which add up to a tota
of 12 atomic states when degenerate magnetic sublevels
taken into account; thenp configuration has ten energy lev
els, for a total of 36 magnetic sublevels~see Fig. 1!.

A quick calculation reveals how very many diatomic p
tentials are possible for the rare gases, when only the su
of $ns% and$np% states are included: (12136)252304. This
number is quite comparable to a typical case with alkali
oms: for 23Na with I 5 3

2 , the number is 1024. The mai
difference is then that the asymptotic energy differences
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tween the diatomic states are in general much larger for
rare gases. Hyperfine splittings of the ground-statens in the
alkali-metal atoms are typically several GHz; those of
first-excitednp state are even smaller. This should be co
trasted with the fine-structure splittings of thens and np
states in the rare gases, which are typically thousand
GHz. This shifts the complications in the theoretical tre
ment from long range for alkalis@11,15# to short range for
the rare gases. In the case of the alkalis, long-range com
cations have been circumvented by working with carefu
chosen potentials, such as doubly spin-polarized states@8#, or
states with no hyperfine splitting@8,16#.

D. Spectroscopic notation and selected atomic properties

The energy spacings of the excited states of the rare g
have all been experimentally obtained~for Ne and Kr, these
energies are given in Table I, and have been taken from R
@35,36#!. The states, written asnl (K)J or nl 8(K)J , are
identified inJc-l notation~also known as intermediate cou
pling or Racah notation!. The angular momentumKW is de-
fined byKW 5JW c1lW , whereJc is the total electronic angula
momentum quantum number of the core,l is the orbital
angular momentum quantum number of the valence elect
andJ is the total electronic angular momentum of the ato
A configuration marked with a prime originates from th
(n21)p5(2P1/2) core; unprimed configurations origina
from the (n21)p5(2P3/2) core. It should be emphasized th

FIG. 1. Energy eigenvalues of atomic Ne, 3s and 3p configu-
rations. Energies are given relative to the Ne 2p6 ground state, and
states are labeled with intermediate couplingJc-l ~Racah! notation.
e
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n,
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generally only J is a good quantum number for any o
these states. It so happens that thens states withJ50 or
2, and the np state with J53, also have well-defined
L and S ~total electronic orbital and spin angular mome
tum, respectively!. Therefore these states may al
be denoted as (n21)p5(ns 3P0), (n21)p5(ns 3P2), and
(n21)p5(np 3D3), following Russell-Saunders ~L-S
coupling! notation.

Atomic lifetimes for decay from levels in the Ne and K
ns andnp configuration are also given in Table I. Note th
only the ns8(1/2)0 and ns(3/2)2 states are metastable. Th
branching ratiosBk→k8 for transitions of the sortR(np)
→R(ns), between energy levelsk and k8, are given in
Tables II and III, for Ne and Kr.

III. HAMILTONIAN FOR LONG-RANGE INTERACTION
OF HEAVY RARE GASES

A. Regions of validity for the long-range interaction

Population of very long-range diatomic bound states
photoassociative techniques is an experimental rea
@14,15#, with varied applications. We are interested in d
scribing such states that may be populated by optical exc
tion during collisions that occur at large internuclear sepa
tions in a beam or trap of metastable$ns% atoms. We now
address what is meant by ‘‘long range’’ here.

The dominant interaction between two neutral, hom
nuclear atoms at sufficiently large internuclear separatio
the Van der Waals interaction~@37#, p. 1130 ff!. When the
two atoms have different energies,E1ÞE2 , this is referred
to as theresonantelectric dipole-dipole interaction; whe
they have the same energy,E15E2 , it is called theinduced
electric dipole-dipole interaction. Several authors ha
treated the dipole-dipole interaction between a ground-s
alkali-metal atom and an excited alkali-metal atom@38,39#,
but to our knowledge this situation has not yet been explo
in the rare-gas systems.

At short range, the van der Waals interaction is not su
able for description of interatomic interactions, where t
overlap of the electron charge distributions leading to int
atomic repulsion is not negligible. A crude estimate of t
expectation value of the radial position,r̄ n , of an outer
n-shell electron of a many-electron atom is given by a si
plified Hartree model@40#:

r̄ n'na0 , ~1!

where the Bohr radiusa050.529310210 m. In Ref. @40#,
this result is said to overestimate the correct number
about a factor of 2. Then for the overlap of electron clouds
be negligible, internuclear separationsR should be somewha
larger than this average distance,R@ r̄ n . In Ne, with n53,
this meansR@ r̄ n53'3a0 , while in Xe, it requires R

@ r̄ n56'6a0 . Forces due to electron cloud overlap are n
included in our treatment, so its validity is then restricted
R greater than about 10a0 or 20a0 . See Sec. V C for further
details.

It is known that for internuclear separations on the ord
of the transition wavelength involved,Rret'\c/uE22E1u
5l/2p, the atom-atom interaction is affected by the del
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TABLE I. EnergiesE of first excited states of Ne (n53) and Kr (n55) relative to the ground state
(n21)p6. Neon energies are taken from Ref.@35#, while Kr energies are taken from Ref.@36# ~more digits
are given in these references!. Notation isJc-l coupling; see Sec. II D. Note that the Ne energies are orde
according to energy, while for Kr there is some disorder in this respect. Radiative lifetimes 1/G5t for these
states are also given. Unless noted otherwise, lifetimes of Ne are taken from Ref.@59#; for Kr, lifetimes were
taken from Ref.@60# when possible, because of the reported accuracy of their measurements.

State
nl (K)J

Ne energy
~a.u.! Ne 1/G

Kr energy
~a.u.! Kr 1/G

ns8(1/2)1 0.61916 1.70 nsa 0.39115 3.87 nsa

ns8(1/2)0 0.61428 430 sb 0.38816 0.488 sb

ns(3/2)1 0.61264 12.8 nsa 0.36868 4.31 nsa

ns(3/2)2 0.61074 24.4 sb 0.36438 38 sc

np8(1/2)0 0.69699 14.5 nsd 0.45042 22.1 nse

np8(1/2)1 0.68818 18.28 ns 0.44615 23.5 nse

np(1/2)0 0.68763 17.38 ns 0.42872 23.5 nsf

np8(3/2)2 0.68736 18.69 ns 0.44627 28.5 nse

np8(3/2)1 0.68697 19.05 ns 0.44468 29.5 nse

np(3/2)2 0.68489 19.38 ns 0.42430 27.35 ns
np(3/2)1 0.68400 19.49 ns 0.42358 29.51 ns
np(5/2)2 0.68265 19.56 ns 0.42058 32.10 ns
np(5/2)3 0.68189 19.42 ns 0.42052 27.73 ns
np(1/2)1 0.67551 25.43 nsg 0.41539 40.0 nsh

aReference@70#.
bReference@61#. But see the caveat in Ref.@34#, and also see following footnote.
cReference@71#.
dReference@72#.
eReference@62#. More recent but less complete data are found in Ref.@63#.
fReference@73#.
gReference@64#.
hReference@63#.
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due to the finite speed of light@41,42#. Transition wave-
lengths forR$ns% to R$np% vary, but satisfyl.500 nm.
The effects of this Casimir-Polder retarded interaction th
play a small role forR&1500a0 , which is an approximate
upper bound onR for the region of validity of our treatment

B. Unperturbed Hamiltonian

At infinitely large internuclear separation,R5`, the total
energy of an isolated, two-atom system is just the sum of
individual, unperturbed atomic energies,

Easymp5E11E2 , R→`. ~2!

Here, Ei is the atomic energy of atomi in an individual
energy level in thenl configuration, as given in Table I fo
Ne and Kr. The quantum mechanical Hamiltonian for t
two separated atoms is then
n

e

H05H11H2 , ~3a!

Hi5(
k

Ek(
MJ

uk,Jk ,MJ& i i ^k,Jk ,MJu, ~3b!

for i 51,2. The atomic HamiltoniansHi are diagonal opera
tors whose elements are the atomic energiesEk . The labelk
identifies the atomic state, which may be any of the fourns
or tennp orbitals~the restriction of our basis set is discuss
in Sec. VII A!. The total electronic angular momentum
that state,Jk , is also given, along with the projection ofJk
onto the internuclear axis,MJ .

The eigenvectorsua& of the unperturbed HamiltonianH0
are solutions of the equationH0ua&5Eaua&. SinceH0 is di-
agonal in the basis of product states of atomic states, th
are the eigenvectors:
le
TABLE II. Branching ratios@65# Bk→k8 ~%!, for transitions Ne(3p)→Ne(3s). Values are not listed when the transition is electric dipo
forbidden. Reference@64# also gives values for these branching ratios that are very similar to those presented here.

nl8(K)J 3p8(1/2)0 3p8(1/2)1 3p(1/2)0 3p8(3/2)2 3p8(3/2)1 3p(3/2)2 3p(3/2)1 3p(5/2)2 3p(5/2)3 3p(1/2)1

3s8(1/2)1 98.65 42.23 1.37 43.08 43.46 34.00 3.74 5.93 0.33
3s8(1/2)0 26.94 48.11 20.09 6.29
3s(3/2)1 1.35 10.05 98.63 33.73 1.30 7.89 64.26 58.33 25.70
3s(3/2)2 20.79 23.19 7.13 58.12 11.91 35.74 100.00 67.68
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TABLE III. Branching ratios@66#, Bk→k8 ~%!, for transitions Kr(5p)→Kr(5s). Values are not listed when the transition is electric dipo
forbidden.

nl8(K)J 5p8(1/2)0 5p8(1/2)1 5p(1/2)0 5p8(3/2)2 5p8(3/2)1 5p(3/2)2 5p(3/2)1 5p(5/2)2 5p(5/2)3 5p(1/2)1

5s8(1/2)1 99.24 43.10 0.00 96.60 51.91 1.03 0.43 0.41 0.47
5s8(1/2)0 52.78 47.96 0.20 0.67
5s(3/2)1 0.76 0.25 100.00 2.80 0.12 25.56 85.95 69.74 12.42
5s(3/2)2 3.87 0.60 0.01 73.41 13.42 29.85 100.00 86.44
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ua&5uk,Jk ,MJ&1uk8,Jk8
8 ,MJ8

8 &2 . ~4!

We will call these individual product states the ‘‘unperturb
diatomic basis,’’ because they are the eigenstates ofH0 , the
Hamiltonian atR5`.

C. Interaction term

When two atoms are sufficiently separated so that th
charge distributions do not overlap, the interaction betw
them can be expressed in a multipole expansion, which
the form of a power series in 1/R @43,44#. For two neutral
atoms, the first nonzero term in this expansion is associ
with the electrostatic dipole-dipole interaction. The classi
expression for the interaction between two electric dipole

Wd-d5
1

4p«0R3 @dW 1•dW 223~dW 1•uW R!~dW 2•uW R!#. ~5!

The electric dipole momentsdW 1 and dW 2 are expressed a
dW 52e( l r l

W , where the sum overl is a sum over the position
vectors of all electrons relative to the nucleus of the at
considered. The permittivity of vacuum is given b
«058.85310212 F m21, and e51.602310219 C is the el-
ementary charge. The unit vectoruW R points from the center
of the first dipole to the center of the second one.

In many of the excited states that we are considering
this paper, rare-gas atoms have a nonvanishing quadru
moment. This is due to the existence of incompletely fill
(n21)p and/ornp shells. As a result, and in contrast to th
case of alkali atoms, the next first-order term in the multip
expansion is the quadrupole-quadrupole term, with beha
@67#

Wq-q5C5 /R5. ~6!

While it would be possible to include this term in the Ham
tonian that we consider in this paper, we have found it to
quite small in the expectedR range of validity of our poten-
tials, discussed in Sec. III A. A detailed treatment has sho
that compared to the first- (}R23) and second-orde
(}R26) perturbations due to the dipole-dipole interactio
the quadrupole-quadrupole interaction is generally a mi
effect. We therefore postpone the discussion of its expe
order of magnitude and its effect on the calculated poten
curves to Sec. VII.

For the states considered in this paper, which contain
complete electron shells with angular momentum quan
numberl no greater than one~i.e., onlys andp orbitals!, all
ir
n
as

ed
l

is

n
ole

e
or

e

n

,
r

ed
al

-
m

higher multipole terms vanish in a first-order treatment~see,
e.g., Refs.@67# and@37#, p. 1059 ff! and will therefore not be
considered.

QuantizingdW i in Eq. ~5! results in the following expres
sion for the dipole-dipole interaction~@37#, p. 1130 ff!:

Wd-d52
1

4p«0R3 @ d̂1,1d̂2,21d̂1,2d̂2,112d̂1,0d̂2,0#. ~7!

The interaction has been written in terms of the stand
components of the irreducible tensor operatord̂, of rank 1:
d̂152(d̂x1 i d̂y)/&, d̂25(d̂x2 i d̂y)/&, andd̂05d̂z ~@45#!.
The electric dipole operatorsd̂i ,m are labeled byi 51 or 2
according to whether they operate on the first or sec
atom. The matrix elements ofd̂m can be expressed in term
of reduced dipole matrix elements,^ki d̂ik8& through the
Wigner-Eckart theorem@45#:

^kJkMJud̂muk8Jk8
8 MJ8

8 &5
^ki d̂ik8&

A2Jk11
~Jk8

8 1MJ8
8 muJkMJ!.

~8!

The full Hamiltonian is symbolically written as follows:

H5H01Wd-d . ~9!

There are numerous parameters implicit in Eq.~9!: the
atomic energies ofR$ns% andR$np% and the reduced dipole
matrix elements for all electric dipole-allowed transition
The reduced dipole matrix elements can be calculated f
atomic properties: the atomic lifetimetk51/Gk of statek;
the branching ratioBk→k8 from statek to k8; and the wave-
length for that transition,lk→k8 . The expression is as fol
lows @45#:

u^kidik8&u5A3p«0\S lk→k8
2p D 3

Gk→k8~2Jk811!.

~10!

The notationGk→k85Bk→k8Gk has been used.
Values of the atomic properties needed for the expl

evaluation of Eq.~9! have been determined in experimen
studies of the rare gases. Atomic energies have already
listed in Table I for Ne and Kr. Other experimental valu
are taken from the literature and are repeated here in Ta
II and III, for Ne and Kr~wavelengths were calculated from
energies and have not been tabulated here!. In our numerical
calculations, we use these experimentally obtained value
these atomic properties~the exception being the Kr branch
ing ratios, which were theoretically determined!. Our pri-
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mary interest in theR$ns%-R$np% diatomic potentials is in
the calculation of low-energy collision problems, which c
be described predominantly in terms of the long-range p
of the potentials@9,46#. Therefore we have not attempted a
ab initio determination of these potentials, as would be
quired for an accurate description of chemical bonding for
between atoms at short range.

IV. ANALYSIS OF THE HAMILTONIAN

A. Block diagonalization of the Hamiltonian

The total Hamiltonian of Eq.~9! is not diagonal in the
unperturbed diatomic basis. Nevertheless, the matrix
ments ofH are conveniently evaluated within it: the matr
elements ofH0 are just sums of atomic energies, and t
matrix elements ofWd-d are expressed in terms of produc
of reduced dipole matrix elements with Clebsch-Gordan
efficients.

Before beginning any computations, it pays to take a cl
look at the interaction termWd-d , which is entirely off-
diagonal. The dipole operator produces excitation or dee
tation. Thus, in Eq.~7!, the products of dipole operators fo
the individual atoms require that the interaction permits o
the following types of connections:

us&1up&2↔up&1us&2 , ~11a!

us&1us&2↔up&1up&2 . ~11b!

In each of these cases,l 5s or p, and theDl 561 selec-
tion rule @25# holds for each individual atom. The notatio
has been shortened, so thatul & is used to mean an individua
fine-structure level in thenl configuration. Forbidden con
nections are of the sort
o
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us&1up&2↔” up&1up&2 . ~12!

A restriction of our basis set is implicit in Eqs.~11! and~12!.
Only R$ns% and R$np% states ~R5Ne, . . .,Xe;
n53, . . . ,6, respectively! are included in our calculations
Other states$n8l % wheren8Þn have been excluded. Thi
restriction is investigated in Sec. VII A.

Connections of the type given in Eq.~11a! are consistent
with the resonantelectric dipole-dipole interaction. This in
teraction is proportional to the inverse of the third power
the internuclear separation (}R23). If atom 1 is in ans
orbital, atom 2 must be in ap orbital and vice versa, express
ing conservation of parity. For a physical picture, one mig
imagine atom 1 in ap orbital releasing a~virtual! photon in
the process of making a transition to thes level; atom 2
absorbs the photon and is excited to the correspondinp
state. The two atoms behave like coupled harmonic osc
tors.

The connections given in Eq.~11b! are of the type de-
scribed by theinducedelectric dipole-dipole interaction. In
this case, either both atoms are in thes state or both are in
the p state. In a semiclassical description, the negativ
charged electrons move about the positively charg
nucleus, so that each atom has a fluctuating dipole mom
The dipole of one atom is the source of an electric field t
induces a dipole moment in the other atom; the interact
between the two momentarily formed dipoles is proportio
to the inverse of the sixth power of the internuclear sepa
tion (}R26).

The only types of transitions allowed by the dipole-dipo
interaction are indicated in Eqs.~11a! and~11b!. This is also
seen if the interaction is written in symbolic form:
Wd-d5S S 0 1^su2^puWup&1us&2

1^pu2^suWus&1up&2 0 D S 0 0

0 0D
S 0 0

0 0D S 0 1^su2^suWup&1up&2

1^pu2^puWus&1us&2 0 D D . ~13!
nal
se

e

The interaction matrix is thus conveniently split into tw
uncoupled blocks.~Each of the ‘‘matrix elements’’ of these
blocks is in itself a block matrix.! The upper-left block con-
tains the matrix elements described by Eq.~11a!, while the
lower-right block contains matrix elements described by E
~11b!. The form of this matrix makes it clear that eigensta
of the resonant dipole-dipole interaction do not mix w
those of the induced dipole-dipole interaction. In this artic
we are interested in finding eigenfunctions of the reson
dipole-dipole interaction. At sufficiently largeR, these are
the states that give the potentials on which an excitedp-state
rare-gas atom collides with its metastable partner. There
we will pay no further attention to the lower-right block i
Eq. ~13!, but instead focus on the upper-left block.

Closer inspection of the dipole-dipole interaction yiel
another conservation rule. As indicated in Eq.~7!, the prod-
.
s

,
nt

re

ucts of dipole operators inWd-d always act to conserve
M11M2 , the sum of the projections ofJW1 and JW2 . Once
again, only transitions of a certain sort are allowed:

uJ,M &1uJ8,M 8&2↔uJ9,M 9&1uJ-,M-&2

~ forbidden unlessM1M 85M 91M-!. ~14!

~Implicit are the usual electric dipole selection rules forJ.!
We defineV5uM11M2u. States with differingV do not
couple, and consequently the Hamiltonian is block diago
in V. Considering values ofV,0 is redundant because the
states are not essentially different from those withV.0. The
change in sign ofV is equivalent to a reflection in a plan
containing the internuclear axis~quantization axis!; for this
reason,V is usually taken to be non-negative~@47#, Chap.
V.2!.



e
f
-

iv
p

ad
s

s
T
i

m
u
is
n-
ve
y
e
iza

ei-
ul
n

le
in

d

-

-
m
r-

ep

m-

of

ei-
ic.

i-
s

Eq.
g

ich
ing

is

end
he

nts
s,
es,
lue
g

-

t in
he
ese
ol-
ting
4,

-

re
n

57 3609LONG-RANGE DIATOMIC s1p POTENTIALS OF HEAVY . . .
Diagonalizing the Hamiltonian has now become som
what simplified. There are 12336325864 product states o
R$ns% with R$np%, when all fine-structure levels are in
cluded, each having a well-definedJ, with its complement of
2J11 degenerate magnetic sublevels. The multiplicat
factor of 2 comes about because there are two possible
mutations,us&1up&2 and up&1us&2 . Discarding all states with
V8,0 leaves a total of 528 states. When the matrix is m
block diagonal inV, each block is considerably smaller; a
an example, theV55 case produces a 232 matrix. The
sizes of the other matrices are presented in Table IV.

B. Evaluation and diagonalization of Hamiltonian matrix

The computation of the eigenvalues and eigenvector
H is made considerably easier by block diagonalization.
obtain diatomic potentials, each block of the Hamiltonian
first numerically evaluated at a specific value ofR. Eigen-
values and eigenvectors of the separate blocks of the Ha
tonian are found by a numerical matrix diagonalization ro
tine @48#. A new value ofR is chosen and the procedure
repeated, to obtain theR dependence of the diatomic pote
tials. These states may be labeled according to their in
sion symmetry~g or u!, as well as their reflection symmetr
~1 or 2! in the caseV50 @47,49#. These symmetries ar
determined from the eigenvectors found in the diagonal
tion procedure.

C. General form of the diatomic potentials and numerical
tests

Block diagonalization of the Hamiltonian makes the
genvalue problem considerably smaller. Ideally, one wo
diagonalize the Hamiltonian analytically to find expressio
for the diatomic potentialsV(R) in closed form. Realisti-
cally, diagonalization of most of the blocks is only feasib
numerically. Nevertheless, one can gain some insight
the potentials by exploring the Hamiltonian further.

Potentials obtained using the full system are expresse
an expansion in powers ofR23, since in the approximation
made in Sec. III C theR25 term due to the quadrupole
quadrupole interaction is absent~the validity of this approxi-
mation is investigated in Sec. VII B!. As a general rule,
therefore,

V~R!5C01
C3

R3 1
C6

R6 1¯ . ~15!

The termC3R23 results from electric dipole-allowed cou
plings. This can be seen by examining a truncated ato
system, with only two fine-structure levels of different pa
ity, having total angular momentumJ1 andJ2 , and energies
E1 andE2 . For such a system, atR,`, a whole manifold of
potential curves approach the asymptotic energy of the s
rated atoms,Easymp5E11E2 . The transitionJ1↔J2 is di-

TABLE IV. Number of matrix elements in eachV block.

V 0 1 2 3 4 5
No. of elements 192 166 106 48 14 2
-
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pole allowed, souJ12J2u51 or 0 ~excluding J15J250!.
The Hamiltonian for this truncated system is written in sy
bolic matrix form as

H trunc5~E11E2!I 1Wd-d , ~16!

whereI is the identity matrix, and all the matrix elements
Wd-d are off-diagonal and proportional toR23. Since all the
diagonal elements are equal, it is easy to show that the
genvalues have anR dependence that is purely inverse cub
Couplings to yet another state~or states! of different energy
~energies! introduces the higher-order terms, such asR26,
present in Eq.~15!.

The coefficients in Eq.~15! are obtained by numerically
fitting the computedR dependence of the eigenvalues ofH
to such a power series@50#. Each potential curve of the man
fold of states connecting toEasymp can be expressed in thi
way. In order to obtain accurate numerical values ofC3
alone, one diagonalizes the truncated system as given in
~16!. Numerically, it is easier to fit the potentials resultin
from such a truncated basis, since they have a pureR23

dependence, in principle. Including all fourns and tennp
states of the full basis set results in higher-order terms, wh
necessarily increase the complications for a numerical fitt
routine.

Since values ofC3 can be found from the truncated bas
alone, ‘‘reducedC3 coefficients’’ C3

red may be obtained.
These coefficients are numerical factors that do not dep
on atomic properties, so that they are identical for all t
rare-gas atoms. They need only be multiplied by a factorFn
that depends only on the electric dipole matrix eleme

^nsi d̂inp&, or equivalently on the transition probabilitie
wavelengths, and branching ratios for individual stat
which differ from one rare-gas species to another. The va
of C3 for a particular rare-gas system is obtained by usin

C35FnC3
red, ~17a!

Fn5lk→k8
3 Gk→k8 , ~17b!

wherek stands for theunp& state andk8 is the uns& state. A
tabulation ofC3

red for all of the hundreds of diatomic poten
tials would be quite lengthy, so this is not done here.

D. Special case: Laser cooling transition

As stated in the Introduction, we have a special interes
the potential curves connecting asymptotically with t
ns(3/2)21np(5/2)3 separated atomic states, because th
atomic states form the cycling transition that is used for co
ing and trapping. There are 40 potential curves connec
asymptotically to this separated atom limit: 10, 10, 8, 6,
and 2 curves forV50, 1, 2, 3, 4, and 5, respectively.

Of all these potentials, theV55 case is especially inter
esting. In this case, the Hamiltonian block is exactly 232,
with no dipole-dipole coupling to any other states. Therefo
these potentials have exactly 1/R3 behavior, as is easily see
to occur when diagonalizing a matrix of the sort

H5S E D/R3

D/R3 E D . ~18!
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The two solutions consist of one attractive and one repuls
potential,V(R)5E1C3 /R3, with C356D. The attractive
potential curve hasu symmetry, and can therefore be excit
from an V54 ‘‘ground state,’’ns(3/2)21ns(3/2)2 , which
hasg symmetry.

Also, recall that metastable rare gases can easily be
from atomic traps in ionizing collisions. But theV55 di-
atomic states are made up of internal angular momen
states that are forbidden to ionize, due to spin selection ru
This is seen by examining the associated eigenfunctio
which are particularly simple:

u5g&5
1

&

@ u~ns!2,2&1u~np!3,3&21u~np!3,3&1u~ns!2,2&2],

~19a!

u5u&5
1

&

@ u~ns!2,2&1u~np!3,3&22u~np!3,3&1u~ns!2,2&2].

~19b!

Individual kets on the right-hand side of Eqs.~19! are total
angular momentum states for each atom,u(nl )J,M & i . The
components are products of atomic states that are f
stretched in both spin and orbital electronic angular mom
tum: They have both the maximum possibleJ, L, andS, as
well as the maximum possible projection of angular mom
tum onto the internuclear axis. As explained in Sec. II
ionization is severely suppressed for such states. Out o
the possible states, theV55 case is the only one where th
is true.

Reduced C3 coefficients for the ns(3/2)21np(5/2)3
manifold have been obtained using the method describe
Sec. IV C. All but two of the fine-structure energy leve
were removed from the Hamiltonian, retainingonly the
ns(3/2)2 andnp(5/2)3 atomic states, so all of the potenti
curves follow perfectlyR23 power laws. The reduced coe
ficients can be used to obtainC3 values for all potential
curves in this manifold, when multiplied by a factorFn @see
Eq. ~17a!# that depends only on the electric dipole mat
elements for a specific rare-gas ato

^ns(3/2)2i d̂inp(5/2)3&. These reduced coefficients are pr
sented in Table V. The calculated values

^ns(3/2)2i d̂inp(5/2)3& andFn for this specific manifold are
listed in Table VI, for Ne, Ar, Kr, and Xe, together with th
wavelengths and lifetimes used for the calculations.

E. Diatomic lifetimes

Once the eigenvectorsuj& of the diatomic states have bee
determined, their lifetimes 1/Gj can also be found. The ma
trix elements ofd̂1,m1d̂2,m5d̂tot,m between these diatomi
states and the diatomic ‘‘ground states,’’us&1us&2 , are calcu-
lated, squared, and summed to obtain these lifetimes:

Gj5(
k,k8

(
MJ ,MJ8

(
m

u1^kJkMJu2^k8Jk8
8 MJ8ud̂tot,muj&u2.

~20!

Here, the sum overk andk8 is now only a sum overR$ns%
states;R$np% states are excluded.
e

st
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In general, the diatomic state eigenvectors vary withR, so
that the diatomic lifetimes are also a function ofR. At large
R, these eigenvectors vary only slightly, and the diatom
lifetimes approach a constant value. Table V contains
diatomic state lifetimes for all the states in the trunca
system that was discussed in Sec. IV D. These diatomic s
lifetimes were determined as written in Eq.~20!, at
R5100a0 , and are expressed in terms of the atomic st
lifetime. For this truncated system, the eigenvectors do

TABLE V. Values of C3 obtained from truncated basi
ns(3/2)21np(5/2)3 for Ne2 and Kr2 ~n53,5 respectively! and re-
duced valuesC3

red valid for all R5Ne, . . .,Xe. Spontaneous deca
rates of diatomic states,Gj , are given in terms ofGk , the sponta-
neous decay rate of thenp(5/2)3 atomic state in this example.

State
Ne2 C3

~a.u.!
Kr2 C3

~a.u.!
107 C3

red

~hartreea0
3 ns/nm3! Gj /Gk

0u
1 210.42 214.84 27.701 1.323

0g
2 27.725 211.01 25.712 1.000

0u
1 25.677 28.090 24.198 1.217

0g
2 23.845 25.480 22.843 1.000

0u
1 23.487 24.969 22.578 1.060

0g
1 3.487 4.969 2.578 0.940

0u
2 3.845 5.480 2.843 1.000

0g
1 5.677 8.090 4.198 0.783

0u
2 7.725 11.01 5.712 1.000

0g
1 10.42 14.84 7.701 0.677

1u 210.28 214.64 27.598 1.264
1g 27.523 210.72 25.562 0.869
1u 25.280 27.524 23.904 1.045
1g 24.057 25.781 23.000 0.845
1u 20.028 20.041 20.021 1.005
1g 0.028 0.041 0.021 0.995
1u 4.057 5.781 3.000 1.155
1g 5.280 7.524 3.904 0.955
1u 7.523 10.72 5.562 1.131
1g 10.28 14.64 7.598 0.736
2u 29.856 214.05 27.288 1.302
2g 26.879 29.803 25.086 0.992
2u 24.490 26.398 23.320 1.198
2g 20.348 20.496 20.257 0.974
2u 0.348 0.496 0.257 1.026
2g 4.490 6.398 3.320 0.802
2u 6.879 9.803 5.086 1.008
2g 9.856 14.05 7.288 0.698
3u 29.144 213.03 26.761 1.387
3g 25.756 28.202 24.256 0.854
3u 21.507 22.147 21.114 1.200
3g 1.507 2.147 1.114 0.800
3u 5.756 8.202 4.256 1.146
3g 9.144 13.03 6.761 0.613
4u 28.112 211.56 25.998 1.230
4g 23.662 25.218 22.708 0.897
4u 3.662 5.218 2.708 1.104
4g 8.112 11.56 5.998 0.771
5u 26.675 29.512 24.936 2.000
5g 6.675 9.512 4.936 0.000
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depend on the particular rare-gas system being conside
These diatomic lifetimes are then good for any of the he
rare-gas diatomic molecules in thens(3/2)21np(5/2)3
manifold. Their values range from half the value of t
atomic lifetime to infinity.

V. APPLICATION TO Ne

In the following discussion of specific diatomic potentia
certain concepts repeatedly arise that deserve special
tion. Every pair of atomic states gives rise to amanifoldof
potentials. For each pair of atomic states, the sum of
energies of these atomic states, each measured from
single atomic ground state, is the asymptotic energyEasymp
5E11E2 . @It should be noted that this is the coefficientC0
in Eq. ~15!.# An attractive potential has a minimum~well! of
depth Vmin that is located at internuclear separationRmin .
The value ofVmin is given in terms of its difference from
Easymp. The inner turning pointRin for such a potential is the
smallest value ofR that satisfiesV(R)2Easymp50.

A word about units is also in order. In atomic units, t
hartree is the unit of energy, 1 hartree527.2 eV, and the
Bohr radius a050.529310210 m is the unit of distance
Hence, whenC3 is given in a.u., it should be clear that th
means hartreea0

3. In some cases, when speaking of a la
detuning, it is also useful to give a frequency, e.g., 1 G
corresponds to 1.5231027 a.u. References@51,33# contain
useful conversion factors and discussions of units.

A. Diatomic Ne potentials: inverse cubic potentials

The potentials for diatomic Ne have been calculated
merically, using the method described in Sec. IV B. The
potentials are presented separately, for different values oV,
in Fig. 2. A general pattern is evident at first: the poten
curves at the lowest energies are forced downward, du
couplings with the large number of states with the same s
metry above them, while those at the highest energies
forced upward. Within the cluster of potentials in the cent
crossings and avoided crossings appear at shorter r
(R&30a0). Avoided crossings provide opportunities fo

TABLE VI. Wavelengthsl ~in vacuo!, lifetimest, and derived
reduced dipole matrix elements for transitionsR(3P2)↔R(3D3).
The conversion factorFn may be used to obtain approximate valu
of C3 for all rare-gas species.~See text.!

Atom
l

~nm!
t

~ns!
^3P2idi3D3&

(ea0)
1027 Fn

(nm3/ns)

20Ne 640.402a 19.42b 5.777 1.352
40Ar 811.754a 33.1c 6.14 1.62
84Kr 811.513d 27.73e 6.896 1.927
136Xe 882.184f 34g 7.06 2.02

aReference@35#.
bReference@59#.
cReference@74#.
dReference@36#.
eReference@60#.
fReference@75#.
gReference@76#.
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fine-structure changing collisions, which is another trap-lo
mechanism in addition to ionization. In some cases, th
avoided crossings produce ‘‘humps’’ in attractive potenti
@a hump is a region whereV(R).Easymp#. Such potentials
may support quasibound states. In this complicated inner
gion, one also finds attractive potentials with wells and ste
repulsive walls. Naturally, these are not perfect represe
tions of the true short-range potentials, since at smaller
ternuclear distances contributions from exchange for
compete with the dipole-dipole interaction~see Sec. III A!.
Nevertheless, it is clear that there are both pitfalls and
portunities at smallR. The pitfalls stem from the complica
tions in dealing with such a tangle of potentials, while t
opportunities can be found in this rich structure with
many phenomena available for investigation.

At long range (R*30a0), the potential curves smoothl
approach their asymptotic limits. If a potential stems from
pair of atomic states that are connected by a dipole-allow
transition, the long-range behavior is of the formR23. If the
transition is dipole forbidden, thenC350, and the long-
range behavior is of the formR26 to lowest order. This has
been verified by numerically fitting@50# the potential curves
to the first three terms in Eq.~15!, in the region 50a0&R
&500a0 . Even when the asymptotic atomic states are c
nected by a dipole-allowed transition, nonexistent branch
ratios between the two asymptotic atomic states can resu
potentials withR26 behavior. Such potentials generally a
pear almost constant at long range, on the scale of the
ures.

The magnitudes ofC3 for these many potentials vary b
several orders of magnitude. A fairly small valu
C3'1022 a.u., is found in theV51 manifold of the
Ne 3s(3/2)21Ne 3p8(3/2)1 state, located at Easymp

51.2977 a.u. The largest isC3510.4 a.u., and is found in
an V50 state of the Ne 3s(3/2)21Ne 3p(5/2)3 manifold
(Easymp51.2926 a.u.). In fact, for every value ofV, the larg-
est values of C3 are all found in the Ne 3s(3/2)2
1Ne 3p(5/2)3 state. This comes about because t
J52↔J53 transition involves the largest possible Clebsc
Gordon coefficient, 1, and a relatively large dipole transiti
matrix element~due to the 100% branching ratio!.

B. Diatomic Ne potentials: inverse sixth potentials

Some of the diatomic potentials shown in Fig. 2 ha
C350, so that in the approximation made in Sec. III C whe
theR25 term due to the quadrupole-quadrupole interaction
neglected, they are actually of the formC6R26 in lowest
order ~the validity of this approximation is investigated i
Sec. VII B!. An interesting example of this occurs for two o
theV52 curves in the Ne 3s(3/2)21Ne 3p(5/2)2 manifold
(Easymp51.2934 a.u.). The two eigenvectors can be writte

u2u&5
1

2
@ u~3s!2,0&1u~3p!2,2&22u~3s!2,2&1u~3p!2,0&2

2u~3p!2,0&1u~3s!2,2&21u~3p!2,2&1u~3s!2,0&2],

~21a!
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FIG. 2. Diatomic Ne potentials,V50, . . . ,4~see Fig. 4 forV55!.
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u2g&5
1

2
@ u~3s!2,0&1u~3p!2,2&22u~3s!2,2&1u~3p!2,0&2

1u~3p!2,0&1u~3s!2,2&22u~3p!2,2&1u~3s!2,0&2],

~21b!

where the notation used in Eqs.~19! is also used here. Th
states in Eqs.~21! are unusual in consisting entirely o
dipole-forbidden connections~becauseuM12M2u52.1!.
Stated mathematically,^2uuWd-du2u&50, and the same hold
for u2g&.

As another example of anR26 potential, we turn to the
diatomic state Ne 3s8(1/2)01Ne 3p8(3/2)2 , located at
Easymp51.3016 a.u. The variation in these potentials is o
visible atR&30a0 . A numerical fit to these curves produce
C3 coefficients that are practically zero,uC3u,1025 a.u.,
y

while theirC6 coefficients are typical for all of these curve
on the order of 104 a.u. The transitionJ852↔J50 is di-
pole forbidden, so matrix elements of the for
1^3s8(1/2)0u2^3p8(3/2)2uWd-du3p8(3/2)2&1u3s8(1/2)0&2 are
exactly zero, and these diatomic states are connected on
second order, resulting inC350.

WhenC3 is very small and negative, a positive value
C6 can result in very shallow attractive potentials wi
minima at fairly largeR. An example is the Ne 3s8(1/2)1
1Ne 3p(1/2)0 state, atEasymp51.3068 a.u. All values ofC3
associated with this manifold are on the order of on
1022 a.u., whileuC6u is on the order of 104 or 105 a.u.; for
these potentialsVmin is on the order of 1 to 0.1 GHz
with Rmin located at tens ofa0 . While the transition
J51↔J850 is dipole allowed, the branching ratio betwee
these two atomic states is almost zero, as shown in Tabl
It should be noted that many of the dipole-allowed tran
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FIG. 3. Diatomic Ne potentials connecting asymptotically to 3s(3/2)213p(5/2)3 and 3s(3/2)213p(5/2)2 limits ~asymptotic energies
are 1.2926 a.u. and 1.2933 a.u., respectively!: V50,1,2. The 3s(3/2)213p(5/2)3 asymptotic limit has been chosen as the zero of ene
here.
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tions have very small branching ratios. This follows from t
general rule for the heavy rare gases that transitions
preserve the state of the core,Jc , are strongly preferred~this
is by no means an exact selection rule, however!. Thus
s8↔p ands↔p8 transitions have low branching ratios.

Unfortunately, the values ofC6 quoted are not expecte
to be exact. These values ofC6 result from second-orde
contributions to the dipole-dipole interaction betweenR$ns%
and R$np% states alone. Further contributions toC6 must
come from states that are higher in energ
R$(n11)p%,R$(n12)p%,..., etc. These higher-energ
terms have not been included in our calculations, but sho
produce only small corrections to our potential curves~see
Sec. VII A!. The values ofC3 are not affected by this prob
lem, since only a single pair of atomic states contributes
their value, as pointed out in Sec. IV C.

C. Diatomic Ne potentials: Estimate of behavior at short
range

The potentials are somewhat unreliable at short ran
where overlap of the electron clouds of the two atoms
comes significant. An estimate of approximately where t
takes place was given in Sec. III A; for Ne the overl
should be large at aroundR53a0 . A better estimate is nec
essary to determine where chemical bonding effects beg
become important. To our knowledge, the chemical struc
of the excited Ne2 diatomic molecule, Ne$ns%1Ne$np%, has
not been calculated. Excited Na2 has been investigated ex
tensively, however. The latter differs from Ne2 due to its
filled core, but its valence electron occupies the same orb
Assuming that chemical bonds are predominantly due to
valence electron, a good estimate of the short-range Ne2 in-
teraction can be obtained by studying that of Na2.

The easiest case to work with is the 5u state, with the
Ne 3s(3/2)21Ne 3p(5/2)3 asymptote. This can also b
written Ne 3s(3P2)1Ne 3p(3D3), because these state
have good quantum numbersL andS; for the 3s Ne atom,
L5S51, while for the 3p atom,L52 andS51. Since the
5u state is fully stretched in electronic spin and orbital ang
lar momentum~see Sec. IV D!, adding these angular mo
menta must result in maximum values of these angular
menta for the diatomic state, i.e.,L tot53 and Stot52. The
corresponding state in Na2 has the Na 3s(2S1/2)
at
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1Na 3p(2P3/2) asymptote. The maximum values of angul
momenta for a fully stretched Na2 atom areL tot51 andStot

51, and further, theu symmetry must be preserved. The N2
diatomic state that most closely corresponds to our Ne25u is
then labeled3Pu . Excited Na2 potentials have been calcu
lated by Konowalowet al. and later by Jeung@52#. At
R515a0 , the Konowalow potential has a depth o
20.0024 a.u. and the Jeung value is20.0020 a.u. This is to
be compared with the Ne25u potential, which has a depth o
20.0020 a.u. atR515. Differences are due to several fa
tors: ~a! the overlap of the valence electrons is not includ
in our calculation;~b! the Ne2 and Na2 cores differ; and~c!
our basis set is more restricted than that used in Ref.@52#.
Even so, the difference between the Konowalow result a
our calculated potential atR515a0 is then only
431024 a.u., about 20%, while Jeung’s result coincid
with ours. Therefore we conclude that atR'15a0 chemical
bonding is fairly unimportant; furthermore, its effects dro
off rapidly asR increases.

D. Laser cooling transition in Ne

As stated in the Introduction, we have a special interes
the potential curves connecting asymptotically with t
Ne 3s(3/2)21Ne 3p(5/2)3 separated atomic states, becau
these atomic states form the cycling transition that is used
cooling and trapping. These potential curves, 40 in all,
shown in closeup in Figs. 3 and 4. At long range, half t
potentials are attractive (C3,0) and half are repulsive
(C3.0). The latter potentials may be useful for suppress
of trap-loss collisions, a mechanism that has already b
studied in Xe@24,28# and Kr @23#, for example. The attrac
tive potentials support bound states that will be suitable
photoassociative spectroscopy.

The V55 potentials have pureR23 dependence, with
uC3u56.7 a.u. As explained in Sec. V C above, chemic
bonding makes these potentials unreliable at internuc
separations less than aboutR515a0 . The attractive potentia
5u is quite deep there, withV(15a0)520.0020 a.u. In com-
parison, photoassociative spectroscopy is usually carried
with detunings below atomic resonance on the order of s
eral GHz'1027 a.u. As an example, a detuning of25 GHz
will excite colliding atomic pairs to bound states of the 5u
potential at aboutR5200a0 . In contrast, the same detunin
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FIG. 4. Same as in Fig. 3, only forV53,4,5. Note that there are noV55 potentials in the 3s(3/2)213p(5/2)2 manifold.
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will produce excitation to bound states of the most shall
attractive 1u state, seen in Fig. 3, at aboutR520a0 . This
state has a very small coefficient,C3521022 a.u.

Applying laser light that is detuned close below t
3s(3/2)2↔3p(5/2)3 transition to a gas of metastable Ne w
excite colliding atoms to bound states in all of the 40 pot
tials approaching the asymptote, resulting in a complica
spectrum, with rotational and vibrational spectra from
these potentials overlapping each other. It should be poss
to distinguish between the spectra because the spacin
vibrational lines due to aC3R23 potential at long range is
related specifically to the value ofC3 @53,54#. Also, the rate
of transitions occurring at smallR will be small compared to
those at largeR, since the excitation cross sections sc
with R2. Another distinguishing factor is the ionization pro
ability, which is quite large for states other thanV55. It is
possible that only theV55 spectrum will be distinguishable
as sharp peaks rising above the broad irresolvable ioniza
spectrum due to the other potentials. If the other spectra
resolvable, however, it will be possible to obtain informati
about ionization from the spectral line shapes. We are c
rently studying the ionization probabilities of these stat
and will present our results elsewhere.

E. Pure long-range Ne potentials

In Fig. 2, there are several potentials that are ‘‘pure lo
range.’’ This is a rather loose term, which is related to
inner turning pointRin . A potential is said to bepure long
range ifRin is so large that even the inner repulsive part
the potential is well described by the long-range forces,
opposed to exchange forces, which are due to overlap o
electron charge distributions@55#.

As noted in Sec. V C, exchange forces are competi
with the electric dipole-dipole interaction atR&15a0 , so
such pure long-range potentials must haveRin*15a0 . For
example, among theV53 potentials of the 3s(3/2)2
13p8(3/2)2 manifold (Easymp51.2981 a.u.), there are tw
attractive and two repulsive potentials. Of the attractive
tentials, the higher curve has a very shallow well ofVmin
520.3531025 a.u.5223 GHz, below the asymptote, an
Rin531a0 . A fit to this curve indicates thatC35
20.43 a.u., andC6513104 a.u. Therefore it is apparen
that this potential is pure long range because theC6 term is
competitive with the fairly smallC3 at unusually largeR. In
Sec. V B, it was noted that our calculatedC6 is not wholly
reliable. Spectroscopic measurements of this particular s
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would have to be made for an experimental test of the ac
racy of these values ofC6 . If it is assumed that these pur
long-range attractive potentials have the formV(R)5
2uC3uR231uC6uR26, a small correction toC6 , in the form
of a multiplicative factor (11x) for x!1, introduces a mul-
tiplicative correction factor of (11x/3) to Rmin , and
(12x) to Vmin . For example, a 25% decrease in the value
C6 results in about a 25% increase in the well depth; whet
or not a shift in the vibrational spectrum would be detecta
depends largely on the ionization widths of the levels. Th
widths are expected to be quite small because atoms in t
states never get much closer to each other than 31a0 . Ion-
ization probabilities decrease exponentially with internucl
separation, and at this large distance they should be ne
gible.

As another example, in the 3s8(1/2)113p8(1/2)1 mani-
fold (Easymp51.3073 a.u.), another shallow well (Vmin
5113 GHz) can be found whenV50, with Rin527a0 .
Again, this well seems to result from the competition b
tween a positiveC651.53104 a.u. and a somewhat weak
negativeC3521.2 a.u. term. Careful inspection of the larg
number of potential curves reveals more of these shall
pure long-range potentials, not visible on the scale of Fig

A pure long-range potential was recently used to make
accurate measurement of the lifetime of Na$3s% and to ob-
serve the Casimir-Polder retarded force@10#. We expect that
several of the pure long-range potentials in the heavy r
gases may be useful for similar types of precision meas
ments. A complication in this case is that only two of th
R$ns% states are metastable, thens8(1/2)0 and ns(3/2)2
states. For example, with Ne, it would then be extrem
difficult to populate the particular 3s8(1/2)113p8(1/2)1 po-
tential just mentioned above, since it would have to be po
lated via excitation from the short-lived 3s8(1/2)1 state,
which is essentially empty in any Ne gas cell or atom
beam. The 3s(3/2)213p8(3/2)2 potential described earlier i
a promising candidate, however, since it can be populated
laser excitation from a metastable state.

VI. APPLICATION TO Kr

A. Diatomic Kr potentials

The potentials for diatomic Kr are shown in Fig. 5. The
potentials are similar to those for diatomic Ne. On this sca
the most notable difference is the clustering of the potent
into three groups. In the heavier rare gases, such as Kr
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FIG. 5. Diatomic Kr potentials,V50, . . . ,4~see Fig. 7 forV55!.
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Xe, the splitting betweenns and ns8 is more pronounced
than in Ne; the same is true of the splitting betweennp and
np8. This is the result of stronger spin-orbit coupling in th
(n21)p5 core for these heavier atoms@25#. In Fig. 5, then,
one sees a lower-energy group asymptotically connectin
separated atom pairs with 5s15p, a medium-energy group
connecting to 5s815p and 5s15p8, and a higher-energy
group connecting to 5s815p8.

Otherwise, the Kr potentials appear similar to those
Ne. The potentials can be written as a power series inR23,
and at smaller values ofR, numerous avoided crossings ca
be seen, resulting in a complicatedfine-structure ‘‘spa-
ghetti.’’

B. Laser cooling transition in Kr

For Kr, the laser cooling transition is 5s(3/2)2
↔5p(5/2)3 . The diatomic potentials resulting from the co
to

r

pling at long range of these two separated atom states
shown in Figs. 6 and 7. The values ofC3 are tabulated in
Table V, alongside those for diatomic Ne. In comparis
to diatomic Ne, these curves tend to be steeper, wit
maximum of uC3u514.84 a.u. This is due to the differenc
in the lifetimes and transition wavelengths of th
ns(3/2)2↔np(5/2)3 transition in Ne and Kr. Using Eq.~10!,
one finds that for this manifold, theC3 coefficients for Ne
are smaller than those for Kr by a factor of 0.70.

C. Pure long-range Kr potentials

Pure long-range potentials are evident in Fig. 5; for e
ample, anV54 potential in the 5s(3/2)215p(3/2)2 mani-
fold (Easymp50.788 68 a.u.) has a minimum at about 18a0 .
Even more noteworthy is the 5s(3/2)215p(5/2)2 manifold
(Easymp50.784 96 a.u.). The attractive potentials arevery
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FIG. 6. Diatomic Kr potentials connecting asymptotically to 5s(3/2)215p(5/2)2 and 5s(3/2)215p(5/2)3 limits ~asymptotic energies are
0.7850 a.u. and 0.7849 a.u., respectively!, for V50,1,2. The 5s(3/2)215p(5/2)2 asymptotic limit has been chosen as the zero of energy
the upper set, the plots focus in on the 5s(3/2)215p(5/2)2 asymptote; note the change of scale inV(R).
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pure long range, having minima anywhere betweenR
'40a0 and 120a0 . They are so shallow that it would not b
possible to discern them clearly on the scale of Fig. 5, so
exploded view is given in Figs. 6 and 7.

These shallow potentials are the result of avoided cro
ings that occur when the repulsive 5s(3/2)215p(3/2)3 po-
tentials rise up to meet the attractive 5s(3/2)215p(3/2)2
potentials. States of the same symmetry repel each othe
that the downward-turning attractive potentials are forced
again. Such avoided crossings occur among other state
was shown for diatomic Ne in Sec. V E. Unlike those pote
n

s-

so
p
as

-

tials, these particular pure long-range potentials do not re
from very small, negative values ofC3 which are over-
whelmed at long range by positiveC6 terms; values ofC3
range from at leastC3520.55 a.u. to at mostC35
24.81 a.u.@For V52, there are also the two states wi
C350, which have already been discussed in Sec. V A. S
Eqs.~21!.# In Kr, these avoided crossings occur at such lo
range because the 5p(3/2)2 is fortuitously close in energy to
the 5p(3/2)3 state, only about 5.931025 a.u.513 cm21

away. A potential in the 5s(3/2)215p(3/2)2 manifold hav-
ing a large and negativeC3 term approaches the 5s(3/2)2
FIG. 7. Same as in Fig. 6, only forV53,4,5. Note that there are noV55 potentials in the 5s(3/2)215p(5/2)2 manifold. There is a
change of scale inV(R) in the upper set of plots.
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15p(3/2)3 neighboring manifold at relatively large dis
tances, and then turns up in an avoided crossing, creati
well at largeR.

The 5s(3/2)215p(3/2)2 potentials look very promising
for experimental studies of atomic properties. They are
cessible via 810 nm laser excitation from the metasta
5s(3/2)2 state. By numerical integration of the Schro¨dinger
equation using the method of Ref.@56#, we have determined
that all of these potentials have vibrational bound sta
even the very shallowest one, which is in theV51 mani-
fold. Photoassociative spectroscopy of these poten
should be possible with well-resolved spectra, since at s
large internuclear separations, ionization is negligible.

One also expects to find similar pure long-range potent
that result from all the 5s and 5s8 states connecting to th
5p(3/2)2 state. There are limitations to the uses of the
other potentials. Such potentials connecting to the short-li
5s8(1/2)1 and 5s(3/2)1 states are difficult to populate. An
the 5s8(1/2)015p(3/2)2 state can only be populated via
dipole-forbidden transition from the metastable 5s8(1/2)0
state (J50↔J52).

VII. LIMITATIONS

A. Restriction of basis states

As noted earlier, in the calculation of our diatomic pote
tials we have used a restricted basis set,R$ns% andR$np%,
R5Ne, . . . ,Xe andn53, . . . ,6respectively. A more precise
calculation would have to take into account contributions
the electric dipole-dipole interaction due to other states
higher energies:R$(n11)p%, R$(n12)p%, etc. One expects
such states to have only a small effect on the shape of
potentials calculated here, because the energy differe
between diatomic states R$ns%1R$(n11)p% and
R$ns%1R$np% is in general quite large. Furthermore, th
inclusion of such states will not change the value ofC3 for a
particular diatomic potential, since that depends only on
dipole matrix element for the transition between the t
separated atomic states. The inclusion of higher-ene
stateswill change the higher-order terms in Eq.~15!, how-
ever, theC6 terms in particular. These are important for t
study of pure long-range potentials, since they are prima
responsible for the radial positions and energy depths of
tential well minima, as was discussed in Sec. V E. It is th
desirable to obtain an estimate of the degree to which s
higher-energy states would affect the calculated potential
they were included. Unfortunately, such an estimate is d
cult because of the scarcity of available data for transiti
from higher-energy states toR$ns%. The situation has bee
studied in the alkali atoms, however, so we turn our atten
there for the moment.

Bussery and Aubert-Fre´con @57# ~and more recently Ma-
rinescu and Dalgarno@58#! have calculated values ofC6 dis-
persion coefficients for diatomic alkalins1np molecules.
They included many basis states with atomic term numb
n8.n. For Na,C6 is in the range of 2 to 43103 a.u., while
for Rb, it is between 1 and 23104 a.u. When spin-orbit cou
pling is included, however, potentials withC3’s of opposite
sign connected to different atomic fine-structure states,2P3/2
and 2P1/2, anticross@10,38,55#. The resulting curves no
longer have pureC3R23 behavior, but have an additiona
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large C6R26 component. As an example, Ref.@10# gives
C3526.2 a.u. for the 0g

2 pure long-range potential in th
Na 32P3/21Na 32S1/2 manifold. This curve has a potentia
minimum Vmin5257 GHz atRmin571a0 . Such a minimum
occurs when theC6 term in Eq. ~15! is set equal to
1.13106 a.u. This value is several orders of magnitu
larger than the value ofC6 derived in Refs.@57,58#. It ap-
pears, then, that for Na, the effect of higher-energy terms
pure long-range potentials is quite small. In Ref.@57#, it is
mentioned that for the heavier alkali diatomic molecules,
disturbing effect of higher-energy terms becomes somew
more significant.

A calculation of theC6 dispersion coefficients for the
excited heavy rare-gas diatomic systems would be useful,
application of the results for the alkalis is informative. A
of our pure long-range potentials yields values ofuC6u that
are typically between 1 and 103104 a.u. for Ne, and in the
range of 5 and 503104 a.u. for Kr. The values given in Ref
@57# are then at least 2% and at most 40% of our typicalC6
values. This means that qualitatively, there are no change
our calculated potential curves. Quantitatively, a correct
to ourC6 values of 10% alters the positions ofVmin by 10%
andRmin by about 3%, as noted in Sec. V E. The exclusi
of higher-energy levels then appears to be a reasonable
striction of our basis set. In some of our restricted-basis
tentials, C6 approaches lower values, between 104 and
102 a.u. The accurate study of these cases would seem
require a larger basis set. In general, it should be emphas
that values ofVmin andRmin quoted in the present work ar
not exact.

Xenon is an exception to the analysis given above. In
the 6p8 levels intermingle with the 7p levels. In this case, a
useful approach might be to restrict the basis to only 6s and
6p levels, excluding the relatively distant 6p8 states, which
are about 431022 a.u.583103 cm21 higher in energy than
the 6p states.

B. Neglect of quadrupole-quadrupole interaction

In Sec. III C, we dropped the quadrupole-quadrupole
teraction from our Hamiltonian, citing its relative unimpo
tance. We will now consider this term in more detail a
derive its order of magnitude for comparison with the dipo
dipole terms used exclusively until now.

The quantum mechanical expression for the quadrup
quadrupole term is@43,67#

Wq-q5
e2

4p«0R5 $Q1,22Q2,214Q1,21Q2,116Q1,0Q2,0

14Q1,1Q2,211Q1,2Q2,21%5C5R25, ~22!

where the operatorQ consists of a sum over terms from a
contributing electrons, while the subscripts22, . . . ,2denote
its spherical tensor components@43,45#. The operatorQ con-
serves parity. For the states considered in this paper,
means that all matrix elements requiring a connection
tweens andp states vanish:

1^su2^puWq-qup&1us&250, ~23!
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so that only matrix elements1^su2^puWq-qus&1up&2 need be
considered. For thes1p manifold we are concerned with
C5 will thus be of order

C55OS e2

4p«0
^r h

2&^r v
2& D , ~24!

with the subscriptsh and v denoting the (n-1)p core hole
and thenp valence electron, respectively.

For Ne, we have calculated ther 2 expectation values in
volved from electron wave functions developed by Hab
land @68#. These are displayed in Table VII, together wi
similar values for Kr that we have estimated based on p
lished^r 2& values for the rare-gas and the equivalent alk
metal atoms @69#. The table points toC5'46 a.u. for
Ne(3s)1Ne(3p); a full treatment has shown that, in pra
tice, C5 never reaches beyond 16 a.u. in this case, du
additional Clebsch-Gordan coefficients; by scaling this gi
a maximum value ofC55128 a.u. for Kr. These values ar
of the same order of magnitude as most of theC3 values that
we have found, in which case a notable influence of
quadrupole-quadrupole term is limited to smallR, where,
however, the multipole expansion loses validity. We ha
checked that as long asuC3u.0.25 a.u., the quadrupole
quadrupole term never reaches beyond 2% of the dip
dipole term in the range 20a0,R,1500a0 . Even whenC3
is vanishingly small, however, the influence of th
quadrupole-quadrupole term turns out to be very limit
since theC5 values are also orders of magnitude smaller th
the generalC6 values that we have developed, even to
extent that the~calculable! quadrupole-quadrupole term
smaller than the uncertainty in the induced dipole term
discussed in Sec. VII A. In fact, for Ne(3s)1Ne(3p), there
are only two curves supporting bound states where this is
true. These two states, given by Eq.~21!, have vanishingC3
as well as particularly smallC6'253103 a.u.

To obtain a quantitative estimate of the relative imp
tance of the quadrupole-quadrupole term, we have calcul
the JWKB phase for all 864 Ne2 potentials for vanishing
asymptotic kinetic energy, with and without the quadrupo
quadrupole term. In all cases but two, the difference in
cumulated phase in the range 20a0,R,1500a0 amounts to
less than 0.1p. The two exceptions, the same 2u and 2g

TABLE VII. Expectation valueŝr v
2& and^r h

2& for thenp andns
valence electron and the (n21)p core hole for Ne (n53) @68# and
Kr (n55) @69# together with data for thens valence electron of the
corresponding alkali atoms@69#. The^r v

2& for Kr(5p) was obtained
by scaling the Ne(3p) value with the ratio ^r v

2&@Rb(5s)#/
^r v

2&@Na(3s)#.

Atom n
^r h

2& @(n21)p#
(a0

2)
^r v

2& @ns#
(a0

2)
^r v

2& @np#
(a0

2)

Ne 3 1.01 22.9 45.9
Na 3 20.7
Kr 5 4.5 80
Rb 5 36.2
-
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states mentioned above, gave differences of 0.2p and 0.25p,
respectively, on a total of 5p. While for the heavier rare
gases,C5 increases somewhat due to the larger extent of
electron orbitals, the same is true for the resonant and
duced dipole-dipole interactions. For example, for Kr,C5

values are about 7.8 times larger than for Ne, butC3 is about
two times larger and, consequently,C6 about four times.
This means that in these cases as well, the quadrup
quadrupole interaction remains a minor effect.

C. Adiabatic corrections

The dynamical aspects of ultracold collisions taking pla
on the adiabatic potentials developed so far are determ
by the nuclear kinetic energy operatorTR . Part of this,
namelyTR

adiab52(\2/2m)(]2/]R2), can be incorporated in
the adiabatic potentials@43#. In our case, where the lowes
order interaction hasR23 behavior, these adiabatic corre
tions conform toTR

adiab5C8 /R8. This comes about becaus
the first-order correctionua8&, to the asymptotic wave func
tions ua& also hasR23 behavior, while in addition̂ a8ua&
50. Therefore adiabatic corrections are only a small per
bation at largeR ~we have foundC8 to be of order
43106 a.u. for Ne!.

VIII. CONCLUSIONS

We have determined the long-range behavior of diatom
potentials of the heavy rare gases due to the electric dip
dipole interaction, using an approach based on experim
tally measured quantities. The potentials are valid for int
nuclear separations from about 15a0 up to about 1500a0 .
Numerical calculations have been presented for diato
states connecting asymptotically to theR$ns%1R$np% sepa-
rated atom limit, withR5Ne and Kr, as a preliminary ste
towards predicting photoassociative spectra. At large in
nuclear separationsR*30a0 the potentials have a predom
nantly R23 or R26 behavior, while at short range they a
severely complicated by anticrossings among the nume
atomic fine-structure states. A truncated basis was use
determineC3 coefficients for theRns(3/2)21Rnp(5/2)3 la-
ser cooling transition, for allR5Ne, . . .,Xe. Our calcula-
tions can easily be applied to other rare gases without hy
fine structure, and qualitatively, our results apply for them
well. One source of error in our results comes from the
curacy to which the atomic lifetimes and branching ratios
known; any error in these values linearly affects theC3 val-
ues of our potentials. Smaller branching ratios are kno
with less accuracy; on the other hand, for the laser coo
transition the branching ratio is certainly 100%, so that
that case error is introduced from the value of the atom
lifetime alone. A second source of error is the exclusion
effects due to the restriction of our basis set. Particula
noteworthy is the discovery of pure long-range states in b
diatomic Ne and Kr, which might be used to precisely det
mine atomic properties, in conjunction with spectrosco
measurements.

The multitude of potentials made it impossible to discu
all of them in detail. Interested readers are welcome to c
tact the authors for more specific information.
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