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Scattering from a truncated von Neumann-Wigner potential
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In 1929, von Neumann and WigngPhys. Z.30, 465(1929] demonstrated the existence of local potentials
which support a bound state with energy embedded in the continuous spectrum. In this paper, we study the
s-wave scattering produced by a class of von Neumann—Wigner potentials which are perturbed by truncating
them at some large radius=a. For the class of potentials considered, we obtain an analytic expression for the
Jost function. The original continuum bound state is replaced by a well isolated complex zero of the Jost
function (equivalent to a pole of th& matrix), but this does not produce a conventional Breit-Wigner reso-
nance. Instead, we find twin peaks in the cross section, separated by a very narrow gap associated with the Jost
function zero. Our study continues with an account of bound states and virtual states supported by the poten-
tial, and with an investigation of the form of asymptotically large zeros of the Jost function. We compare the
results of this paper with the significantly different results we obtained using a different perturfFziigs
Rev. A52, 3932(1995]. [S1050-294{8)02005-9

PACS numbd(s): 03.65.Nk, 03.80+r

[. INTRODUCTION by the radiation field and by the necessary cutoff demanded
by the finite size of the sample. For the electron-positron
Local potentials that support bound states with positivecase, one would like to establish a clear experimental signal
energy embedded in the continuous specttioontinuum  for the existence of the continuum bound states. To attempt
bound states)’ were first constructed by von Neumann andthis in the context of the full numerical computations of
Wigner[1]. Recently, interest in this topic was renewed be-Refs.[3,4] would be a dauntingif desirable task. However,
cause of two experimental developments. The first was th@rbuzov et al. [7] have developed a quasilocal approxima-
reported observation of narrow positron-electron coincidencéon to their electron-positron interaction that, although
peaks in heavy ion collisior{2]. In an attempt to understand energy-dependent, shares some of the characteristics of a von
these, two group3,4] independently performed detailed nu- Neumann—Wigner potential. W¢8], and independently
merical calculations for the electron-positron system usingzastavenkd9] using a different approach, have argued that
relativistic two-body approximations related to the Bethe-this approximate quasilocal potential cannot support con-

Salpeter equation. The American and the Russian group$,,um bound states of the energy needed to explain the

both found numerical evidence for the existence of conyeqits of the full numerical calculation. Nevertheless, this

tmuum bOLtml? stta)ues In dth's iyste_mr,]tat)nd su%?est_ted t?at tﬁpproximation suggests that results obtained by studying per-
experimentally observed peaxs might be a refiection of Sucy, 1,04 /o, Neumann-Wigner systems may have relevance

states. To the best of our knowledge, these theoretical calc%r the much more complicated relativistic electron-positron

lations have not been definitively refuted, although the ex; roblem, as well as for nonrelativisitc systems. This provides
perimental evidence for the peaks remains controversial. | S y ' P
the motivation for the present paper.

the second experimental development, Capastsal. [5] Th | of thi I hat of i K
carefully constructed a superlattice consisting of ultrathin e goal of this paper, as well as that of our earlier wor

semiconductor layers for which they report the remarkabld10}: is to study thes-wave scattering produced by perturba-
observation of an electronic bound state with no classicalions of a particular class of von Neumann-Wigner poten-
turning points. The potential consists of a series of barrierdials. The particular von Neumann—Wigner potentials that
all of the same height. Infrared absorption measurements réve perturb, and the particular perturbations that we consider,
vealed a narrow isolated transition from a bound state withirgre chosen to allow a completely analytic treatment of the
a quantum well formed by the barriers to a bound statelost function. This strategy produces a clarity of insight that
greater than the barrier height. Because the barrier heightsay be lost in a more numerical approach or in an approach
are all the same, this problem is easily amenable to theorebased on perturbation theory, but at the cost of some separa-
ical analysig6]. tion from realistic experimental situations. The present stud-
Thus continuum bound states or close relatives thereaks suggest some of the phenomena to be expected in a more
have been observed by Capassal, are predicted by some realistic but inevitably less analytic calculation.
calculations to exist in the electron-positron system, and In order to study the Jost function, we need not only the
might possibly have been observed in the latter systembound state solution but the scattering solutions as well. For
However, a bound state cannot be observed unless it intethis reason, we consider only the subset of von Neumann—
acts with some other system, and such an interaction mus$¥igner continuum bound states that were obtained in Ref.
perturb the bound state, in general converting it into a statfl1] using a particular class of degenerate Gelfand-Levitan
of finite width. For the semiconductor heterostructure studiedequations. This subset was also obtained by Pappademos
by Capasset al, the sharp “zero width” state is perturbed et al. [12] using the techniques of supersymmetric quantum
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57 SCATTERING FROM A TRUNCATED von NEUMANN- . .. 3535
mechanics and by Stahlhof¢t3] using a variation of the
Darboux transformationl4].

In Ref.[10] we radially shifted a class of von Neumann—
Wigner potentials. Under such a shift, solutions to the . 2 . i
s-wave radial Schidinger equation at the energy of the un- The energy eigenvalue B=k". We deal only with poten

turbed ti bound stat | ble t i {}ilals that are less singular thanr 14t the origin and that
perturbed continuum bound state are no fonger able 10 SaliSy,pish gt infinity, so that physically acceptable solutions
the boundary conditions both at infinity and at the origin.

. . . must vanish ar =0 and be bounded as—o. We begin
Thus, neither a bound state nor a scattering state exists at thgji, the Schidinger equation for a free particl®/(r)=0

energy. For a small enough shift, the Jost function has a zergnq yse the Gel'fand-Levitan equation to insert a bound state
in the lower hqlf complex plape near the reall axis, which with energyEo=kg into the continuous spectrum. This pro-
produces a typical resonance in the cross section. As the shifbqure creates a new Sétiinger equation with a potential
parameter goes to zero, this Jost function zero approaches tB@Ionging to a subset of von Neumann—Wigner potentials.
realk axis, in the limit giving a “resonance” of zero width, The reader is referred to our earlier papiirs] for the tech-
that is, a continuum bound state. nical details: here we merely quote the results, which can be
In the present paper we perturb the same class of votirectly verified by substitution into the Scltinger equa-
Neumann—-Wigner potentials by introducing a cutoff, thustion. This method provides explicit expressions for the scat-
producing a potential of finite range. The Jost function postering states as well as for the continuum bound state, and
sesses a well isolated zero near the wave number of the utherefore allows for a completely analytical discussion of the
perturbed continuum bound state. However, the scatteringcattering theory.
cross section does not exhibit a conventional resonance. In- The resulting von Neumann—Wigner potential is
stead of a single peak in the cross section, we find two

2

—d—2+V(r) Pp(r)=K3y(r), Osr<eo, 1
dr

closely spaced peaks, separated by a very narrow gap i, (r)=— 8Kk§ sin Aor 8k5(1— cos Kor)?
which the cross section drops strictly to zero. Further inves-""""'" 7 2kor + X —sin 2r * (2kor + A —sin ,r)?’
tigation shows that it is the narrow gap between the peaks )

rather than the peaks themselves that is associated with the

Jost function zero. This turns out to be an extreme form ofvhere\ is a positive constant related to the normalization of
the Ramsauer-Townsend effect, in which the “resonance’the bound state. |f\>3889, the continuum bound state en-
phenomenon is well approximated by amverted Breit-  €rgy is greatert.han the maxim_um of the potenti.al:thus-while
Wigner shape. In Appendix A we sketch a treatment of reso@ guantum particle of enerdg, is bound, a classical particle
nance phenomena, including the extreme RamsauelVith the same energy would have no classical turning points

Townsend effect, as background for the main thrust of thind must escape the poteniiab]. ) .
paper. The regular solution with energg=k* for the Schre

In the following section we introduce the potentials and.d'nger equation with the po_tent|al given by E(Q).’ nprmal-
solutions of the Schidinger equation for a class of von ized so that the wave function and its first derivative evalu-

Neumann—Wigner potentials that support a continuumated atthe origin are 0 and 1, respectively, is

bound state with energg,=k3. In Sec. Ill we determine the u(r,ko)s(r,k)
Jost function for the scattering when this potential is trun- e(rl)=ulr.k)— =5
. . . s(r,ko)

cated. In Sec. IV we treat the comparatively simple case in

which the cutoff point is chosen at a zero of the vonnere

Neumann—Wigner potential. This special case illustrates

most of the “resonance” phenomena. We return to the gen- 1

eral case in Sec. V, which among other things illustrates how u(r, k)= sinkr 4

the phenomena change with small changes in the cutoff.

Some technical details are relegated to Appendix B. Thiss the regular solution for the free particle,

leads in Sec. VI to a discussion of Levinson’s theorem, con-

ventional bound states, and imaginary zeros of the Jost func- 2k(2, siM(k—Kkg)r] sin(k+kg)r]

tion. Again, technical details are presented in Appendix C. In s(r,k)=—~ - i .
: 0 0

Sec. VIl we study the asymptotic form of large complex

zeros of the Jost function, and show it to agree with theand in particular

Regge estimat§l5]. We compare the present results with

those of Ref[10] in Sec. VIII. In a concluding section we S(r,Ko) = 2Kor —sin XKor . (6)

comment on our results.

()

For k=kgq, the solution reduces to

Au(r,ko)

IIl. THE VON NEUMANN —-WIGNER POTENTIAL o(r,kg) = m,
1RO

AND SOLUTIONS

)

Throughout this paper we use units in whik=1 and  which is normalizable. Therefore(r,ko) represents the
2m= 1. For simplicity we confine our attention to the case ofbound state with positive enerdy,=k3 embedded in the
the radial Schrdinger equation for zero angular momentum, continuous spectrum.
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Ill. THE JOST FUNCTION AND SCATTERING PHASE
SHIFTS

In this paper we study the-wave scattering for the trun-

cated potential

Vonw(r),
0, r>a,

r<a

Veuorl( M) = [ (8)

whereV y.w(r) was defined in Eq(2). We useuy(r,k) to
denote the regular solution with energy=k? to the Schie
dinger equation with the potentidd. s (r). This solution
may be written as

[ e(rk), r<a
‘””'k)‘[eik)1{s_<k,a>e‘kf—s+<k,a>ei“}, r=a,
©

where the Jost function

J(k,a)=F.(ka)=F=(k*,a)=e"[¢’(a k) —ike(a,k)]
(10

is found by matching the two forms af(r,k) and their first
derivatives ar =a. The prime in Eq(10) denotes differen-
tiation with respect ta.

From Egs.(5) and(10) we find

ika

F(k,a)=1- m{s(a,k)[cos koa—iku(a,kg)]

+4k3[u(a ko) 12e(a,k)}. (12)
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IV. A SPECIAL CASE
The analysis is much simpler when
koa=nmr, (15

wheren is an integer, for them(a,ky) =0. These values of
koa also correspond to zeros of the oscillating potential.
Then from Eqs(4), (5), and(11) we find that
4k3 sinka
k(k?—K2)(\+2kqa)

F(k,a)=1—¢'ka (16)

We anticipate that the perturbation of the system due to
the truncation of the von Neumann—Wigner potential will
replace the continuum bound state by a well isolated com-
plex zero of the Jost function close io=ko=nm/a. We
estimate its position be assumif{¢s—ko)a|<1 and expand-
ing §(k,a) in powers of K—kg)a. This yields

§(k,a)= [N —(k—ko)a(2ikga—3)]

A+ 2koa

+0((k—ko)?a?), 17)
which gives

k=K, =ko— N (18

—_—— I —
4k3a®  2kqa?

for the location of the zero closest to (The notationK,
indicates that this zero is nei=ko=nmw/a.) This zero is
well isolated in the sense defined in Appendix A, and can be
placed arbitrarily close to the real axis by takiagsuffi-
ciently large. The approximatiofka—n#| <= used to de-

For k—», F(k,a)—1 as expected. The Jost function for rive Eq. (18) is valid provided\ <2koa=2nm. If kpa>1,
such a finite range potential is known to be an entire functiorthen|Re(K,—kq)|<|ImK,|, so that the wave numbég, as-

of k with at most a finite number of zeros on the positive sociated with the original continuum bound state lies well
imaginaryk axis, no other zeros in the upper half complex Within the width of the “resonance” region associated with
plane, and an infinite number of zeros in the lower half planghe zeroK,.

[17]. Zeros on the positive imaginaky axis, if they exist at

Naively one would expect this well isolated zero to be

all, correspond to bound states. Zeros in the lower half plan@ssociated with a conventional resonance in the scattering
may correspond to resonances provided they are sufficientl§foss section, but this is false. Equati¢h6) shows that

isolated and are near the rdalaxis [18]. The limit of the
Jost function as— < is not uniform ink, since

lim3(k,a)=1,

a—®

k+#ko, 12

while

lim §(kgy,a)=0.

a—®

13

For all values ok, however, theS-matrix element given by

3" (k@) _ a2id(k,a)

Ska)=<ka)

14

has the limit 1 am— . Here §(k,a) is thes-wave scatter-
ing phase shift.

$(k,a) is real atk=ky=n/a, so that the phase shift is zero
at this wave number. As already noted, this falls well within
the expected Breit-Wigner peak centered oiKReThus the
resonance phenomenon associated with the Kgrof the
Jost function is not a Breit-Wigner peak: instead it is very
close to the “inverted Breit-Wigner” form discussed in Ap-
pendix A. Ask increases througlk=k,, the phase shift
increases rapidly from neat /2 to near + w/2, never
reaching+ 7/2 and reaching-7/2 only if A\=<27/(16n).
We relegate the details to Appendix B.

We illustrate these findings by studying %if(k,a), which
is more convenient than studying tilsewave partial cross
sectiona(k,a) = (4m/k?)sir? 8(k,a), since the unitarity limit
is given by sik &k,a)=1. From Eq.(14),

1/3(k,a)—§* (k,a)|?

sir? 8(k,a)= 2 3K - (19

Equation(16) then yields
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sir? 8(k,a) ;-g
- a
T o061 (@)
4 sirf ka F 041
= 2 : & 027
ka| 1— i 1+ +sin Xa| +4sirf k 0.0 Ao d |\
a k2 2kpa sin &a sit ka 00 02 04 06 08 1.0 12 14
0 Kk,
(20) 0.50
0.25 1 (b)
B
The cross section vanishes whenekar~ma, wherem is ~ 0.001
an integer, while the intervening peaks are of varying heights = 0251
and typically have a width at half maximum somewhat 050 . . . . . .
smaller thanw/2a. The two peaks betweem¢1)w and T00 02 04 06 08 10 12 14
(n+1)7 are particularly large and appear as twin peaks Kk,
separated by a very narrow gap as the cross section drops
precipitously to zero ak=ko=n/a. This is illustrated in 1.0 T
Fig. 1@ for n=5 and\=1. The gash separating the twin 0.81 (c)

0.6 1

0.4 1

0.2 —— approximate

0.0 T T T

0.990 0.995 1.000 1.005 1.010
ik,

peaks is due to the “resonance pole”lat K,,, as is shown
by the dramatic increase of the phase shiftkamcreases
through the gap region, illustrated in Figbl. The exact
sirf(k,a) is compared to the “pole approximation” of Eq.
(A1l) in Fig. X(c), using the approximation of Eq18) for
the complex zero of the Jost function. We attribute the minor
discrepancies in the width and the position of the zero in Fig.  FG. 1. siff s(k,a) and5(k,a) plotted againsk/k, for A =1 and
1(c) to the approximation(k—ko)al<1 used to derive EQ. kja=5a. (a) sir? 8(ka). Note the resonance structure néark,
(18). For the example of Fig. 1§,(k,a)~arctan(10r/3)  and the broad peak neli=0.1k,. (b) 5(k,a). Note the rapid in-
=0.470r, so that the resonance structure is very close t@rease ofs(k,a) from near— /2 to near+ /2 coinciding in po-
that of an inverted Breit-Wigner. This becomes especiallysition with the dramatic dip in sfnd(k,a) neark=k,. (c) Detail of
apparent when Fig.(&) is viewed upside down. sirfd(k,a) neark=k, compared with the “pole approximation” of
Figure Xa) also shows a prominent peak for small valuesEq. (Al11), using the approximation of E¢18) for the zeroK,, of
of k. We discuss this further in the next section and in Secthe Jost function.
VI.

sin?8(k,a)

and we define a dimensionless wave number varialiig
V. THE GENERAL CASE

z=k/Kg. (22
We now return to the general Jost function given by Eq.
(11). Before proceeding, it is convenient to introduce theWe rewrite Eq.(11) as
following new notations. We definb and 8 (where 0<f
<) by S(k,a)=X+iY, (23
b=kja=nw+3, (21 where after some work we find

N 2z sin 28 cos bz—2 cos B sin sz+ 2[sin 28 sin 20z—z(1—cos 2B)(1+cos bz)](1—cos B)

B 2(Z2—1)(\ +2b—sin 28) 2(Z2—1)(\ + 2b—sin 28)2 @9
and
Ve o 2(1—cos dz)cos B—2zsin2B sin bz+27%(1—cos B)
B 2(22—1)(\ +2b—sin 28)
— 2) i — — I 2) —
N 2[(1—cos Ddz)sin 28—2z(1—cos 2B)sin 2z](1—cos 28). 25

2(Z2—1)(\+2b—sin 28)?
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For z (or equivalentlyk) real, X andY are Rg(k,a) and 1.0
Im§(k,a), respectively. 0.8 @)
The obvious question arises whether the “inverted Breit- =
Wigner” structure in the cross section persists for arbitrary = 067
values of the cutoff, or whether it is a feature unique to the C 041
special case considered in the preceding section. We attack ®
this question first by seeking a complex zeroggk,a) near 0.2 /\
k=kgy, and then seeking a real zero of §fk,a) neark 0.0 f e f
=kq. If such a zero exists and is well inside the expected 00 02 04 06 08 10 12 14
“resonance peak” associated with the complex zero of Kk,
F(k,a), then(as in Appendix A we expect to find a struc- 1.0 7 S—
ture in the cross section similar to an “inverted Breit- / \;\'\ S (b)) __ B=n6
Wigner” shape. SN
For the complex zero of(k,a) neark=ky, we expand g
bothX andY in powers of ¢— 1), keeping only the constant (\f
and first order terms. We assume that 1, and thatih may ?
also be large. Therefore we retain only those terms of highest
order inb and\ except when these terms have coefficients 0.0

that may be small or zero for certain values®fin this way 0.00 0_;)5 0,'10 0_'15 0.20
we find the approximate zero gf(k,a)=X+iY to be Wk
0

M1+2co€2B8) . A
Kn%ko_ 2.3 —1 2+O
4kga 2koa

FIG. 2. sirf 8k,a) plotted againsk/k, for A=1 andk,a=5
k3a4/ (26) +B. (a) sir? &k,a) for B=m/2. Note the resonant structure near
0 k=k,. (b) Detail of sir? &k,a) for 0<k<k,, for several values of

B. The peak neak=0.1k, for =0, shown in Fig. 1a), decreases

in height asB increases and practically disappears wigsn /4
(not plotted. A new peak which reaches the unitarity limit
sirPs(k,a)=1 has appeared closer to the origin whgn 7/3. As 8
fhcreases beyondr/2, this peak moves to smalldr values, and
shrinks below the unitarity limit.

If B=0 (corresponding tdb=kya=n) this reduces to Eq.
(18), as it should. The approximations leading to E2f) are
valid provided|K,/k,—1|<b~?1, which is true providec\
<2b=2kga. We conclude that the Jost function possesses
complex zero close tky, which may be expected to gener-
ate resonance phenomena.

Using the same approximations, we find The growth and eventual decay of this peak@aicreases
from /6 through 27/3 is illustrated in Fig. ). This peak

Im§(ky,2)=0 is due to an imaginary zero of the Jost function, associated
with either with a virtual state or with a very weakly bound state,
depending on the value @f. We discuss this in detail in the
M(1—cos )2 A next section.
ki~ko— > +O( 3 4>. (27
2koa” (A +2koa) koa VI. LEVINSON'S THEOREM AND IMAGINARY ZEROS

. . . OF THE JOST FUNCTION
With A <2b, necessary for the validity of E26), and with

b>1, In this section we shall gain a better understanding of the
low momentum peaks in Figs. 1 and 2 through studying pos-
N(2+cos B)|cos | sible bound or virtual states. We begin by considering
2.3 <[ImK,|. (28)  Levinson’s theorem.
4koa The potentialVoi(r) defined in Eq.(8) satisfies all of
the conditions for the validity of Levinson’s theorem. There-
fore,

|k1_Ra<n|%

Hence Ing(k,a)=0 [and therefores(k,a)=0] at a wave
number k; well inside the “resonance region” of width
2|ImK,| centered on R€,. We conclude that the cross sec- 5(0,)— 8(,a) =Ny, (29)
tion will display a structure nedt=k_, similar to an inverted
Breit-Wigner structure, except possibly whanis compa- whereN,, is the number of bound states. From E¢(&3)—
rable in size to or larger thaln=kga. (25 we see that

These results are illustrated in Fig. 2. The typical behavior
of sir? &k,a) when g is not necessarily zero is illustrated in S(>,a)=1 (30
Fig. 2(a). The cross section is qualitatively similar to that for
B=0, illustrated in Fig. 1, with a strong peak at low momen- an
tum and a strong twin peak nela k, separated by a narrow 3(0.a)=real. (31)
gap associated with the resonance pole. However, the pattern '
of intermediate peaks is less regular and somewhat modifiedjnce

For the cas@@= =/2 illustrated in Fig. 2a), the strong low
momentum peak reaches the unitarity limit %gik,a)=1. F(k,a)=|F(k,a)|e" k2, (32
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we conclude thaN, in Eqg. (29) is even(or zerg if F(0,a)
>0 and odd if§(0,a)<0. Since the unperturbed potential

Vyn-w(r) does not support any conventional bound states, we
do not expect many bound states for the perturbed system.

We therefore assumid,<1, interpretingg(0,2)>0 as im-
plying no bound states an(0,a)<0 as implying one

bound state. These interpretations will be confirmed later in
the section, when we discuss imaginary zeros of the Jost

function.
From Eqg.(24) we find

s0a=5 +Fz(tj\ ;bs,iﬁ)Z,B) 2" 33
where
F(\,b,B)=\%+4[b(1+cos B)—sin 28]\
+4b?(1+2cos B)—12b sin 28
+(1—cos 28)(7—cos B). (39

This quadratic in\ is positive, and thereforg(0,a) >0, ex-
cept forh _<A=<\,, where

N+=2sin28—2b(1+cos 2B)
+[4b? cos 28+ 4b(1—2 cos B)sin 28

+(5 cos B—3)(1—cos B)]*2 (35
Hence for most values of there will be no bound states, but
for A_ <A<\, there will be one bound state. In particular,
the existence of a bound state requires thatbe real and
positive. Theh. will be real if the expression in square
brackets in Eq(35) is positive. If this is true, theik ;. will be
positive if either b<tanB or 4b%(1+2 cos B)
—12b sin 28+ (1—cos 28)(7—cos 28)<0. With
b=n#w+p, as in Eq.(21), we find from more detailed analy-
sis thatA ;>0 for n=1 only if 0.28247<3<0.6128r.
These lower and upper bounds fgr approachs/3 and
2713, respectively, aa—o. In summary, Levinson'’s theo-
rem shows that the potenti®@,(r) with cutoff a=(nm

+ B)/ko=mlky supports a bound state for a finite range

sup( _,0)<A<\, of the parametex, providedg is within
a rangeB_(n)<B<B.(n), where 0.2824<B_(n)< /3
and 0.612&< B, (n)<2x/3.

For the examples illustrated in Fig(® with b=57x
+ B, the k. are complex only if 0.76<8=<0.78m, which
does not include any of the illustrated valuesgofEquation
(35 shows that\ , <0 for b=5#+ 8 and B=«/6 or B
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5
o — yir-expi2y)]

—= -bBN(y)/D(y), p = n/5
3 —--- -bN(y/Dly), B =2n/5
od == -BNGYD(Y), B =3w/5

..... -bN(y)/D(y), B = 4n/5
i e ———————— e o e 3
-1
-2 T ' ! ! i
25 20 -15  -10 S 0 °

y

FIG. 3. Imaginary zerog=iy/a of §(k,a) are given by inter-
sections of the curves bN(y)/D(y) andy/(1—e~%). The nega-
tive root of Eq.(36) when 8= /5 moves along theg axis asg
increases, and has become positive whga27/5. This root
reaches a maximum negr=0.79 wheng~ 7/2 (not illustrated
and then begins to retreat gcontinues to increase, while a second
negative root moves along tlyeaxis from —c. Eventually the two
roots coincide and move onto the compleylane, as has already
happened wheB=41/5.

ka=iy. (36)
The condition§(k,a)=0 may then be manipulated into the
form

bN(y)
D(y)’

y = —
e %

)= (37)

where
B (A +2b)cos —sin 28
A t+2b-sin2B

(A+2b)sin 28—2(1—cos B)
N+2b—sin 28

N(y)

(38)

y
b

and

2(1—cos B)?
N+2b—sin 28

y2
3

Here we give only a descriptive account of the roots of
Eq. (37). The analytic justification for our description is pro-
vided in Appendix C. Equatiof37) develops a real root at
y=-—o whenB=0. As B increases, this root migrates along

D(y)= —sin 28— %(1—cos )

1+

+5 (\+2b—sin 28). (39)

=2m/3: hence there are no bound states for these values ofthe y axis (equivalently, up the imaginari axis) and be-

and B8, and the corresponding curves in FigbRdo not
reach the unitarity limit sifid(k,a)=1. However,\ , >0 for
the cases8=m/3 and B= /2, and a bound state may be
present ifA<<\, . Numerical computation shows that,
=4.69 for B==/3 and A, =34.33 for B=m/2. Since the
cases plotted fog=w/3 and 8= /2 in Fig. 2b) have A

comes positive foB somewhat less than/3. It continues to
increase with increasing, reaching a maximum close to 0.8
for a value ofB a little less thanm/2. As B8 continues to
increase, the positive root begins to move back alongythe
axis, while a second root starts to move along the axis from
—o. Before 8 reaches #/4, the two roots coincidéat a

=1<\., they possess bound states and the correspondimggative valug then separate again as they move onto the

curves reach the unitarity limit as expected.

complexy plane(equivalently, the two imaginary roots k

We confirm these results by considering the imaginaryspace develop equal and opposite real pamhese results
zeros of the Jost function. To seek such zeros, we first setare illustrated in Fig. 3.



3540 T. A. WEBER AND D. L. PURSEY 57

Positive imaginary zeros of the Jost function correspond 1
to bound states, while negative imaginary zeros, if small, A(Z):_F(z)
correspond to virtual states. Both virtual states and weakly
bound states generate large zero momentum peaks in the X[i(z/b)(1—Z%/b?)(\ +2b—sin 28)°>—2C(z)],
cross section. In sfndk,a), this is reflected by the strong 45)
peaks at low wave number, apparent in Figs. 1 and 2.

To conclude this section, we compare the energy of the .
bound states associated with imaginary zeros of the Jost B(2)=(A+2b)cosz8—sin 28
function with the amplitude of the oscillations of the poten- —i(z/b)[(\+2b)sin 286—2(1—cos B)],
tial near the cutoff ar =a. We use the resuly,,,<0.79
from Appendix C. Fory>0, the bound state must have en- (46)
ergyE=—(y/a)?> —0.624A%. From Eq.(2), there must ex-
ist some ry in the range a— m/2kp<ry<a such that
[Veuoi(Fo)| is of order &g/a. Hence |E/Vyoi(ro)l _ _
=<0.16koa. Since we are assuming thijas1, it follows C(2)= (A +2b)cos B—sin 26-i(z/b)(1-cos )
that the binding energy of any bound state is very small +(2/b)2(\+2b—sin 28)(1—cos 2). (47)
compared to the maxima and minima of the potential near
the cutoff, and tends to zero as—o.

and

Hence
VII. ASYMPTOTICALLY LARGE COMPLEX ZEROS __ E In|A(z)| (48)
OF THE JOST FUNCTION y 2
The Jost function for a finite range potential has infinitelyand
many zeros. We denote timath zero with positive real part,
counting from the zero of the real axis, b§,. The zeros A(z)=|A(z)|e2iX. (49)

with negative real part are given bg_,=—K} . Regge
[15] has shown that am— o the real and imaginary parts of

K. have the asymptotic form From Egs. (45—(47), provided tan3#0 and tang

#3(N+2b) we find the asymptotic form fojz|>b,

ReK,=mma 14+ 0(1), z/b)?(\ + 2b—sin 28)2
m (40 g DI B o),
2[(N+2b)sin 28—2(1—cos 28)]
1 . (503
ImK,=— E(U+2)a In m+0O(1),
while if tan =0 or tanB=3(\+2b),
whereo is defined by the behavior of the potential near the . 3 o 2
cutoff through Az~ SHDV A ZDZSINABT )
2[(A+2b)cos 28—sin 28]
V(r)=(consy(a—r)7+---, r=a. (41 (50b)
. _ . _ However, tan3=0 or tanB=%(\+2b) are just the condi-
In particular, for the potentidVo#(r) defined in Eq(8), tions under whichV () =0. Hence
1, Veuwor(@)=0 42 —In|z|+0(1),  [z|>b, Veuor(@)#0
o=
0, V a)+#0, = 3 51
cua 2 ] - Jndrow, [2=b, Ve@=0.
where from EQ.(2), Vquoi(2) =0 if tan kga=0 or tarkga
= 1 (A +2koa). In this section, we find asymptotic forms for Since Inz<|Z for large|z|, we conclude that
the zeros of the Jost function for the poten¥ig|.«(r), and
show their agreement with E¢40). lyl<[x[, [z]>b. (52)
We write

Hence we approximate~x=real. It then follows from Egs.
ka=z=x+iy, (43) (50 tha_t the complex phase &(z) i_s approximattlely (31
+1)7 if V(@) #0 and approximately (@+3)w if
. . . Y a)=0. Hence the complex zeros of the Jost function
and then manipulate the conditigtk,a)=0 into the form hg\]/toeﬁ(thlz asymptotic form P

et=e WA= (2), (44) ReK =ma lm+0(1) (533

where and
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—a ' Inm+0(1), Veutor(@) #0 10 — cutoff
ImK. = 3 —— shifted
m - Ea_l In m+0(1), chtoﬁ(a)zo- -
s
(53b
We see from Eqs(40) and (42) that this agrees with the
Regge prediction.
It is possible to improve on Eg$53) by an iteration. We 1.0 TR
have found that a first order correctidix,,, obtained from 0.8 —— shifted 1} (b)
Egs. (50) using z,~mao+iy,, with y,=ImKa obtained < 061 i
from Eq. (53b), together with an improved estimate fgy, 5;’ 0.4 |',
found usingz,~mmw+ 8X,, in Eq. (48), usually yields an @ oA {
excellent approximation to numerically calculated zeros for 0'0 AN \
ReK.>k,. It is also possible to find good approximations T00 02 04 06 08 10 12 14
for zeros in the range QReK,,<k,, using a similar ap- kikg
proach. We omit these further developments. 1.0 p——
087 ~— shifted (c)
VIIl. COMPARISON WITH PREVIOUS WORK z 08 i
= 04 h
In our earlier papef10], we considered the-wave scat- ’ 0.2 ,"\
tering due to a von Neumann—Wigner potential perturbed by o'o " ‘/ A,
shifting it radially through a small amountr = a/k,. In that T00 02 04 06 08 10 12 14
case, the Jost function has only two zeros.\Ifsin 2« kiky

+2|sin ], then the real parts of the two roots are equal in
magnitude but opposite in sign. ¥ is significantly larger . ; o
than sin 2v+2|sin a|,' then the root with positive real part :m[jlaol éa;;/rll(: é:)ur:;?riz fooiﬁgt?:msg(&;fn?éhfz ({Vrv)'tge)}ingd
generates a conventional Brelt-ngner resonance centered Qo [10] with A=7 anda=0.07x. (b) sir? &K) plotted against
a wave numbeK =ko[1—(2/A)sin 20— (2I\) *sirt’ a]l,lz' In" /K, for the two potentials illustrated ifa). (¢) sir? &(K) plotted
c_optrast, the Jost function for the truncated potential has iNzgainstk/k, for Vayg(r) with \=7 anda=30m/k,, compared to
finitely many complex zeros. None of these generates a congr? 5(k) for the sameéVgnedr) Used in(@) and(b). The large cutoff
ventional Breit-Wigner resonance, but the zétg, given 3 is chosen so that thénonresonantsplit peak neak=k, has
approximately by Eq(26), generates a dramatic resonant dipapproximately the same width as theesonant peak due to
close to an inverted Breit-Wigner in shape. Venitedr)-

We illustrate this comparison in Fig. 4. We choose param-
eters\, a, anda with \ large enough for the shifted poten- nite, and in Ref[10] we showed that the Jost function for
tial to produce a Breit-Wigner resonance and wittanda  that potential has at most two zeros in the lower half plane.
chosen so that the two potentials produce resonance strustowever, the twin peaks and the inverted Breit-Wigner reso-
tures of roughly equal width. Figure@ compares the trun- nance produced by the truncated potential are a major sur-
cated potential withh =7 anda=5.5m/k, to the shifted po- prise. Our analysis shows that this structure existsafars
tential with the same value of and witha=0.077. Figure  small asm/k, and persists for all greater values of the cutoff,
4(b) compares shdK) for the two potenials. In an experi- no matter how large. More study is needed to pin down the
mental situation, attention would most probably be focusedxact cause of this phenomenon.
on the twin peak in the cross section with the truncated po-
tential, and it might not even be possible to resolve the gash
separating the peaks. Although the twin peaks are not due to
a resonance, they become very narrow for a sufficiently large In the usual understanding, a bound state with energy em-
cutoff. Therefore, in Fig. &) we compare sit(k) for a  bedded in the continuum is best regarded as a resonance of
truncated potential witta=30m/k, with sir? &k) for the  zero width. If such states are of physical significance, then it
same shifted potential used in Figgagand 4b). The cutoff  is important to study how these states manifest themselves in
in Fig. 4(c) is chosen so that the combined width of the twin scattering when the potential supporting them is perturbed in
peaks for the truncated potential is comparable to the widtk variety of ways. One would hope that the perturbed system
of the resonant peak for the shifted potential. would possess a resonance that becomes the continuum

Part of the difference between the two results may beéound state in the limit when the perturbation disappears.
attributed to the qualitative difference between the two po-This was the case for the shifted von Neumann—Wigner po-
tentials. The truncated potential is of finite range and, actentials that we studied in Ref10]. In contrast to the ex-
cording to the standard analydis7], the associated Jost pected results, perturbation by truncation leads to a double
function has an infinite number of zeros in the lower halfpeak in the cross section, and it is the gap separating the
complexk plane, while the Jost function for an infinite range peaks rather than the peaks themselves that represents reso-
potential might not even exist in the lower hélplane. The nant phenomena. While it is possible in principle for one of
range of the shifted von Neumann—Wigner potential is infi-the twin peaks to reach the unitarity lin{glthough not as a

FIG. 4. Comparison of results of this study with those reported

IX. CONCLUSION
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resonanck in our model this occurs only for a very limited a “true resonance” must be associated withwall isolated
range of the parameters. As the cutoff moves to infinity, thezero of the Jost function, and be such that the scattering
twin peaks become much sharper, their widths eventuallphase shift increases from near zero to neapassing rap-
shrinking to zero. As this happens, the width of the gapidly through/2, as the wave numbéor the energypasses
between them—the true resonance phenomenon—shrinkkrough the resonance regidd8]. The cross section near
even faster than the widths of the peaks. At the same timeesonance is then well approximated by the Breit-Wigner
the twin peaks increase in height although they never quitéormula. This is usually regarded as a consequence of the
reach the unitarity limit. Thus for sufficiently large cutoffs unitarity of the S matrix, and Weinberd21] has recently
the gap between the peaks will not be experimentally resolvgiven a clear presentation of the argument in the context of
able, and the twin peaks will appear as a single peak verynultichannel scattering in particle physics. However, the ar-
nearly but not quite reaching the unitarity limit. Because ofgument from unitarity involves an additional assumption that
limits imposed by experimental resolution, such a phenomappears never to be seriously challenged, namely that the
enon could well be mistaken for a single resonance peak. Iphase shift is small for wave numbers close to but still out-
summary, for a truncated von Neumann—Wigner potentialside the resonance region. This assumption is false for the
the experimental signal for a perturbed continuum boundotentialV . (r) of Eqg. (8).
state is not a resonance in the scattering but pronounced twin In this appendix we present the modified version of the
peaks, which, if an experiment is incapable of resolving theunitarity argument, which is appropriate for the present pa-
gap separating them, might easily be mistaken for a singl@er. We present the discussion in the context of single chan-
resonant peak. nel s-wave scattering, but the extension to other partial
The results reported in this paper demonstrate a flaw invaves and to multiple channel processes is straightforward.
the standard derivation of the Breit-Wigner formula from the  The single channeb matrix is related to the Jost function
unitarity of theS matrix. In the language of Appendix A, the through
standard assumption that,(k) is small as well as slowly
varying near the resonance pole of tBematrix is not nec- % (k)
essarily true. We find it surprising that a seemingly innocent (k)
finite range potential, such as that studied here, should gen-
erate a Ramsauer-Townsend effect so extreme as to produediere 5(k) is the scattering phase shift. Now suppose that
an almost perfectlyinverted Breit-Wigner structure in the

S(k)y=e? M = (A1)

cross section. However, Dehnen and Shdhig), studying | k—k+ }

the possible existence of magnetically quasibound positro- Slky=| k=K ZIF F(k). (A2)
nium by using the two-body Bethe-Salpeter equation to de- _

rive an energy-dependent nonlocal effective potential, preThend(k) can be written as

dicted a series of twin peaks in the electron-positron _

scattering cross section. It is not clear whether the double (k)= (k) + Snl k), (A3)

structure of their peaks is due to an accidental backgroun%here the “
interferencd 20] or is an intrinsic property of their nonlocal
potential. If it is the latter, it would be most interesting to

resonant” contribution to the phase sh#it(k),
is given by

know whether their twin peaks, like ours, represent an ex- 1
treme Ramsauer-Townsend phenomenon. k—K- Eil’
e216(k) = TR (A4)
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APPENDIX A: JOST FUNCTION ZEROS ‘k_ K + —ir‘
AND RESONANCE PHENOMENA 2
There does not appear to be any universally accepted defind the “nonresonant” contributior§,,(k), by
nition of “resonance phenomena” in scattering theory. Ex- .
perimenters may consider any sharp peak in a cross section 21 n(k) — F* (k) (A6)

to be a resonance. Theorists usually associate resonances F(k)
with complex poles of thé& matrix, or equivalently(in po-

tential scatteringwith complex zeros of the Jost function. [Weinberg[21] usesdyy for a “nonresonant” phase shift
However, not every Jost function zero is properly associategquivalent to ourd,(k)]. We suppose that the zeto=K
with a resonance. Thus the Jost function for the well behaved-3iT" is well isolated, in the sense thatkf —3iT"’ is any
potentials studied in Newton’s classic bopk7] has infi-  other zero of F(k), then I'<[(K—K')2+(I'—T")?]*2
nitely many complex zeros yet the scattering cross sectiokquation(A5) then shows that ak increases through real
may not display any resonances at all. According to Newtonyalues fromk<K to k=K, the resonant contribution to the
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phase shift increases rapidly through2, while Eq. (A6) this phenomenon were encountered in Sec. IV and V, and
together with the postulated isolation of the zero kKat were illustrated in Figs. 1 and 2.

— 2iT" shows that the nonresonant contribution changes rela-
tively slowly neark=K. We therefore make the approxima-

tion §,,(k)=~const= §,,(K) whenk is close toK.
Now

APPENDIX B: THE PHASE SHIFT NEAR RESONANCE

In this appendix, we justify the assertions made in Sec. IV
that the phase shift ne&=k, increases rapidly from near
—a/2 to near+ /2, but never reaches #/2 and reaches
—ml2 only if \=27/(1&hw). If S(k,a)==x/2 then
In the usual resonance situation, the nonresonant phase shiReg(k,a) =0. More generally, the phase shift will be close
is small as well as slowly varying in the resonant region. Into = #/2 if |Im3(k,a)|>|ReF(k,a)|. We therefore study
this case, the approximatiof), (k) ~ §,(K)~0 leads to the Re§(k,a) and In§(k,a) close tok=kg.
conventional Breit-Wigner formula For convenience we define

sir? 8(k)= 3 |e?9M—1)2, (A7)

EFZ é=(k—kgpa=ka—nm. (B1)
4
Sir?8(k) ~ ——— %K)~0. (A9 From this definition and Eq16),
_ 2, 12
(k=K) +4F Reg(k.a)=1 2n373 sin 2% 62
!a- = -

However, neither the unitarity of th® matrix nor the isola- sgrnm(g+2nm)(+2nm)

tion of the Jost function zero requires that(K)~0. If g4

Sn(K)=*m/2, then
1 (K a) = 2n3mw3(1—cos Z) 83
2 MS(ka) =~ e nmierznmnt 2nm)” B

(k=K)?

sir? 8(k)~1— = )
1 1
(k—K)2+ Zrz (k—K)?+ ZFZ

We expand Rg(k,a) and Inf(k,a) as a power series i§,
retaining terms up to ordef® and usingnm>1 to simplify
the coefficients where appropriate. This yields

o
on(K)~*£-, (A9) _ an 5
2 Reg(k,a)~)\+2nw()\+3§+ 3 £ ) (B4)
and the cross section is zero whies K, at the “peak” of
the “inverted Breit-Wigner” shape. and
This last example is an extreme case of the Ramsauer-
Townsend effect(see p. 165 of Ref[21]). In general, if ImF(k,a)~ (—2nmE+382). (B5)
Sni(K) is slowly varying but not particularly close to zero, the A+2nm
cross section will vanish at some poki ky# K. This im-
plies that Hence neag=0,
1 Img(k,a Bnmwé—9¢?
2! tam(k'a)E_Reggk a;%3>\+9§+4g 2 (BY)
Snu(kg)=arcta ko—K (A10) ' ¢ranmé

This has extrema whegf= £.. with
If ko=K, then we make the approximatia®,(K)~ 5,(K)

~ 8,(Ko) to find
1
12
4F (k—kg)?

1
K24 T2 CwW\24 T2
(k=K)?+ 7 T2 (ko= K)?+ 7T

sir? 8(k)~ . (A11)

B 1
8n2m2+27

1 /3\
~ +t— —_—
2 Vnxw'

where we have assumadr>\ and n7T>1 to obtain the

I (— 9N = \BIN?+48n373\ +162n7\)

(B7)

Thus the general Ramsauer-Townsend effect modulatdial result. The corresponding extrema are

the Breit-Wigner shape with the additional
(k—ko)?/[(ko—K)2+3T"2]. We refer to Eq.(A11) as the
“pole approximation.” Since Eq(A11l) is an approximation

factor

1 /3nw
[tan 6(k,a)]:wi§ B (B8)

to sirf &k) associated with a well isolated zero of the Jost

function, and since in this approximation the total phase shifProvided thatnm>\, this justifies the assertion that the

increases rapidly from neaf, (ky) to nears, (ko) + 7 ask
increases pa¥{, we regard Eq(A1l) as representing a gen-

phase shift increases rapidly from close tar/2 (when ¢
~¢_) to near+ @/2 (whené~ ¢, ) ask increases througky

eralized “resonance phenomenon.” Extreme examples ofor equivalently ast increases through zero
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From Eq.(B4), the zeros of Rg(k,a) neark=kq (or & bN(y) 2b cos 28+ 2y sin 28

9 l6nm\

= gna T Vi-— : where we retain the term linear iy in case |cos 23|

=1/2b. The quadratic approximation

or equivalently

9 [ Tenm y 1. il (3

™ ~oToYT Yy

=Ka— + — _ _ey 22776

ke=ko= g— | 1+ \/1- — (B9) 1-e

These are real only fok=27/(1é7), and if this is true,
then the zerosk. are both smaller thark, so that
tand(k,a)<<0 for k neark... This justifies the claim that

is extremely good for-1<y=<1 and fair even foy=+1.5.
Thus neary=0 we use these approximations, E¢S1) and
(C2), together withb>1 in Eq. (37) to find

d(k,a) never reaches- /2 neark=ky, and reaches- m/2
only if A=27/(16m).

12b cos B
y?+3y+3+ %35 " (C4
APPENDIX C: IMAGINARY ZEROS OF THE JOST
FUNCTION
This quadratic equation has roots
In this appendix we justify the account of the imaginary g g
zeros of the Jost function given in Sec. VI. We begin with
Eq. (37). B 3+\/ 3 12b cos B
The functionf(y)=y/(1—e~ %) is positive definite, ap- Y1227 5=N"27 2720 (€9

proaches zero exponentially gs- — o0, approachey expo-
nentially asy—o, and is always greater than The qua-
dratic function D(y) is positive definite provided\ +2b
>1.6. The linear functionN(y) changes sign whery

=vyo(B), where

but since the approximation EqC3) is inadequate for
y<-—1, the rooty,, with negative sign in EqC5), is unre-
liable as a solution of Eq37), and should not even exist if
B<arctafiz(\+2b)]. For g>arctafi3(\+2b)], the true sec-
ond rooty, will lie somewhere betweewy(B) and the esti-
mate given by Eq(C5).

The rooty,, with positive sign in Eq.C5), should be
The functiony,(B) increases monotonically wits. At the reliable pro_vided it is greater than or equal-td. This will
sign changeN(y) is increasing or decreasing accordingly P& S0 provided
as (\+2b)sin 28—2(1—cos B) is positive or negative,

- (\+2b)cos 2B—sin 28
Yo(B)= _b()\+2b)sin 28—2(1-cos P)’

(CD

respectively: in particular;-bN(y)/D(y) has the same sign 1 N+2b

as (\ +2b)sin 28— 2(1—cos ) for large negativey, and 0.28m <5 arcco% -1 ) <B

the opposite sign for large positive As y— *+oo, the ratio

—bN(y)/D(y) approaches zero as the inverse first power of 1 N+2b

y <7— Earcco% — W) <0.72m. (Co)

From Eq.(C1), limg_oyo(B8)=—>. As B increases, so
also doesyy(B), reaching infinity wheng=arctafz(\
+2b)]. As B continues to increaseyy(B) starts out again
from —o and continues to increase, approaching again
asB— .

It follows from these remarks that-bN(y)/D(y)<O0
for 0<p<arctafii(\+2b)] and y>y,(B). Since y/(1
—e »)>0, it follows that Eq.(37) has only one solu-
tion y,(B) for O<pB<arctafj(\+2b)], which satisfies
y1(B)<Yo(B). Hence,y;(0)=—. As B increasesy,(p)
follows yo(3) along they axis. If 3> arctafi3(\+2b)], then
—bN(y)/D(y)<0 for y<yy(B8) and —bN(y)/D(y)>0 for
y>yo(B). Hence, a second zerg,(B) satisfying yo(B)
<y,(B)<y.(B) starts moving from—-« along they axis as
B increases beyond arc{gti\+2b)]. This qualitative behav-
ior is illustrated in Fig. 3.

Near y=0 we make the approximations>1 and b 3 15 3.9 c8)
>|y| to find 7

However, whernB~ tarcco§— (A + 2b)/4b]~ /3 there is a
near cancellation in Eq(C5) so that the approximations
made in its derivation become suspect. In this case a better
approximation is obtained using a linear approximation to
y/(1—e %), equivalent to ignoring the quadratic term in
Eq. (C4). This yields

4b cos B 1

% N+2b
—arccos —

et g AT @

(C7)

For the examples illustrated in Fig. 2, EGC7) correctly
predictsy,>0 for 8= =/3, yielding a bound state, while Eq.
(Cb) fails to do so.

The rooty, reaches a maximum
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wheng= 7/2. Sincey; <1, we expect this to be a reliable unreliable, we may expect that E¢C5) will yield qualita-

estimate provided the approximatibr=kya>1 is valid. tively useful information forg near 8,=m— 3arccog— (A
Equation(C5) predicts two real rooty, , provided that +2b)/16b]. We first note that fop= 8, andb>1,
1 A+2b N+2b
0.277r<§arcco T =g Yo(Bo)=—b cot 28,< — T (C10

<o Earcco% _ )“L_Zb) <0.75T. (C9) From this,yo(B80) <Y, and Eg.(C5 we expect that when
2 16b B~ B, the two roots will coincide with— (N +2b)/16=<y,
As we have already noted, the rog$ is unreliable as a =Yz=—1.5, while for larger they will separate and move
) ' . into the complexy plane with equal and opposite imaginary
solution of Eq.(37), and does not exist fop<arctarfiz(\ parts. In terms of the wave numbkr=iy/a, the imaginary

+2b)]. However, Eq.(37) has either two roots or no roots zeros of the Jost function will coalesce 8k, and then
for B>arctafi3(\+2b)], which is close tor/2 whenb>1.  separate, moving into the compléxplane with equal and
Therefore, even though the numerical predictionsyfpare  opposite real parts g8 increases pagi.
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