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Scattering from a truncated von Neumann–Wigner potential

T. A. Weber and D. L. Pursey
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160

~Received 26 November 1997!

In 1929, von Neumann and Wigner@Phys. Z.30, 465~1929!# demonstrated the existence of local potentials
which support a bound state with energy embedded in the continuous spectrum. In this paper, we study the
s-wave scattering produced by a class of von Neumann–Wigner potentials which are perturbed by truncating
them at some large radiusr 5a. For the class of potentials considered, we obtain an analytic expression for the
Jost function. The original continuum bound state is replaced by a well isolated complex zero of the Jost
function ~equivalent to a pole of theS matrix!, but this does not produce a conventional Breit-Wigner reso-
nance. Instead, we find twin peaks in the cross section, separated by a very narrow gap associated with the Jost
function zero. Our study continues with an account of bound states and virtual states supported by the poten-
tial, and with an investigation of the form of asymptotically large zeros of the Jost function. We compare the
results of this paper with the significantly different results we obtained using a different perturbation@Phys.
Rev. A 52, 3932~1995!#. @S1050-2947~98!02005-8#

PACS number~s!: 03.65.Nk, 03.80.1r
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I. INTRODUCTION

Local potentials that support bound states with posit
energy embedded in the continuous spectrum~‘‘continuum
bound states’’! were first constructed by von Neumann a
Wigner @1#. Recently, interest in this topic was renewed b
cause of two experimental developments. The first was
reported observation of narrow positron-electron coincide
peaks in heavy ion collisions@2#. In an attempt to understan
these, two groups@3,4# independently performed detailed n
merical calculations for the electron-positron system us
relativistic two-body approximations related to the Beth
Salpeter equation. The American and the Russian gro
both found numerical evidence for the existence of c
tinuum bound states in this system, and suggested tha
experimentally observed peaks might be a reflection of s
states. To the best of our knowledge, these theoretical ca
lations have not been definitively refuted, although the
perimental evidence for the peaks remains controversia
the second experimental development, Capassoet al. @5#
carefully constructed a superlattice consisting of ultrat
semiconductor layers for which they report the remarka
observation of an electronic bound state with no class
turning points. The potential consists of a series of barr
all of the same height. Infrared absorption measurements
vealed a narrow isolated transition from a bound state wit
a quantum well formed by the barriers to a bound st
greater than the barrier height. Because the barrier hei
are all the same, this problem is easily amenable to theo
ical analysis@6#.

Thus continuum bound states or close relatives the
have been observed by Capassoet al., are predicted by some
calculations to exist in the electron-positron system, a
might possibly have been observed in the latter syst
However, a bound state cannot be observed unless it in
acts with some other system, and such an interaction m
perturb the bound state, in general converting it into a s
of finite width. For the semiconductor heterostructure stud
by Capassoet al., the sharp ‘‘zero width’’ state is perturbe
571050-2947/98/57~5!/3534~12!/$15.00
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by the radiation field and by the necessary cutoff deman
by the finite size of the sample. For the electron-positr
case, one would like to establish a clear experimental sig
for the existence of the continuum bound states. To atte
this in the context of the full numerical computations
Refs.@3,4# would be a daunting~if desirable! task. However,
Arbuzov et al. @7# have developed a quasilocal approxim
tion to their electron-positron interaction that, althou
energy-dependent, shares some of the characteristics of a
Neumann–Wigner potential. We@8#, and independently
Zastavenko@9# using a different approach, have argued th
this approximate quasilocal potential cannot support c
tinuum bound states of the energy needed to explain
results of the full numerical calculation. Nevertheless, t
approximation suggests that results obtained by studying
turbed von Neumann–Wigner systems may have releva
for the much more complicated relativistic electron-positr
problem, as well as for nonrelativisitc systems. This provid
the motivation for the present paper.

The goal of this paper, as well as that of our earlier wo
@10#, is to study thes-wave scattering produced by perturb
tions of a particular class of von Neumann–Wigner pote
tials. The particular von Neumann–Wigner potentials th
we perturb, and the particular perturbations that we consi
are chosen to allow a completely analytic treatment of
Jost function. This strategy produces a clarity of insight t
may be lost in a more numerical approach or in an appro
based on perturbation theory, but at the cost of some sep
tion from realistic experimental situations. The present st
ies suggest some of the phenomena to be expected in a
realistic but inevitably less analytic calculation.

In order to study the Jost function, we need not only t
bound state solution but the scattering solutions as well.
this reason, we consider only the subset of von Neuma
Wigner continuum bound states that were obtained in R
@11# using a particular class of degenerate Gel’fand-Levi
equations. This subset was also obtained by Pappade
et al. @12# using the techniques of supersymmetric quant
3534 © 1998 The American Physical Society
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57 3535SCATTERING FROM A TRUNCATED von NEUMANN– . . .
mechanics and by Stahlhofen@13# using a variation of the
Darboux transformation@14#.

In Ref. @10# we radially shifted a class of von Neumann
Wigner potentials. Under such a shift, solutions to t
s-wave radial Schro¨dinger equation at the energy of the u
perturbed continuum bound state are no longer able to sa
the boundary conditions both at infinity and at the orig
Thus, neither a bound state nor a scattering state exists a
energy. For a small enough shift, the Jost function has a
in the lower half complexk plane near the real axis, whic
produces a typical resonance in the cross section. As the
parameter goes to zero, this Jost function zero approache
real k axis, in the limit giving a ‘‘resonance’’ of zero width
that is, a continuum bound state.

In the present paper we perturb the same class of
Neumann–Wigner potentials by introducing a cutoff, th
producing a potential of finite range. The Jost function p
sesses a well isolated zero near the wave number of the
perturbed continuum bound state. However, the scatte
cross section does not exhibit a conventional resonance
stead of a single peak in the cross section, we find
closely spaced peaks, separated by a very narrow ga
which the cross section drops strictly to zero. Further inv
tigation shows that it is the narrow gap between the pe
rather than the peaks themselves that is associated with
Jost function zero. This turns out to be an extreme form
the Ramsauer-Townsend effect, in which the ‘‘resonanc
phenomenon is well approximated by aninverted Breit-
Wigner shape. In Appendix A we sketch a treatment of re
nance phenomena, including the extreme Ramsa
Townsend effect, as background for the main thrust of t
paper.

In the following section we introduce the potentials a
solutions of the Schro¨dinger equation for a class of vo
Neumann–Wigner potentials that support a continu
bound state with energyE05k0

2. In Sec. III we determine the
Jost function for the scattering when this potential is tru
cated. In Sec. IV we treat the comparatively simple case
which the cutoff point is chosen at a zero of the v
Neumann–Wigner potential. This special case illustra
most of the ‘‘resonance’’ phenomena. We return to the g
eral case in Sec. V, which among other things illustrates h
the phenomena change with small changes in the cu
Some technical details are relegated to Appendix B. T
leads in Sec. VI to a discussion of Levinson’s theorem, c
ventional bound states, and imaginary zeros of the Jost fu
tion. Again, technical details are presented in Appendix C
Sec. VII we study the asymptotic form of large compl
zeros of the Jost function, and show it to agree with
Regge estimate@15#. We compare the present results wi
those of Ref.@10# in Sec. VIII. In a concluding section we
comment on our results.

II. THE VON NEUMANN –WIGNER POTENTIAL
AND SOLUTIONS

Throughout this paper we use units in which\51 and
2m51. For simplicity we confine our attention to the case
the radial Schro¨dinger equation for zero angular momentu
fy
.
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F2
d2

dr2
1V~r !Gc~r !5k2c~r !, 0<r ,`. ~1!

The energy eigenvalue isE5k2. We deal only with poten-
tials that are less singular than 1/r at the origin and that
vanish at infinity, so that physically acceptable solutio
must vanish atr 50 and be bounded asr→`. We begin
with the Schro¨dinger equation for a free particle,V(r )50,
and use the Gel’fand-Levitan equation to insert a bound s
with energyE05k0

2 into the continuous spectrum. This pro
cedure creates a new Schro¨dinger equation with a potentia
belonging to a subset of von Neumann–Wigner potenti
The reader is referred to our earlier papers@11# for the tech-
nical details: here we merely quote the results, which can
directly verified by substitution into the Schro¨dinger equa-
tion. This method provides explicit expressions for the sc
tering states as well as for the continuum bound state,
therefore allows for a completely analytical discussion of
scattering theory.

The resulting von Neumann–Wigner potential is

VvN-W~r !52
8k0

2 sin 2k0r

2k0r 1l2sin 2k0r
1

8k0
2~12cos 2k0r !2

~2k0r 1l2sin 2k0r !2
,

~2!

wherel is a positive constant related to the normalization
the bound state. Ifl.3.889, the continuum bound state e
ergy is greater than the maximum of the potential: thus wh
a quantum particle of energyE0 is bound, a classical particle
with the same energy would have no classical turning po
and must escape the potential@16#.

The regular solution with energyE5k2 for the Schro¨-
dinger equation with the potential given by Eq.~3!, normal-
ized so that the wave function and its first derivative eva
ated at the origin are 0 and 1, respectively, is

w~r ,k!5u~r ,k!2
u~r ,k0!s~r ,k!

l1s~r ,k0!
, ~3!

where

u~r ,k!5
1

k
sin kr ~4!

is the regular solution for the free particle,

s~r ,k!5
2k0

2

k H sin@~k2k0!r #

k2k0
2

sin@~k1k0!r #

k1k0
J , ~5!

and in particular

s~r ,k0!52k0r 2sin 2k0r . ~6!

For k5k0 , the solution reduces to

w~r ,k0!5
lu~r ,k0!

l1s~r ,k0!
, ~7!

which is normalizable. Thereforew(r ,k0) represents the
bound state with positive energyE05k0

2 embedded in the
continuous spectrum.
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3536 57T. A. WEBER AND D. L. PURSEY
III. THE JOST FUNCTION AND SCATTERING PHASE
SHIFTS

In this paper we study thes-wave scattering for the trun
cated potential

Vcutoff~r !5H VvN-W~r !, r<a

0, r .a,
~8!

whereVvN-W(r ) was defined in Eq.~2!. We usec(r ,k) to
denote the regular solution with energyE5k2 to the Schro¨-
dinger equation with the potentialVcutoff (r ). This solution
may be written as

c~r ,k!5H w~r ,k!, r<a

~2ik !21$F2~k,a!eikr2F1~k,a!e2 ikr%, r>a,
~9!

where the Jost function

F~k,a![F1~k,a!5F2* ~k* ,a!5eika@w8~a,k!2 ikw~a,k!#
~10!

is found by matching the two forms ofc(r ,k) and their first
derivatives atr 5a. The prime in Eq.~10! denotes differen-
tiation with respect toa.

From Eqs.~5! and ~10! we find

F~k,a!512
eika

l1s~a,k0!
$s~a,k!@cosk0a2 iku~a,k0!#

14k0
3@u~a,k0!#2w~a,k!%. ~11!

For k→`, F(k,a)→1 as expected. The Jost function f
such a finite range potential is known to be an entire funct
of k with at most a finite number of zeros on the positi
imaginaryk axis, no other zeros in the upper half complexk
plane, and an infinite number of zeros in the lower half pla
@17#. Zeros on the positive imaginaryk axis, if they exist at
all, correspond to bound states. Zeros in the lower half pl
may correspond to resonances provided they are sufficie
isolated and are near the realk axis @18#. The limit of the
Jost function asa→` is not uniform ink, since

lim
a→`

F~k,a!51, kÞk0 , ~12!

while

lim
a→`

F~k0 ,a!50. ~13!

For all values ofk, however, theS-matrix element given by

S~k,a!5
F* ~k,a!

F~k,a!
5e2id~k,a! ~14!

has the limit 1 asa→`. Hered(k,a) is thes-wave scatter-
ing phase shift.
n

e

e
tly

IV. A SPECIAL CASE

The analysis is much simpler when

k0a5np, ~15!

wheren is an integer, for thenu(a,k0)50. These values of
k0a also correspond to zeros of the oscillating potent
Then from Eqs.~4!, ~5!, and~11! we find that

F~k,a!512eika
4k0

3 sin ka

k~k22k0
2!~l12k0a!

. ~16!

We anticipate that the perturbation of the system due
the truncation of the von Neumann–Wigner potential w
replace the continuum bound state by a well isolated co
plex zero of the Jost function close tok5k0[np/a. We
estimate its position be assumingu(k2k0)au!1 and expand-
ing F(k,a) in powers of (k2k0)a. This yields

F~k,a!5
1

l12k0a
@l2~k2k0!a~2ik0a23!#

1O„~k2k0!2a2
…, ~17!

which gives

k5Kn[k02
3l

4k0
2a3

2 i
l

2k0a2
~18!

for the location of the zero closest tok. ~The notationKn
indicates that this zero is neark5k05np/a.) This zero is
well isolated in the sense defined in Appendix A, and can
placed arbitrarily close to the real axis by takinga suffi-
ciently large. The approximationuka2npu!p used to de-
rive Eq. ~18! is valid providedl!2k0a52np. If k0a@1,
thenuRe(Kn2k0)u!uImKnu, so that the wave numberk0 as-
sociated with the original continuum bound state lies w
within the width of the ‘‘resonance’’ region associated wi
the zeroKn .

Naively one would expect this well isolated zero to
associated with a conventional resonance in the scatte
cross section, but this is false. Equation~16! shows that
F(k,a) is real atk5k05np/a, so that the phase shift is zer
at this wave number. As already noted, this falls well with
the expected Breit-Wigner peak centered on ReKn . Thus the
resonance phenomenon associated with the zeroKn of the
Jost function is not a Breit-Wigner peak: instead it is ve
close to the ‘‘inverted Breit-Wigner’’ form discussed in Ap
pendix A. As k increases throughk5k0 , the phase shift
increases rapidly from near2p/2 to near 1p/2, never
reaching1p/2 and reaching2p/2 only if l&27/(16np).
We relegate the details to Appendix B.

We illustrate these findings by studying sin2 d(k,a), which
is more convenient than studying thes-wave partial cross
sections(k,a)5(4p/k2)sin2 d(k,a), since the unitarity limit
is given by sin2 d(k,a)51. From Eq.~14!,

sin2 d~k,a!5
1

4UF~k,a!2F* ~k,a!

F~k,a!
U2

. ~19!

Equation~16! then yields
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57 3537SCATTERING FROM A TRUNCATED von NEUMANN– . . .
sin2 d~k,a!

5
4 sin4 ka

F kaS 12
k2

k0
2D S 11

l

2k0aD1sin 2kaG 2

14 sin4 ka

.

~20!

The cross section vanishes wheneverka5mp, wherem is
an integer, while the intervening peaks are of varying heig
and typically have a width at half maximum somewh
smaller thanp/2a. The two peaks between (n21)p and
(n11)p are particularly large and appear as twin pea
separated by a very narrow gap as the cross section d
precipitously to zero atk5k05np/a. This is illustrated in
Fig. 1~a! for n55 andl51. The gash separating the tw
peaks is due to the ‘‘resonance pole’’ atk5Kn , as is shown
by the dramatic increase of the phase shift ask increases
through the gap region, illustrated in Fig. 1~b!. The exact
sin2(k,a) is compared to the ‘‘pole approximation’’ of Eq
~A11! in Fig. 1~c!, using the approximation of Eq.~18! for
the complex zero of the Jost function. We attribute the mi
discrepancies in the width and the position of the zero in F
1~c! to the approximationu(k2k0)au!1 used to derive Eq
~18!. For the example of Fig. 1,dnr(k,a)'arctan(10p/3)
50.470p, so that the resonance structure is very close
that of an inverted Breit-Wigner. This becomes especia
apparent when Fig. 1~c! is viewed upside down.

Figure 1~a! also shows a prominent peak for small valu
of k. We discuss this further in the next section and in S
VI.

V. THE GENERAL CASE

We now return to the general Jost function given by E
~11!. Before proceeding, it is convenient to introduce t
following new notations. We defineb and b ~where 0<b
,p) by

b[k0a[np1b, ~21!
ts
t

s
ps

r
.

o
y

.

.

and we define a dimensionless wave number variablez by

z[k/k0 . ~22!

We rewrite Eq.~11! as

F~k,a!5X1 iY, ~23!

where after some work we find

FIG. 1. sin2 d(k,a) andd(k,a) plotted againstk/k0 for l51 and
k0a55p. ~a! sin2 d(k,a). Note the resonance structure neark5k0

and the broad peak neark50.1k0 . ~b! d(k,a). Note the rapid in-
crease ofd(k,a) from near2p/2 to near1p/2 coinciding in po-
sition with the dramatic dip in sin2 d(k,a) neark5k0 . ~c! Detail of
sin2d(k,a) neark5k0 compared with the ‘‘pole approximation’’ of
Eq. ~A11!, using the approximation of Eq.~18! for the zeroKn of
the Jost function.
X511
2z sin 2b cos 2bz22 cos 2b sin 2bz

z~z221!~l12b2sin 2b!
1

2@sin 2b sin 2bz2z~12cos 2b!~11cos 2bz!#~12cos 2b!

z~z221!~l12b2sin 2b!2
~24!

and

Y52
2~12cos 2bz!cos 2b22zsin2b sin 2bz12z2~12cos 2b!

z~z221!~l12b2sin 2b!

1
2@~12cos 2bz!sin 2b2z~12cos 2b!sin 2bz#~12cos 2b!

z~z221!~l12b2sin 2b!2
. ~25!
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3538 57T. A. WEBER AND D. L. PURSEY
For z ~or equivalentlyk) real, X and Y are ReF(k,a) and
ImF(k,a), respectively.

The obvious question arises whether the ‘‘inverted Bre
Wigner’’ structure in the cross section persists for arbitra
values of the cutoff, or whether it is a feature unique to
special case considered in the preceding section. We a
this question first by seeking a complex zero ofF(k,a) near
k5k0 , and then seeking a real zero of ImF(k,a) near k
5k0 . If such a zero exists and is well inside the expec
‘‘resonance peak’’ associated with the complex zero
F(k,a), then ~as in Appendix A! we expect to find a struc
ture in the cross section similar to an ‘‘inverted Bre
Wigner’’ shape.

For the complex zero ofF(k,a) neark5k0 we expand
bothX andY in powers of (z21), keeping only the constan
and first order terms. We assume thatb@1, and thatl may
also be large. Therefore we retain only those terms of high
order inb andl except when these terms have coefficie
that may be small or zero for certain values ofb. In this way
we find the approximate zero ofF(k,a)[X1 iY to be

Kn'k02
l~112cos2 2b!

4k0
2a3

2 i
l

2k0a2
1OS l

k0
3a4D . ~26!

If b50 ~corresponding tob[k0a5np) this reduces to Eq
~18!, as it should. The approximations leading to Eq.~26! are
valid provideduKn /k021u!b21, which is true providedl
!2b52k0a. We conclude that the Jost function possesse
complex zero close tok0 , which may be expected to gene
ate resonance phenomena.

Using the same approximations, we find

ImF~k1 ,a!50

with

k1'k02
l~12cos 2b!2

2k0a2~l12k0a!
1OS l

k0
3a4D . ~27!

With l!2b, necessary for the validity of Eq.~26!, and with
b@1,

uk12ReKnu'
l~21cos 2b!ucos 2bu

4k0
2a3

!uImKnu. ~28!

Hence ImF(k,a)50 @and therefored(k,a)50] at a wave
number k1 well inside the ‘‘resonance region’’ of width
2uImKnu centered on ReKn . We conclude that the cross se
tion will display a structure neark5k0 similar to an inverted
Breit-Wigner structure, except possibly whenl is compa-
rable in size to or larger thanb5k0a.

These results are illustrated in Fig. 2. The typical behav
of sin2 d(k,a) whenb is not necessarily zero is illustrated
Fig. 2~a!. The cross section is qualitatively similar to that f
b50, illustrated in Fig. 1, with a strong peak at low mome
tum and a strong twin peak neark5k0 separated by a narrow
gap associated with the resonance pole. However, the pa
of intermediate peaks is less regular and somewhat modi

For the caseb5p/2 illustrated in Fig. 2~a!, the strong low
momentum peak reaches the unitarity limit sin2d(k,a)51.
-
y
e
ck

d
f

st
s

a

r

-

rn
d.

The growth and eventual decay of this peak asb increases
from p/6 through 2p/3 is illustrated in Fig. 2~b!. This peak
is due to an imaginary zero of the Jost function, associa
either with a virtual state or with a very weakly bound sta
depending on the value ofb. We discuss this in detail in the
next section.

VI. LEVINSON’S THEOREM AND IMAGINARY ZEROS
OF THE JOST FUNCTION

In this section we shall gain a better understanding of
low momentum peaks in Figs. 1 and 2 through studying p
sible bound or virtual states. We begin by consideri
Levinson’s theorem.

The potentialVcutoff(r ) defined in Eq.~8! satisfies all of
the conditions for the validity of Levinson’s theorem. Ther
fore,

d~0,a!2d~`,a!5Nbp, ~29!

whereNb is the number of bound states. From Eqs.~23!–
~25! we see that

F~`,a!51 ~30!

and

F~0,a!5real. ~31!

Since

F~k,a!5uF~k,a!ue2 id~k,a!, ~32!

FIG. 2. sin2 d(k,a) plotted againstk/k0 for l51 andk0a55p
1b. ~a! sin2 d(k,a) for b5p/2. Note the resonant structure ne
k5k0 . ~b! Detail of sin2 d(k,a) for 0<k,k0 , for several values of
b. The peak neark50.1k0 for b50, shown in Fig. 1~a!, decreases
in height asb increases and practically disappears whenb5p/4
~not plotted!. A new peak which reaches the unitarity lim
sin2d(k,a)51 has appeared closer to the origin whenb5p/3. As b
increases beyondp/2, this peak moves to smallerk values, and
shrinks below the unitarity limit.
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57 3539SCATTERING FROM A TRUNCATED von NEUMANN– . . .
we conclude thatNb in Eq. ~29! is even~or zero! if F(0,a)
.0 and odd ifF(0,a),0. Since the unperturbed potenti
VvN-W(r ) does not support any conventional bound states,
do not expect many bound states for the perturbed sys
We therefore assumeNb<1, interpretingF(0,a).0 as im-
plying no bound states andF(0,a),0 as implying one
bound state. These interpretations will be confirmed late
the section, when we discuss imaginary zeros of the
function.

From Eq.~24! we find

F~0,a!5
F~l,b,b!

~l12b2sin 2b!2
, ~33!

where

F~l,b,b!5l214@b~11cos 2b!2sin 2b#l

14b2~112cos 2b!212b sin 2b

1~12cos 2b!~72cos 2b!. ~34!

This quadratic inl is positive, and thereforeF(0,a).0, ex-
cept forl2<l<l1 , where

l652 sin 2b22b~11cos 2b!

6@4b2 cos2 2b14b~122 cos 2b!sin 2b

1~5 cos 2b23!~12cos 2b!#1/2. ~35!

Hence for most values ofl there will be no bound states, bu
for l2,l,l1 there will be one bound state. In particula
the existence of a bound state requires thatl1 be real and
positive. Thel6 will be real if the expression in squar
brackets in Eq.~35! is positive. If this is true, thenl1 will be
positive if either b,tan b or 4b2(112 cos 2b)
212b sin 2b1(12cos 2b)(72cos 2b),0. With
b5np1b, as in Eq.~21!, we find from more detailed analy
sis that l1.0 for n51 only if 0.2824p,b,0.6128p.
These lower and upper bounds forb approachp/3 and
2p/3, respectively, asn→`. In summary, Levinson’s theo
rem shows that the potentialVcutoff(r ) with cutoff a[(np
1b)/k0>p/k0 supports a bound state for a finite ran
sup(l2,0),l,l1 of the parameterl, providedb is within
a rangeb2(n),b,b1(n), where 0.2824p,b2(n),p/3
and 0.6128p,b1(n),2p/3.

For the examples illustrated in Fig. 2~b! with b55p
1b, the l6 are complex only if 0.70p<b<0.78p, which
does not include any of the illustrated values ofb. Equation
~35! shows thatl1,0 for b55p1b and b5p/6 or b
52p/3: hence there are no bound states for these valuesb
and b, and the corresponding curves in Fig. 2~b! do not
reach the unitarity limit sin2 d(k,a)51. However,l1.0 for
the casesb5p/3 and b5p/2, and a bound state may b
present ifl,l1 . Numerical computation shows thatl1

54.69 for b5p/3 and l1534.33 for b5p/2. Since the
cases plotted forb5p/3 and b5p/2 in Fig. 2~b! have l
51,l1 , they possess bound states and the correspon
curves reach the unitarity limit as expected.

We confirm these results by considering the imagin
zeros of the Jost function. To seek such zeros, we first s
e
m.

in
st

f

ng

y
t

ka5 iy . ~36!

The conditionF(k,a)50 may then be manipulated into th
form

f ~y![
y

12e22y
52

bN~y!

D~y!
, ~37!

where

N~y!5
~l12b!cos 2b2sin 2b

l12b2sin 2b

1
y

b S ~l12b!sin 2b22~12cos 2b!

l12b2sin 2b D ~38!

and

D~y!5
2~12cos 2b!2

l12b2sin 2b
2sin 2b2

y

b
~12cos 2b!

1
1

2 F11S y

bD 2G~l12b2sin 2b!. ~39!

Here we give only a descriptive account of the roots
Eq. ~37!. The analytic justification for our description is pro
vided in Appendix C. Equation~37! develops a real root a
y52` whenb50. As b increases, this root migrates alon
the y axis ~equivalently, up the imaginaryk axis! and be-
comes positive forb somewhat less thanp/3. It continues to
increase with increasingb, reaching a maximum close to 0.
for a value ofb a little less thanp/2. As b continues to
increase, the positive root begins to move back along thy
axis, while a second root starts to move along the axis fr
2`. Before b reaches 3p/4, the two roots coincide~at a
negative value!, then separate again as they move onto
complexy plane~equivalently, the two imaginary roots ink
space develop equal and opposite real parts!. These results
are illustrated in Fig. 3.

FIG. 3. Imaginary zerosk5 iy /a of F(k,a) are given by inter-
sections of the curves2bN(y)/D(y) andy/(12e22y). The nega-
tive root of Eq. ~36! when b5p/5 moves along they axis asb
increases, and has become positive whenb52p/5. This root
reaches a maximum neary50.79 whenb'p/2 ~not illustrated!
and then begins to retreat asb continues to increase, while a secon
negative root moves along they axis from2`. Eventually the two
roots coincide and move onto the complexy plane, as has alread
happened whenb54p/5.
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Positive imaginary zeros of the Jost function correspo
to bound states, while negative imaginary zeros, if sm
correspond to virtual states. Both virtual states and wea
bound states generate large zero momentum peaks in
cross section. In sin2 d(k,a), this is reflected by the stron
peaks at low wave number, apparent in Figs. 1 and 2.

To conclude this section, we compare the energy of
bound states associated with imaginary zeros of the
function with the amplitude of the oscillations of the pote
tial near the cutoff atr 5a. We use the resultymax,0.79
from Appendix C. Fory.0, the bound state must have e
ergyE52(y/a)2.20.624/a2. From Eq.~2!, there must ex-
ist some r 0 in the range a2p/2k0<r 0<a such that
uVcutoff(r 0)u is of order 4k0 /a. Hence uE/Vcutoff(r 0)u
&0.16/k0a. Since we are assuming thatk0a@1, it follows
that the binding energy of any bound state is very sm
compared to the maxima and minima of the potential n
the cutoff, and tends to zero asa→`.

VII. ASYMPTOTICALLY LARGE COMPLEX ZEROS
OF THE JOST FUNCTION

The Jost function for a finite range potential has infinite
many zeros. We denote themth zero with positive real part
counting from the zero of the real axis, byKm . The zeros
with negative real part are given byK2m52Km* . Regge
@15# has shown that asm→` the real and imaginary parts o
Km have the asymptotic form

ReKm5mpa211O~1!,
~40!

ImKm52
1

2
~s12!a21 ln m1O~1!,

wheres is defined by the behavior of the potential near t
cutoff through

V~r !5~const!~a2r !s1¯ , r &a. ~41!

In particular, for the potentialVcutoff(r ) defined in Eq.~8!,

s5H 1, Vcutoff~a!50

0, Vcutoff~a!Þ0,
~42!

where from Eq.~2!, Vcutoff(a)50 if tan k0a50 or tank0a

5 1
2 (l12k0a). In this section, we find asymptotic forms fo

the zeros of the Jost function for the potentialVcutoff(r ), and
show their agreement with Eq.~40!.

We write

ka5z5x1 iy , ~43!

and then manipulate the conditionF(k,a)50 into the form

e2iz[e22y12ix5A~z!, ~44!

where
d
l,
ly
the

e
st

ll
r

A~z!52
1

2B~z!

3@ i ~z/b!~12z2/b2!~l12b2sin 2b!222C~z!#,

~45!

B~z!5~l12b!cos2b2sin 2b

2 i ~z/b!@~l12b!sin 2b22~12cos 2b!#,

~46!

and

C~z!5~l12b!cos 2b2sin 2b2 i ~z/b!~12cos 2b!2

1~z/b!2~l12b2sin 2b!~12cos 2b!. ~47!

Hence

y52
1

2
lnuA~z!u ~48!

and

A~z!5uA~z!ue2ix. ~49!

From Eqs. ~45!–~47!, provided tanbÞ0 and tanb
Þ 1

2 (l12b) we find the asymptotic form foruzu@b,

A~z!'2
~z/b!2~l12b2sin 2b!2

2@~l12b!sin 2b22~12cos 2b!#
1O~z/b!,

~50a!

while if tan b50 or tanb5 1
2 (l12b),

A~z!'
i ~z/b!3~l12b2sin 2b!2

2@~l12b!cos 2b2sin 2b#
1O~z2/b2!.

~50b!

However, tanb50 or tanb5 1
2 (l12b) are just the condi-

tions under whichVcutoff(a)50. Hence

y5H 2 lnuzu1O~1!, uzu@b, Vcutoff~a!Þ0

2
3

2
lnuzu1O~1!, uzu@b, Vcutoff~a!50.

~51!

Since lnuzu!uzu for large uzu, we conclude that

uyu!uxu, uzu@b. ~52!

Hence we approximatez'x5real. It then follows from Eqs.
~50! that the complex phase ofA(z) is approximately (2m
11)p if Vcutoff(a)Þ0 and approximately (2m1 1

2 )p if
Vcutoff(a)50. Hence the complex zeros of the Jost functi
have the asymptotic form

ReKm5ma21p1O~1! ~53a!

and
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ImKm5H 2a21 ln m1O~1!, Vcutoff~a!Þ0

2
3

2
a21 ln m1O~1!, Vcutoff~a!50.

~53b!

We see from Eqs.~40! and ~42! that this agrees with the
Regge prediction.

It is possible to improve on Eqs.~53! by an iteration. We
have found that a first order correctiondxm , obtained from
Eqs. ~50! using zm'mp1 iym with ym[ImKma obtained
from Eq. ~53b!, together with an improved estimate forym
found usingzm'mp1dxm in Eq. ~48!, usually yields an
excellent approximation to numerically calculated zeros
ReKm.k0 . It is also possible to find good approximation
for zeros in the range 0,ReKm,k0 , using a similar ap-
proach. We omit these further developments.

VIII. COMPARISON WITH PREVIOUS WORK

In our earlier paper@10#, we considered thes-wave scat-
tering due to a von Neumann–Wigner potential perturbed
shifting it radially through a small amountDr 5a/k0 . In that
case, the Jost function has only two zeros. Ifl.sin 2a
12usinau, then the real parts of the two roots are equal
magnitude but opposite in sign. Ifl is significantly larger
than sin 2a12usinau, then the root with positive real par
generates a conventional Breit-Wigner resonance centere
a wave numberK5k0@12(2/l)sin 2a2(2/l)2sin4 a#1/2. In
contrast, the Jost function for the truncated potential has
finitely many complex zeros. None of these generates a c
ventional Breit-Wigner resonance, but the zeroKn , given
approximately by Eq.~26!, generates a dramatic resonant d
close to an inverted Breit-Wigner in shape.

We illustrate this comparison in Fig. 4. We choose para
etersl, a, anda with l large enough for the shifted poten
tial to produce a Breit-Wigner resonance and witha anda
chosen so that the two potentials produce resonance s
tures of roughly equal width. Figure 4~a! compares the trun
cated potential withl57 anda55.5p/k0 to the shifted po-
tential with the same value ofl and witha50.07p. Figure
4~b! compares sin2 d(k) for the two potenials. In an experi
mental situation, attention would most probably be focus
on the twin peak in the cross section with the truncated
tential, and it might not even be possible to resolve the g
separating the peaks. Although the twin peaks are not du
a resonance, they become very narrow for a sufficiently la
cutoff. Therefore, in Fig. 4~c! we compare sin2d(k) for a
truncated potential witha530p/k0 with sin2 d(k) for the
same shifted potential used in Figs. 4~a! and 4~b!. The cutoff
in Fig. 4~c! is chosen so that the combined width of the tw
peaks for the truncated potential is comparable to the w
of the resonant peak for the shifted potential.

Part of the difference between the two results may
attributed to the qualitative difference between the two
tentials. The truncated potential is of finite range and,
cording to the standard analysis@17#, the associated Jos
function has an infinite number of zeros in the lower h
complexk plane, while the Jost function for an infinite rang
potential might not even exist in the lower halfk plane. The
range of the shifted von Neumann–Wigner potential is in
r

y

on

n-
n-

-

c-

d
-
h
to
e

th

e
-
-

f

-

nite, and in Ref.@10# we showed that the Jost function fo
that potential has at most two zeros in the lower half pla
However, the twin peaks and the inverted Breit-Wigner re
nance produced by the truncated potential are a major
prise. Our analysis shows that this structure exists fora as
small asp/k0 and persists for all greater values of the cuto
no matter how large. More study is needed to pin down
exact cause of this phenomenon.

IX. CONCLUSION

In the usual understanding, a bound state with energy
bedded in the continuum is best regarded as a resonanc
zero width. If such states are of physical significance, the
is important to study how these states manifest themselve
scattering when the potential supporting them is perturbe
a variety of ways. One would hope that the perturbed sys
would possess a resonance that becomes the contin
bound state in the limit when the perturbation disappea
This was the case for the shifted von Neumann–Wigner
tentials that we studied in Ref.@10#. In contrast to the ex-
pected results, perturbation by truncation leads to a dou
peak in the cross section, and it is the gap separating
peaks rather than the peaks themselves that represents
nant phenomena. While it is possible in principle for one
the twin peaks to reach the unitarity limit~although not as a

FIG. 4. Comparison of results of this study with those repor
in @10#. ~a! The truncated potentialVcutoff(r ) of Eq. ~8! with l57
anda55.5p/k0 compared to the shifted potentialVshifted(r ) defined
in Ref. @10# with l57 anda50.07p. ~b! sin2 d(k) plotted against
k/k0 for the two potentials illustrated in~a!. ~c! sin2 d(k) plotted
againstk/k0 for Vcutoff(r ) with l57 anda530p/k0 , compared to
sin2 d(k) for the sameVshifted(r ) used in~a! and~b!. The large cutoff
a is chosen so that the~nonresonant! split peak neark5k0 has
approximately the same width as the~resonant! peak due to
Vshifted(r ).
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resonance!, in our model this occurs only for a very limite
range of the parameters. As the cutoff moves to infinity,
twin peaks become much sharper, their widths eventu
shrinking to zero. As this happens, the width of the g
between them—the true resonance phenomenon—sh
even faster than the widths of the peaks. At the same ti
the twin peaks increase in height although they never q
reach the unitarity limit. Thus for sufficiently large cutof
the gap between the peaks will not be experimentally res
able, and the twin peaks will appear as a single peak v
nearly but not quite reaching the unitarity limit. Because
limits imposed by experimental resolution, such a pheno
enon could well be mistaken for a single resonance peak
summary, for a truncated von Neumann–Wigner poten
the experimental signal for a perturbed continuum bou
state is not a resonance in the scattering but pronounced
peaks, which, if an experiment is incapable of resolving
gap separating them, might easily be mistaken for a sin
resonant peak.

The results reported in this paper demonstrate a flaw
the standard derivation of the Breit-Wigner formula from t
unitarity of theS matrix. In the language of Appendix A, th
standard assumption thatdnr(k) is small as well as slowly
varying near the resonance pole of theS matrix is not nec-
essarily true. We find it surprising that a seemingly innoc
finite range potential, such as that studied here, should
erate a Ramsauer-Townsend effect so extreme as to pro
an almost perfectlyinverted Breit-Wigner structure in the
cross section. However, Dehnen and Shahin@19#, studying
the possible existence of magnetically quasibound pos
nium by using the two-body Bethe-Salpeter equation to
rive an energy-dependent nonlocal effective potential, p
dicted a series of twin peaks in the electron-positr
scattering cross section. It is not clear whether the dou
structure of their peaks is due to an accidental backgro
interference@20# or is an intrinsic property of their nonloca
potential. If it is the latter, it would be most interesting
know whether their twin peaks, like ours, represent an
treme Ramsauer-Townsend phenomenon.
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APPENDIX A: JOST FUNCTION ZEROS
AND RESONANCE PHENOMENA

There does not appear to be any universally accepted
nition of ‘‘resonance phenomena’’ in scattering theory. E
perimenters may consider any sharp peak in a cross se
to be a resonance. Theorists usually associate resona
with complex poles of theS matrix, or equivalently~in po-
tential scattering! with complex zeros of the Jost function
However, not every Jost function zero is properly associa
with a resonance. Thus the Jost function for the well beha
potentials studied in Newton’s classic book@17# has infi-
nitely many complex zeros yet the scattering cross sec
may not display any resonances at all. According to Newt
e
ly
p
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te
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a ‘‘true resonance’’ must be associated with awell isolated
zero of the Jost function, and be such that the scatte
phase shift increases from near zero to nearp, passing rap-
idly throughp/2, as the wave number~or the energy! passes
through the resonance region@18#. The cross section nea
resonance is then well approximated by the Breit-Wign
formula. This is usually regarded as a consequence of
unitarity of the S matrix, and Weinberg@21# has recently
given a clear presentation of the argument in the contex
multichannel scattering in particle physics. However, the
gument from unitarity involves an additional assumption th
appears never to be seriously challenged, namely that
phase shift is small for wave numbers close to but still o
side the resonance region. This assumption is false for
potentialVcutoff (r ) of Eq. ~8!.

In this appendix we present the modified version of t
unitarity argument, which is appropriate for the present
per. We present the discussion in the context of single ch
nel s-wave scattering, but the extension to other par
waves and to multiple channel processes is straightforwa

The single channelS matrix is related to the Jost functio
through

S~k![e2id~k!5
F* ~k!

F~k!
, ~A1!

whered(k) is the scattering phase shift. Now suppose th

F~k!5S k2K1
1

2
iG DF~k!. ~A2!

Thend(k) can be written as

d~k!5d r~k!1dnr~k!, ~A3!

where the ‘‘resonant’’ contribution to the phase shift,d r(k),
is given by

e2idr~k!5

k2K2
1

2
iG

k2K1
1

2
iG

, ~A4!

or equivalently

eidr~k!5

k2K2
1

2
iG

Uk2K1
1

2
iGU , ~A5!

and the ‘‘nonresonant’’ contribution,dnr(k), by

e2idnr~k!5
F* ~k!

F~k!
~A6!

@Weinberg @21# usesd0N for a ‘‘nonresonant’’ phase shif
equivalent to ourdnr(k)]. We suppose that the zerok5K
2 1

2 iG is well isolated, in the sense that ifK82 1
2 iG8 is any

other zero of F(k), then G!@(K2K8)21(G2G8)2#1/2.
Equation~A5! then shows that ask increases through rea
values fromk!K to k@K, the resonant contribution to th
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phase shift increases rapidly throughp/2, while Eq. ~A6!
together with the postulated isolation of the zero atK
2 1

2 iG shows that the nonresonant contribution changes r
tively slowly neark5K. We therefore make the approxima
tion dnr(k)'const5dnr(K) whenk is close toK.

Now

sin2 d~k!5 1
4 ue2id~k!21u2. ~A7!

In the usual resonance situation, the nonresonant phase
is small as well as slowly varying in the resonant region.
this case, the approximationdnr(k)'dnr(K)'0 leads to the
conventional Breit-Wigner formula

sin2d~k!'

1

4
G2

~k2K !21
1

4
G2

, dnr~K !'0. ~A8!

However, neither the unitarity of theS matrix nor the isola-
tion of the Jost function zero requires thatdnr(K)'0. If
dnr(K)56p/2, then

sin2 d~k!'12

1

4
G2

~k2K !21
1

4
G2

5
~k2K !2

~k2K !21
1

4
G2

,

dnr~K !'6
p

2
, ~A9!

and the cross section is zero whenk5K, at the ‘‘peak’’ of
the ‘‘inverted Breit-Wigner’’ shape.

This last example is an extreme case of the Ramsa
Townsend effect~see p. 165 of Ref.@21#!. In general, if
dnr(k) is slowly varying but not particularly close to zero, th
cross section will vanish at some pointk5k0ÞK. This im-
plies that

dnr~k0!5arctanS 1

2
G

k02K
D . ~A10!

If k0'K, then we make the approximationdnr(k)'dnr(K)
'dnr(k0) to find

sin2 d~k!'

1

4
G2

~k2K !21
1

4
G2

~k2k0!2

~k02K !21
1

4
G2

. ~A11!

Thus the general Ramsauer-Townsend effect modul
the Breit-Wigner shape with the additional fact
(k2k0)2/@(k02K)21 1

4 G2]. We refer to Eq.~A11! as the
‘‘pole approximation.’’ Since Eq.~A11! is an approximation
to sin2 d(k) associated with a well isolated zero of the Jo
function, and since in this approximation the total phase s
increases rapidly from neardnr(k0) to neardnr(k0)1p ask
increases pastK, we regard Eq.~A11! as representing a gen
eralized ‘‘resonance phenomenon.’’ Extreme examples
a-

hift

r-

es

t
ft

f

this phenomenon were encountered in Sec. IV and V,
were illustrated in Figs. 1 and 2.

APPENDIX B: THE PHASE SHIFT NEAR RESONANCE

In this appendix, we justify the assertions made in Sec.
that the phase shift neark5k0 increases rapidly from nea
2p/2 to near1p/2, but never reaches1p/2 and reaches
2p/2 only if l&27/(16np). If d(k,a)56p/2 then
ReF(k,a)50. More generally, the phase shift will be clos
to 6p/2 if uImF(k,a)u@uReF(k,a)u. We therefore study
ReF(k,a) and ImF(k,a) close tok5k0 .

For convenience we define

j5~k2k0!a5ka2np. ~B1!

From this definition and Eq.~16!,

ReF~k,a!512
2n3p3 sin 2j

j~j1np!~j12np!~l12np!
~B2!

and

ImF~k,a!52
2n3p3~12cos 2j!

j~j1np!~j12np!~l12np!
. ~B3!

We expand ReF(k,a) and ImF(k,a) as a power series inj,
retaining terms up to orderj2 and usingnp@1 to simplify
the coefficients where appropriate. This yields

ReF~k,a!'
1

l12npS l13j1
4np

3
j2D ~B4!

and

ImF~k,a!'
1

l12np
~22npj13j2!. ~B5!

Hence nearj50,

tand~k,a![2
ImF~k,a!

ReF~k,a!
'

6npj29j2

3l19j14npj2
. ~B6!

This has extrema whenj5j6 with

j65
1

8n2p2127
~29l6A81l2148n3p3l1162npl!

'6
1

2
A3l

np
, ~B7!

where we have assumednp@l and np@1 to obtain the
final result. The corresponding extrema are

@ tan d~k,a!#6'6
1

2
A3np

l
. ~B8!

Provided thatnp@l, this justifies the assertion that th
phase shift increases rapidly from close to2p/2 ~when j
'j2) to near1p/2 ~whenj'j1) ask increases throughk0
~or equivalently asj increases through zero!.
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From Eq.~B4!, the zeros of ReF(k,a) neark5k0 ~or j
50) are at

j52
9

8npF16A12
16npl

27 G ,
or equivalently

k65k02
9

8npaF16A12
16npl

27 G . ~B9!

These are real only forl<27/(16np), and if this is true,
then the zerosk6 are both smaller thank0 so that
tand(k,a),0 for k near k6 . This justifies the claim tha
d(k,a) never reaches1p/2 neark5k0 , and reaches2p/2
only if l&27/(16np).

APPENDIX C: IMAGINARY ZEROS OF THE JOST
FUNCTION

In this appendix we justify the account of the imagina
zeros of the Jost function given in Sec. VI. We begin w
Eq. ~37!.

The function f (y)[y/(12e22y) is positive definite, ap-
proaches zero exponentially asy→2`, approachesy expo-
nentially asy→`, and is always greater thany. The qua-
dratic function D(y) is positive definite providedl12b
.1.6. The linear functionN(y) changes sign wheny
5y0(b), where

y0~b!52b
~l12b!cos 2b2sin 2b

~l12b!sin 2b22~12cos 2b!
. ~C1!

The functiony0(b) increases monotonically withb. At the
sign change,N(y) is increasing or decreasing according
as (l12b)sin 2b22(12cos 2b) is positive or negative,
respectively: in particular,2bN(y)/D(y) has the same sign
as (l12b)sin 2b22(12cos 2b) for large negativey, and
the opposite sign for large positivey. As y→6`, the ratio
2bN(y)/D(y) approaches zero as the inverse first power
y.

From Eq.~C1!, limb→0y0(b)52`. As b increases, so

also does y0(b), reaching infinity whenb5arctan@ 1
2(l

12b)#. As b continues to increase,y0(b) starts out again
from 2` and continues to increase, approaching1` again
asb→p.

It follows from these remarks that2bN(y)/D(y),0

for 0,b,arctan@ 1
2(l12b)# and y.y0(b). Since y/~1

2e22y).0, it follows that Eq. ~37! has only one solu-

tion y1(b) for 0,b,arctan@ 1
2(l12b)#, which satisfies

y1(b),y0(b). Hence,y1(0)52`. As b increases,y1(b)

follows y0(b) along they axis. If b.arctan@ 1
2(l12b)#, then

2bN(y)/D(y),0 for y,y0(b) and2bN(y)/D(y).0 for
y.y0(b). Hence, a second zeroy2(b) satisfying y0(b)
,y2(b),y1(b) starts moving from2` along they axis as

b increases beyond arctan@ 1
2(l12b)#. This qualitative behav-

ior is illustrated in Fig. 3.
Near y50 we make the approximationsb@1 and b

@uyu to find
f

bN~y!

D~y!
'

2b cos 2b12y sin 2b

l12b
, ~C2!

where we retain the term linear iny in case ucos 2bu
&1/2b. The quadratic approximation

y

12e22y
'

1

2
1

1

2
y1

1

6
y2 ~C3!

is extremely good for21<y<1 and fair even fory561.5.
Thus neary50 we use these approximations, Eqs.~C1! and
~C2!, together withb@1 in Eq. ~37! to find

y213y131
12b cos 2b

l12b
50. ~C4!

This quadratic equation has roots

y1,252
3

2
6A2

3

4
2

12b cos 2b

l12b
, ~C5!

but since the approximation Eq.~C3! is inadequate for
y,21, the rooty2 , with negative sign in Eq.~C5!, is unre-
liable as a solution of Eq.~37!, and should not even exist i

b,arctan@ 1
2(l12b)#. For b.arctan@ 1

2(l12b)#, the true sec-
ond rooty2 will lie somewhere betweeny0(b) and the esti-
mate given by Eq.~C5!.

The root y1 , with positive sign in Eq.~C5!, should be
reliable provided it is greater than or equal to21. This will
be so provided

0.28p,
1

2
arccosS 2

l12b

12b D<b

<p2
1

2
arccosS 2

l12b

12b D,0.72p. ~C6!

However, whenb' 1
2 arccos@2(l12b)/4b#'p/3 there is a

near cancellation in Eq.~C5! so that the approximation
made in its derivation become suspect. In this case a be
approximation is obtained using a linear approximation
y/(12e22y), equivalent to ignoring the quadratic term
Eq. ~C4!. This yields

y1'212
4b cos 2b

l12b
, b'

1

2
arccosS 2

l12b

4b D .

~C7!

For the examples illustrated in Fig. 2, Eq.~C7! correctly
predictsy1.0 for b5p/3, yielding a bound state, while Eq
~C5! fails to do so.

The rooty1 reaches a maximum

y1max52
3

2
1A 12b

l12b
2

3

4
&0.79 ~C8!
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whenb5p/2. Sincey1max,1, we expect this to be a reliabl
estimate provided the approximationb[k0a@1 is valid.

Equation~C5! predicts two real rootsy1,2 provided that

0.27p,
1

2
arccosS 2

l12b

16b D<b

<p2
1

2
arccosS 2

l12b

16b D,0.73p. ~C9!

As we have already noted, the rooty2 is unreliable as a

solution of Eq.~37!, and does not exist forb,arctan@ 1
2(l

12b)]. However, Eq.~37! has either two roots or no root

for b.arctan@ 1
2(l12b)#, which is close top/2 whenb@1.

Therefore, even though the numerical predictions fory2 are
d

A

n,

,

na
unreliable, we may expect that Eq.~C5! will yield qualita-
tively useful information forb nearb0[p2 1

2 arccos@2(l
12b)/16b#. We first note that forb5b0 andb@1,

y0~b0!'2b cot 2b0,2
l12b

16
. ~C10!

From this,y0(b0),y2 , and Eq.~C5! we expect that when
b'b0 the two roots will coincide with2(l12b)/16&y1
5y2&21.5, while for largerb they will separate and move
into the complexy plane with equal and opposite imagina
parts. In terms of the wave numberk5 iy /a, the imaginary
zeros of the Jost function will coalesce forb'b0 and then
separate, moving into the complexk plane with equal and
opposite real parts asb increases pastb0 .
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