PHYSICAL REVIEW A VOLUME 57, NUMBER 5 MAY 1998
Total electron density from the s-electron density
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Based on a theorem of TheophilpBhilos. Mag. B69, 771 (1994], the total electron density in a central
field atom is determined from the Kohn-Shanelectron density. Exchange-only density-functional calcula-
tions for atoms are presentd&1050-294708)10105-1

PACS numbds): 31.15—p

I. INTRODUCTION are the ground-state Slater determinants belonging to the po-
tentialsv andv’, respectively. Using the equalities
In a recent papefrl], it was shown for a bare Coulomb
potential energy- Ze?/r that the total electron density for an & :f
arbitrary number of closed shells is given by (olV|Po) ngdr, ®)

27 (= R
=2 “nynar, & (@)= [ naar, @
r
whereng is the electron density of shells. Equatiorfl) can I i ! _f /
also be transformed into the form {PolV|®g)= | ngvdr, ®
an(r) 2Z T |y 7 '
ar :_a_onS(r)’ ) (Do|V'[Pg)= | ngv'dr. ©)
which is the spatial generalization of Kato’s theorf2 Egs.(4), and(5) lead to the inequality
Equation(1) shows that the total electron densitycan be
calculated if thes-electron densityns is known. The total f [ni(r)—ng(r)][v(r)—v’(r)]>0; (10)
density can be determined fromy, not only for a bare Cou-

lomb field. In a spherically symmetric system one can al- . . . .
ways determinen if n. is known. Of course, the relation therefore, there is a single external potential which corre-

betweenn andn is not so simple as in the bare Coulomb sponds to the giveng, i.e., there exists a one-to-one corre-
field [Egs. (1) and (2)]. spondence between the potential andsfstate density. This

Let us consider a noninteracting electron system in a cerfl1€0rem was stated and proved by Theophill not only
tral potentialu(r). If the s densityn, is given, and isy  for | =0 but also for arbitrary. In a recent papeM], Theo-
representable, the numbi of the s electrons can be com- Philou and Gidopoulos also proved the following theorem
puted by integrating\; over space. Applying the minimum which may be regarded as the generalization of the afore-

. . - mentioned statement: “For a non-interacting systemNof
principle for theNs-electron functiona(®[H|®), where electrons, the part of the density due to the spin orbitals that

transforms according to a certain irreducible representation
) of a group, determines uniquely the ground state.” Using the

Kohn-Sham method for handling the many-electron problem,

it can be stated that in a spherically symmetric system the
and the Slater determinap®) is constructed solely from Kohn-Shams-density uniquely determines the Kohn-Sham
spin orbitals belonging to the subspace characterized by thgotential and the ground state. In this paper, a numerical
angular momentum quantum numider 0, one can obtain iterative method is proposed to construct the Kohn-Sham
the inequalities potential and the total density in the knowledge of the
s-electron density.
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H=2, | op to(r)

(Do| T|D o) +(Po| V| Do) <(Dg| T| D)+ (D V| DY),
(4) Il. s-STATE DENSITY WITH ONE AND TWO s SHELLS

If the s-state density is theslelectron density belonging

<CD6|-T|(I)6>+<(I)(I)|\A/,|CI)6><<(DO|?|Q)O>+<(I)O|\A//|(I)0>'(5) to the Occupation numbe‘jl’

. . . Ng=w1|U1q|?, (12)
whereT=3Ms (v2/2m), V=3 o(r), ¥'=3" 0" (r), v o
andv’ are different external potentials, ahd,) and|®;)  from the Kohn-Sham equation
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VZ
(_7+UKS”))Uls(f)Zslsuls(r), (12)

the Kohn-Sham potential can be trivially constructed:

1
2,12
UKs(r):815+ veong'c.
2nl2" °

13

The one-electron energy,s can be determined from the

asymptotic decay ofig,

Ng~ exp—2v2|eqqr}.

If the s-state density is obtained from tweoshells, i.e.,

14

Ns= w1| U142+ wo|Uzgl?, (15

where w; and w, are the occupation numbers, the Kohn-

3459

where

815t &g

> (24

From Eq.(19), 6 can be determined from using the nor-
malization and orthogonality conditions

f@scoszedr:wl, (25)
fgssinzﬁdrzwz, (26)
Jgssinz(ZH)dr=0. (27

Sham potential can be constructed in the following way: Thel hen Ed.(23) gives vis. If the Kohn-Sham potential is
method developed earlier for the ground state of the Be atorf"oWn, the solutions of the Kohn-Sham equations yield all

[5] is applied. Following Dawson and Mar¢b], the phase
function 6 is introduced:

P _ Lo cos 6 (16)
1s \/w—lgs ’
P Lt %2 sin g 17
2s \/w—QS y
2

where P, and P,¢ are the radial wave functions, arg,
=4r?7n4 is the radiaks-electron density. Equatior{6) and
(17) and the radial Kohn-Sham equations

Pis+2(eis—vks)Pis=0, i=1,2 (19
lead to the relation between tlgestate electron densitg
and phase&:

!

0"+ ﬁa' =2¢ sin(20), (19
Os
where
€157 €25
E=—— (20)
0 can be explicitly written as
1
QSZZ exp(2&h), (21
where
sin(26
h(r):J’ n(a, )dr. (22

The Kohn-Sham potential takes the form

1o 1(Q_g 2

s s 1
574 o5 8los

1
- 5(6’)2+ £ cog20)+p,
(23

the occupied wave functions, and the total electron density
can be given. Considering the special case of a three-level
spherically system, with the obtaineds one has just to
solve the third radial Kohn-Sham equation

I(1+1)

5ot 2 £2p=vks~ 5| P2p=0, =1 (29

to obtain the total density.

Ill. s-STATE DENSITY WITH SEVERAL s SHELLS

Recently, there has been a considerable interest in con-
structing the Kohn-Sham potential with knowledge of the
total density{7—12]. One of the authorf7] also proposed a
numerical, iterative method that can be modified to obtain
the Kohn-Sham potential, if the-electron density is known.
Starting out from a properly chosen starting potential the
Kohn-Sham equations

[~ 3V +vks(N)]ui(r) =siu;(r) (29
are solved. Then ths-state density
ne= >, 2uX(r) (30)

i
(1=0)

is calculated and compared with the inputlensity. If the
difference is larger than an appropriately chosen small con-
stant, the potential of the following iteration is constructed.
Then the Kohn-Sham equations are solved again, and so on.
If convergency is achieved then the true Kohn-Sham poten-
tial is obtained, since it is uniquely determined by thetate
density. In principle, in spherically symmetric systems the
atomic numbe€Z can be determined from Kato's theoré#]j

(31)

(m) 2Zn(r=0)
— =-2Zn(r=0).
or (r=0)

The same expression can also be written rigt Conse-
quently, the atomic numbet can be readily obtained from
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FIG. 1. The total radial electron densjiycomputed numerically

from the s-state density as the function affor the atoms Ar and
Kr, and the ions Na and Sf* (in a.u). x is defined asx

=r/(uZ¥), whereZ is the atomic numberp=(1/2)(3w/4)?3, ~ ered systems, i.e., the Kohn-Sham density is close to the
andr is the radial distance from the nucleus. Hartree-Fock density, as expected because of the criterion

for self-consistency. The Kohn-Sham potentials are plotted
n.. On the other hand, the asymptotic behavior of the Kohni" F19- 2.
Sham potential is given by

FIG. 2. The Kohn-Sham potentiaks for the Ar and Kr atoms
and the ions Na and S¥* (in a.u).

V. SUMMARY AND DISCUSSION

Z—N-1 As we pointed out, the-state contribution to the electron
vks(f)=———F——— asr—x (32)  density contains all information about the ground-state sys-

tem. If thes-electron density is given, it is possible to com-
From this expression, in principle, the total number of elecPute the Kohn-Sham potential and the total electron density.

tronsN can be extracted. With a knowledge mfs and N In the present work this problem was solved by the aid of a
the total electron density can be found by solvinsg the Kohnumerical method described above. As an illustration, calcu-
Sham equations lations were performed for spherically symmetric systems in
' the exchange-only density-functional case.
According to the theorem of Theophildi8], the total
IV. EXCHANGE-ONLY CALCULATIONS

electron density can be determined not only from the

In an earlier papef7], Kohn-Sham one-electron orbitals S"€lectron density, but can also be obtained from the
and energies were determined from Hartree-Fock onep-_electron dens@y, a numerical demonstration of which
electron orbitalg13]. It was shown[14,15 that the Kohn- Might be the subject of another paper.
Sham potential leading to the Hartree-Fock density is very The total eIeptron density can be calculated from the
close to the exchange-only Kohn-Sham potential, so we cafl"€lectron density, and so on, i.e., theart of the density
loosely refer to it as the exchange-only case. As a result ggontains all th_e information that is needgd to obtal_n the to_tal
this kind of calculation, one obtains the exchange-only oneflectron d_en3|ty. These results are valid for noninteracting
electron energies and orbitals, from which the exchange-onl§YStems, i-e., for Kohn-Sham systems. The problem of
n, can be constructed. Applying, as an inputs-electron hether a S|m|Iar_theorem eX|sts_for interacting system is
density following the procedure described above, thestill @n open questiothough there is a conjectuf8] that it
exchange-only total electron densitycan be computed. is probably trug
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