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Total electron density from the s-electron density

Á. Nagy and E. Bene
Institute of Theoretical Physics, Kossuth Lajos University, H–4010 Debrecen, Hungary

~Received 14 July 1997; revised manuscript received 30 October 1997!

Based on a theorem of Theophilou@Philos. Mag. B69, 771 ~1994!#, the total electron density in a central
field atom is determined from the Kohn-Shams-electron density. Exchange-only density-functional calcula-
tions for atoms are presented.@S1050-2947~98!10105-1#

PACS number~s!: 31.15.2p
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I. INTRODUCTION

In a recent paper@1#, it was shown for a bare Coulom
potential energy2Ze2/r that the total electron density for a
arbitrary number of closed shells is given by

n~r !5
2Z

a0
E

r

`

ns~r !dr, ~1!

wherens is the electron density ofs shells. Equation~1! can
also be transformed into the form

]n~r !

]r
52

2Z

a0
ns~r !, ~2!

which is the spatial generalization of Kato’s theorem@2#.
Equation~1! shows that the total electron densityn can be

calculated if thes-electron densityns is known. The total
density can be determined fromns , not only for a bare Cou-
lomb field. In a spherically symmetric system one can
ways determinen if ns is known. Of course, the relatio
betweenn and ns is not so simple as in the bare Coulom
field @Eqs.~1! and ~2!#.

Let us consider a noninteracting electron system in a c
tral potentialv(r ). If the s density ns is given, and isv
representable, the numberNs of the s electrons can be com
puted by integratingns over space. Applying the minimum
principle for theNs-electron functional̂ FuĤuF&, where

Ĥ5(
i 51

Ns F2¹i
2

2m
1v~r i !G , ~3!

and the Slater determinantuF& is constructed solely from
spin orbitals belonging to the subspace characterized by
angular momentum quantum numberl 50, one can obtain
the inequalities

^F0uT̂uF0&1^F0uV̂uF0&,^F08uT̂uF08&1^F08uV̂uF08&,
~4!

^F08uT̂uF08&1^F08uV̂8uF08&,^F0uT̂uF0&1^F0uV̂8uF0&,
~5!

whereT̂5( i 51
Ns (¹ i

2/2m), V̂5( i 51
Ns v(r i), V̂85( i 51

Ns v8(r i), v
and v8 are different external potentials, anduF0& and uF08&
571050-2947/98/57~5!/3458~4!/$15.00
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are the ground-state Slater determinants belonging to the
tentialsv andv8, respectively. Using the equalities

^F0uV̂uF0&5E nsvdr, ~6!

^F0uV̂8uF0&5E nsv8dr, ~7!

^F08uV̂uF08&5E ns8vdr, ~8!

^F08uV̂8uF08&5E ns8v8dr. ~9!

Eqs.~4!, and~5! lead to the inequality

E @ns8~r !2ns~r !#@v~r !2v8~r !#.0; ~10!

therefore, there is a single external potential which cor
sponds to the givenns , i.e., there exists a one-to-one corr
spondence between the potential and thes-state density. This
theorem was stated and proved by Theophilou@3#, not only
for l 50 but also for arbitraryl . In a recent paper@4#, Theo-
philou and Gidopoulos also proved the following theore
which may be regarded as the generalization of the afo
mentioned statement: ‘‘For a non-interacting system ofN
electrons, the part of the density due to the spin orbitals
transforms according to a certain irreducible representa
of a group, determines uniquely the ground state.’’ Using
Kohn-Sham method for handling the many-electron proble
it can be stated that in a spherically symmetric system
Kohn-Shams-density uniquely determines the Kohn-Sha
potential and the ground state. In this paper, a numer
iterative method is proposed to construct the Kohn-Sh
potential and the total density in the knowledge of t
s-electron density.

II. s-STATE DENSITY WITH ONE AND TWO s SHELLS

If the s-state density is the 1s electron density belonging
to the occupation numberv1,

ns5v1uu1su2, ~11!

from the Kohn-Sham equation
3458 © 1998 The American Physical Society
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S 2
¹2

2
1vKS~r ! Du1s~r !5«1su1s~r !, ~12!

the Kohn-Sham potential can be trivially constructed:

vKS~r !5«1s1
1

2ns
1/2

¹2ns
1/2. ~13!

The one-electron energy«1s can be determined from th
asymptotic decay ofns ,

ns; exp$22A2u«1sur %. ~14!

If the s-state density is obtained from twos shells, i.e.,

ns5v1uu1su21v2uu2su2, ~15!

where v1 and v2 are the occupation numbers, the Koh
Sham potential can be constructed in the following way: T
method developed earlier for the ground state of the Be a
@5# is applied. Following Dawson and March@6#, the phase
function u is introduced:

P1s5
1

Av1

%s
1/2 cosu, ~16!

P2s5
1

Av2

%s
1/2 sin u, ~17!

where P1s and P2s are the radial wave functions, and%s
54r 2pns is the radials-electron density. Equations~16! and
~17! and the radial Kohn-Sham equations

Pis9 12~« is2vKS!Pis50, i 51,2 ~18!

lead to the relation between thes-state electron density%s
and phaseu:

u91
%s8

%s
u852j sin~2u!, ~19!

where

j5
«1s2«2s

2
. ~20!

%s can be explicitly written as

%s5
1

u8
exp~2jh!, ~21!

where

h~r !5E sin~2u!

u8
dr. ~22!

The Kohn-Sham potential takes the form

vKS5
1

4

%s8

%s
2

1

8S %s8

%s
D 2

2
1

2
~u8!21j cos~2u!1b,

~23!
e
m

where

b5
«1s1«2s

2
. ~24!

From Eq.~19!, u can be determined from%s using the nor-
malization and orthogonality conditions

E %s cos2udr5v1 , ~25!

E %s sin2udr5v2 , ~26!

E %s sin2~2u!dr50. ~27!

Then Eq. ~23! gives vKS. If the Kohn-Sham potential is
known, the solutions of the Kohn-Sham equations yield
the occupied wave functions, and the total electron den
can be given. Considering the special case of a three-l
spherically system, with the obtainedvKS one has just to
solve the third radial Kohn-Sham equation

P2p9 12S «2p2vKS2
l ~ l 11!

2r 2 D P2p50, l 51 ~28!

to obtain the total density.

III. s-STATE DENSITY WITH SEVERAL s SHELLS

Recently, there has been a considerable interest in c
structing the Kohn-Sham potential with knowledge of t
total density@7–12#. One of the authors@7# also proposed a
numerical, iterative method that can be modified to obt
the Kohn-Sham potential, if thes-electron density is known
Starting out from a properly chosen starting potential
Kohn-Sham equations

@2 1
2 ¹21vKS~r !#ui~r !5« iui~r ! ~29!

are solved. Then thes-state density

ns5 (
i

~ l 50!

2ui
2~r ! ~30!

is calculated and compared with the inputs density. If the
difference is larger than an appropriately chosen small c
stant, the potential of the following iteration is constructe
Then the Kohn-Sham equations are solved again, and so
If convergency is achieved then the true Kohn-Sham pot
tial is obtained, since it is uniquely determined by thes state
density. In principle, in spherically symmetric systems t
atomic numberZ can be determined from Kato’s theorem@2#

S ]n

]r D
~r 50!

522Zn~r 50!. ~31!

The same expression can also be written forns . Conse-
quently, the atomic numberZ can be readily obtained from
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ns . On the other hand, the asymptotic behavior of the Ko
Sham potential is given by

vKS~r !52
Z2N21

r
as r→`. ~32!

From this expression, in principle, the total number of el
trons N can be extracted. With a knowledge ofvKS and N,
the total electron density can be found by solving the Ko
Sham equations.

IV. EXCHANGE-ONLY CALCULATIONS

In an earlier paper@7#, Kohn-Sham one-electron orbita
and energies were determined from Hartree-Fock o
electron orbitals@13#. It was shown@14,15# that the Kohn-
Sham potential leading to the Hartree-Fock density is v
close to the exchange-only Kohn-Sham potential, so we
loosely refer to it as the exchange-only case. As a resu
this kind of calculation, one obtains the exchange-only o
electron energies and orbitals, from which the exchange-o
ns can be constructed. Applyingns as an inputs-electron
density following the procedure described above,
exchange-only total electron densityn can be computed.

This method has been applied to several atoms and
with closed shells. Some typical results of these calculati
are displayed in the figures. Figure 1 presents the total ra
electron density%54pr 2n for the atoms Ar and Kr and the
ions Na1 and Si21. The calculations performed show th
the d5100u%2%HFu/%HF relative difference between% and
the Hartree-Fock density%HF is less than 5% for the consid

FIG. 1. The total radial electron densityr computed numerically
from thes-state density as the function ofx for the atoms Ar and
Kr, and the ions Na1 and Si21 ~in a.u.!. x is defined asx
5r /(mZ1/3), where Z is the atomic number,m5(1/2)(3p/4)2/3,
and r is the radial distance from the nucleus.
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ered systems, i.e., the Kohn-Sham density is close to
Hartree-Fock density, as expected because of the crite
for self-consistency. The Kohn-Sham potentials are plot
in Fig. 2.

V. SUMMARY AND DISCUSSION

As we pointed out, thes-state contribution to the electro
density contains all information about the ground-state s
tem. If thes-electron density is given, it is possible to com
pute the Kohn-Sham potential and the total electron dens
In the present work this problem was solved by the aid o
numerical method described above. As an illustration, ca
lations were performed for spherically symmetric systems
the exchange-only density-functional case.

According to the theorem of Theophilou@3#, the total
electron density can be determined not only from t
s-electron density, but can also be obtained from
p-electron density, a numerical demonstration of whi
might be the subject of another paper.

The total electron density can be calculated from
d-electron density, and so on, i.e., thel part of the density
contains all the information that is needed to obtain the to
electron density. These results are valid for noninteract
systems, i.e., for Kohn-Sham systems. The problem
whether a similar theorem exists for interacting system
still an open question~though there is a conjecture@3# that it
is probably true!.
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FIG. 2. The Kohn-Sham potentialvKS for the Ar and Kr atoms
and the ions Na1 and Si21 ~in a.u.!.
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