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Hydrogen molecule in a strong parallel magnetic field

Yu. P. Kravchenko and M. A. Liberman
Department of Physics, Uppsala University, Box 530, S-751 21, Uppsala, Sweden

and P. Kapitsa Institute for Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Received 3 November 1997!

We investigate the hydrogen molecule in a strong parallel magnetic field using a fully numerical Hartree-
Fock approach. We find that for magnetic fields below 4.23104 T the ground state of H2 is the strongly bound
singlet state1Sg , for magnetic fields stronger than 33106 T the ground state of the molecule is the strongly
bound triplet3Pu , and for magnetic fields between 4.23104 T and 33106 T the symmetry of the ground state
is the triplet state3Su , which is characterized by repulsion at intermediate internuclear distances and by a
weak quadrupole-quadrupole interaction between atoms at large internuclear separation. In this region of
magnetic field strength the hydrogen molecule is bound weakly, if at all; the hydrogen atoms behave like a
weakly nonideal gas of Bose particles and can form a superfluid phase predicted in earlier works@Korolev and
Liberman, Phys. Rev. Lett.72, 270 ~1994!#. For magnetic fields between'33105 T and 33106 T the triplet
state 3Pu is found to be metastable. This state may be responsible for an unknown excitonic line observed
experimentally@Timofeev and Chernenko, JETP Lett.61, 617 ~1995!#. @S1050-2947~98!01105-6#

PACS number~s!: 33.15.Bh, 31.15.Ne, 71.35.2y, 95.30.Ft
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I. INTRODUCTION

The intriguing world of atomic and molecular phenome
in strong magnetic fields, which was brought to the attent
of investigators after the discovery of such fields on the s
faces of neutron stars@1# and white dwarfs@2#, reveals a
large number of unusual and spectacular effects. Seriou
tention to this area is motivated not only by pure theoreti
interest, but also by practical applications in astrophysics
in the physics of semiconductors, where already labora
magnetic fields become ‘‘superstrong’’ for excitons and sh
low impurities.

The influence of a magnetic fieldH on the electron mo-
tion can be characterized by the energy distance\eH/mec
between the Landau levels of the electron moving in t
field. The magnetic field is ‘‘strong’’ on the atomic scale
this energy is comparable with the atomic unit of energy, i
1 hartree. The two values become equal in the magnetic
H05me

2e3c/\352.350 523109 G, which is the atomic unit
of magnetic field strength. The intensity of the magnetic fi
in atomic units may be conveniently defined asg5H/H0,
and we shall use this designation throughout the paper. M
netic fields in the atmospheres of white dwarfs are of
order of g;1022– 531021 a.u., and fields on the surface
of neutron stars and pulsars correspond tog;102– 103 a.u.

Magnetic fields of such magnitude dramatically mod
the electronic structure of atoms and molecules. Elect
spins tend to become antiparallel to the magnetic field, ca
ing a complete restructuring of electronic shells, and elect
clouds strongly contract in the direction perpendicular to
magnetic field. These effects are accompanied by the gro
of binding energies of atoms and bonding energies betw
atoms in molecules. Because of the strong deformation
electronic orbitals, theoretical investigation of the electro
structure of matter in strong magnetic fields presents ser
difficulties, and the well-developed computational tec
niques of ‘‘field-free’’ quantum chemistry usually requir
significant modifications.
571050-2947/98/57~5!/3403~16!/$15.00
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Research inquiries in the area of strong magnetic fie
are concentrated along several major lines of effort. One
them is the study of highly excited atomic and molecu
states, the so-called Rydberg states, which can be obse
experimentally in magnetic fields of the order of several te
@3,4#. Another important direction of work focuses on th
fundamental aspects of molecular and atomic structure
strong magnetic fields, primarily on the nuclear dynam
and nonadiabatic effects@5–8#. Finally, a significant deal of
attention is paid to the calculations of the electronic struct
of atoms, simple molecules, and condensed matter in m
netic fields.

Among the atoms, the most popular object of investig
tion is the hydrogen atom, which has been thoroughly st
ied both in the nonrelativistic@9# and relativistic approxima-
tions @10–12#. Detailed Hartree-Fock calculations have be
performed for helium and heliumlike ions@13–15#, including
the negative ion H2 @16,17#. For atoms with more than two
electrons, work has mostly been concentrated on the
called adiabatic regime of superstrong magnetic fields, wh
both Hartree-Fock@18# and statistical models@19# were used.
Recently, accurate Hartree-Fock calculations of ma
electron atoms have been performed also for magnetic fi
of intermediate strength@20#.

The only molecule whose structure in the magnetic fi
is investigated in great detail is the one-electron hydrog
molecular ion H2

1 . The behavior of this system has bee
studied for both the parallel@21–23# and nonparallel con-
figurations@24–26# with the aid of different approaches, in
cluding variational methods@21,24#, basis set methods
@22,25,26#, and semianalytical approaches@23#.

Among the molecules with more than one electron,
central place is occupied by the hydrogen molecule H2. First
of all, this is the simplest two-electron molecule, and it
lows more detailed and accurate theoretical investiga
than other molecules. Second, H2 has a close solid-state ana
log, the excitonic molecule, which behavior in strong ma
netic fields can be studied already in laboratory conditio
3403 © 1998 The American Physical Society
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The unit of ‘‘strong’’ magnetic field for the hydrogenlik
excitons in direct-gap semiconductors isH0

eff5meff
2 e3c/«2\3,

where « is the dielectric constant andmeff is the reduced
effective mass of the electron and the hole. For such se
conductors as Ge and InSb,H0

eff can be less than 1 T, and th
effects of strong magnetic fields on the excitonic spectr
can be observed in experiments@27#.

However, the hydrogen molecule H2 has been studied
less thoroughly than H2

1 . If we turn to the problem of
atomic hydrogen in a magnetic field, we will see that ma
computational difficulties always arose in the intermedi
region of magnetic field strengthsg'1 a.u. The same ten
dency holds for molecular hydrogen as well. Most of t
publications dealing with H2 in strong magnetic fields con
sidered only the case of superstrong (g;102– 103 a.u.! mag-
netic fields @28–30#. The behavior of H2 in intermediate
fields (g;1) attracted less attention and was mostly focu
only on the triplet state3Su . Reference@31# reports finite
basis set calculations of the term3Su in a magnetic field
g51 a.u. for parallel and perpendicular orientations of
magnetic field with respect to the molecular axis. The
thors of@32# investigated the potential curve of3Su at large
internuclear separation and concluded that in strong m
netic fieldsg.1 two atoms will form a molecule in the stat
3Su due to van der Waals binding.

Because of the more complicated structure of the hyd
gen molecule, even in superstrong magnetic fieldsg@1 the
picture of its behavior remained unclear even qualitativ
for a prolonged time. The assumption proposed in@28# was
that the triplet state3Su remains the ground state of th
molecule even for superstrong magnetic fieldsg@1. In such
a situation electron clouds of hydrogen atoms beco
strongly elongated in the direction of the magnetic field, a
atoms acquire large quadrupole electric moments and
interact with each other by way of a quadrupole-quadrup
interaction. Since the magnitude of this interaction is rat
small, atoms do not form strongly bound molecules: T
molecules are bound very weakly, if at all, and hydrog
behaves like a nonideal gas of weakly interacting boso
The thermodynamic properties of such a gas and possib
of Bose condensation of excitons in semiconductors in m
netic fields were investigated in@33#.

However, later works@29,34# investigated another poss
bility, which was not explored previously: formation of th
triplet state3Pu in superstrong fieldsg@1. In the absence o
a magnetic field, the state3Pu is a short-lived state, becaus
its potential curve lies above that of the states3Su and 1Sg .
However, Ref.@29# showed that in a strong parallel magne
field the potential minimum of the state3Pu becomes lower
than the potential minimum of the state3Su , so that
3Pu becomes the ground state~all singlet states lie very
high due to the contribution from electron spins!, and the
molecule will be strongly bound. This means that the the
of the Bose condensation of hydrogenlike gas in a magn
field could be based on an incorrect assumption of the s
metry of the ground state@34#.

Although the weakly interacting triplet state3Su is not
the ground state of the hydrogen molecule neither for sm
nor for very strong magnetic fields, one can see that it m
be the ground state of H2 in the intermediate regiong'1
i-
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a.u. Let us compare the energies of the potential minima
all three state1Sg , 3Su , and 3Pu . Since the state3Su is
characterized by repulsion at small and intermediate inter
clear distances and by a weak interaction atR@1 a.u., the
minimum of the potential curve of the state3Su almost co-
incides with the energy of two isolated hydrogen atoms
their ground states. The energies of hydrogen atoms
magnetic field are known to a very high precision@9#. The
ground state energy of H is maximal in the absence o
magnetic field (20.5 hartree! and decreases with the growt
of the field. Atg50.2 a.u. it equals20.5904 hartree and a
g50.3 a.u. it becomes20.6292 hartree. Corresponding e
ergies of the molecular state3Su at R@1 a.u. are21.1808
hartree and21.2584 hartree, respectively.

On the other hand, the potential minimum of the sing
state 1Sg is minimal atg50 and equals21.1744 hartree.
With the growth of the magnetic field the potential minimu
also grows@34,35#. The minimum of the triplet state3Su ,
on the contrary, decreases, and already atg50.2 a.u. the
energy of the state3Su at R@1 a.u. is21.1808 hartree, i.e.
by 0.0064 hartreelower than the minimal energy of the stat
1Sg at zero magnetic field and certainly lower than the p
tential minimum of1Sg at g50.2 a.u. As for the state3Pu ,
in this region of magnetic field strength its potential cur
still lies above that of the state3Su , which means that
3Pu is an unstable short-lived state.

Therefore, atg'0.2– 0.3 a.u. the ground state of the h
drogen molecule is not the singlet state1Sg or the triplet
state 3Pu , but the triplet state3Su , which is repulsive at
R;1 a.u. and has a very weak interaction between atom
large R. This means that with the growth of the magne
field the hydrogen molecule experiences two transitions
the ground state symmetry. The first transition, which h
pens at some magnetic field strengthg1,0.2 a.u., is the
transition from the strongly bound singlet state1Sg to the
triplet state3Su , which is bound very weakly, if at all. The
second transition, occurring at a certaing2.0.2 a.u., is the
transition from the state3Su to the strongly bound triplet
state 3Pu .

If the value ofg2 is large enough, then we are facing th
following situation: Inverystrong fieldsg.g2 the hydrogen
forms tightly bound molecules in the state3Pu , but for
fields g<g2 the ground state of the hydrogen is the sta
3Su with a weak interaction between atoms, which poss
large quadrupole moments. Hydrogen behaves like a n
ideal Bose gas, and we arrive at the situation describe
@28,33#.

Recently, a very detailed investigation of singlet and tr
let states of theS manifold of H2 in magnetic fields between
0 and 100 a.u. has been published@36#. The authors of@36#
performed configuration-interaction~CI! studies of the states
1Sg , 1Su , 3Sg , and 3Su . They have found that the groun
state of H2 experiences a symmetry transition from1Sg to
3Su , which happens somewhere betweeng50.1 and 0.2
a.u., in exact correspondence with the arguments prese
above. We have independently reported the same resu
Ref. @37#, which gives an essential summary of the resu
which we present in the present paper.

To find the true picture of the ground state evolution, w
perform accurate two-dimensional~2D! Hartree-Fock calcu-
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57 3405HYDROGEN MOLECULE IN A STRONG PARALLEL . . .
lations of the hydrogen molecule in a parallel magnetic fie
We solve the problem within the Born-Oppenheimer a
proximation, which is completely justified for the range
magnetic fields in question, because for hydrogen effect
nonadiabatic corrections become pronounced only in m
netic fields stronger than 1011 G for the states with nonzer
total momentum@5#. We do not account for relativistic ef
fects due to their negligible influence@10#. Calculations are
performed using a highly precise fully numerical metho
developed in@38#.

Our results demonstrate that the first symmetry transi
1Sg→3Su occurs at the magnetic field strength ofg1
'0.18 a.u., and the second transition3Su→ 3Pu happens
at g2'14 a.u. For magnetic fieldsg,g1 the ground state o
the hydrogen molecule is the strongly bound singlet s
1Sg . For magnetic fieldsg1,g,g2 the ground state o
H2 is the triplet state3Su with a very weak interaction be
tween atoms, and the hydrogen must behave like a noni
Bose gas. For magnetic fieldsg.g2 the hydrogen forms
tightly bound molecules in the quantum state3Pu .

These results provide a solid background to the theory
Bose condensation and superfluidity of a hydrogenlike ga
a strong magnetic field@33# and prove that its assumption o
the ground state symmetry is valid. Although the theoreti
picture developed in@28,33# does not work for extremely
high magnetic fields, as was assumed initially, but for m
netic fields less than 14 a.u., this fact does not change
principal concepts of@33#.

In addition, our calculations demonstrate that forg1<g
<g2 there are two regions of magnetic field strength wh
hydrogen may formmetastablemolecules. The first region
lies betweeng1 and '0.4– 0.5 a.u. For magnetic fields o
such strength, the true ground state of the molecule is3Su ,
but hydrogen may form strongly bound metastable molecu
in the singlet state1Sg . The second region spans fro
1.2– 1.4 a.u. tog2. In such fields, hydrogen may form met
stable molecules in the quantum state3Pu .

This result provides not only qualitative, but also a ve
good quantitative explanation of experimental results, wh
were reported in@27# and remained unexplained theore
cally. The authors of@27# investigated the excitonic spectru
of germanium in a magnetic field and atH54 T observed
the appearance of a new spectral line, which was labeled
‘‘ X line.’’ They associated this new line with the creation
a new bound state, whose energy is by one electron-
(e-h) pair lower than the energy of an isolated exciton, b
could not explain the nature of this state.

For the samples of Ge used in the experiments@27# the
critical field H0

eff corresponded to 2.9 T. Therefore, the ne
spectral line appeared at the effective fieldg'1.4 a.u.,
which approximately corresponds to the lower end of
second metastable region described above. We sugges
the observedX line is associated with the metastable excit
in the state3Pu and predict that other direct-gap semico
ductors will exhibit similar spectral features at the sa
strength of the effective magnetic field. If future experime
with other types of semiconductors confirm this prediction
will lead to a new way to control the optical properties
semiconductors, which may open interesting technolog
possibilities.

The paper is organized as follows. In Sec. II, we der
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the Hartree-Fock equations and auxiliary formulas in
spheroidal coordinate system. Section III gives the deta
description of the employed numerical method, whose pre
sion and convergence are investigated in Sec. IV. Sect
V A and V B present calculated results for the ground st
of the magnetized hydrogen molecular ion and for low-lyi
states of the helium atom. Section V C describes the ev
tion of the hydrogen molecule in the magnetic field. Sect
VI presents our explanation of the observed excitonic sp
trum of germanium in a strong magnetic field and propos
for future experimental work. Finally, Sec. VII summarize
the contents of the paper and presents our conclusions.

II. HARTREE-FOCK METHOD

A. Basic equations

We use the usual Born-Oppenheimer adiabatic appr
mation and separate electronic and nuclear motions.
Schrödinger equation for the electronic wave functio
C(x1 ,x2), where xi5(r i ,si) collectively designates the
space and spin variables of electroni , is

@ ĥ~x1!1ĥ~x2!#C1
e2

r 12
C5EC, ~1!

wherer 125ur12r2u and ĥ is a one-electron Hamiltonian,

ĥ~x!5
1

2me
F p̂1

e

c
A~r !G2

1
e\

mec
ŝH2e2 (

j 51,2

Zj

r j
. ~2!

Herer j5ur2Rj u is the distance to the nucleusj , Rj , andZj
are nuclear coordinates and atomic numbers,A is the vector
potential,H5¹3A is the magnetic field, andŝ is the spin
operator. Since the present analysis is restricted to the p
lel orientation of the magnetic field, we introduce spheroid
coordinates (j,h,w) with variables j5(r 11r 2)/R, 0<j
,`, andh5(r 12r 2)/R, 21<h,1, whereR5uR12R2u is
the internuclear separation. The gauge of the vector pote
is taken asA5(0,0,Hr'/2), where r'5(R/2)@(j221)(1
2h2)#1/2 is the distance to the molecular axis.

We choose the atomic system of units, so that the unit
length and energy are the Bohr radiusa05\2/mee

255.3
31029 cm and 1 hartree,E05mee

4/\2527.2 eV, and the
unit of magnetic intensity isH05me

2e3c/\352.350 52
3109 Oe. The Schro¨dinger equation~1! takes the form

@ ĥ~r1!1ĥ~r2!#C1
1

r 12
C5~E2gs12gs2!C, ~3!

where g5H/H0 is the intensity of the magnetic field in
atomic units,s5sz561/2 is thez projection of the electron
spin, andĥ is the one-electron Hamiltonian without the spi
dependent term,

ĥ~r !52
1

2
D2 i

g

2

]

]w
1

1

8
g2r'

2 2
2

R2

Zpj1Zmh

j22h2
, ~4!

with Zp5R(Z11Z2) andZm5R(Z22Z1).
We consider the problem within the Hartree-Fock a

proximation in which the total electronic wave functio
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C(x1 ,x2) is approximated by the antisymmetrized produ
of two normalized and orthogonal spin orbitalsca(r ,s)
5ua(r )xa(s). The Hartree-Fock equations are

@ ĥ~r !1Gbb~r !2Ea#ua~r !5dsGba~r !ub~r !, ~5!

where indicesa and b take values (a,b)5(1,2) and (2,1),
Ea are eigenvalues, andds5d(s1 ,s2) is 1 if the electron
spins are parallel~triplet term! and 0 if they are antiparalle
~singlet term!. The potentialsGab are given by

Gab~r !5E ua* ~r 8!ub~r 8!

ur2r 8u
dr 8. ~6!

B. Transformation to 2D space

We assume that the dependence of the spatial orbitalua
on the anglew is given by the factoreimaw, so that the com-
ponent of the electronic orbital angular momentum along
molecular axis isL5m11m2. We introduce the new func
tions f a(j,h) according to

ua~j,h,w!5eimawr
'

umaue2agr'
2 /4f a~j,h!

5eimawfa~j,h!, ~7!

fa~j,h!5r
'

umaue2agr'
2 /4f a~j,h!. ~8!

The multiplier exp(2agr'
2/4), wherea ranges between 0

and 1, is introduced to partially account for the asympto
behavior of the wave function in the magnetic field and
discussed in Sec. III D. The Laplacian of a spatial orbital
spheroidal coordinates is

Dua5
4eimaw

R2~j22h2!
r

'

umaue2agr'
2 /4D̂ umau

~ag! f a

2~11umau!agua1a2g2r'
2 ua/4 , ~9!

where the differential operatorD̂n
(t) is defined as

D̂n
~t!~j,h!5~j221!

]2

]j2
1~12h2!

]2

]h2

1@2~11n!2tr'
2 #S j

]

]j
2h

]

]h D . ~10!

As follows from Eq.~6!, thew dependence of the potentia
Gab is given by the factorei (mb2ma)w. Consequently, we can
presentGab in the form

Gab~j,h,w!5ei ~mb2ma!wr
'

umb2maugab~j,h!. ~11!

The Hartree-Fock equation~5! becomes
t

e

c

D̂ umau
~ag! f a1~Z1j1Z2h! f a

2
R2

2
~j22h2!S gbb1

12a2

8
g2r'

2 2Ea8D f a

52ds

R2

2
r

'

uma2mbu1umbu2umau
~j22h2!gbaf b ,

~12!

whereEa85Ea2(a1umaua1ma)g/2. Explicit formulas for
overlap integralsSab5^uauub& and Hamiltonian integrals
Hab5^uauĥuub& are given in Appendix A.

To determine the potentialsGab , we follow the method
outlined in @38# and directly solve the Poisson equatio
DGab524pua* ub . Written in terms of the functionsgab , it
reads

D̂ umb2mau
~0! gab52pR2r

'

2umb2mau
~j22h2!fafb . ~13!

The values ofgab at the positions of nuclei can be found b
direct numerical integration and are given by Eq.~A4!. At
large distancesR the potentialsGab(R) can be expanded in a
multipole seriesGab(R)5( l 50

` Gab
( l )(R),where

G~ l !~R!5
1

Rl 11 (
m52 l

l A 4p

2l 11
Qm

~ l !Ylm* ~Q,F!. ~14!

Here R, Q, andF are the polar coordinates ofR, Ylm are
spherical harmonics, andQm

( l ) are multipole moments given
by

Qm
~ l !5A 4p

2l 11
^uaur lYlm~u,w!uub&. ~15!

Equations~A4! and~A5! give the above multipole expansio
in terms ofgab .

Finally, we integrate the Schro¨dinger equation~3! and
obtain the orbital energyE in terms of molecular integrals,

E5gs11gs21H111H22

1
1

2
@T11221T22112ds~T12211T2112!#, ~16!

whereTabcd5^uauGcduub&. The levelE50 corresponds to
the configuration where all particles are infinitely separa
from each other and reside on their lowest Landau lev
with spins antiparallel to the magnetic field. The total ener
of the molecule isEtot5E1Z1Z2 /R.

III. NUMERICAL SCHEME

A. Coordinate system

To solve the Hartree-Fock equation~12!, we approximate
functions f a(j,h) by their node values on a mesh in th
domain 1<j<jmax, 21<h<1. We do not know the exac
form of the boundary conditions onf a at j→` and impose a
simplified conditionf a(jmax)50. Numerical calculations for
the field-free molecule (g50) show that this simplification
does not appreciably affect results provided thatjmax is large
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enough~see Sec. III C!. Coulomb and exchange integralsgab
are also approximated on the same mesh.

The spheroidal coordinate system is not very conven
for numerical integration of Eqs.~12! and ~13!. First, we
should impose boundary conditions at ‘‘practical infinity
that is, atj@1, and the requirement to have a good spa
resolution near the nuclei leads either to a very large num
of equally spaced grid points or to a nonuniform grid. Se
ond, if the magnetic field is strong enough, the electron d
sity is sharply concentrated near the molecular axis, and
insufficient density of grid points in this region causes t
numerical instability uncovered in our preliminary calcul
tions. Although this instability may be avoided by using
nonuniform grid, such a measure would involve more co
plicated formulas for numerical differentiation and integr
tion.

Fortunately, both difficulties can be avoided by a suita
transformation of the coordinate system. Instead of work
with nonuniform grids inj andh, we use equidistant grids in
new independent variablest and s, defined in the domains
0<t<T[ lnjmax and 21<s<1. The connection betwee
$j,h% and$t,s% is given by

j5exp@T2TVm t
~12t/T!#, h5Vms

~s!, ~17!

wherem t andms are adjustable parameters andVm(x) is an
odd monotone function defined on@21,1# and satisfying the
conditions Vm(0)50, Vm(1)51. This function must be
chosen so that it will concentrate grid points nearj51 and
uhu51. The choice used in this work isVm(x)
5wm(x)/wm(1), where

wm~x!5E
0

x

~11m2z2!23dz

5
x~513m2x2!

8~11m2x2!2
1

3

8m
arctanmx. ~18!

The parameterm controls the concentration of points:m
'0 results in an almost equidistant grid, andm;2 – 3 gives
a strongly nonuniform grid.

The differential operatorD̂n
(t) changes according to usu

rules,

D̂n
~t!~ t,s!5~j221!tj

2 ]2

]t2
1~12h2!sh

2 ]2

]s2

1@~j221!tjj1~212n2tr'
2 !jtj#

]

]t

1@~12h2!shh2~212n2tr'
2 !hsh#

]

]s
,

~19!

where the subscripts denote derivatives overj andh. Double
integrals transform as

E
1

jmax
djE

21

1

dhF~j,h!5E
0

T

dtE
21

1

dsF@j~ t !,h~s!#j ths .

~20!
nt

l
er
-
-

an

-
-

e
g

The derivatives in Eq.~19! can be expressed astjj5
2tj

3j tt , tj51/j t , the same fors andh.
We introduce a rectangular grid defined by equidist

points$t i%5hti and$sj%5hsj 21, where indicesi and j run
from 0 to Nt andNs , respectively, and the mesh widths a
ht5T/Nt andhs52/Ns . Since all numerical integrations ar
carried out using a five-point approximate formula, the nu
ber of intervals in each variable must be a multiple of 4, th
is, Nt54nt andNs54ns , wherent andns are integers.

B. Finite-difference formulas

We expressed first and second derivatives of functionsua
and gab over s and t using the seven-point approximatio
formulas given in@38#. If we have an equidistant meshxi
with a constant mesh widthh5xi2xi 21 and consider a func-
tion y(x) whose node values areyi5y(xi), then the first and
second derivatives ofy(x) at mesh points can be approx
mated as

60hy8~xi !56 (
l 523

3

A11k,41 l yi 6~k1 l !1«1 , ~21a!

180h2y9~xi !5 (
l 523

3

B11k,41 l yi 6~k1 l !1«2 , ~21b!

where«15O(h8) and «25O(h8) for k50 andO(h7) for
kÞ0, andA and B are 437 integer matrices given in Ap
pendix B, Eqs.~B1! and~B2!. The indexk50 gives centered
expressions, and 1<k<3 generates ‘‘shifted’’ formulas,
which are used near the mesh boundary. The upper
lower signs in Eqs.~21! correspond to right and left shifts
respectively; an example is given by Eq.~B3!.

Numerical integration was done using the five-po
Newton-Cotes formula@39# applied to the 535 integration
grid,

E
xi

xi 14
y~x!dx5

2h

45
~7yi132yi 11112yi 12

132yi 1317yi 14!1O~h7!. ~22!

Sometimes, it is convenient to perform initial self-consiste
field ~SCF! iterations with a small number of grid points an
then use the obtained solution as the initial approximation
calculations on a finer grid. To interpolate the functionsua
andgab to a refined grid with largerNt andNs , we used the
seven-point Lagrange interpolation formula

f ~xi1ph!5 (
k523

3

Ak
7~p! f ~xi 1k!, ~23!

where23<p<3 and the interpolation coefficients are@39#

Ak
7~p!5~21!k13

p~p221!~p224!~p229!

~31k!! ~32k!! ~p2k!
. ~24!

C. Self-consistent field iterations

Self-consistent field solutions of the Hartree-Fock eq
tion ~12! were obtained by the usual iterative technique. W
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start from a certain initial guess off 1
(0) and f 2

(0) for the or-
bitals andE18

(0) and E28
(0) for the energy eigenvalues an

repeat the following steps of SCF iterations.
~1! Calculate the boundary values of the potentialsgab

(k) ,
namely, their values at the positions of nuclei using Eq.~A4!
and at practical infinity forNt22< i<Nt with the aid of
multipole expansion~A5! and ~A6!.

~2! Solve the Poisson equation~13! using any relaxation
method. We used the successive overrelaxation~SOR! tech-
nique ~see, e.g.,@40#!.

~3! Find new functionsf a
(k11) by solving the Hartree-

Fock equation~12! with energy eigenvaluesEa8
(k) , potentials

gab
(k) , and orbitalsf b

(k) . Again, the SOR method is used.
~4! Normalize the spin orbitalsca

(k11) . Note that no spe-
cial orthogonalization is required; ifds50 or maÞmb , the
orbitals are automatically orthogonal, and ifds51 andma
5mb , then one of the orbitals is even and the other one
odd with respect toh.

~5! Calculate new integralsH (k11) and T(k11) and new
energy eigenvaluesEa

(k11)5Haa
(k11)1Taabb

(k11)2dsTabba
(k11) .

~6! If the changes of every orbitali f a
(k11)2 f a

(k)i and ev-
ery energy eigenvalueiEa

(k11)2Ea
(k)i are less than certain

predefined values, we consider the solution as converged
stop the SCF iterations; otherwise, we return to step~1!.

The above scheme requires several comments. First o
it is necessary to specify the boundary conditions which
impose on the functionsf a(j,h) when solving the Hartree
Fock equation ~12!. Since we do not know the exac
asymptotic behavior of the functionsf a at infinity, we simply
put f a to zero atNt22< i<Nt . Calculations in the field-free
case show that this simplification does not produce any
ticeable effect ifjmax is sufficiently large. A judicious esti-
mate of the requiredjmax can be obtained from the following
reasoning.

Taken with the opposite sign, an eigenvalueEa of the
Hartree-Fock equation~5! represents the energy required
remove theath electron from the molecule on the assum
tion that f b for the molecular ion is the same as for th
molecule. In the presence of a magnetic field this ‘‘ioniz
tion’’ energy is g/22Ea . If we now assume that the
asymptotic behavior of the orbitalf a along the field is ap-
proximately exp(rAg22Ea) ~see@9#, Sec. IV! and that it is
safe to setf a to zero where it is less than, say, 102K, K
;10– 12, then we immediately obtain that a ‘‘sufficient
large’’ jmax is

jmax5maxa

2K ln 10

RAg22Ea

. ~25!

For example, if we takeK510 and consider the ground mo
lecular state3P0 (L521) in the fieldg51 a.u., thenjmax
given by Eq.~25! corresponds to the spatial distancer max
5(R/2)jmax'17 a.u.

Along with the boundary conditions at practical infini
we must also set conditions near the nuclei. This is don
the following manner. Ifma50, then during the SOR reca
culation of f a

(k11) we do not change the value off a
(k11) at the

position of one or both of the nuclei, depending on the
quiredh symmetry of the orbital~if ds50 or maÞmb , then
is

nd

ll,
e

o-

-

-

in

-

we do not impose the requirement ofh symmetry at largeR
in order to obtain correct results in the dissociation limi!.
For maÞ0 we choose a ‘‘fixed point’’ somewhere in th
vicinity of a nucleus~usually at i 5 j 53,...,5). Of course,
during the normalization of the recalculated functionsf a

(k11)

all node values are changed, including those that were k
constant during the SOR calculation.

A marked feature of the employed computational meth
is the high sensitivity of SCF iterations to the initial choic
of eigenvaluesEa

(0) and functionsf a
(0) . If the starting guess is

far from the true solution, then SCF iterations immediate
diverge. The state1S0 (L50) is less prone to this instabil
ity, but for the state3P0 (L521) in strong and superstron
magnetic fields it is a severe problem. Luckily, this difficul
may be obviated by systematic construction of the start
functions f a

(0) , ‘‘damping’’ of several initial iterations, and
setting parametera to a nonzero value~see Sec. III D!.

Spatial orbitalsua must satisfy the cusp condition at th
positions of nuclei, have the correct asymptotic behav
along the field lines, and decay as exp(2gr'

2/4) in the trans-
verse direction. In addition, our approximate boundary c
dition at infinity requires the orbitals to become zero ai
>Nt22. All these demands may be met if we initialize th
functions f a

(0) as

f a
~0!5

j* 2j

j* 21
expF2

~11lar !r

11umau1r
2

12a

4
gr'

2 G , ~26!

wherela5@g(12a)(11umau)22Ea#1/2, j* is the value of
j at i 5Nt22 ( f a[0 for i>Nt22), andr 5(R/2)(j6h) is
the distance from a chosen nucleus. Obtained in such a w
the functionsf a are ~if necessary! h symmetrized and nor-
malized.

To improve the stability of SCF iterations on the initi
stage, the eigenvaluesEa

(1) , Ea
(2) , andEa

(3) are recalculated
according to

Ea
~k11!5«k@Haa

~k11!1Taabb
~k11!2dsTabba

~k11!# 1~12«k!Ea
~k! ,

~27!

where the parameter«k controls the ‘‘damping’’ of rapid
changes which can occur on starting. Usually we used va
«050.2, «150.5, and«250.8.

Both SOR and SCF iterations approach exact soluti
~here we understand the word ‘‘exact’’ in the finite
difference context! exponentially but never actually reac
them. Therefore, we must terminate iterations when cer
predefined convergence criteria become true. In the cas
SOR, the stopping criterion may be easily defined as
average residual per node. However, SCF iterations do
provide such a convenient measure of convergence. Inst
we use changes of the orbitalsiua

(k11)2ua
(k)i and eigenval-

ues uEa
(k11)2Ea

(k)u and terminate calculations when the
quantities fall below preset limits.

D. Stability of the method

The SOR technique used here for the calculation of
tentials and wave functions is well documented in the lite
ture. In the case of the usual three-point approximations
first and second derivatives its application usually prese
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no difficulties in terms of numerical stability. It turned ou
however, that for the seven-point approximation formu
stability of the successive overrelaxation method strongly
pends on the order in which we recalculate node values
ing SOR iterations.

When we use the usual three-point approximation form
las, then even the simplest algorithm, which recalculates
ues at nodes (i , j ) with i running from 0 toNt and j running
from 0 to Ns for every i , works without faults. However, in
our case of seven-point formulas this trivial scheme h
pened to be unstable. Fortunately, the problem can be c
by a simple modification of the order in which the no
values are recalculated: SOR iterations become stable w
the indexi runs first from 0 toNt/2 and then back fromNt to
Nt/2, and the indexj , in a similar manner, runs first from 0 t
Ns/2 and then backwards fromNs to Ns/2 for eachi .

Another potential source of divergence is the quadra
term g2r'

2 in the one-electron Hamiltonian~4!, which tends
to create numerical instability if the magnetic intensityg is
large. To overcome this problem, we introduced several p
cedures for the improvement of the convergence.

The first and the most pronounced instability usually o
served at largeg is the instability of SOR iterations which
develops in the areauhu'1. This instability is triggered by
an insufficient density of grid pointsh j and can be sup
pressed either by increasing the numberNs of grid points or
by increasing the parameterms , since both measures create
concentration of points on theh axis in the troublesome
regionuhu'1. However, the first method increases the nu

TABLE I. Difference E(Nt ,Ns)2Eexact ~in nhartree! for the
ground states of the hydrogen atom, hydrogen molecular ion,
the hydrogen molecule as a function of the grid size. The par
etersR and r max are given in the table,m t5ms50.1.

Nt Ns524 Ns532 Ns540 Ns548

H (R52.0 a.u.,r max520 a.u.,Eexact520.5)
24 516.2 515.6 515.5 515.5
40 27.7 28.4 28.5 28.5
56 21.1 21.7 21.8 21.8
72 0.3 20.3 20.4 20.4
80 0.5 20.1 20.2 20.2
88 0.6 0.0 20.1 20.1
96 0.6 0.0 20.1 20.1

H2
1 (R52.0 a.u.,r max515 a.u.,Eexact521.102 634 214 5)
24 2887.4 2886.4 2886.2 2886.2
40 38.0 36.9 36.8 36.8
56 2.4 1.3 1.2 1.1
72 1.2 0.1 20.1 20.1
80 1.1 0.1 20.1 20.1

H2 (R51.4 a.u.,r max520 a.u.,Eexact521.133 629 57)
24 6074.0 6070.4 6069.2 6068.4
40 186.7 185.5 185.9 186.3
56 17.3 15.5 15.4 15.5
72 3.3 1.4 1.3 1.3
88 1.2 20.7 20.8 20.8

104 1.0 21.2 21.3 21.3
112 0.8 21.3 21.4 21.4
120 0.7 21.3 21.4 21.4
s
-
r-

-
l-

-
ed

en

c

-

-

-

ber of nodes, thus significantly slowing down the speed
computation, while the second one solves the problem
shifting nodes closer to the molecular axis. This measur
usually more efficient because in the presence of a magn
field the wave function is concentrated along the field lin
and by increasingms we adapt the grid to the new physic
situation. Typically, we usems51 for g51 andms5324
for g510223.

The second stability problem caused by a largeg is the
increased sensitivity of SCF iterations to the initial choice
spatial orbitalsf a

(0) and eigenvaluesEa
0 , which was already

discussed in the preceding section. This problem develop
the parametera, which defines the partial separation of ma
netic asymptote exp(2agr'

2/4) in Eq. ~7!, is zero or close to
zero. However, SCF iterations are completely stabilized
increasinga to 0.1– 0.3, although this measure results in
larger number of iteration steps. We did not observe a
appreciable effect of the value ofa on the accuracy of the
final converged results.

A side effect resulting from the introduction of a nonze
a is the instability of SOR iterations at larger' . To get rid
of this problem, the functionsf a

(k11) are recalculated accord
ing to the modified Hartree-Fock equations

D̂ umau
~sag! f a

~k11!1~Z1j1Z2h! f a
~k11!

2
R2

2
~j22h2!S gbb1

12a2

8
g2r'

2 2Ea8D f a
~k11!

52ds

R2

2
r

'

uma2mbu1umbu2umau
~j22h2!gbaf b

~k!

1~12s!agr'
2 S j

]

]j
f a

~k!2h
]

]h
f a

~k!D , ~28!

where the potentials and eigenvalues are calculated from
kth step of SCF iterations. Stabilization of thea-induced
SOR divergence is achieved by the introduction of the
rameters whose typical value lies between 0.5 and 1; us
ally, we useds512a.

IV. CONVERGENCE AND TESTS

In order to check the reliability and convergence prop
ties of the present technique, we performed calculations
several simplest one- and two-electron systems which w
already investigated previously by independent methods.
start with the field-free situation, where we consider two on
electron problems, the hydrogen atom H and the hydro
molecular ion H2

1 , and two two-electron problems, the hy
drogen molecule H2 and the helium atom He. Table I show
the difference between the energy valuesE(Nt ,Ns) obtained
by the current method and the best available benchm
Eexact for the ground states of H, H2

1 , and H2. The energy
difference is given in nhartree~1 nhartree5 1029 hartree! as
a function ofNt andNs . The internuclear distanceR is 2.0
a.u. for H and H2

1 ~of course, for the atom the term ‘‘inter
nuclear’’ refers only to the coordinate system! and 1.4 a.u.
for the hydrogen molecule in singlet state. In each case
outer radiusr max5(R/2)jmax was determined according t
Eq. ~25! with N'8 and is given in Table I. Exact groun

nd
-
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state energy values are20.5 hartree for H,
21.102 634 214 494 9 hartree for H2

1 ~Ref. @41#!, and
21.133 629 57 hartree for H2 ~Ref. @38#!.

As we see, convergence of the method is excellent. In
three cases results steadily converge both inNt andNs and,
for the one-electron systems, fall within 10210 hartree of the
exact solution. For the hydrogen molecule, the precision
our results seems to slightly exceed that of Ref.@38#, and we
can put the Hartree-Fock limit for this system to
21.133 629 571(1) hartree. Notice that, unlike variation
calculations, the fully numerical method gives energies t
are not necessarily upper bounds on the exact values.

Convergence of the ground state of the helium atom
shown in Table II~the exact value given in Ref.@42# is
22.861 679 995 612 2). Again, the fully numerical meth
gives an accuracy better than 1029 hartree, although this
time the convergence inNs is considerably slower than fo
H2.

Convergence of the method in the presence of magn
field is illustrated by the examples of the hydrogen atom
and the hydrogen molecule H2. Table III lists the differences
between the calculated ground state energies of the hydr

TABLE II. Convergence of resultsE(Nt ,Ns)2Eexact for the
ground state of the helium atom in the absence of a magnetic fi
The ‘‘internuclear’’ distance isR51.4 a.u.,r max515 a.u.,m t5ms

50.1. The difference is given in nhartree.

Nt Ns532 Ns556 Ns572 Ns588 Ns5104

24 24985.1 25383.4 25467.0 25523.6 25565.9
40 319.6 145.4 139.6 137.4 136.1
56 202.7 36.1 32.3 31.6 31.4
72 177.2 12.0 8.5 7.9 7.8
88 171.0 6.6 3.1 2.5 2.4

104 169.0 5.1 1.6 1.0 0.9
112 168.4 4.8 1.3 0.7 0.6
120 168.1 4.6 1.1 0.5 0.4

TABLE III. Difference E(Nt ,Ns)2Eexactfor the ground state of
the hydrogen atom in magnetic field. Results forg51 a.u. are
calculated atR52.0 a.u.,r max515 a.u.,ms51.0, anda50.3; cal-
culations forg5100 a.u. were performed atR50.7 a.u.,r max57
a.u.,ms53.0, anda50.1. In both casesm t50.1.

Nt Ns540 Ns556 Ns580 Ns5104 Ns5120

g51 a.u.,DE in nhartree
24 2788.88 2874.80 2884.55 2885.33 2885.42
40 67.36 218.55 228.31 229.08 229.18
64 95.46 9.54 20.21 20.99 21.09
88 96.51 10.59 0.84 0.06 20.03

104 96.60 10.68 0.93 0.16 0.0
120 96.63 10.71 0.96 0.18 0.0

g5100 a.u.,DE in mhartree
24 229 204.6 229 104.5 229 088.8 229 087.1 229 086.8
40 2959.6 2859.2 2843.4 2841.7 2841.4
56 2158.0 257.5 241.7 240.0 239.7
72 2120.3 219.8 24.0 22.3 22.0
80 2118.5 218.0 22.2 20.5 20.2
ll
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atom in a magnetic field and the corresponding exact va
taken from Ref. @9#. For g51.0 a.u. (Eexact5
20.831 168 896 733 hartree! convergence is excellent, an
Nt5Ns5120 gives fully numerical results accurate to with
10210 hartree. If the field is increased tog5100.0 a.u., con-
vergence of the present method becomes slower: The en
calculated atNt580 and Ns5120 differs from the exact
value 23.789 804 236 305 hartree by more than 1027 har-
tree.

Table IV lists energy eigenvalues for the hydrogen m
ecule which were computed at severalNt5Ns5N. The ei-
genvalues were calculated for two different symmetry sta
of the molecule, 1Sg and 3Pu , at two different field
strengths,g51 a.u. andg520 a.u., respectively. The inter
nuclear distancesR are close to the equilibrium values. As i
the case of a single hydrogen atom, convergence of eig
values atg51 a.u. is excellent, while atg520 a.u. the dif-
ference between the last two values is still larger than 1027

hartree.
It is useful to perform a more detailed analysis of conv

gence. Let us return to the field-free helium atom~Table II!
and investigate eigenvalues calculated withNt5112 and dif-
ferent Ns . Open circles in Fig. 1 show the differenc
E(112,Ns28)2E(112,Ns) plotted as a function of the inde
Ns . The logarithmic scale of both axes reveals that the d
ference accurately obeys a power law dependence. The s

ld.
TABLE IV. Convergence of the calculated energy eignevalu

E(N,N) for two different quantum states of H2 in a magnetic field:
1Sg in a field g51.0 a.u. (R51.22 a.u.! and 3Pu (L521) in a
field g520.0 a.u. (R50.64 a.u.!. Values of R are close to the
corresponding equilibrium distances, the parametersr max andms are
given in the table, anda512s50.3 andm t50.1 in both cases.
Calculations for1Sg are done for two different values ofr max, 15
and 20 a.u.

N E N E

1Sg , g51.0 (r max515 a.u.,ms51.0)
24 20.847 590 294 7 80 20.847 594 785 6
32 20.847 593 709 7 88 20.847 594 786 5
40 20.847 594 539 0 96 20.847 594 787 0
48 20.847 594 717 3 104 20.847 594 787 2
56 20.847 594 763 7 112 20.847 594 787 3
64 20.847 594 778 3 120 20.847 594 787 4
72 20.847 594 783 5

The same,r max520 a.u.
24 21.847 586 952 6 80 21.847 594 784 7
32 21.847 593 144 9 88 21.847 594 786 1
40 21.847 594 407 8 96 21.847 594 786 7
48 21.847 594 680 0 104 21.847 594 787 1
56 21.847 594 751 3 112 21.847 594 787 3
64 21.847 594 773 5 120 21.847 594 787 4
72 21.847 594 781 5

3Pu (L521), g520.0 (r max510 a.u.,ms51.5)
24 24.495 906 352 80 24.495 298 026
48 24.495 291 246 88 24.495 299 075
56 24.495 293 164 96 24.495 299 938
64 24.495 295 122 104 24.495 300 658
72 24.495 296 732
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result is observed for eigenvalues calculated withNs5104
and differentNt : The differenceE(Nt28,104)2E(Nt,104)
plotted in Fig. 1 as solid circles also fits a straight line.

Fitting of the results shown in Fig. 1 gives the followin
approximate formulas:

E~112,Ns!2E~112,Ns28!'23.73106Ns
28.4,

E~Nt,104!2E~Nt28,104!'273104Nt
27 .

Although errors in the eigenvalues are not directly related
the truncation errors of finite-difference formulas, which b
have likeO(h7) or O(h8), they follow the power law ten-
dency very accurately. As a result, we can reliably extra
late the eigenvalues to infiniteNt andNs . If we consider a
seriesEn , which obeys the relationshipEn2En2k5an2b,
b.1, and use the trivial inequality

E
n2k

n

~x1k!2bdx,kn2b,E
n2k

n

x2bdx, ~29!

then summation overn yields upper and lower bounds on th
error,

a

~n1k!b21
,k~b21!~E`2En!,

a

nb21
. ~30!

The coefficientsa andb can be easily computed if we know
three subsequent termsEn22k , En2k , andEn ,

b5 logn/~n2k!

En2k2En22k

En2En2k
,

a5~En2En2k!n
b, ~31!

and we obtain a convenient formula

FIG. 1. Convergence of the energy eigenvalue for the gro
state of the helium atom in the absence of a magnetic field. O
circles show the difference~in hartree! between pairs of eigenvalue
calculated with the sameNt5112 and differentNs as a function of
Ns . Solid circles show the difference between pairsE(Nt ,Ns

5108) andE(Nt28,Ns5108) versusNt . Solid lines represent fit-
tings of results using the power law.
o
-

-

E`5En1
n

k~b21!
~En2En2k!d, ~32!

where

S n

n1kD b21

,d,1. ~33!

Let us now check if the uncovered dependence holds
the presence of a magnetic field. We shall use eigenva
for the hydrogen molecule presented in Table IV. Figure
shows that even in this case differences between succe
eigenvalues decrease according to a power law depende
However, the exponents are different. Forg51 a.u., the de-
pendence is described by

E~N28,N28!2E~N,N!'3.33107N28.5, ~34!

and forg520 a.u. the corresponding formula is

E~N28,N28!2E~N,N!'0.02N22.2. ~35!

The decrease of the convergence rate with the growth ofg is
explained by the fact that the mesh used atg520 a.u. is
significantly more inhomogeneous (ms51.5) than atg51
a.u. (ms51.0). Consequently, the mesh width depends onN
nonlinearly, which is seen in the behavior of eigenvalu
giving an integrated measure of the approximation erro
The important fact, however, is that Eqs.~32! and ~33! are
still valid.

Finally, we must investigate the convergence of resu
with the growth ofr max. If we will increaser max and simul-
taneously keepN constant, the mesh width will grow and th
approximation errors will increase. Therefore, we must c

d
n

FIG. 2. Convergence of the energy eigenvalues for H2 in a mag-
netic fieldg. ~a! 1Sg , g51 a.u.,r max515 a.u.~b! 3Pu , g520 a.u.
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3412 57YU. P. KRAVCHENKO AND M. A. LIBERMAN
culate E`(r max)5limN→`E(N,r max) for different r max. We
have performed such calculations for the singlet state1Sg in
the magnetic fieldg51.0 a.u. with two different values o
r max, 15 and 20 a.u. The results are listed in Table IV. T
first value r max515 a.u. corresponds to the decay expon
K58.93 @see Eq.~25!#, the second valuer max520 a.u. toK
511.9 (g22E151.88 hartree!. As the mesh sizeN grows,
both eigenvalues converge to within 10210 hartree.

V. RESULTS

A. Hydrogen molecular ion H2
1

The energy levels of the hydrogen molecular ion H2
1 in

an external magnetic field were extensively investigated fo
wide region of magnetic field strength@24,43,25#, from su-
perstrong@44,45,21# and intermediate fields@22,26# to the
low-field regime@23#. However, the accuracy of the resul
obtained forg>1 a.u. usually did not exceed 1025– 1026

hartree. Since highly accurate benchmark results are cle
of interest for testing new computational methods and co
puter codes, we used the present method to obtain a seri
precise results for the ground state of H2

1 at different
strengths of the applied magnetic field. These results, wh
are listed in Table V, were already used to investigate
accuracy and convergence of modified Gaussian basis
for calculations in strong magnetic fields@46#. The internu-
clear distances are chosen to be close to the equilibrium
tances reported in@21,25#.

B. Helium atom in a magnetic field

If we setZ1 to 2 andZ2 to zero, we can compute Hartree
Fock energy levels for the helium atom in a magnetic fie
Such calculations may serve as an additional check of
computational technique, because we can compare ou
sults with the accurate Hartree-Fock values reported in@15#.
Since the helium atom is not the core of the present analy
we have restricted the calculations to the states 11S0 ~the
ground state in the absence of magnetic field! and 23P21
~the ground state of He in strong magnetic fieldsg@1) and
to several values ofg. Our results, together with the value
from @15#, are presented in Table VI. As we see, agreem
with previous results is excellent, and the discrepancy
typically less than 1 mhartree.

C. Hydrogen molecule H2

Let us now turn to the problem of the hydrogen molec
in a parallel magnetic field. We start from the region of lo

TABLE V. Accurate ground state eigenvalues for the hydrog
molecular ion in a magnetic fieldg. The internuclear distanceR is
selected to be close to the equilibrium configuration. Results
valid to 61 in the last quoted digit.

g R ~a.u.! E(R)~hartree!

1 1.7 21.562 967 873
10 1.0 23.173 722 18

100 0.5 27.127 630 5
1000 0.2 216.359 853
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magnetic fields and follow the evolution of the potent
curves1Sg , 3Su , and 3Pu as the magnetic field grows. Fo
the triplet states, we consider only the lowest triplet comp
nent, that is, the one with total electronic spinSz521.

Figure 3 shows the behavior of the potential curves1Sg ,
3Su , and 3Pu of H2 as the magnetic field grows from 0 t
0.5 a.u. This region of magnetic field strength encompas
several important effects. First of all, atg'0.2 a.u. the hy-
drogen molecule undergoes the first transition of its grou
state symmetry from the strongly bound singlet state1Sg to
the triplet state3Su , characterized by an extremely wea
interaction between atoms in the molecule. However, t
transition does not imply that the singlet state1Sg immedi-
ately disappears from the picture. Instead, as the magn
field continues to grow fromg'0.2 a.u. tog'0.4 a.u., the
state 1Sg remains a metastable state of the system. Fina
as the magnetic field reachesg'0.4 a.u., the singlet stat
1Sg becomes a short-lived unstable state of the molecule
g50.5 a.u., the hydrogen molecule does not have any st
or metastable states which are strongly bound, which me
that the molecule must consist of two separated and we
interacting atoms.

Figure 3~a! presents the classical picture of the potent
curves of the hydrogen molecule in the absence of a m
netic field. Solid curves show the energy in the Hartree-Fo
approximation, and dashed curves correspond to the t
energy with account taken of the electron correlation, fro
@47#. The correlation energy is significant for the singlet sta
1Sg but is much smaller for the triplet states, which is e

n

re

TABLE VI. Hartree-Fock binding energies~in a.u.! of the states
1 1S0 and 23P21 of the helium atom in a magnetic fieldg ~a.u.!.
For a comparison, we present the corresponding energy values
Ref. @15#.

g 1 1S0 2 3P21

0.1 2.959 709 36 2.258 4
2.960 0a 2.259 3a

0.2 3.053 844 87 2.361 7
3.054 1a 2.361 9a

0.5 3.314 450 94 2.615 49
3.314 8a 2.616 2a

1 3.688 884 85 2.959 665
3.689 1a 2.959 9a

2 4.289 144 42 3.502 028
4.289 1a 3.502 2a

5 5.532 445 1 4.617 21
5.532 6a 4.617 3a

10 6.889 366 2 5.829 49
6.889 6a 5.829 5a

20 8.680 391 2 7.427 66
8.680 6a 7.427 7a

50 11.856 093 10.264 46
11.856 5a 10.264 4a

100 14.995 822
14.997 4a

200 18.893 61
18.894 6a

aValues from Ref.@15#.
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FIG. 3. Potential curves of the quantum states1Sg , 3Su , and 3Pu in a parallel magnetic field between 0.0 and 0.5 a.u. Solid cur
show Hartree-Fock results; dotted curves are exact solutions. Dotted lines show energies of states in the limitR→`.
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plained by the smaller overlap of electronic orbitals in trip
states.

To investigate the behavior of the correlation energy w
the growth of the magnetic field strength, we can comp
our numbers with the results of the elaborate CI calculati
performed in@36#. At g50.5 and equilibrium internuclea
distanceR51.33 a.u., our Hartree-Fock energy for1Sg is
21.0479 hartree, CI energy from@36# is 21.0891 hartree,
and the correlation energy is 0.0412 hartree; atg51.0 a.u.
andR51.24 a.u., the Hartree-Fock energy is20.8474 har-
tree and CI energy is20.8903 hartree, which gives a corr
lation energy of 0.0429 hartree. If we compare these res
with the field-free correlation energy of H2, equal to 0.0408
hartree atR51.4 a.u., we see that, at least for magnetic fie
up to 1 a.u., the correlation energy of the hydrogen molec
in the singlet state1Sg remains approximately the sam
Analysis of the correlation energy of the triplet sta
3Su gives similar results.

Figure 3~b! shows the potential curves of the same sta
1Sg , 3Su , and 3Pu in a magnetic fieldg50.1 a.u.~for g
Þ0 we show only the Hartree-Fock energies!. The potential
well of the state3Pu has become slightly deeper, but it lie
high above the curve of the triplet state3Su . The curve of
3Su has been shifted lower due to the increase in the b
ing energy of separated hydrogen atoms. The singlet s
1Sg has stayed almost at the same place, because the
crease in its potential energy due to the deformation of
wave function is compensated for by the interaction of
electron spins with the magnetic field. As a result, the
energy of 1Sg in its minimum position R'1.4 a.u. is
t

e
s

lts
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21.1298 hartree, i.e., by 0.0038 hartree higher than the fi
free value of21.1336 hartree. The energy of the triplet sta
3Su at R@1 is 21.0951 hartree, and the state1Sg is still
the ground state.

When the field increases tog50.2 a.u., the situation
changes dramatically. Figure 3~c! demonstrates that th
minimum of the HF energy of the singlet state1Sg becomes
higher than the energy of the triplet state3Su at R@1, while
the second triplet state3Pu is still sufficiently high. It
means that now the ground state of the system is the tri
state 3Su with a very weak interaction between atoms, a
hydrogen behaves like a gas of weakly interacting ato
The results of@36# show that this result holds when we in
clude the electron correlation.

Although the singlet state1Sg has lost its position as the
ground state, one can immediately see the possibility for
formation of metastablemolecules in the state1Sg . The
potential minimum of 1Sg at g50.2 a.u. is located atR
'1.38 a.u., while the crossing of the HF curves1Sg and
3Su occurs atR'2.0 a.u. ~with account for the electron
correlation, the latter distance becomes even larger!. There-
fore, a molecule formed in the potential minimum
1Sg remains in this state until it is destroyed by some e
ternal mechanism, like a collision with another molecule.

In a magnetic fieldg50.3 a.u. the picture of the potentia
curves remains essentially the same as atg50.2. This is
shown in Fig. 3~d!. The ground state of the system is th
triplet state3Su , the singlet state1Sg is a metastable state
and the triplet state3Pu is an unstable short-lived state.
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FIG. 4. Hartree-Fock potential curves of the quantum states1Sg , 3Su , and 3Pu in a magnetic field between 0.6 and 2.0 a.u.
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However, atg50.4 a.u. the situation changes. Figure 3~e!
demonstrates that at this field strength the position of
potential minimum of the singlet state1Sg almost coincides
with the point of intersection of the curves1Sg and 3Su .
This means that the lifetime of the molecule in the me
stable state1Sg becomes very short. The state1Sg changes
from a metastable to a short-lived unstable state.

This change becomes perfectly clear when we look at F
3~f!, which shows the behavior of the potential curves in
magnetic fieldg50.5 a.u. The potential minima of both th
singlet state1Sg and the triplet state3Pu lie above the
curve of the ground state3Su . There is no possibility for the
formation of strongly bound metastable molecules, and
hydrogen molecules are in the ground state3Su , which
means that hydrogen presents a gas of weakly interac
atoms.

Let us proceed to Fig. 4 and follow the evolution of th
potential curves of H2 as the magnetic field grows to 2 a.
When we look at Figs. 4~a!–4~c!, which show the potentia
curves 1Sg , 3Su , and 3Pu in magnetic fieldsg50.6 a.u.,
0.8 a.u., and 1.0 a.u., we observe that the increasing m
netic field boosts the energy of the singlet state1Sg , and its
potential curve rises highly above the curves of the trip
states. The potential well of the state3Pu slowly deepens,
and the location of its minimum shifts to smallerR. As a
result, atg51.0 @Fig. 4~c!# the position of the potential mini
mum of the curve3Su is very close to the point of intersec
tion between curves3Su and 3Pu .

Because the singlet state1Sg now has a considerabl
higher energy than the triplet states, we can exclude it fr
consideration and concentrate more closely on the beha
e

-
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ng
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m
ior

of triplet states. Figures 4~d!–4~f! show the potential curves
of the states3Su and 3Pu in magnetic fieldsg51.2, 1.6,
and 2.0 a.u. We observe that the behavior of the state3Pu is
opposite to the behavior exhibited by the singlet state1Sg in
Figs. 3~d!–3~f!. Namely, the potential minimum o
3Pu becomes located at a smaller internuclear distance
the intersection between curves3Su and 3Pu . This effect is
observable already atg51.6 a.u. and is clearly seen atg
52.0 a.u.

As we see, for magnetic fields stronger thang.1.2 a.u.
the potential minimum of the state3Pu lies below the po-
tential curve of the state3Su . This means that the triple
state3Pu , which is unstable in weaker fields, is now able
form metastable molecules. If two hydrogen atoms form
strongly bound molecule in the state3Pu with internuclear
distance close to the equilibrium position, they will remain
this state until the nuclei separate into a distance sufficie
large to allow a transition to the ground state3Su . The
lifetime of such molecules will be determined mainly by th
frequency and amplitude of their vibrational and rotation
oscillations. Investigation of this question requires a detai
study of the potential energy surfaces of both triplet sta
and is a very interesting yet computationally difficult task f
future research in this area. As for now, our results allow
to make a preliminary conclusion that the formation of me
stable molecules starts approximately fromg'1.4 a.u.

With the further growth of the magnetic field the depth
the potential well of the state3Pu continues to increase
which facilitates the formation of the metastable molecul
Figures 5~a! and 5~b! show the potential curves of the stat
3Su and 3Pu in magnetic fieldsg55 a.u. andg510 a.u.
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Although the true ground state of the molecule is still t
weakly interacting state3Su , the potential minimum of the
state 3Pu gradually approaches the ground state energy
the field increases tog530 a.u.@Fig. 5~c!#, the potential well
of 3Pu becomes sufficiently deep to make the stron
bound state3Pu the ground state of the hydrogen molecu

Therefore, the second transition of the ground state s
metry of H2 happens at some magnetic field strengthg2

such that 10,g2,30 a.u. We have already seen that the fi
ground state transition from1Sg to 3Su happens at a certai
g1 between 0.1 and 0.2 a.u. To determine the values ofg1
and g2, we should turn to Fig. 6, which shows the depe
dence of the potential minima of all three state1Sg , 3Su ,
and 3Pu on the strength of the applied magnetic field in t
region of weak and intermediate fields fromg50 to 0.5 a.u.
The solid lines show results calculated in the Hartree-F
approximation; the dotted lines show the same poten
curves corrected by the value of the correlation energy in
absence of a magnetic field. We have proved that for m
netic fields 0<g<1 a.u. the correlation energy remains a
most constant, and so the dotted curves give a very accu
description of the actual behavior of potential minima w
electron correlation taken into account. As we see, the
transition of the ground state symmetry fromg1 to g2 hap-
pens atg1'0.18 a.u.

FIG. 5. Potential curves of the states3Su and 3Pu in a parallel
magnetic field~a! g55 a.u.,~b! g510 a.u., and~c! g530 a.u.
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Figure 6~b! shows the area of the second transition. B
cause of the absence of reliable data on the correlation
ergy in such magnetic fields, we are restricted to the Hartr
Fock ~HF! approximation only. Figure 6~b! plots the
difference between the HF energy of the potential minim
of the state3Pu and the energy of two hydrogen atoms
infinite separation. The picture shows that the second tra
tion of the ground state symmetry from3Su to 3Pu occurs
at g2'14 a.u.

Let us summarize our observations.
~1! For magnetic fields ranging from zero tog1'0.18

a.u., the ground state of the hydrogen molecule is the sin
state 1Sg .

~2! For magnetic fields ranging fromg1 to g2'14 a.u.,
the ground state of the hydrogen molecule is the triplet s
3Su with a very weak interaction between atoms at lar
internuclear distances and with a repulsive potential at sm
and intermediateR.

~3! For magnetic fields ranging fromg2 and stronger, the
ground state of H2 is the strongly bound triplet state3Pu .
This result is probably valid for fields up tog5103 a.u.;
however, a correct description of the hydrogen molecule
magnetic fields stronger than;103 a.u. must take into ac
count the effect of finite nuclear mass.

In addition to this general picture, there are two regions
magnetic field strength where the hydrogen molecule
strongly bound metastable states.

~1! If the magnetic field is in the rangeg1,g,g1*
'0.4 a.u., the hydrogen molecule has a strongly bound m
stable singlet state1Sg . The ground state is3Su .

~2! If the magnetic field lies within the boundsg2*
'1.4 a.u.,g,g2, the hydrogen molecule has a strong
bound metastable triplet state3Pu . The ground state is3Su .

FIG. 6. Transitions of the ground state symmetry of the hyd
gen molecule in a parallel magnetic field.~a! Energy minima of the
states1Sg , 3Su , and 3Pu (L521) as functions of the magneti
field strengthg. Solid curves show HF results; dotted curves sh
the correction for the electron correlation.~b! Difference between
the potential minima of the states3Pu and 3Su .
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The most important conclusion which follows from the
results is that betweeng1 andg2 hydrogen in its ground stat
does not form strongly bound molecules. Instead, two ato
will form a molecule in the state3Su , and the pair interac-
tion between hydrogen atoms is strongly repulsive at sm
internuclear distances and is very weak at largeR. This
means that hydrogen will form a gas of separated atoms
a weak anisotropic interaction due to the large quadrup
moments of the atoms.

VI. EXCITONIC SPECTRUM IN A MAGNETIC FIELD

As was already pointed out in the Introduction, the beh
ior of atomic hydrogen and of hydrogen molecules in
strong magnetic field is a subject of special interest beca
their close analogs, the hydrogenlike excitons and excito
molecules, can be investigated in experiments with magn
fields available in the laboratory. The experimental effo
are concentrated in two major directions. First, it is the
vestigation of highly excited states of excitons in semico
ductors with large values of the effective critical magne
field H0

eff . For a semiconductor such as Cu2O the critical
magnetic field is about 800 T, and laboratory magnetic fie
of the order 1022H0

eff reveal the ‘‘chaotic’’ behavior of the
excitonic spectrum@48#. The second direction of research
focused on the behavior of excitons in semiconductors w
such effective critical magnetic fields that they may
reached in laboratory conditions. An example of such a m
terial is uniaxially deformed germanium. This semiconduc
is especially interesting because it does not restrict the
perimenters to the study of separated excitons only but
lows the investigation of excitonic molecules, or biexcito
as well @49#.

Experiments with Ge in magnetic fields up to 14 T, whi
were reported recently@27#, revealed interesting features o
the excitonic spectrum. Reference@27# studied the optical
spectrum of the uniaxially deformed germanium with t
critical magnetic fieldH0

eff52.9 T. The excitonic spectrum in
the absence of a magnetic field consisted of two lines co
sponding to excitons and to biexcitonic molecules. Applic
tion of the external magnetic field caused the decreas
intensity of the biexcitonic line and the final disappearan
of this line at'1.5 T. This field strength corresponds to t
effective magnetic fieldg'0.5 a.u. The further increase o
the applied magnetic field to 4 T brought no significan
qualitative changes in the spectrum. However, as the fi
reached 4 T (g'1.4 a.u.!, an unknown spectral line emerge
on the ‘‘red’’ side of the line of free excitons. It was labele
as the ‘‘X line’’ and associated with the appearance of a
other bound state, whose energy is by onee-h pair lower
than the energy of an isolated exciton. The intensity of thX
line grew with the increase of the magnetic field and atH
510 T (g'3.5 a.u.! constituted 15% of the intensity of th
excitonic line.

The authors of@27# proposed two possible theoretical e
planations of the observed spectrum. The first explanat
which the authors however doubted, was based on the
sumption that the applied magnetic field increases the sta
ity of the electron-hole liquid. The alternative explanati
assumed the formation of a new biexcitonic molecular st
However, the nature of this state remained unclear due to
s
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lack of information about the behavior of excitonic mo
ecules in magnetic fields of intermediate strengthg;1.

We suggest that the biexcitonic state which is respons
for the formation of the observedX line is the metastable
triplet state 3Pu . This claim is strongly supported by th
fact that the strength of the magnetic field at which theX line
appeared is in excellent agreement with the obtained valu
g2* . Further, the evolution of theX line with the growth of
the magnetic field precisely corresponds to what one co
expect from the metastable state3Pu : The stronger the mag
netic field, the deeper the potential well of3Pu and, there-
fore, the more metastable molecules can be formed, resu
in the increased intensity of the spectral line.

If this picture is valid, then spectral features similar
those observed in@27# for the case of germanium may b
observed for other kinds of semiconductors as well. If oth
semiconductors with hydrogenlike excitons will exhibit th
appearance of a similarX line at approximately the sam
effective strength of the applied magnetic fieldg'1.4 a.u., it
will be a decisive argument in support of our hypothes
Moreover, such an effect may open alternative possibilit
for controlling the optical properties of semiconductors
using the externally applied magnetic field. Since the m
netic field required for such a control may be rather sm
~the critical magnetic field for InSb, for example, isH0

eff

'0.2 T!, this mechanism may have potential technologi
applications. There is a clear and strong need for furt
experimental research in this area.

VII. CONCLUSIONS

We have investigated low-lying levels of the hydrog
molecule placed in a strong parallel magnetic field. The c
culations were performed in the Hartree-Fock approximat
using a fully numerical method. Effects of finite nucle
mass and corrections of higher order were neglected.

Most of our attention has been concentrated on the beh
ior of the hydrogen molecule in the intermediate region
the magnetic field strengths. We have followed the evolut
of molecular levels in the magnetic field changing fromg
50 to 30 a.u. It is found that for a magnetic field in the ran
0,g,g1'0.18 a.u. the ground state of the hydrogen m
ecule is the strongly bound singlet state1Sg , for a magnetic
field g1,g,g2'14 a.u. the ground state of H2 is the
weakly interacting triplet state3Su , and for magnetic fields
stronger thang2 the ground state of the molecule is th
strongly bound triplet state3Pu . In addition to this genera
picture, there exist two regions of magnetic field streng
where the ground state of the molecule is the weakly in
acting 3Su , but hydrogen can form strongly bound met
stable states. The first such region isg1,g,g1* '0.4 a.u.,
where hydrogen may form metastable molecules in the
glet state1Sg . The second metastable region lies within t
boundsg2* '1.4 a.u.,g,g2. For magnetic fields of such
strength, hydrogen may form strongly bound metasta
molecules in the state3Pu .

Since the ground state of H2 for magnetic fields between
g1 andg2 is the weakly interacting triplet state3Su , in this
region of magnetic field strength hydrogen will behave like
nonideal Bose gas with a weak anisotropic interaction
tween atoms. This conclusion provides a solid foundation
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the theory of Bose condensation and superfluidity of a
drogenlike gas in a strong magnetic field@33#. Although
these effects must exist not for extremely strong magn
fields but for magnetic fields less than 14 a.u., the princi
concepts of@33# are proved to be valid.

Calculated results provide a possible theoretical expla
tion of the unusual features of the excitonic spectrum of g
manium in a strong magnetic field, observed in@27#. The
unknown excitonic ‘‘X line’’ observed experimentally may
be ascribed to the formation of metastable biexcitons in
triplet state3Pu . We propose to perform new experimen
with different kinds of semiconductors in strong magne
fields. If the proposed explanation of the nature of the
served excitonic spectrum is confirmed, it may open n
technological possibilities for controlling the optical prope
ties of semiconductors.
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APPENDIX A: MOLECULAR INTEGRALS

The overlap integrals over spatial orbitalsSab5^uauub&
are given by

Sab5d~ma ,mb!
pR3

4 E
1

`

djE
21

1

dh~j22h2!fafb .

~A1!

The Hamiltonian integralsHab5^uauĥuub& are

Hab52d~ma ,mb!
pR

2 E
1

`

djE
21

1

dhr
'

umbue2 a/4 gr'
2
fa

3F D̂ umbu
~ag! f b2

12a2

16
g2R2r'

2 ~j22h2! f b

1~Zpj1Zmh! f bG1
g

2
~a1umaua1mb!Sab . ~A2!

The formulas for the Coulomb and exchange integralsgab at
the positions of nuclei depend on the valuesma andmb . The
present work deals with combinations~0,0! and ~0,21!, and
the corresponding integrals are

gabS R1

R2
D 5pE

1

`

djE
21

1

dh~j7h!Kfafb ,

K55
R2

2
, ma5mb50,

r'

~j6h!2
, uma2mbu51, uLu51.

~A3!
-

ic
l

a-
r-

e

-
w

l

Here upper signs ‘‘1’’ and ‘‘ 2’’ should be taken forR1, and
lower signs correspond toR2.

At large j potentialsgab can be expressed via multipol
series ~since Gab5Gba* , we may always assume thatma

>mb),

gab~j,h!5
pR2

2
r

'

2umb2mau (
l 5ma2mb

`
~ l 2ma1mb!!

~ l 1ma2mb!!

3~j21h221!2 ~ l 11!/2

3Pl
ma2mbS jh

Aj21h221
D qab

~ l ! , ~A4!

where the momentsqab
( l ) are defined by

qab
~ l !5E

1

`

djE
21

1

dh,~j22h2!~j21h221! l /2

3Pl
ma2mbS jh

Aj21h221
D fafb . ~A5!

It was sufficient to extend the summation overl in Eq. ~A4!
up to l max56.

APPENDIX B: APPROXIMATION FORMULAS

The first and second derivatives are approximated
seven-point formulas~21!. The coefficient matricesA andB
are

A5S 21 9 245 0 45 29 1

2 224 235 80 230 8 21

210 277 150 2100 50 215 2

2147 360 2450 400 2225 72 210

D ,

~B1!

B

5S 2 227 270 2490 270 227 2

213 228 2420 200 15 212 2

137 2147 2255 470 2285 93 213

812 23132 5265 25080 2970 2972 137

D .

~B2!

For example, if we take the lower signs ‘‘1’’ and ‘‘ 2’’ in
Eq. ~21a! and putk52, we obtain the following approxima
tion for the first derivative:

y8~xi !5
1

60h
~22yi 25115yi 24250yi 231100yi 22

2150yi 21177yi110yi 11!. ~B3!
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